1 /* 2 * mm/truncate.c - code for taking down pages from address_spaces 3 * 4 * Copyright (C) 2002, Linus Torvalds 5 * 6 * 10Sep2002 Andrew Morton 7 * Initial version. 8 */ 9 10 #include <linux/kernel.h> 11 #include <linux/backing-dev.h> 12 #include <linux/gfp.h> 13 #include <linux/mm.h> 14 #include <linux/swap.h> 15 #include <linux/export.h> 16 #include <linux/pagemap.h> 17 #include <linux/highmem.h> 18 #include <linux/pagevec.h> 19 #include <linux/task_io_accounting_ops.h> 20 #include <linux/buffer_head.h> /* grr. try_to_release_page, 21 do_invalidatepage */ 22 #include <linux/cleancache.h> 23 #include "internal.h" 24 25 static void clear_exceptional_entry(struct address_space *mapping, 26 pgoff_t index, void *entry) 27 { 28 struct radix_tree_node *node; 29 void **slot; 30 31 /* Handled by shmem itself */ 32 if (shmem_mapping(mapping)) 33 return; 34 35 spin_lock_irq(&mapping->tree_lock); 36 /* 37 * Regular page slots are stabilized by the page lock even 38 * without the tree itself locked. These unlocked entries 39 * need verification under the tree lock. 40 */ 41 if (!__radix_tree_lookup(&mapping->page_tree, index, &node, &slot)) 42 goto unlock; 43 if (*slot != entry) 44 goto unlock; 45 radix_tree_replace_slot(slot, NULL); 46 mapping->nrshadows--; 47 if (!node) 48 goto unlock; 49 workingset_node_shadows_dec(node); 50 /* 51 * Don't track node without shadow entries. 52 * 53 * Avoid acquiring the list_lru lock if already untracked. 54 * The list_empty() test is safe as node->private_list is 55 * protected by mapping->tree_lock. 56 */ 57 if (!workingset_node_shadows(node) && 58 !list_empty(&node->private_list)) 59 list_lru_del(&workingset_shadow_nodes, &node->private_list); 60 __radix_tree_delete_node(&mapping->page_tree, node); 61 unlock: 62 spin_unlock_irq(&mapping->tree_lock); 63 } 64 65 /** 66 * do_invalidatepage - invalidate part or all of a page 67 * @page: the page which is affected 68 * @offset: start of the range to invalidate 69 * @length: length of the range to invalidate 70 * 71 * do_invalidatepage() is called when all or part of the page has become 72 * invalidated by a truncate operation. 73 * 74 * do_invalidatepage() does not have to release all buffers, but it must 75 * ensure that no dirty buffer is left outside @offset and that no I/O 76 * is underway against any of the blocks which are outside the truncation 77 * point. Because the caller is about to free (and possibly reuse) those 78 * blocks on-disk. 79 */ 80 void do_invalidatepage(struct page *page, unsigned int offset, 81 unsigned int length) 82 { 83 void (*invalidatepage)(struct page *, unsigned int, unsigned int); 84 85 invalidatepage = page->mapping->a_ops->invalidatepage; 86 #ifdef CONFIG_BLOCK 87 if (!invalidatepage) 88 invalidatepage = block_invalidatepage; 89 #endif 90 if (invalidatepage) 91 (*invalidatepage)(page, offset, length); 92 } 93 94 /* 95 * This cancels just the dirty bit on the kernel page itself, it 96 * does NOT actually remove dirty bits on any mmap's that may be 97 * around. It also leaves the page tagged dirty, so any sync 98 * activity will still find it on the dirty lists, and in particular, 99 * clear_page_dirty_for_io() will still look at the dirty bits in 100 * the VM. 101 * 102 * Doing this should *normally* only ever be done when a page 103 * is truncated, and is not actually mapped anywhere at all. However, 104 * fs/buffer.c does this when it notices that somebody has cleaned 105 * out all the buffers on a page without actually doing it through 106 * the VM. Can you say "ext3 is horribly ugly"? Tought you could. 