1 /* 2 * mm/truncate.c - code for taking down pages from address_spaces 3 * 4 * Copyright (C) 2002, Linus Torvalds 5 * 6 * 10Sep2002 Andrew Morton 7 * Initial version. 8 */ 9 10 #include <linux/kernel.h> 11 #include <linux/backing-dev.h> 12 #include <linux/gfp.h> 13 #include <linux/mm.h> 14 #include <linux/swap.h> 15 #include <linux/export.h> 16 #include <linux/pagemap.h> 17 #include <linux/highmem.h> 18 #include <linux/pagevec.h> 19 #include <linux/task_io_accounting_ops.h> 20 #include <linux/buffer_head.h> /* grr. try_to_release_page, 21 do_invalidatepage */ 22 #include <linux/cleancache.h> 23 #include <linux/rmap.h> 24 #include "internal.h" 25 26 static void clear_exceptional_entry(struct address_space *mapping, 27 pgoff_t index, void *entry) 28 { 29 struct radix_tree_node *node; 30 void **slot; 31 32 /* Handled by shmem itself */ 33 if (shmem_mapping(mapping)) 34 return; 35 36 spin_lock_irq(&mapping->tree_lock); 37 /* 38 * Regular page slots are stabilized by the page lock even 39 * without the tree itself locked. These unlocked entries 40 * need verification under the tree lock. 41 */ 42 if (!__radix_tree_lookup(&mapping->page_tree, index, &node, &slot)) 43 goto unlock; 44 if (*slot != entry) 45 goto unlock; 46 radix_tree_replace_slot(slot, NULL); 47 mapping->nrshadows--; 48 if (!node) 49 goto unlock; 50 workingset_node_shadows_dec(node); 51 /* 52 * Don't track node without shadow entries. 53 * 54 * Avoid acquiring the list_lru lock if already untracked. 55 * The list_empty() test is safe as node->private_list is 56 * protected by mapping->tree_lock. 57 */ 58 if (!workingset_node_shadows(node) && 59 !list_empty(&node->private_list)) 60 list_lru_del(&workingset_shadow_nodes, &node->private_list); 61 __radix_tree_delete_node(&mapping->page_tree, node); 62 unlock: 63 spin_unlock_irq(&mapping->tree_lock); 64 } 65 66 /** 67 * do_invalidatepage - invalidate part or all of a page 68 * @page: the page which is affected 69 * @offset: start of the range to invalidate 70 * @length: length of the range to invalidate 71 * 72 * do_invalidatepage() is called when all or part of the page has become 73 * invalidated by a truncate operation. 74 * 75 * do_invalidatepage() does not have to release all buffers, but it must 76 * ensure that no dirty buffer is left outside @offset and that no I/O 77 * is underway against any of the blocks which are outside the truncation 78 * point. Because the caller is about to free (and possibly reuse) those 79 * blocks on-disk. 80 */ 81 void do_invalidatepage(struct page *page, unsigned int offset, 82 unsigned int length) 83 { 84 void (*invalidatepage)(struct page *, unsigned int, unsigned int); 85 86 invalidatepage = page->mapping->a_ops->invalidatepage; 87 #ifdef CONFIG_BLOCK 88 if (!invalidatepage) 89 invalidatepage = block_invalidatepage; 90 #endif 91 if (invalidatepage) 92 (*invalidatepage)(page, offset, length); 93 } 94 95 /* 96 * This cancels just the dirty bit on the kernel page itself, it 97 * does NOT actually remove dirty bits on any mmap's that may be 98 * around. It also leaves the page tagged dirty, so any sync 99 * activity will still find it on the dirty lists, and in particular, 100 * clear_page_dirty_for_io() will still look at the dirty bits in 101 * the VM. 102 * 103 * Doing this should *normally* only ever be done when a page 104 * is truncated, and is not actually mapped anywhere at all. However, 105 * fs/buffer.c does this when it notices that somebody has cleaned 106 * out all the buffers on a page without actually doing it through 107 * the VM. Can you say "ext3 is horribly ugly"? Tought you could. 