xref: /openbmc/linux/mm/truncate.c (revision c21b37f6)
1 /*
2  * mm/truncate.c - code for taking down pages from address_spaces
3  *
4  * Copyright (C) 2002, Linus Torvalds
5  *
6  * 10Sep2002	akpm@zip.com.au
7  *		Initial version.
8  */
9 
10 #include <linux/kernel.h>
11 #include <linux/mm.h>
12 #include <linux/swap.h>
13 #include <linux/module.h>
14 #include <linux/pagemap.h>
15 #include <linux/highmem.h>
16 #include <linux/pagevec.h>
17 #include <linux/task_io_accounting_ops.h>
18 #include <linux/buffer_head.h>	/* grr. try_to_release_page,
19 				   do_invalidatepage */
20 
21 
22 /**
23  * do_invalidatepage - invalidate part of all of a page
24  * @page: the page which is affected
25  * @offset: the index of the truncation point
26  *
27  * do_invalidatepage() is called when all or part of the page has become
28  * invalidated by a truncate operation.
29  *
30  * do_invalidatepage() does not have to release all buffers, but it must
31  * ensure that no dirty buffer is left outside @offset and that no I/O
32  * is underway against any of the blocks which are outside the truncation
33  * point.  Because the caller is about to free (and possibly reuse) those
34  * blocks on-disk.
35  */
36 void do_invalidatepage(struct page *page, unsigned long offset)
37 {
38 	void (*invalidatepage)(struct page *, unsigned long);
39 	invalidatepage = page->mapping->a_ops->invalidatepage;
40 #ifdef CONFIG_BLOCK
41 	if (!invalidatepage)
42 		invalidatepage = block_invalidatepage;
43 #endif
44 	if (invalidatepage)
45 		(*invalidatepage)(page, offset);
46 }
47 
48 static inline void truncate_partial_page(struct page *page, unsigned partial)
49 {
50 	zero_user_page(page, partial, PAGE_CACHE_SIZE - partial, KM_USER0);
51 	if (PagePrivate(page))
52 		do_invalidatepage(page, partial);
53 }
54 
55 /*
56  * This cancels just the dirty bit on the kernel page itself, it
57  * does NOT actually remove dirty bits on any mmap's that may be
58  * around. It also leaves the page tagged dirty, so any sync
59  * activity will still find it on the dirty lists, and in particular,
60  * clear_page_dirty_for_io() will still look at the dirty bits in
61  * the VM.
62  *
63  * Doing this should *normally* only ever be done when a page
64  * is truncated, and is not actually mapped anywhere at all. However,
65  * fs/buffer.c does this when it notices that somebody has cleaned
66  * out all the buffers on a page without actually doing it through
67  * the VM. Can you say "ext3 is horribly ugly"? Tought you could.
68  */
69 void cancel_dirty_page(struct page *page, unsigned int account_size)
70 {
71 	if (TestClearPageDirty(page)) {
72 		struct address_space *mapping = page->mapping;
73 		if (mapping && mapping_cap_account_dirty(mapping)) {
74 			dec_zone_page_state(page, NR_FILE_DIRTY);
75 			if (account_size)
76 				task_io_account_cancelled_write(account_size);
77 		}
78 	}
79 }
80 EXPORT_SYMBOL(cancel_dirty_page);
81 
82 /*
83  * If truncate cannot remove the fs-private metadata from the page, the page
84  * becomes anonymous.  It will be left on the LRU and may even be mapped into
85  * user pagetables if we're racing with filemap_fault().
86  *
87  * We need to bale out if page->mapping is no longer equal to the original
88  * mapping.  This happens a) when the VM reclaimed the page while we waited on
89  * its lock, b) when a concurrent invalidate_mapping_pages got there first and
90  * c) when tmpfs swizzles a page between a tmpfs inode and swapper_space.
91  */
92 static void
93 truncate_complete_page(struct address_space *mapping, struct page *page)
94 {
95 	if (page->mapping != mapping)
96 		return;
97 
98 	cancel_dirty_page(page, PAGE_CACHE_SIZE);
99 
100 	if (PagePrivate(page))
101 		do_invalidatepage(page, 0);
102 
103 	remove_from_page_cache(page);
104 	ClearPageUptodate(page);
105 	ClearPageMappedToDisk(page);
106 	page_cache_release(page);	/* pagecache ref */
107 }
108 
109 /*
110  * This is for invalidate_mapping_pages().  That function can be called at
111  * any time, and is not supposed to throw away dirty pages.  But pages can
112  * be marked dirty at any time too, so use remove_mapping which safely
113  * discards clean, unused pages.