107 */ 108 void cancel_dirty_page(struct page *page, unsigned int account_size) 109 { 110 if (TestClearPageDirty(page)) { 111 struct address_space *mapping = page->mapping; 112 if (mapping && mapping_cap_account_dirty(mapping)) { 113 dec_zone_page_state(page, NR_FILE_DIRTY); 114 dec_bdi_stat(mapping->backing_dev_info, 115 BDI_RECLAIMABLE); 116 if (account_size) 117 task_io_account_cancelled_write(account_size); 118 } 119 } 120 } 121 EXPORT_SYMBOL(cancel_dirty_page); 122 123 /* 124 * If truncate cannot remove the fs-private metadata from the page, the page 125 * becomes orphaned. It will be left on the LRU and may even be mapped into 126 * user pagetables if we're racing with filemap_fault(). 127 * 128 * We need to bale out if page->mapping is no longer equal to the original 129 * mapping. This happens a) when the VM reclaimed the page while we waited on 130 * its lock, b) when a concurrent invalidate_mapping_pages got there first and 131 * c) when tmpfs swizzles a page between a tmpfs inode and swapper_space. 132 */ 133 static int 134 truncate_complete_page(struct address_space *mapping, struct page *page) 135 { 136 if (page->mapping != mapping) 137 return -EIO; 138 139 if (page_has_private(page)) 140 do_invalidatepage(page, 0, PAGE_CACHE_SIZE); 141 142 cancel_dirty_page(page, PAGE_CACHE_SIZE); 143 144 ClearPageMappedToDisk(page); 145 delete_from_page_cache(page); 146 return 0; 147 } 148 149 /* 150 * This is for invalidate_mapping_pages(). That function can be called at 151 * any time, and is not supposed to throw away dirty pages. But pages can 152 * be marked dirty at any time too, so use remove_mapping which safely 153 * discards clean, unused pages. 154 * 155 * Returns non-zero if the page was successfully invalidated. 156 */ 157 static int 158 invalidate_complete_page(struct address_space *mapping, struct page *page) 159 { 160 int ret; 161 162 if (page->mapping != mapping) 163 return 0; 164 165 if (page_has_private(page) && !try_to_release_page(page, 0)) 166 return 0; 167 168 ret = remove_mapping(mapping, page); 169 170 return ret; 171 } 172 173 int truncate_inode_page(struct address_space *mapping, struct page *page) 174 { 175 if (page_mapped(page)) { 176 unmap_mapping_range(mapping, 177 (loff_t)page->index << PAGE_CACHE_SHIFT, 178 PAGE_CACHE_SIZE, 0); 179 } 180 return truncate_complete_page(mapping, page); 181 } 182 183 /* 184 * Used to get rid of pages on hardware memory corruption. 185 */ 186 int generic_error_remove_page(struct address_space *mapping, struct page *page) 187 { 188 if (!mapping) 189 return -EINVAL; 190 /* 191 * Only punch for normal data pages for now. 192 * Handling other types like directories would need more auditing. 193 */ 194 if (!S_ISREG(mapping->host->i_mode)) 195 return -EIO; 196 return truncate_inode_page(mapping, page); 197 } 198 EXPORT_SYMBOL(generic_error_remove_page); 199 200 /* 201 * Safely invalidate one page from its pagecache mapping. 202 * It only drops clean, unused pages. The page must be locked. 203 * 204 * Returns 1 if the page is successfully invalidated, otherwise 0. 205 */ 206 int invalidate_inode_page(struct page *page) 207 { 208 struct address_space *mapping = page_mapping(page); 209 if (!mapping) 210 return 0; 211 if (PageDirty(page) || PageWriteback(page)) 212 return 0; 213 if (page_mapped(page)) 214 return 0; 215 return invalidate_complete_page(mapping, page); 216 } 217 218 /** 219 * truncate_inode_pages_range - truncate range of pages specified by start & end byte offsets 220 * @mapping: mapping to truncate 221 * @lstart: offset from which to truncate 222 * @lend: offset to which to truncate (inclusive) 223 * 224 * Truncate the page cache, removing the pages that are between 225 * specified offsets (and zeroing out partial pages 226 * if lstart or lend + 1 is not page aligned). 