108 */ 109 void cancel_dirty_page(struct page *page, unsigned int account_size) 110 { 111 if (TestClearPageDirty(page)) { 112 struct address_space *mapping = page->mapping; 113 if (mapping && mapping_cap_account_dirty(mapping)) { 114 dec_zone_page_state(page, NR_FILE_DIRTY); 115 dec_bdi_stat(mapping->backing_dev_info, 116 BDI_RECLAIMABLE); 117 if (account_size) 118 task_io_account_cancelled_write(account_size); 119 } 120 } 121 } 122 EXPORT_SYMBOL(cancel_dirty_page); 123 124 /* 125 * If truncate cannot remove the fs-private metadata from the page, the page 126 * becomes orphaned. It will be left on the LRU and may even be mapped into 127 * user pagetables if we're racing with filemap_fault(). 128 * 129 * We need to bale out if page->mapping is no longer equal to the original 130 * mapping. This happens a) when the VM reclaimed the page while we waited on 131 * its lock, b) when a concurrent invalidate_mapping_pages got there first and 132 * c) when tmpfs swizzles a page between a tmpfs inode and swapper_space. 133 */ 134 static int 135 truncate_complete_page(struct address_space *mapping, struct page *page) 136 { 137 if (page->mapping != mapping) 138 return -EIO; 139 140 if (page_has_private(page)) 141 do_invalidatepage(page, 0, PAGE_CACHE_SIZE); 142 143 cancel_dirty_page(page, PAGE_CACHE_SIZE); 144 145 ClearPageMappedToDisk(page); 146 delete_from_page_cache(page); 147 return 0; 148 } 149 150 /* 151 * This is for invalidate_mapping_pages(). That function can be called at 152 * any time, and is not supposed to throw away dirty pages. But pages can 153 * be marked dirty at any time too, so use remove_mapping which safely 154 * discards clean, unused pages. 155 * 156 * Returns non-zero if the page was successfully invalidated. 157 */ 158 static int 159 invalidate_complete_page(struct address_space *mapping, struct page *page) 160 { 161 int ret; 162 163 if (page->mapping != mapping) 164 return 0; 165 166 if (page_has_private(page) && !try_to_release_page(page, 0)) 167 return 0; 168 169 ret = remove_mapping(mapping, page); 170 171 return ret; 172 } 173 174 int truncate_inode_page(struct address_space *mapping, struct page *page) 175 { 176 if (page_mapped(page)) { 177 unmap_mapping_range(mapping, 178 (loff_t)page->index << PAGE_CACHE_SHIFT, 179 PAGE_CACHE_SIZE, 0); 180 } 181 return truncate_complete_page(mapping, page); 182 } 183 184 /* 185 * Used to get rid of pages on hardware memory corruption. 186 */ 187 int generic_error_remove_page(struct address_space *mapping, struct page *page) 188 { 189 if (!mapping) 190 return -EINVAL; 191 /* 192 * Only punch for normal data pages for now. 193 * Handling other types like directories would need more auditing. 194 */ 195 if (!S_ISREG(mapping->host->i_mode)) 196 return -EIO; 197 return truncate_inode_page(mapping, page); 198 } 199 EXPORT_SYMBOL(generic_error_remove_page); 200 201 /* 202 * Safely invalidate one page from its pagecache mapping. 203 * It only drops clean, unused pages. The page must be locked. 204 * 205 * Returns 1 if the page is successfully invalidated, otherwise 0. 206 */ 207 int invalidate_inode_page(struct page *page) 208 { 209 struct address_space *mapping = page_mapping(page); 210 if (!mapping) 211 return 0; 212 if (PageDirty(page) || PageWriteback(page)) 213 return 0; 214 if (page_mapped(page)) 215 return 0; 216 return invalidate_complete_page(mapping, page); 217 } 218 219 /** 220 * truncate_inode_pages_range - truncate range of pages specified by start & end byte offsets 221 * @mapping: mapping to truncate 222 * @lstart: offset from which to truncate 223 * @lend: offset to which to truncate (inclusive) 224 * 225 * Truncate the page cache, removing the pages that are between 226 * specified offsets (and zeroing out partial pages 227 * if lstart or lend + 1 is not page aligned). 228 * 229 * Truncate takes two passes - the first pass is nonblocking. It will not 230 * block on page locks and it will not block on writeback. The second pass 231 * will wait. This is to prevent as much IO as possible in the affected region. 