114  *
115  * Returns non-zero if the page was successfully invalidated.
116  */
117 static int
118 invalidate_complete_page(struct address_space *mapping, struct page *page)
119 {
120 	int ret;
121 
122 	if (page->mapping != mapping)
123 		return 0;
124 
125 	if (PagePrivate(page) && !try_to_release_page(page, 0))
126 		return 0;
127 
128 	ret = remove_mapping(mapping, page);
129 
130 	return ret;
131 }
132 
133 /**
134  * truncate_inode_pages - truncate range of pages specified by start and
135  * end byte offsets
136  * @mapping: mapping to truncate
137  * @lstart: offset from which to truncate
138  * @lend: offset to which to truncate
139  *
140  * Truncate the page cache, removing the pages that are between
141  * specified offsets (and zeroing out partial page
142  * (if lstart is not page aligned)).
143  *
144  * Truncate takes two passes - the first pass is nonblocking.  It will not
145  * block on page locks and it will not block on writeback.  The second pass
146  * will wait.  This is to prevent as much IO as possible in the affected region.
147  * The first pass will remove most pages, so the search cost of the second pass
148  * is low.
149  *
150  * When looking at page->index outside the page lock we need to be careful to
151  * copy it into a local to avoid races (it could change at any time).
152  *
153  * We pass down the cache-hot hint to the page freeing code.  Even if the
154  * mapping is large, it is probably the case that the final pages are the most
155  * recently touched, and freeing happens in ascending file offset order.
156  */
157 void truncate_inode_pages_range(struct address_space *mapping,
158 				loff_t lstart, loff_t lend)
159 {
160 	const pgoff_t start = (lstart + PAGE_CACHE_SIZE-1) >> PAGE_CACHE_SHIFT;
161 	pgoff_t end;
162 	const unsigned partial = lstart & (PAGE_CACHE_SIZE - 1);
163 	struct pagevec pvec;
164 	pgoff_t next;
165 	int i;
166 
167 	if (mapping->nrpages == 0)
168 		return;
169 
170 	BUG_ON((lend & (PAGE_CACHE_SIZE - 1)) != (PAGE_CACHE_SIZE - 1));
171 	end = (lend >> PAGE_CACHE_SHIFT);
172 
173 	pagevec_init(&pvec, 0);
174 	next = start;
175 	while (next <= end &&
176 	       pagevec_lookup(&pvec, mapping, next, PAGEVEC_SIZE)) {
177 		for (i = 0; i < pagevec_count(&pvec); i++) {
178 			struct page *page = pvec.pages[i];
179 			pgoff_t page_index = page->index;
180 
181 			if (page_index > end) {
182 				next = page_index;
183 				break;
184 			}
185 
186 			if (page_index > next)
187 				next = page_index;
188 			next++;
189 			if (TestSetPageLocked(page))
190 				continue;
191 			if (PageWriteback(page)) {
192 				unlock_page(page);
193 				continue;
194 			}
195 			if (page_mapped(page)) {
196 				unmap_mapping_range(mapping,
197 				  (loff_t)page_index<<PAGE_CACHE_SHIFT,
198 				  PAGE_CACHE_SIZE, 0);
199 			}
200 			truncate_complete_page(mapping, page);
201 			unlock_page(page);
202 		}
203 		pagevec_release(&pvec);
204 		cond_resched();
205 	}
206 
207 	if (partial) {
208 		struct page *page = find_lock_page(mapping, start - 1);
209 		if (page) {
210 			wait_on_page_writeback(page);
211 			truncate_partial_page(page, partial);
212 			unlock_page(page);
213 			page_cache_release(page);
214 		}
215 	}
216 
217 	next = start;
218 	for ( ; ; ) {
219 		cond_resched();
220 		if (!pagevec_lookup(&pvec, mapping, next, PAGEVEC_SIZE)) {
221 			if (next == start)
222 				break;
223 			next = start;
224 			continue;
225 		}
226 		if (pvec.pages[0]->index > end) {
227 			pagevec_release(&pvec);
228 			break;
229 		}
230 		for (i = 0; i < pagevec_count(&pvec); i++) {
231 			struct page *page = pvec.pages[i];
232 
233 			if (page->index > end)
234 				break;
235 			lock_page(page);
236 			wait_on_page_writeback(page);
237 			if (page_mapped(page)) {
238 				unmap_mapping_range(mapping,
239 				  (loff_t)page->index<<PAGE_CACHE_SHIFT,
240 				  PAGE_CACHE_SIZE, 0);
241 			}
242 			if (page->index > next)
243 				next = page->index;
244 			next++;
245 			truncate_complete_page(mapping, page);
246 			unlock_page(page);
247 		}
248 		pagevec_release(&pvec);
249 	}
250 }
251 EXPORT_SYMBOL(truncate_inode_pages_range);
252 
253 /**
254  * truncate_inode_pages - truncate *all* the pages from an offset
255  * @mapping: mapping to truncate
256  * @lstart: offset from which to truncate
257  *
258  * Called under (and serialised by) inode->i_mutex.