227 * 228 * Truncate takes two passes - the first pass is nonblocking. It will not 229 * block on page locks and it will not block on writeback. The second pass 230 * will wait. This is to prevent as much IO as possible in the affected region. 231 * The first pass will remove most pages, so the search cost of the second pass 232 * is low. 233 * 234 * We pass down the cache-hot hint to the page freeing code. Even if the 235 * mapping is large, it is probably the case that the final pages are the most 236 * recently touched, and freeing happens in ascending file offset order. 237 * 238 * Note that since ->invalidatepage() accepts range to invalidate 239 * truncate_inode_pages_range is able to handle cases where lend + 1 is not 240 * page aligned properly. 241 */ 242 void truncate_inode_pages_range(struct address_space *mapping, 243 loff_t lstart, loff_t lend) 244 { 245 pgoff_t start; /* inclusive */ 246 pgoff_t end; /* exclusive */ 247 unsigned int partial_start; /* inclusive */ 248 unsigned int partial_end; /* exclusive */ 249 struct pagevec pvec; 250 pgoff_t indices[PAGEVEC_SIZE]; 251 pgoff_t index; 252 int i; 253 254 cleancache_invalidate_inode(mapping); 255 if (mapping->nrpages == 0 && mapping->nrshadows == 0) 256 return; 257 258 /* Offsets within partial pages */ 259 partial_start = lstart & (PAGE_CACHE_SIZE - 1); 260 partial_end = (lend + 1) & (PAGE_CACHE_SIZE - 1); 261 262 /* 263 * 'start' and 'end' always covers the range of pages to be fully 264 * truncated. Partial pages are covered with 'partial_start' at the 265 * start of the range and 'partial_end' at the end of the range. 266 * Note that 'end' is exclusive while 'lend' is inclusive. 267 */ 268 start = (lstart + PAGE_CACHE_SIZE - 1) >> PAGE_CACHE_SHIFT; 269 if (lend == -1) 270 /* 271 * lend == -1 indicates end-of-file so we have to set 'end' 272 * to the highest possible pgoff_t and since the type is 273 * unsigned we're using -1. 274 */ 275 end = -1; 276 else 277 end = (lend + 1) >> PAGE_CACHE_SHIFT; 278 279 pagevec_init(&pvec, 0); 280 index = start; 281 while (index < end && pagevec_lookup_entries(&pvec, mapping, index, 282 min(end - index, (pgoff_t)PAGEVEC_SIZE), 283 indices)) { 284 mem_cgroup_uncharge_start(); 285 for (i = 0; i < pagevec_count(&pvec); i++) { 286 struct page *page = pvec.pages[i]; 287 288 /* We rely upon deletion not changing page->index */ 289 index = indices[i]; 290 if (index >= end) 291 break; 292 293 if (radix_tree_exceptional_entry(page)) { 294 clear_exceptional_entry(mapping, index, page); 295 continue; 296 } 297 298 if (!trylock_page(page)) 299 continue; 300 WARN_ON(page->index != index); 301 if (PageWriteback(page)) { 302 unlock_page(page); 303 continue; 304 } 305 truncate_inode_page(mapping, page); 306 unlock_page(page); 307 } 308 pagevec_remove_exceptionals(&pvec); 309 pagevec_release(&pvec); 310 mem_cgroup_uncharge_end(); 311 cond_resched(); 312 index++; 313 } 314 315 if (partial_start) { 316 struct page *page = find_lock_page(mapping, start - 1); 317 if (page) { 318 unsigned int top = PAGE_CACHE_SIZE; 319 if (start > end) { 320 /* Truncation within a single page */ 321 top = partial_end; 322 partial_end = 0; 323 } 324 wait_on_page_writeback(page); 325 zero_user_segment(page, partial_start, top); 326 cleancache_invalidate_page(mapping, page); 327 if (page_has_private(page)) 328 do_invalidatepage(page, partial_start, 329 