1 /* 2 * mm/truncate.c - code for taking down pages from address_spaces 3 * 4 * Copyright (C) 2002, Linus Torvalds 5 * 6 * 10Sep2002 Andrew Morton 7 * Initial version. 8 */ 9 10 #include <linux/kernel.h> 11 #include <linux/backing-dev.h> 12 #include <linux/dax.h> 13 #include <linux/gfp.h> 14 #include <linux/mm.h> 15 #include <linux/swap.h> 16 #include <linux/export.h> 17 #include <linux/pagemap.h> 18 #include <linux/highmem.h> 19 #include <linux/pagevec.h> 20 #include <linux/task_io_accounting_ops.h> 21 #include <linux/buffer_head.h> /* grr. try_to_release_page, 22 do_invalidatepage */ 23 #include <linux/shmem_fs.h> 24 #include <linux/cleancache.h> 25 #include <linux/rmap.h> 26 #include "internal.h" 27 28 static void clear_shadow_entry(struct address_space *mapping, pgoff_t index, 29 void *entry) 30 { 31 struct radix_tree_node *node; 32 void **slot; 33 34 spin_lock_irq(&mapping->tree_lock); 35 /* 36 * Regular page slots are stabilized by the page lock even 37 * without the tree itself locked. These unlocked entries 38 * need verification under the tree lock. 39 */ 40 if (!__radix_tree_lookup(&mapping->page_tree, index, &node, &slot)) 41 goto unlock; 42 if (*slot != entry) 43 goto unlock; 44 __radix_tree_replace(&mapping->page_tree, node, slot, NULL, 45 workingset_update_node, mapping); 46 mapping->nrexceptional--; 47 unlock: 48 spin_unlock_irq(&mapping->tree_lock); 49 } 50 51 /* 52 * Unconditionally remove exceptional entry. Usually called from truncate path. 53 */ 54 static void truncate_exceptional_entry(struct address_space *mapping, 55 pgoff_t index, void *entry) 56 { 57 /* Handled by shmem itself */ 58 if (shmem_mapping(mapping)) 59 return; 60 61 if (dax_mapping(mapping)) { 62 dax_delete_mapping_entry(mapping, index); 63 return; 64 } 65 clear_shadow_entry(mapping, index, entry); 66 } 67 68 /* 69 * Invalidate exceptional entry if easily possible. This handles exceptional 70 * entries for invalidate_inode_pages() so for DAX it evicts only unlocked and 71 * clean entries. 72 */ 73 static int invalidate_exceptional_entry(struct address_space *mapping, 74 pgoff_t index, void *entry) 75 { 76 /* Handled by shmem itself */ 77 if (shmem_mapping(mapping)) 78 return 1; 79 if (dax_mapping(mapping)) 80 return dax_invalidate_mapping_entry(mapping, index); 81 clear_shadow_entry(mapping, index, entry); 82 return 1; 83 } 84 85 /* 86 * Invalidate exceptional entry if clean. This handles exceptional entries for 87 * invalidate_inode_pages2() so for DAX it evicts only clean entries. 88 */ 89 static int invalidate_exceptional_entry2(struct address_space *mapping, 90 pgoff_t index, void *entry) 91 { 92 /* Handled by shmem itself */ 93 if (shmem_mapping(mapping)) 94 return 1; 95 if (dax_mapping(mapping)) 96 return dax_invalidate_mapping_entry_sync(mapping, index); 97 clear_shadow_entry(mapping, index, entry); 98 return 1; 99 } 100 101 /** 102 * do_invalidatepage - invalidate part or all of a page 103 * @page: the page which is affected 104 * @offset: start of the range to invalidate 105 * @length: length of the range to invalidate 106 * 107 * do_invalidatepage() is called when all or part of the page has become 108 * invalidated by a truncate operation. 109 * 110 * do_invalidatepage() does not have to release all buffers, but it must 111 * ensure that no dirty buffer is left outside @offset and that no I/O 112 * is underway against any of the blocks which are outside the truncation 113 * point. Because the caller is about to free (and possibly reuse) those 114 * blocks on-disk. 115 */ 116 void do_invalidatepage(struct page *page, unsigned int offset, 117 unsigned int length) 118 { 119 void (*invalidatepage)(struct page *, unsigned int, unsigned int); 120 121 invalidatepage = page->mapping->a_ops->invalidatepage; 122 #ifdef CONFIG_BLOCK 123 if (!invalidatepage) 124 invalidatepage = block_invalidatepage; 125 #endif 126 if (invalidatepage) 127 (*invalidatepage)(page, offset, length); 128 } 129 130 /* 131 * If truncate cannot remove the fs-private metadata from the page, the page 132 * becomes orphaned. It will be left on the LRU and may even be mapped into 133 * user pagetables if we're racing with filemap_fault(). 