259  */
260 void truncate_inode_pages(struct address_space *mapping, loff_t lstart)
261 {
262 	truncate_inode_pages_range(mapping, lstart, (loff_t)-1);
263 }
264 EXPORT_SYMBOL(truncate_inode_pages);
265 
266 unsigned long __invalidate_mapping_pages(struct address_space *mapping,
267 				pgoff_t start, pgoff_t end, bool be_atomic)
268 {
269 	struct pagevec pvec;
270 	pgoff_t next = start;
271 	unsigned long ret = 0;
272 	int i;
273 
274 	pagevec_init(&pvec, 0);
275 	while (next <= end &&
276 			pagevec_lookup(&pvec, mapping, next, PAGEVEC_SIZE)) {
277 		for (i = 0; i < pagevec_count(&pvec); i++) {
278 			struct page *page = pvec.pages[i];
279 			pgoff_t index;
280 			int lock_failed;
281 
282 			lock_failed = TestSetPageLocked(page);
283 
284 			/*
285 			 * We really shouldn't be looking at the ->index of an
286 			 * unlocked page.  But we're not allowed to lock these
287 			 * pages.  So we rely upon nobody altering the ->index
288 			 * of this (pinned-by-us) page.
289 			 */
290 			index = page->index;
291 			if (index > next)
292 				next = index;
293 			next++;
294 			if (lock_failed)
295 				continue;
296 
297 			if (PageDirty(page) || PageWriteback(page))
298 				goto unlock;
299 			if (page_mapped(page))
300 				goto unlock;
301 			ret += invalidate_complete_page(mapping, page);
302 unlock:
303 			unlock_page(page);
304 			if (next > end)
305 				break;
306 		}
307 		pagevec_release(&pvec);
308 		if (likely(!be_atomic))
309 			cond_resched();
310 	}
311 	return ret;
312 }
313 
314 /**
315  * invalidate_mapping_pages - Invalidate all the unlocked pages of one inode
316  * @mapping: the address_space which holds the pages to invalidate
317  * @start: the offset 'from' which to invalidate
318  * @end: the offset 'to' which to invalidate (inclusive)
319  *
320  * This function only removes the unlocked pages, if you want to
321  * remove all the pages of one inode, you must call truncate_inode_pages.
322  *
323  * invalidate_mapping_pages() will not block on IO activity. It will not
324  * invalidate pages which are dirty, locked, under writeback or mapped into
325  * pagetables.
326  */
327 unsigned long invalidate_mapping_pages(struct address_space *mapping,
328 				pgoff_t start, pgoff_t end)
329 {
330 	return __invalidate_mapping_pages(mapping, start, end, false);
331 }
332 EXPORT_SYMBOL(invalidate_mapping_pages);
333 
334 /*
335  * This is like invalidate_complete_page(), except it ignores the page's
336  * refcount.  We do this because invalidate_inode_pages2() needs stronger
337  * invalidation guarantees, and cannot afford to leave pages behind because
338  * shrink_page_list() has a temp ref on them, or because they're transiently
339  * sitting in the lru_cache_add() pagevecs.