top - partial_start); 330 unlock_page(page); 331 page_cache_release(page); 332 } 333 } 334 if (partial_end) { 335 struct page *page = find_lock_page(mapping, end); 336 if (page) { 337 wait_on_page_writeback(page); 338 zero_user_segment(page, 0, partial_end); 339 cleancache_invalidate_page(mapping, page); 340 if (page_has_private(page)) 341 do_invalidatepage(page, 0, 342 partial_end); 343 unlock_page(page); 344 page_cache_release(page); 345 } 346 } 347 /* 348 * If the truncation happened within a single page no pages 349 * will be released, just zeroed, so we can bail out now. 350 */ 351 if (start >= end) 352 return; 353 354 index = start; 355 for ( ; ; ) { 356 cond_resched(); 357 if (!pagevec_lookup_entries(&pvec, mapping, index, 358 min(end - index, (pgoff_t)PAGEVEC_SIZE), 359 indices)) { 360 if (index == start) 361 break; 362 index = start; 363 continue; 364 } 365 if (index == start && indices[0] >= end) { 366 pagevec_remove_exceptionals(&pvec); 367 pagevec_release(&pvec); 368 break; 369 } 370 mem_cgroup_uncharge_start(); 371 for (i = 0; i < pagevec_count(&pvec); i++) { 372 struct page *page = pvec.pages[i]; 373 374 /* We rely upon deletion not changing page->index */ 375 index = indices[i]; 376 if (index >= end) 377 break; 378 379 if (radix_tree_exceptional_entry(page)) { 380 clear_exceptional_entry(mapping, index, page); 381 continue; 382 } 383 384 lock_page(page); 385 WARN_ON(page->index != index); 386 wait_on_page_writeback(page); 387 truncate_inode_page(mapping, page); 388 unlock_page(page); 389 } 390 pagevec_remove_exceptionals(&pvec); 391 pagevec_release(&pvec); 392 mem_cgroup_uncharge_end(); 393 index++; 394 } 395 cleancache_invalidate_inode(mapping); 396 } 397 EXPORT_SYMBOL(truncate_inode_pages_range); 398 399 /** 400 * truncate_inode_pages - truncate *all* the pages from an offset 401 * @mapping: mapping to truncate 402 * @lstart: offset from which to truncate 403 * 404 * Called under (and serialised by) inode->i_mutex. 405 * 406 * Note: When this function returns, there can be a page in the process of 407 * deletion (inside __delete_from_page_cache()) in the specified range. Thus 408 * mapping->nrpages can be non-zero when this function returns even after 409 * truncation of the whole mapping. 410 */ 411 void truncate_inode_pages(struct address_space *mapping, loff_t lstart) 412 { 413 truncate_inode_pages_range(mapping, lstart, (loff_t)-1); 414 } 415 EXPORT_SYMBOL(truncate_inode_pages); 416 417 /** 418 * truncate_inode_pages_final - truncate *all* pages before inode dies 419 * @mapping: mapping to truncate 420 * 421 * Called under (and serialized by) inode->i_mutex. 422 * 423 * Filesystems have to use this in the .evict_inode path to inform the 424 * VM that this is the final truncate and the inode is going away. 425 */ 426 void truncate_inode_pages_final(struct address_space *mapping) 427 { 428 unsigned long nrshadows; 429 unsigned long nrpages; 430 431 /* 432 * Page reclaim can not participate in regular inode lifetime 433 * management (can't call iput()) and thus can race with the 434 * inode teardown. Tell it when the address space is exiting, 435 * so that it does not install eviction information after the 436 * final truncate has begun. 437 */ 438 mapping_set_exiting(mapping); 439 440 /* 441 * When reclaim installs eviction entries, it increases 442 * nrshadows first, then decreases nrpages. Make sure we see 443 * this in the right order or we might miss an entry. 