134 * 135 * We need to bale out if page->mapping is no longer equal to the original 136 * mapping. This happens a) when the VM reclaimed the page while we waited on 137 * its lock, b) when a concurrent invalidate_mapping_pages got there first and 138 * c) when tmpfs swizzles a page between a tmpfs inode and swapper_space. 139 */ 140 static int 141 truncate_complete_page(struct address_space *mapping, struct page *page) 142 { 143 if (page->mapping != mapping) 144 return -EIO; 145 146 if (page_has_private(page)) 147 do_invalidatepage(page, 0, PAGE_SIZE); 148 149 /* 150 * Some filesystems seem to re-dirty the page even after 151 * the VM has canceled the dirty bit (eg ext3 journaling). 152 * Hence dirty accounting check is placed after invalidation. 153 */ 154 cancel_dirty_page(page); 155 ClearPageMappedToDisk(page); 156 delete_from_page_cache(page); 157 return 0; 158 } 159 160 /* 161 * This is for invalidate_mapping_pages(). That function can be called at 162 * any time, and is not supposed to throw away dirty pages. But pages can 163 * be marked dirty at any time too, so use remove_mapping which safely 164 * discards clean, unused pages. 165 * 166 * Returns non-zero if the page was successfully invalidated. 167 */ 168 static int 169 invalidate_complete_page(struct address_space *mapping, struct page *page) 170 { 171 int ret; 172 173 if (page->mapping != mapping) 174 return 0; 175 176 if (page_has_private(page) && !try_to_release_page(page, 0)) 177 return 0; 178 179 ret = remove_mapping(mapping, page); 180 181 return ret; 182 } 183 184 int truncate_inode_page(struct address_space *mapping, struct page *page) 185 { 186 loff_t holelen; 187 VM_BUG_ON_PAGE(PageTail(page), page); 188 189 holelen = PageTransHuge(page) ? HPAGE_PMD_SIZE : PAGE_SIZE; 190 if (page_mapped(page)) { 191 unmap_mapping_range(mapping, 192 (loff_t)page->index << PAGE_SHIFT, 193 holelen, 0); 194 } 195 return truncate_complete_page(mapping, page); 196 } 197 198 /* 199 * Used to get rid of pages on hardware memory corruption. 200 */ 201 int generic_error_remove_page(struct address_space *mapping, struct page *page) 202 { 203 if (!mapping) 204 return -EINVAL; 205 /* 206 * Only punch for normal data pages for now. 207 * Handling other types like directories would need more auditing. 208 */ 209 if (!S_ISREG(mapping->host->i_mode)) 210 return -EIO; 211 return truncate_inode_page(mapping, page); 212 } 213 EXPORT_SYMBOL(generic_error_remove_page); 214 215 /* 216 * Safely invalidate one page from its pagecache mapping. 217 * It only drops clean, unused pages. The page must be locked. 218 * 219 * Returns 1 if the page is successfully invalidated, otherwise 0. 220 */ 221 int invalidate_inode_page(struct page *page) 222 { 223 struct address_space *mapping = page_mapping(page); 224 if (!mapping) 225 return 0; 226 if (PageDirty(page) || PageWriteback(page)) 227 return 0; 228 if (page_mapped(page)) 229 return 0; 230 return invalidate_complete_page(mapping, page); 231 } 232 233 /** 234 * truncate_inode_pages_range - truncate range of pages specified by start & end byte offsets 235 * @mapping: mapping to truncate 236 * @lstart: offset from which to truncate 237 * @lend: offset to which to truncate (inclusive) 238 * 239 * Truncate the page cache, removing the pages that are between 240 * specified offsets (and zeroing out partial pages 241 * if lstart or lend + 1 is not page aligned). 242 * 243 * Truncate takes two passes - the first pass is nonblocking. It will not 244 * block on page locks and it will not block on writeback. The second pass 245 * will wait. This is to prevent as much IO as possible in the affected region. 