340  */
341 static int
342 invalidate_complete_page2(struct address_space *mapping, struct page *page)
343 {
344 	if (page->mapping != mapping)
345 		return 0;
346 
347 	if (PagePrivate(page) && !try_to_release_page(page, GFP_KERNEL))
348 		return 0;
349 
350 	write_lock_irq(&mapping->tree_lock);
351 	if (PageDirty(page))
352 		goto failed;
353 
354 	BUG_ON(PagePrivate(page));
355 	__remove_from_page_cache(page);
356 	write_unlock_irq(&mapping->tree_lock);
357 	ClearPageUptodate(page);
358 	page_cache_release(page);	/* pagecache ref */
359 	return 1;
360 failed:
361 	write_unlock_irq(&mapping->tree_lock);
362 	return 0;
363 }
364 
365 static int do_launder_page(struct address_space *mapping, struct page *page)
366 {
367 	if (!PageDirty(page))
368 		return 0;
369 	if (page->mapping != mapping || mapping->a_ops->launder_page == NULL)
370 		return 0;
371 	return mapping->a_ops->launder_page(page);
372 }
373 
374 /**
375  * invalidate_inode_pages2_range - remove range of pages from an address_space
376  * @mapping: the address_space
377  * @start: the page offset 'from' which to invalidate
378  * @end: the page offset 'to' which to invalidate (inclusive)
379  *
380  * Any pages which are found to be mapped into pagetables are unmapped prior to
381  * invalidation.
382  *
383  * Returns -EIO if any pages could not be invalidated.
384  */
385 int invalidate_inode_pages2_range(struct address_space *mapping,
386 				  pgoff_t start, pgoff_t end)
387 {
388 	struct pagevec pvec;
389 	pgoff_t next;
390 	int i;
391 	int ret = 0;
392 	int did_range_unmap = 0;
393 	int wrapped = 0;
394 
395 	pagevec_init(&pvec, 0);
396 	next = start;
397 	while (next <= end && !wrapped &&
398 		pagevec_lookup(&pvec, mapping, next,
399 			min(end - next, (pgoff_t)PAGEVEC_SIZE - 1) + 1)) {
400 		for (i = 0; i < pagevec_count(&pvec); i++) {
401 			struct page *page = pvec.pages[i];
402 			pgoff_t page_index;
403 
404 			lock_page(page);
405 			if (page->mapping != mapping) {
406 				unlock_page(page);
407 				continue;
408 			}
409 			page_index = page->index;
410 			next = page_index + 1;
411 			if (next == 0)
412 				wrapped = 1;
413 			if (page_index > end) {
414 				unlock_page(page);
415 				break;
416 			}
417 			wait_on_page_writeback(page);
418 			if (page_mapped(page)) {
419 				if (!did_range_unmap) {
420 					/*
421 					 * Zap the rest of the file in one hit.
422 					 */
423 					unmap_mapping_range(mapping,
424 					   (loff_t)page_index<<PAGE_CACHE_SHIFT,
425 					   (loff_t)(end - page_index + 1)
426 							<< PAGE_CACHE_SHIFT,
427 					    0);
428 					did_range_unmap = 1;
429 				} else {
430 					/*
431 					 * Just zap this page
432 					 */
433 					unmap_mapping_range(mapping,
434 					  (loff_t)page_index<<PAGE_CACHE_SHIFT,
435 					  PAGE_CACHE_SIZE, 0);
436 				}
437 			}
438 			BUG_ON(page_mapped(page));
439 			ret = do_launder_page(mapping, page);
440 			if (ret == 0 && !invalidate_complete_page2(mapping, page))
441 				ret = -EIO;
442 			unlock_page(page);
443 		}
444 		pagevec_release(&pvec);
445 		cond_resched();
446 	}
447 	return ret;
448 }
449 EXPORT_SYMBOL_GPL(invalidate_inode_pages2_range);
450 
451 /**
452  * invalidate_inode_pages2 - remove all pages from an address_space
453  * @mapping: the address_space
454  *
455  * Any pages which are found to be mapped into pagetables are unmapped prior to
456  * invalidation.
457  *
458  * Returns -EIO if any pages could not be invalidated.
459  */
460 int invalidate_inode_pages2(struct address_space *mapping)
461 {
462 	return invalidate_inode_pages2_range(mapping, 0, -1);
463 }
464 EXPORT_SYMBOL_GPL(invalidate_inode_pages2);
465