444 */ 445 nrpages = mapping->nrpages; 446 smp_rmb(); 447 nrshadows = mapping->nrshadows; 448 449 if (nrpages || nrshadows) { 450 /* 451 * As truncation uses a lockless tree lookup, cycle 452 * the tree lock to make sure any ongoing tree 453 * modification that does not see AS_EXITING is 454 * completed before starting the final truncate. 455 */ 456 spin_lock_irq(&mapping->tree_lock); 457 spin_unlock_irq(&mapping->tree_lock); 458 459 truncate_inode_pages(mapping, 0); 460 } 461 } 462 EXPORT_SYMBOL(truncate_inode_pages_final); 463 464 /** 465 * invalidate_mapping_pages - Invalidate all the unlocked pages of one inode 466 * @mapping: the address_space which holds the pages to invalidate 467 * @start: the offset 'from' which to invalidate 468 * @end: the offset 'to' which to invalidate (inclusive) 469 * 470 * This function only removes the unlocked pages, if you want to 471 * remove all the pages of one inode, you must call truncate_inode_pages. 472 * 473 * invalidate_mapping_pages() will not block on IO activity. It will not 474 * invalidate pages which are dirty, locked, under writeback or mapped into 475 * pagetables. 476 */ 477 unsigned long invalidate_mapping_pages(struct address_space *mapping, 478 pgoff_t start, pgoff_t end) 479 { 480 pgoff_t indices[PAGEVEC_SIZE]; 481 struct pagevec pvec; 482 pgoff_t index = start; 483 unsigned long ret; 484 unsigned long count = 0; 485 int i; 486 487 /* 488 * Note: this function may get called on a shmem/tmpfs mapping: 489 * pagevec_lookup() might then return 0 prematurely (because it 490 * got a gangful of swap entries); but it's hardly worth worrying 491 * about - it can rarely have anything to free from such a mapping 492 * (most pages are dirty), and already skips over any difficulties. 493 */ 494 495 pagevec_init(&pvec, 0); 496 while (index <= end && pagevec_lookup_entries(&pvec, mapping, index, 497 min(end - index, (pgoff_t)PAGEVEC_SIZE - 1) + 1, 498 indices)) { 499 mem_cgroup_uncharge_start(); 500 for (i = 0; i < pagevec_count(&pvec); i++) { 501 struct page *page = pvec.pages[i]; 502 503 /* We rely upon deletion not changing page->index */ 504 index = indices[i]; 505 if (index > end) 506 break; 507 508 if (radix_tree_exceptional_entry(page)) { 509 clear_exceptional_entry(mapping, index, page); 510 continue; 511 } 512 513 if (!trylock_page(page)) 514 continue; 515 WARN_ON(page->index != index); 516 ret = invalidate_inode_page(page); 517 unlock_page(page); 518 /* 519 * Invalidation is a hint that the page is no longer 520 * of interest and try to speed up its reclaim. 521 */ 522 if (!ret) 523 deactivate_page(page); 524 count += ret; 525 } 526 pagevec_remove_exceptionals(&pvec); 527 pagevec_release(&pvec); 528 mem_cgroup_uncharge_end(); 529 cond_resched(); 530 index++; 531 } 532 return count; 533 } 534 EXPORT_SYMBOL(invalidate_mapping_pages); 535 536 /* 537 * This is like invalidate_complete_page(), except it ignores the page's 538 * refcount. We do this because invalidate_inode_pages2() needs stronger 539 * invalidation guarantees, and cannot afford to leave pages behind because 540 * shrink_page_list() has a temp ref on them, or because they're transiently 541 * sitting in the lru_cache_add() pagevecs. 