232 * The first pass will remove most pages, so the search cost of the second pass 233 * is low. 234 * 235 * We pass down the cache-hot hint to the page freeing code. Even if the 236 * mapping is large, it is probably the case that the final pages are the most 237 * recently touched, and freeing happens in ascending file offset order. 238 * 239 * Note that since ->invalidatepage() accepts range to invalidate 240 * truncate_inode_pages_range is able to handle cases where lend + 1 is not 241 * page aligned properly. 242 */ 243 void truncate_inode_pages_range(struct address_space *mapping, 244 loff_t lstart, loff_t lend) 245 { 246 pgoff_t start; /* inclusive */ 247 pgoff_t end; /* exclusive */ 248 unsigned int partial_start; /* inclusive */ 249 unsigned int partial_end; /* exclusive */ 250 struct pagevec pvec; 251 pgoff_t indices[PAGEVEC_SIZE]; 252 pgoff_t index; 253 int i; 254 255 cleancache_invalidate_inode(mapping); 256 if (mapping->nrpages == 0 && mapping->nrshadows == 0) 257 return; 258 259 /* Offsets within partial pages */ 260 partial_start = lstart & (PAGE_CACHE_SIZE - 1); 261 partial_end = (lend + 1) & (PAGE_CACHE_SIZE - 1); 262 263 /* 264 * 'start' and 'end' always covers the range of pages to be fully 265 * truncated. Partial pages are covered with 'partial_start' at the 266 * start of the range and 'partial_end' at the end of the range. 267 * Note that 'end' is exclusive while 'lend' is inclusive. 268 */ 269 start = (lstart + PAGE_CACHE_SIZE - 1) >> PAGE_CACHE_SHIFT; 270 if (lend == -1) 271 /* 272 * lend == -1 indicates end-of-file so we have to set 'end' 273 * to the highest possible pgoff_t and since the type is 274 * unsigned we're using -1. 275 */ 276 end = -1; 277 else 278 end = (lend + 1) >> PAGE_CACHE_SHIFT; 279 280 pagevec_init(&pvec, 0); 281 index = start; 282 while (index < end && pagevec_lookup_entries(&pvec, mapping, index, 283 min(end - index, (pgoff_t)PAGEVEC_SIZE), 284 indices)) { 285 for (i = 0; i < pagevec_count(&pvec); i++) { 286 struct page *page = pvec.pages[i]; 287 288 /* We rely upon deletion not changing page->index */ 289 index = indices[i]; 290 if (index >= end) 291 break; 292 293 if (radix_tree_exceptional_entry(page)) { 294 clear_exceptional_entry(mapping, index, page); 295 continue; 296 } 297 298 if (!trylock_page(page)) 299 continue; 300 WARN_ON(page->index != index); 301 if (PageWriteback(page)) { 302 unlock_page(page); 303 continue; 304 } 305 truncate_inode_page(mapping, page); 306 unlock_page(page); 307 } 308 pagevec_remove_exceptionals(&pvec); 309 pagevec_release(&pvec); 310 cond_resched(); 311 index++; 312 } 313 314 if (partial_start) { 315 struct page *page = find_lock_page(mapping, start - 1); 316 if (page) { 317 unsigned int top = PAGE_CACHE_SIZE; 318 if (start > end) { 319 /* Truncation within a single page */ 320 top = partial_end; 321 partial_end = 0; 322 } 323 wait_on_page_writeback(page); 324 zero_user_segment(page, partial_start, top); 325 cleancache_invalidate_page(mapping, page); 326 if (page_has_private(page)) 327 do_invalidatepage(page, partial_start, 328 top - partial_start); 329 unlock_page(page); 330 page_cache_release(page); 331 } 332 } 333 if (partial_end) { 334 struct page *page = find_lock_page(mapping, end); 335 if (page) { 336 wait_on_page_writeback(page); 337 zero_user_segment(page, 0, partial_end); 338 cleancache_invalidate_page(mapping, page); 339 if (page_has_private(page)) 340 do_invalidatepage(page, 0, 341 partial_end); 342 unlock_page(page); 343 page_cache_release(page); 344 } 345 } 346 /* 347 * If the truncation happened within a single page no pages 348 * will be released, just zeroed, so we can bail out now. 349 */ 350 if (start >= end) 351 return; 352 353 index = start; 354 for ( ; ; ) { 355 cond_resched(); 356 if (!pagevec_lookup_entries(&pvec, mapping, index, 357 min(end - index, (pgoff_t)PAGEVEC_SIZE), indices)) { 