246 * The first pass will remove most pages, so the search cost of the second pass 247 * is low. 248 * 249 * We pass down the cache-hot hint to the page freeing code. Even if the 250 * mapping is large, it is probably the case that the final pages are the most 251 * recently touched, and freeing happens in ascending file offset order. 252 * 253 * Note that since ->invalidatepage() accepts range to invalidate 254 * truncate_inode_pages_range is able to handle cases where lend + 1 is not 255 * page aligned properly. 256 */ 257 void truncate_inode_pages_range(struct address_space *mapping, 258 loff_t lstart, loff_t lend) 259 { 260 pgoff_t start; /* inclusive */ 261 pgoff_t end; /* exclusive */ 262 unsigned int partial_start; /* inclusive */ 263 unsigned int partial_end; /* exclusive */ 264 struct pagevec pvec; 265 pgoff_t indices[PAGEVEC_SIZE]; 266 pgoff_t index; 267 int i; 268 269 cleancache_invalidate_inode(mapping); 270 if (mapping->nrpages == 0 && mapping->nrexceptional == 0) 271 return; 272 273 /* Offsets within partial pages */ 274 partial_start = lstart & (PAGE_SIZE - 1); 275 partial_end = (lend + 1) & (PAGE_SIZE - 1); 276 277 /* 278 * 'start' and 'end' always covers the range of pages to be fully 279 * truncated. Partial pages are covered with 'partial_start' at the 280 * start of the range and 'partial_end' at the end of the range. 281 * Note that 'end' is exclusive while 'lend' is inclusive. 282 */ 283 start = (lstart + PAGE_SIZE - 1) >> PAGE_SHIFT; 284 if (lend == -1) 285 /* 286 * lend == -1 indicates end-of-file so we have to set 'end' 287 * to the highest possible pgoff_t and since the type is 288 * unsigned we're using -1. 289 */ 290 end = -1; 291 else 292 end = (lend + 1) >> PAGE_SHIFT; 293 294 pagevec_init(&pvec, 0); 295 index = start; 296 while (index < end && pagevec_lookup_entries(&pvec, mapping, index, 297 min(end - index, (pgoff_t)PAGEVEC_SIZE), 298 indices)) { 299 for (i = 0; i < pagevec_count(&pvec); i++) { 300 struct page *page = pvec.pages[i]; 301 302 /* We rely upon deletion not changing page->index */ 303 index = indices[i]; 304 if (index >= end) 305 break; 306 307 if (radix_tree_exceptional_entry(page)) { 308 truncate_exceptional_entry(mapping, index, 309 page); 310 continue; 311 } 312 313 if (!trylock_page(page)) 314 continue; 315 WARN_ON(page_to_index(page) != index); 316 if (PageWriteback(page)) { 317 unlock_page(page); 318 continue; 319 } 320 truncate_inode_page(mapping, page); 321 unlock_page(page); 322 } 323 pagevec_remove_exceptionals(&pvec); 324 pagevec_release(&pvec); 325 cond_resched(); 326 index++; 327 } 328 329 if (partial_start) { 330 struct page *page = find_lock_page(mapping, start - 1); 331 if (page) { 332 unsigned int top = PAGE_SIZE; 333 if (start > end) { 334 /* Truncation within a single page */ 335 top = partial_end; 336 partial_end = 0; 337 } 338 wait_on_page_writeback(page); 339 zero_user_segment(page, partial_start, top); 340 cleancache_invalidate_page(mapping, page); 341 if (page_has_private(page)) 342 do_invalidatepage(page, partial_start, 343 top - partial_start); 344 unlock_page(page); 345 put_page(page); 346 } 347 } 348 if (partial_end) { 349 struct page *page = find_lock_page(mapping, end); 350 if (page) { 351 wait_on_page_writeback(page); 352 zero_user_segment(page, 0, partial_end); 353 cleancache_invalidate_page(mapping, page); 354 if (page_has_private(page)) 355 do_invalidatepage(page, 0, 356 partial_end); 357 unlock_page(page); 358 put_page(page); 359 } 360 } 361 /* 362 * If the truncation happened within a single page no pages 363 * will be released, just zeroed, so we can bail out now. 364 */ 365 if (start >= end) 366 return; 367 368 index = start; 369 for ( ; ; ) { 370 cond_resched(); 371 if (!pagevec_lookup_entries(&pvec, mapping, index, 372 min(end - index, (pgoff_t)PAGEVEC_SIZE), indices)) { 373 /* If all gone from start onwards, we're done */ 374 if (index == start) 375 break; 376 /* Otherwise restart to make sure all gone */ 377 index = start; 378 continue; 379 } 380 if (index == start && indices[0] >= end) { 381 /* All gone out of hole to be punched, we're done */ 382 pagevec_remove_exceptionals(&pvec); 383 pagevec_release(&pvec); 384 break; 385 } 386 for (i = 0; i < pagevec_count(&pvec); i++) { 387 struct page *page = pvec.pages[i]; 388 389 /* We rely upon deletion not changing page->index */ 390 index = indices[i]; 391 if (index >= end) { 392 /* Restart punch to make sure all gone */ 393 index = start - 1; 394 break; 395 } 396 397 if (radix_tree_exceptional_entry(page)) { 398 truncate_exceptional_entry(mapping, index, 399 page); 400 continue; 401 } 402 403 lock_page(page); 404 WARN_ON(page_to_index(page) != index); 405 wait_on_page_writeback(page); 406 truncate_inode_page(mapping, page); 407 unlock_page(page); 408 } 409 pagevec_remove_exceptionals(&pvec); 410 pagevec_release(&pvec); 411 index++; 412 } 413 cleancache_invalidate_inode(mapping); 414 } 415 EXPORT_SYMBOL(truncate_inode_pages_range); 416 417 /** 418 * truncate_inode_pages - truncate *all* the pages from an offset 419 * @mapping: mapping to truncate 420 * @lstart: offset from which to truncate 421 * 422 * Called under (and serialised by) inode->i_mutex. 423 * 424 * Note: When this function returns, there can be a page in the process of 425 * deletion (inside __delete_from_page_cache()) in the specified range. Thus 426 * mapping->nrpages can be non-zero when this function returns even after 427 * truncation of the whole mapping. 428 */ 429 void truncate_inode_pages(struct address_space *mapping, loff_t lstart) 430 { 431 truncate_inode_pages_range(mapping, lstart, (loff_t)-1); 432 } 433 EXPORT_SYMBOL(truncate_inode_pages); 434 435 /** 436 * truncate_inode_pages_final - truncate *all* pages before inode dies 437 * @mapping: mapping to truncate 438 * 439 * Called under (and serialized by) inode->i_mutex. 440 * 441 * Filesystems have to use this in the .evict_inode path to inform the 442 * VM that this is the final truncate and the inode is going away. 443 */ 444 void truncate_inode_pages_final(struct address_space *mapping) 445 { 446 unsigned long nrexceptional; 447 unsigned long nrpages; 448 449 /* 450 * Page reclaim can not participate in regular inode lifetime 451 * management (can't call iput()) and thus can race with the 452 * inode teardown. Tell it when the address space is exiting, 453 * so that it does not install eviction information after the 454 * final truncate has begun. 455 */ 456 mapping_set_exiting(mapping); 457 458 /* 459 * When reclaim installs eviction entries, it increases 460 * nrexceptional first, then decreases nrpages. Make sure we see 461 * this in the right order or we might miss an entry. 462 */ 463 nrpages = mapping->nrpages; 464 smp_rmb(); 465 nrexceptional = mapping->nrexceptional; 466 467 if (nrpages || nrexceptional) { 468 /* 469 * As truncation uses a lockless tree lookup, cycle 470 * the tree lock to make sure any ongoing tree 471 * modification that does not see AS_EXITING is 472 * completed before starting the final truncate. 473 */ 474 spin_lock_irq(&mapping->tree_lock); 475 spin_unlock_irq(&mapping->tree_lock); 476 477 truncate_inode_pages(mapping, 0); 478 } 479 } 480 EXPORT_SYMBOL(truncate_inode_pages_final); 481 482 /** 483 * invalidate_mapping_pages - Invalidate all the unlocked pages of one inode 484 * @mapping: the address_space which holds the pages to invalidate 485 * @start: the offset 'from' which to invalidate 486 * @end: the offset 'to' which to invalidate (inclusive) 487 * 488 * This function only removes the unlocked pages, if you want to 489 * remove all the pages of one inode, you must call truncate_inode_pages. 490 * 491 * invalidate_mapping_pages() will not block on IO activity. It will not 492 * invalidate pages which are dirty, locked, under writeback or mapped into 493 * pagetables. 