542 */ 543 static int 544 invalidate_complete_page2(struct address_space *mapping, struct page *page) 545 { 546 if (page->mapping != mapping) 547 return 0; 548 549 if (page_has_private(page) && !try_to_release_page(page, GFP_KERNEL)) 550 return 0; 551 552 spin_lock_irq(&mapping->tree_lock); 553 if (PageDirty(page)) 554 goto failed; 555 556 BUG_ON(page_has_private(page)); 557 __delete_from_page_cache(page, NULL); 558 spin_unlock_irq(&mapping->tree_lock); 559 mem_cgroup_uncharge_cache_page(page); 560 561 if (mapping->a_ops->freepage) 562 mapping->a_ops->freepage(page); 563 564 page_cache_release(page); /* pagecache ref */ 565 return 1; 566 failed: 567 spin_unlock_irq(&mapping->tree_lock); 568 return 0; 569 } 570 571 static int do_launder_page(struct address_space *mapping, struct page *page) 572 { 573 if (!PageDirty(page)) 574 return 0; 575 if (page->mapping != mapping || mapping->a_ops->launder_page == NULL) 576 return 0; 577 return mapping->a_ops->launder_page(page); 578 } 579 580 /** 581 * invalidate_inode_pages2_range - remove range of pages from an address_space 582 * @mapping: the address_space 583 * @start: the page offset 'from' which to invalidate 584 * @end: the page offset 'to' which to invalidate (inclusive) 585 * 586 * Any pages which are found to be mapped into pagetables are unmapped prior to 587 * invalidation. 588 * 589 * Returns -EBUSY if any pages could not be invalidated. 590 */ 591 int invalidate_inode_pages2_range(struct address_space *mapping, 592 pgoff_t start, pgoff_t end) 593 { 594 pgoff_t indices[PAGEVEC_SIZE]; 595 struct pagevec pvec; 596 pgoff_t index; 597 int i; 598 int ret = 0; 599 int ret2 = 0; 600 int did_range_unmap = 0; 601 602 cleancache_invalidate_inode(mapping); 603 pagevec_init(&pvec, 0); 604 index = start; 605 while (index <= end && pagevec_lookup_entries(&pvec, mapping, index, 606 min(end - index, (pgoff_t)PAGEVEC_SIZE - 1) + 1, 607 indices)) { 608 mem_cgroup_uncharge_start(); 609 for (i = 0; i < pagevec_count(&pvec); i++) { 610 struct page *page = pvec.pages[i]; 611 612 /* We rely upon deletion not changing page->index */ 613 index = indices[i]; 614 if (index > end) 615 break; 616 617 if (radix_tree_exceptional_entry(page)) { 618 clear_exceptional_entry(mapping, index, page); 619 continue; 620 } 621 622 lock_page(page); 623 WARN_ON(page->index != index); 624 if (page->mapping != mapping) { 625 unlock_page(page); 626 continue; 627 } 628 wait_on_page_writeback(page); 629 if (page_mapped(page)) { 630 if (!did_range_unmap) { 631 /* 632 * Zap the rest of the file in one hit. 633 */ 634 unmap_mapping_range(mapping, 635 (loff_t)index << PAGE_CACHE_SHIFT, 636 (loff_t)(1 + end - index) 637 << PAGE_CACHE_SHIFT, 638 0); 639 did_range_unmap = 1; 640 } else { 641 /* 642 * Just zap this page 643 */ 644 unmap_mapping_range(mapping, 645 (loff_t)index << PAGE_CACHE_SHIFT, 646 PAGE_CACHE_SIZE, 0); 647 } 648 } 649 BUG_ON(page_mapped(page)); 650 ret2 = do_launder_page(mapping, page); 651 if (ret2 == 0) { 652 if (!invalidate_complete_page2(mapping, page)) 653 ret2 = -EBUSY; 654 } 655 if (ret2 < 0) 656 ret = ret2; 657 unlock_page(page); 658 } 659 pagevec_remove_exceptionals(&pvec); 660 pagevec_release(&pvec); 661 mem_cgroup_uncharge_end(); 662 cond_resched(); 663 index++; 664 } 665 cleancache_invalidate_inode(mapping); 666 return ret; 667 } 668 EXPORT_SYMBOL_GPL(invalidate_inode_pages2_range); 669 670 /** 671 * invalidate_inode_pages2 - remove all pages from an address_space 672 * @mapping: the address_space 673 * 674 * Any pages which are found to be mapped into pagetables are unmapped prior to 675 * invalidation. 676 * 677 * Returns -EBUSY if any pages could not be invalidated. 678 */ 679 int invalidate_inode_pages2(struct address_space *mapping) 680 { 681 return invalidate_inode_pages2_range(mapping, 0, -1); 682 } 683 EXPORT_SYMBOL_GPL(invalidate_inode_pages2); 684 685 /** 686 * truncate_pagecache - unmap and remove pagecache that has been truncated 687 * @inode: inode 688 * @newsize: new file size 689 * 690 * inode's new i_size must already be written before truncate_pagecache 691 * is called. 