358 /* If all gone from start onwards, we're done */ 359 if (index == start) 360 break; 361 /* Otherwise restart to make sure all gone */ 362 index = start; 363 continue; 364 } 365 if (index == start && indices[0] >= end) { 366 /* All gone out of hole to be punched, we're done */ 367 pagevec_remove_exceptionals(&pvec); 368 pagevec_release(&pvec); 369 break; 370 } 371 for (i = 0; i < pagevec_count(&pvec); i++) { 372 struct page *page = pvec.pages[i]; 373 374 /* We rely upon deletion not changing page->index */ 375 index = indices[i]; 376 if (index >= end) { 377 /* Restart punch to make sure all gone */ 378 index = start - 1; 379 break; 380 } 381 382 if (radix_tree_exceptional_entry(page)) { 383 clear_exceptional_entry(mapping, index, page); 384 continue; 385 } 386 387 lock_page(page); 388 WARN_ON(page->index != index); 389 wait_on_page_writeback(page); 390 truncate_inode_page(mapping, page); 391 unlock_page(page); 392 } 393 pagevec_remove_exceptionals(&pvec); 394 pagevec_release(&pvec); 395 index++; 396 } 397 cleancache_invalidate_inode(mapping); 398 } 399 EXPORT_SYMBOL(truncate_inode_pages_range); 400 401 /** 402 * truncate_inode_pages - truncate *all* the pages from an offset 403 * @mapping: mapping to truncate 404 * @lstart: offset from which to truncate 405 * 406 * Called under (and serialised by) inode->i_mutex. 407 * 408 * Note: When this function returns, there can be a page in the process of 409 * deletion (inside __delete_from_page_cache()) in the specified range. Thus 410 * mapping->nrpages can be non-zero when this function returns even after 411 * truncation of the whole mapping. 412 */ 413 void truncate_inode_pages(struct address_space *mapping, loff_t lstart) 414 { 415 truncate_inode_pages_range(mapping, lstart, (loff_t)-1); 416 } 417 EXPORT_SYMBOL(truncate_inode_pages); 418 419 /** 420 * truncate_inode_pages_final - truncate *all* pages before inode dies 421 * @mapping: mapping to truncate 422 * 423 * Called under (and serialized by) inode->i_mutex. 424 * 425 * Filesystems have to use this in the .evict_inode path to inform the 426 * VM that this is the final truncate and the inode is going away. 427 */ 428 void truncate_inode_pages_final(struct address_space *mapping) 429 { 430 unsigned long nrshadows; 431 unsigned long nrpages; 432 433 /* 434 * Page reclaim can not participate in regular inode lifetime 435 * management (can't call iput()) and thus can race with the 436 * inode teardown. Tell it when the address space is exiting, 437 * so that it does not install eviction information after the 438 * final truncate has begun. 439 */ 440 mapping_set_exiting(mapping); 441 442 /* 443 * When reclaim installs eviction entries, it increases 444 * nrshadows first, then decreases nrpages. Make sure we see 445 * this in the right order or we might miss an entry. 446 */ 447 nrpages = mapping->nrpages; 448 smp_rmb(); 449 nrshadows = mapping->nrshadows; 450 451 if (nrpages || nrshadows) { 452 /* 453 * As truncation uses a lockless tree lookup, cycle 454 * the tree lock to make sure any ongoing tree 455 * modification that does not see AS_EXITING is 456 * completed before starting the final truncate. 457 */ 458 spin_lock_irq(&mapping->tree_lock); 459 spin_unlock_irq(&mapping->tree_lock); 460 461 truncate_inode_pages(mapping, 0); 462 } 463 } 464 EXPORT_SYMBOL(truncate_inode_pages_final); 465 466 /** 467 * invalidate_mapping_pages - Invalidate all the unlocked pages of one inode 468 * @mapping: the address_space which holds the pages to invalidate 469 * @start: the offset 'from' which to invalidate 470 * @end: the offset 'to' which to invalidate (inclusive) 471 * 472 * This function only removes the unlocked pages, if you want to 473 * remove all the pages of one inode, you must call truncate_inode_pages. 