494 */ 495 unsigned long invalidate_mapping_pages(struct address_space *mapping, 496 pgoff_t start, pgoff_t end) 497 { 498 pgoff_t indices[PAGEVEC_SIZE]; 499 struct pagevec pvec; 500 pgoff_t index = start; 501 unsigned long ret; 502 unsigned long count = 0; 503 int i; 504 505 pagevec_init(&pvec, 0); 506 while (index <= end && pagevec_lookup_entries(&pvec, mapping, index, 507 min(end - index, (pgoff_t)PAGEVEC_SIZE - 1) + 1, 508 indices)) { 509 for (i = 0; i < pagevec_count(&pvec); i++) { 510 struct page *page = pvec.pages[i]; 511 512 /* We rely upon deletion not changing page->index */ 513 index = indices[i]; 514 if (index > end) 515 break; 516 517 if (radix_tree_exceptional_entry(page)) { 518 invalidate_exceptional_entry(mapping, index, 519 page); 520 continue; 521 } 522 523 if (!trylock_page(page)) 524 continue; 525 526 WARN_ON(page_to_index(page) != index); 527 528 /* Middle of THP: skip */ 529 if (PageTransTail(page)) { 530 unlock_page(page); 531 continue; 532 } else if (PageTransHuge(page)) { 533 index += HPAGE_PMD_NR - 1; 534 i += HPAGE_PMD_NR - 1; 535 /* 'end' is in the middle of THP */ 536 if (index == round_down(end, HPAGE_PMD_NR)) 537 continue; 538 } 539 540 ret = invalidate_inode_page(page); 541 unlock_page(page); 542 /* 543 * Invalidation is a hint that the page is no longer 544 * of interest and try to speed up its reclaim. 545 */ 546 if (!ret) 547 deactivate_file_page(page); 548 count += ret; 549 } 550 pagevec_remove_exceptionals(&pvec); 551 pagevec_release(&pvec); 552 cond_resched(); 553 index++; 554 } 555 return count; 556 } 557 EXPORT_SYMBOL(invalidate_mapping_pages); 558 559 /* 560 * This is like invalidate_complete_page(), except it ignores the page's 561 * refcount. We do this because invalidate_inode_pages2() needs stronger 562 * invalidation guarantees, and cannot afford to leave pages behind because 563 * shrink_page_list() has a temp ref on them, or because they're transiently 564 * sitting in the lru_cache_add() pagevecs. 565 */ 566 static int 567 invalidate_complete_page2(struct address_space *mapping, struct page *page) 568 { 569 unsigned long flags; 570 571 if (page->mapping != mapping) 572 return 0; 573 574 if (page_has_private(page) && !try_to_release_page(page, GFP_KERNEL)) 575 return 0; 576 577 spin_lock_irqsave(&mapping->tree_lock, flags); 578 if (PageDirty(page)) 579 goto failed; 580 581 BUG_ON(page_has_private(page)); 582 __delete_from_page_cache(page, NULL); 583 spin_unlock_irqrestore(&mapping->tree_lock, flags); 584 585 if (mapping->a_ops->freepage) 586 mapping->a_ops->freepage(page); 587 588 put_page(page); /* pagecache ref */ 589 return 1; 590 failed: 591 spin_unlock_irqrestore(&mapping->tree_lock, flags); 592 return 0; 593 } 594 595 static int do_launder_page(struct address_space *mapping, struct page *page) 596 { 597 if (!PageDirty(page)) 598 return 0; 599 if (page->mapping != mapping || mapping->a_ops->launder_page == NULL) 600 return 0; 601 return mapping->a_ops->launder_page(page); 602 } 603 604 /** 605 * invalidate_inode_pages2_range - remove range of pages from an address_space 606 * @mapping: the address_space 607 * @start: the page offset 'from' which to invalidate 608 * @end: the page offset 'to' which to invalidate (inclusive) 609 * 610 * Any pages which are found to be mapped into pagetables are unmapped prior to 611 * invalidation. 612 * 613 * Returns -EBUSY if any pages could not be invalidated. 