692 * 693 * This function should typically be called before the filesystem 694 * releases resources associated with the freed range (eg. deallocates 695 * blocks). This way, pagecache will always stay logically coherent 696 * with on-disk format, and the filesystem would not have to deal with 697 * situations such as writepage being called for a page that has already 698 * had its underlying blocks deallocated. 699 */ 700 void truncate_pagecache(struct inode *inode, loff_t newsize) 701 { 702 struct address_space *mapping = inode->i_mapping; 703 loff_t holebegin = round_up(newsize, PAGE_SIZE); 704 705 /* 706 * unmap_mapping_range is called twice, first simply for 707 * efficiency so that truncate_inode_pages does fewer 708 * single-page unmaps. However after this first call, and 709 * before truncate_inode_pages finishes, it is possible for 710 * private pages to be COWed, which remain after 711 * truncate_inode_pages finishes, hence the second 712 * unmap_mapping_range call must be made for correctness. 713 */ 714 unmap_mapping_range(mapping, holebegin, 0, 1); 715 truncate_inode_pages(mapping, newsize); 716 unmap_mapping_range(mapping, holebegin, 0, 1); 717 } 718 EXPORT_SYMBOL(truncate_pagecache); 719 720 /** 721 * truncate_setsize - update inode and pagecache for a new file size 722 * @inode: inode 723 * @newsize: new file size 724 * 725 * truncate_setsize updates i_size and performs pagecache truncation (if 726 * necessary) to @newsize. It will be typically be called from the filesystem's 727 * setattr function when ATTR_SIZE is passed in. 728 * 729 * Must be called with inode_mutex held and before all filesystem specific 730 * block truncation has been performed. 731 */ 732 void truncate_setsize(struct inode *inode, loff_t newsize) 733 { 734 i_size_write(inode, newsize); 735 truncate_pagecache(inode, newsize); 736 } 737 EXPORT_SYMBOL(truncate_setsize); 738 739 /** 740 * truncate_pagecache_range - unmap and remove pagecache that is hole-punched 741 * @inode: inode 742 * @lstart: offset of beginning of hole 743 * @lend: offset of last byte of hole 744 * 745 * This function should typically be called before the filesystem 746 * releases resources associated with the freed range (eg. deallocates 747 * blocks). This way, pagecache will always stay logically coherent 748 * with on-disk format, and the filesystem would not have to deal with 749 * situations such as writepage being called for a page that has already 750 * had its underlying blocks deallocated. 751 */ 752 void truncate_pagecache_range(struct inode *inode, loff_t lstart, loff_t lend) 753 { 754 struct address_space *mapping = inode->i_mapping; 755 loff_t unmap_start = round_up(lstart, PAGE_SIZE); 756 loff_t unmap_end = round_down(1 + lend, PAGE_SIZE) - 1; 757 /* 758 * This rounding is currently just for example: unmap_mapping_range 759 * expands its hole outwards, whereas we want it to contract the hole 760 * inwards. However, existing callers of truncate_pagecache_range are 761 * doing their own page rounding first. Note that unmap_mapping_range 762 * allows holelen 0 for all, and we allow lend -1 for end of file. 763 */ 764 765 /* 766 * Unlike in truncate_pagecache, unmap_mapping_range is called only 767 * once (before truncating pagecache), and without "even_cows" flag: 768 * hole-punching should not remove private COWed pages from the hole. 769 */ 770 if ((u64)unmap_end > (u64)unmap_start) 771 unmap_mapping_range(mapping, unmap_start, 772 1 + unmap_end - unmap_start, 0); 773 truncate_inode_pages_range(mapping, lstart, lend); 774 } 775 EXPORT_SYMBOL(truncate_pagecache_range); 776