474 * 475 * invalidate_mapping_pages() will not block on IO activity. It will not 476 * invalidate pages which are dirty, locked, under writeback or mapped into 477 * pagetables. 478 */ 479 unsigned long invalidate_mapping_pages(struct address_space *mapping, 480 pgoff_t start, pgoff_t end) 481 { 482 pgoff_t indices[PAGEVEC_SIZE]; 483 struct pagevec pvec; 484 pgoff_t index = start; 485 unsigned long ret; 486 unsigned long count = 0; 487 int i; 488 489 pagevec_init(&pvec, 0); 490 while (index <= end && pagevec_lookup_entries(&pvec, mapping, index, 491 min(end - index, (pgoff_t)PAGEVEC_SIZE - 1) + 1, 492 indices)) { 493 for (i = 0; i < pagevec_count(&pvec); i++) { 494 struct page *page = pvec.pages[i]; 495 496 /* We rely upon deletion not changing page->index */ 497 index = indices[i]; 498 if (index > end) 499 break; 500 501 if (radix_tree_exceptional_entry(page)) { 502 clear_exceptional_entry(mapping, index, page); 503 continue; 504 } 505 506 if (!trylock_page(page)) 507 continue; 508 WARN_ON(page->index != index); 509 ret = invalidate_inode_page(page); 510 unlock_page(page); 511 /* 512 * Invalidation is a hint that the page is no longer 513 * of interest and try to speed up its reclaim. 514 */ 515 if (!ret) 516 deactivate_page(page); 517 count += ret; 518 } 519 pagevec_remove_exceptionals(&pvec); 520 pagevec_release(&pvec); 521 cond_resched(); 522 index++; 523 } 524 return count; 525 } 526 EXPORT_SYMBOL(invalidate_mapping_pages); 527 528 /* 529 * This is like invalidate_complete_page(), except it ignores the page's 530 * refcount. We do this because invalidate_inode_pages2() needs stronger 531 * invalidation guarantees, and cannot afford to leave pages behind because 532 * shrink_page_list() has a temp ref on them, or because they're transiently 533 * sitting in the lru_cache_add() pagevecs. 534 */ 535 static int 536 invalidate_complete_page2(struct address_space *mapping, struct page *page) 537 { 538 if (page->mapping != mapping) 539 return 0; 540 541 if (page_has_private(page) && !try_to_release_page(page, GFP_KERNEL)) 542 return 0; 543 544 spin_lock_irq(&mapping->tree_lock); 545 if (PageDirty(page)) 546 goto failed; 547 548 BUG_ON(page_has_private(page)); 549 __delete_from_page_cache(page, NULL); 550 spin_unlock_irq(&mapping->tree_lock); 551 552 if (mapping->a_ops->freepage) 553 mapping->a_ops->freepage(page); 554 555 page_cache_release(page); /* pagecache ref */ 556 return 1; 557 failed: 558 spin_unlock_irq(&mapping->tree_lock); 559 return 0; 560 } 561 562 static int do_launder_page(struct address_space *mapping, struct page *page) 563 { 564 if (!PageDirty(page)) 565 return 0; 566 if (page->mapping != mapping || mapping->a_ops->launder_page == NULL) 567 return 0; 568 return mapping->a_ops->launder_page(page); 569 } 570 571 /** 572 * invalidate_inode_pages2_range - remove range of pages from an address_space 573 * @mapping: the address_space 574 * @start: the page offset 'from' which to invalidate 575 * @end: the page offset 'to' which to invalidate (inclusive) 576 * 577 * Any pages which are found to be mapped into pagetables are unmapped prior to 578 * invalidation. 579 * 580 * Returns -EBUSY if any pages could not be invalidated. 581 */ 582 int invalidate_inode_pages2_range(struct address_space *mapping, 583 pgoff_t start, pgoff_t end) 584 { 585 pgoff_t indices[PAGEVEC_SIZE]; 586 struct pagevec pvec; 587 pgoff_t index; 588 int i; 589 int ret = 0; 590 int ret2 = 0; 591 int did_range_unmap = 0; 592 593 cleancache_invalidate_inode(mapping); 594 pagevec_init(&pvec, 0); 595 index = start; 596 while (index <= end && pagevec_lookup_entries(&pvec, mapping, index, 597 min(end - index, (pgoff_t)PAGEVEC_SIZE - 1) + 1, 598 indices)) { 599 for (i = 0; i < pagevec_count(&pvec); i++) { 600 struct page *page = pvec.pages[i]; 601 602 /* We rely upon deletion not changing page->index */ 603 index = indices[i]; 604 if (index > end) 605 break; 606 607 if (radix_tree_exceptional_entry(page)) { 608 clear_exceptional_entry(mapping, index, page); 609 continue; 610 } 611 612 lock_page(page); 613 WARN_ON(page->index != index); 614 if (page->mapping != mapping) { 615 unlock_page(page); 616 continue; 617 } 618 wait_on_page_writeback(page); 619 if (page_mapped(page)) { 620 if (!did_range_unmap) { 621 /* 622 * Zap the rest of the file in one hit. 623 */ 624 unmap_mapping_range(mapping, 625 (loff_t)index << PAGE_CACHE_SHIFT, 626 (loff_t)(1 + end - index) 627 << PAGE_CACHE_SHIFT, 628 0); 629 did_range_unmap = 1; 630 } else { 631 /* 632 * Just zap this page 633 */ 634 unmap_mapping_range(mapping, 635 (loff_t)index << PAGE_CACHE_SHIFT, 636 PAGE_CACHE_SIZE, 0); 637 } 638 } 639 BUG_ON(page_mapped(page)); 640 ret2 = do_launder_page(mapping, page); 641 if (ret2 == 0) { 642 if (!invalidate_complete_page2(mapping, page)) 643 ret2 = -EBUSY; 644 } 645 if (ret2 < 0) 646 ret = ret2; 647 unlock_page(page); 648 } 649 pagevec_remove_exceptionals(&pvec); 650 pagevec_release(&pvec); 651 cond_resched(); 652 index++; 653 } 654 cleancache_invalidate_inode(mapping); 655 return ret; 656 } 657 EXPORT_SYMBOL_GPL(invalidate_inode_pages2_range); 658 659 /** 660 * invalidate_inode_pages2 - remove all pages from an address_space 661 * @mapping: the address_space 662 * 663 * Any pages which are found to be mapped into pagetables are unmapped prior to 664 * invalidation. 665 * 666 * Returns -EBUSY if any pages could not be invalidated. 667 */ 668 int invalidate_inode_pages2(struct address_space *mapping) 669 { 670 return invalidate_inode_pages2_range(mapping, 0, -1); 671 } 672 EXPORT_SYMBOL_GPL(invalidate_inode_pages2); 673 674 /** 675 * truncate_pagecache - unmap and remove pagecache that has been truncated 676 * @inode: inode 677 * @newsize: new file size 678 * 679 * inode's new i_size must already be written before truncate_pagecache 680 * is called. 681 * 682 * This function should typically be called before the filesystem 683 * releases resources associated with the freed range (eg. deallocates 684 * blocks). This way, pagecache will always stay logically coherent 685 * with on-disk format, and the filesystem would not have to deal with 686 * situations such as writepage being called for a page that has already 687 * had its underlying blocks deallocated. 688 */ 689 void truncate_pagecache(struct inode *inode, loff_t newsize) 690 { 691 struct address_space *mapping = inode->i_mapping; 692 loff_t holebegin = round_up(newsize, PAGE_SIZE); 693 694 /* 695 * unmap_mapping_range is called twice, first simply for 696 * efficiency so that truncate_inode_pages does fewer 697 * single-page unmaps. However after this first call, and 698 * before truncate_inode_pages finishes, it is possible for 699 * private pages to be COWed, which remain after 700 * truncate_inode_pages finishes, hence the second 701 * unmap_mapping_range call must be made for correctness. 702 */ 703 unmap_mapping_range(mapping, holebegin, 0, 1); 704 truncate_inode_pages(mapping, newsize); 705 unmap_mapping_range(mapping, holebegin, 0, 1); 706 } 707 EXPORT_SYMBOL(truncate_pagecache); 708 709 /** 710 * truncate_setsize - update inode and pagecache for a new file size 711 * @inode: inode 712 * @newsize: new file size 713 * 714 * truncate_setsize updates i_size and performs pagecache truncation (if 715 * necessary) to @newsize. It will be typically be called from the filesystem's 716 * setattr function when ATTR_SIZE is passed in. 717 * 718 * Must be called with a lock serializing truncates and writes (generally 719 * i_mutex but e.g. xfs uses a different lock) and before all filesystem 720 * specific block truncation has been performed. 