614 */ 615 int invalidate_inode_pages2_range(struct address_space *mapping, 616 pgoff_t start, pgoff_t end) 617 { 618 pgoff_t indices[PAGEVEC_SIZE]; 619 struct pagevec pvec; 620 pgoff_t index; 621 int i; 622 int ret = 0; 623 int ret2 = 0; 624 int did_range_unmap = 0; 625 626 cleancache_invalidate_inode(mapping); 627 pagevec_init(&pvec, 0); 628 index = start; 629 while (index <= end && pagevec_lookup_entries(&pvec, mapping, index, 630 min(end - index, (pgoff_t)PAGEVEC_SIZE - 1) + 1, 631 indices)) { 632 for (i = 0; i < pagevec_count(&pvec); i++) { 633 struct page *page = pvec.pages[i]; 634 635 /* We rely upon deletion not changing page->index */ 636 index = indices[i]; 637 if (index > end) 638 break; 639 640 if (radix_tree_exceptional_entry(page)) { 641 if (!invalidate_exceptional_entry2(mapping, 642 index, page)) 643 ret = -EBUSY; 644 continue; 645 } 646 647 lock_page(page); 648 WARN_ON(page_to_index(page) != index); 649 if (page->mapping != mapping) { 650 unlock_page(page); 651 continue; 652 } 653 wait_on_page_writeback(page); 654 if (page_mapped(page)) { 655 if (!did_range_unmap) { 656 /* 657 * Zap the rest of the file in one hit. 658 */ 659 unmap_mapping_range(mapping, 660 (loff_t)index << PAGE_SHIFT, 661 (loff_t)(1 + end - index) 662 << PAGE_SHIFT, 663 0); 664 did_range_unmap = 1; 665 } else { 666 /* 667 * Just zap this page 668 */ 669 unmap_mapping_range(mapping, 670 (loff_t)index << PAGE_SHIFT, 671 PAGE_SIZE, 0); 672 } 673 } 674 BUG_ON(page_mapped(page)); 675 ret2 = do_launder_page(mapping, page); 676 if (ret2 == 0) { 677 if (!invalidate_complete_page2(mapping, page)) 678 ret2 = -EBUSY; 679 } 680 if (ret2 < 0) 681 ret = ret2; 682 unlock_page(page); 683 } 684 pagevec_remove_exceptionals(&pvec); 685 pagevec_release(&pvec); 686 cond_resched(); 687 index++; 688 } 689 cleancache_invalidate_inode(mapping); 690 return ret; 691 } 692 EXPORT_SYMBOL_GPL(invalidate_inode_pages2_range); 693 694 /** 695 * invalidate_inode_pages2 - remove all pages from an address_space 696 * @mapping: the address_space 697 * 698 * Any pages which are found to be mapped into pagetables are unmapped prior to 699 * invalidation. 700 * 701 * Returns -EBUSY if any pages could not be invalidated. 702 */ 703 int invalidate_inode_pages2(struct address_space *mapping) 704 { 705 return invalidate_inode_pages2_range(mapping, 0, -1); 706 } 707 EXPORT_SYMBOL_GPL(invalidate_inode_pages2); 708 709 /** 710 * truncate_pagecache - unmap and remove pagecache that has been truncated 711 * @inode: inode 712 * @newsize: new file size 713 * 714 * inode's new i_size must already be written before truncate_pagecache 715 * is called. 716 * 717 * This function should typically be called before the filesystem 718 * releases resources associated with the freed range (eg. deallocates 719 * blocks). This way, pagecache will always stay logically coherent 720 * with on-disk format, and the filesystem would not have to deal with 721 * situations such as writepage being called for a page that has already 722 * had its underlying blocks deallocated. 723 */ 724 void truncate_pagecache(struct inode *inode, loff_t newsize) 725 { 726 struct address_space *mapping = inode->i_mapping; 727 loff_t holebegin = round_up(newsize, PAGE_SIZE); 728 729 /* 730 * unmap_mapping_range is called twice, first simply for 731 * efficiency so that truncate_inode_pages does fewer 732 * single-page unmaps. However after this first call, and 733 * before truncate_inode_pages finishes, it is possible for 734 * private pages to be COWed, which remain after 735 * truncate_inode_pages finishes, hence the second 736 * unmap_mapping_range call must be made for correctness. 737 */ 738 unmap_mapping_range(mapping, holebegin, 0, 1); 739 truncate_inode_pages(mapping, newsize); 740 unmap_mapping_range(mapping, holebegin, 0, 1); 741 } 742 EXPORT_SYMBOL(truncate_pagecache); 743 744 /** 745 * truncate_setsize - update inode and pagecache for a new file size 746 * @inode: inode 747 * @newsize: new file size 748 * 749 * truncate_setsize updates i_size and performs pagecache truncation (if 750 * necessary) to @newsize. It will be typically be called from the filesystem's 751 * setattr function when ATTR_SIZE is passed in. 752 * 753 * Must be called with a lock serializing truncates and writes (generally 754 * i_mutex but e.g. xfs uses a different lock) and before all filesystem 755 * specific block truncation has been performed. 756 */ 757 void truncate_setsize(struct inode *inode, loff_t newsize) 758 { 759 loff_t oldsize = inode->i_size; 760 761 i_size_write(inode, newsize); 762 if (newsize > oldsize) 763 pagecache_isize_extended(inode, oldsize, newsize); 764 truncate_pagecache(inode, newsize); 765 } 766 EXPORT_SYMBOL(truncate_setsize); 767 768 /** 769 * pagecache_isize_extended - update pagecache after extension of i_size 770 * @inode: inode for which i_size was extended 771 * @from: original inode size 772 * @to: new inode size 773 * 774 * Handle extension of inode size either caused by extending truncate or by 775 * write starting after current i_size. We mark the page straddling current 776 * i_size RO so that page_mkwrite() is called on the nearest write access to 777 * the page. This way filesystem can be sure that page_mkwrite() is called on 778 * the page before user writes to the page via mmap after the i_size has been 779 * changed. 780 * 781 * The function must be called after i_size is updated so that page fault 782 * coming after we unlock the page will already see the new i_size. 783 * The function must be called while we still hold i_mutex - this not only 784 * makes sure i_size is stable but also that userspace cannot observe new 785 * i_size value before we are prepared to store mmap writes at new inode size. 786 */ 787 void pagecache_isize_extended(struct inode *inode, loff_t from, loff_t to) 788 { 789 int bsize = i_blocksize(inode); 790 loff_t rounded_from; 791 struct page *page; 792 pgoff_t index; 793 794 WARN_ON(to > inode->i_size); 795 796 if (from >= to || bsize == PAGE_SIZE) 797 return; 798 /* Page straddling @from will not have any hole block created? */ 799 rounded_from = round_up(from, bsize); 800 if (to <= rounded_from || !(rounded_from & (PAGE_SIZE - 1))) 801 return; 802 803 index = from >> PAGE_SHIFT; 804 page = find_lock_page(inode->i_mapping, index); 805 /* Page not cached? Nothing to do */ 806 if (!page) 807 return; 808 /* 809 * See clear_page_dirty_for_io() for details why set_page_dirty() 810 * is needed. 811 */ 812 if (page_mkclean(page)) 813 set_page_dirty(page); 814 unlock_page(page); 815 put_page(page); 816 } 817 EXPORT_SYMBOL(pagecache_isize_extended); 818 819 /** 820 * truncate_pagecache_range - unmap and remove pagecache that is hole-punched 821 * @inode: inode 822 * @lstart: offset of beginning of hole 823 * @lend: offset of last byte of hole 824 * 825 * This function should typically be called before the filesystem 826 * releases resources associated with the freed range (eg. deallocates 827 * blocks). This way, pagecache will always stay logically coherent 828 * with on-disk format, and the filesystem would not have to deal with 829 * situations such as writepage being called for a page that has already 830 * had its underlying blocks deallocated. 831 */ 832 void truncate_pagecache_range(struct inode *inode, loff_t lstart, loff_t lend) 833 { 834 struct address_space *mapping = inode->i_mapping; 835 loff_t unmap_start = round_up(lstart, PAGE_SIZE); 836 loff_t unmap_end = round_down(1 + lend, PAGE_SIZE) - 1; 837 /* 838 * This rounding is currently just for example: unmap_mapping_range 839 * expands its hole outwards, whereas we want it to contract the hole 840 * inwards. However, existing callers of truncate_pagecache_range are 841 * doing their own page rounding first. Note that unmap_mapping_range 842 * allows holelen 0 for all, and we allow lend -1 for end of file. 843 */ 844 845 /* 846 * Unlike in truncate_pagecache, unmap_mapping_range is called only 847 * once (before truncating pagecache), and without "even_cows" flag: 848 * hole-punching should not remove private COWed pages from the hole. 849 */ 850 if ((u64)unmap_end > (u64)unmap_start) 851 unmap_mapping_range(mapping, unmap_start, 852 1 + unmap_end - unmap_start, 0); 853 truncate_inode_pages_range(mapping, lstart, lend); 854 } 855 EXPORT_SYMBOL(truncate_pagecache_range); 856