721 */ 722 void truncate_setsize(struct inode *inode, loff_t newsize) 723 { 724 loff_t oldsize = inode->i_size; 725 726 i_size_write(inode, newsize); 727 if (newsize > oldsize) 728 pagecache_isize_extended(inode, oldsize, newsize); 729 truncate_pagecache(inode, newsize); 730 } 731 EXPORT_SYMBOL(truncate_setsize); 732 733 /** 734 * pagecache_isize_extended - update pagecache after extension of i_size 735 * @inode: inode for which i_size was extended 736 * @from: original inode size 737 * @to: new inode size 738 * 739 * Handle extension of inode size either caused by extending truncate or by 740 * write starting after current i_size. We mark the page straddling current 741 * i_size RO so that page_mkwrite() is called on the nearest write access to 742 * the page. This way filesystem can be sure that page_mkwrite() is called on 743 * the page before user writes to the page via mmap after the i_size has been 744 * changed. 745 * 746 * The function must be called after i_size is updated so that page fault 747 * coming after we unlock the page will already see the new i_size. 748 * The function must be called while we still hold i_mutex - this not only 749 * makes sure i_size is stable but also that userspace cannot observe new 750 * i_size value before we are prepared to store mmap writes at new inode size. 751 */ 752 void pagecache_isize_extended(struct inode *inode, loff_t from, loff_t to) 753 { 754 int bsize = 1 << inode->i_blkbits; 755 loff_t rounded_from; 756 struct page *page; 757 pgoff_t index; 758 759 WARN_ON(to > inode->i_size); 760 761 if (from >= to || bsize == PAGE_CACHE_SIZE) 762 return; 763 /* Page straddling @from will not have any hole block created? */ 764 rounded_from = round_up(from, bsize); 765 if (to <= rounded_from || !(rounded_from & (PAGE_CACHE_SIZE - 1))) 766 return; 767 768 index = from >> PAGE_CACHE_SHIFT; 769 page = find_lock_page(inode->i_mapping, index); 770 /* Page not cached? Nothing to do */ 771 if (!page) 772 return; 773 /* 774 * See clear_page_dirty_for_io() for details why set_page_dirty() 775 * is needed. 776 */ 777 if (page_mkclean(page)) 778 set_page_dirty(page); 779 unlock_page(page); 780 page_cache_release(page); 781 } 782 EXPORT_SYMBOL(pagecache_isize_extended); 783 784 /** 785 * truncate_pagecache_range - unmap and remove pagecache that is hole-punched 786 * @inode: inode 787 * @lstart: offset of beginning of hole 788 * @lend: offset of last byte of hole 789 * 790 * This function should typically be called before the filesystem 791 * releases resources associated with the freed range (eg. deallocates 792 * blocks). This way, pagecache will always stay logically coherent 793 * with on-disk format, and the filesystem would not have to deal with 794 * situations such as writepage being called for a page that has already 795 * had its underlying blocks deallocated. 796 */ 797 void truncate_pagecache_range(struct inode *inode, loff_t lstart, loff_t lend) 798 { 799 struct address_space *mapping = inode->i_mapping; 800 loff_t unmap_start = round_up(lstart, PAGE_SIZE); 801 loff_t unmap_end = round_down(1 + lend, PAGE_SIZE) - 1; 802 /* 803 * This rounding is currently just for example: unmap_mapping_range 804 * expands its hole outwards, whereas we want it to contract the hole 805 * inwards. However, existing callers of truncate_pagecache_range are 806 * doing their own page rounding first. Note that unmap_mapping_range 807 * allows holelen 0 for all, and we allow lend -1 for end of file. 808 */ 809 810 /* 811 * Unlike in truncate_pagecache, unmap_mapping_range is called only 812 * once (before truncating pagecache), and without "even_cows" flag: 813 * hole-punching should not remove private COWed pages from the hole. 814 */ 815 if ((u64)unmap_end > (u64)unmap_start) 816 unmap_mapping_range(mapping, unmap_start, 817 1 + unmap_end - unmap_start, 0); 818 truncate_inode_pages_range(mapping, lstart, lend); 819 } 820 EXPORT_SYMBOL(truncate_pagecache_range); 821