1 /* 2 * mm/truncate.c - code for taking down pages from address_spaces 3 * 4 * Copyright (C) 2002, Linus Torvalds 5 * 6 * 10Sep2002 Andrew Morton 7 * Initial version. 8 */ 9 10 #include <linux/kernel.h> 11 #include <linux/backing-dev.h> 12 #include <linux/gfp.h> 13 #include <linux/mm.h> 14 #include <linux/swap.h> 15 #include <linux/export.h> 16 #include <linux/pagemap.h> 17 #include <linux/highmem.h> 18 #include <linux/pagevec.h> 19 #include <linux/task_io_accounting_ops.h> 20 #include <linux/buffer_head.h> /* grr. try_to_release_page, 21 do_invalidatepage */ 22 #include <linux/cleancache.h> 23 #include <linux/rmap.h> 24 #include "internal.h" 25 26 static void clear_exceptional_entry(struct address_space *mapping, 27 pgoff_t index, void *entry) 28 { 29 struct radix_tree_node *node; 30 void **slot; 31 32 /* Handled by shmem itself */ 33 if (shmem_mapping(mapping)) 34 return; 35 36 spin_lock_irq(&mapping->tree_lock); 37 /* 38 * Regular page slots are stabilized by the page lock even 39 * without the tree itself locked. These unlocked entries 40 * need verification under the tree lock. 41 */ 42 if (!__radix_tree_lookup(&mapping->page_tree, index, &node, &slot)) 43 goto unlock; 44 if (*slot != entry) 45 goto unlock; 46 radix_tree_replace_slot(slot, NULL); 47 mapping->nrshadows--; 48 if (!node) 49 goto unlock; 50 workingset_node_shadows_dec(node); 51 /* 52 * Don't track node without shadow entries. 53 * 54 * Avoid acquiring the list_lru lock if already untracked. 55 * The list_empty() test is safe as node->private_list is 56 * protected by mapping->tree_lock. 57 */ 58 if (!workingset_node_shadows(node) && 59 !list_empty(&node->private_list)) 60 list_lru_del(&workingset_shadow_nodes, &node->private_list); 61 __radix_tree_delete_node(&mapping->page_tree, node); 62 unlock: 63 spin_unlock_irq(&mapping->tree_lock); 64 } 65 66 /** 67 * do_invalidatepage - invalidate part or all of a page 68 * @page: the page which is affected 69 * @offset: start of the range to invalidate 70 * @length: length of the range to invalidate 71 * 72 * do_invalidatepage() is called when all or part of the page has become 73 * invalidated by a truncate operation. 74 * 75 * do_invalidatepage() does not have to release all buffers, but it must 76 * ensure that no dirty buffer is left outside @offset and that no I/O 77 * is underway against any of the blocks which are outside the truncation 78 * point. Because the caller is about to free (and possibly reuse) those 79 * blocks on-disk. 80 */ 81 void do_invalidatepage(struct page *page, unsigned int offset, 82 unsigned int length) 83 { 84 void (*invalidatepage)(struct page *, unsigned int, unsigned int); 85 86 invalidatepage = page->mapping->a_ops->invalidatepage; 87 #ifdef CONFIG_BLOCK 88 if (!invalidatepage) 89 invalidatepage = block_invalidatepage; 90 #endif 91 if (invalidatepage) 92 (*invalidatepage)(page, offset, length); 93 } 94 95 /* 96 * If truncate cannot remove the fs-private metadata from the page, the page 97 * becomes orphaned. It will be left on the LRU and may even be mapped into 98 * user pagetables if we're racing with filemap_fault(). 99 * 100 * We need to bale out if page->mapping is no longer equal to the original 101 * mapping. This happens a) when the VM reclaimed the page while we waited on 102 * its lock, b) when a concurrent invalidate_mapping_pages got there first and 103 * c) when tmpfs swizzles a page between a tmpfs inode and swapper_space. 104 */ 105 static int 106 truncate_complete_page(struct address_space *mapping, struct page *page) 107 { 108 if (page->mapping != mapping) 109 return -EIO; 110 111 if (page_has_private(page)) 112 do_invalidatepage(page, 0, PAGE_CACHE_SIZE); 113 114 /* 115 * Some filesystems seem to re-dirty the page even after 116 * the VM has canceled the dirty bit (eg ext3 journaling). 117 * Hence dirty accounting check is placed after invalidation. 118 */ 119 cancel_dirty_page(page); 120 ClearPageMappedToDisk(page); 121 delete_from_page_cache(page); 122 return 0; 123 } 124 125 /* 126 * This is for invalidate_mapping_pages(). That function can be called at 127 * any time, and is not supposed to throw away dirty pages. But pages can 128 * be marked dirty at any time too, so use remove_mapping which safely 129 * discards clean, unused pages. 130 * 131 * Returns non-zero if the page was successfully invalidated. 132 */ 133 static int 134 invalidate_complete_page(struct address_space *mapping, struct page *page) 135 { 136 int ret; 137 138 if (page->mapping != mapping) 139 return 0; 140 141 if (page_has_private(page) && !try_to_release_page(page, 0)) 142 return 0; 143 144 ret = remove_mapping(mapping, page); 145 146 return ret; 147 } 148 149 int truncate_inode_page(struct address_space *mapping, struct page *page) 150 { 151 if (page_mapped(page)) { 152 unmap_mapping_range(mapping, 153 (loff_t)page->index << PAGE_CACHE_SHIFT, 154 PAGE_CACHE_SIZE, 0); 155 } 156 return truncate_complete_page(mapping, page); 157 } 158 159 /* 160 * Used to get rid of pages on hardware memory corruption. 161 */ 162 int generic_error_remove_page(struct address_space *mapping, struct page *page) 163 { 164 if (!mapping) 165 return -EINVAL; 166 /* 167 * Only punch for normal data pages for now. 168 * Handling other types like directories would need more auditing. 169 */ 170 if (!S_ISREG(mapping->host->i_mode)) 171 return -EIO; 172 return truncate_inode_page(mapping, page); 173 } 174 EXPORT_SYMBOL(generic_error_remove_page); 175 176 /* 177 * Safely invalidate one page from its pagecache mapping. 178 * It only drops clean, unused pages. The page must be locked. 179 * 180 * Returns 1 if the page is successfully invalidated, otherwise 0. 181 */ 182 int invalidate_inode_page(struct page *page) 183 { 184 struct address_space *mapping = page_mapping(page); 185 if (!mapping) 186 return 0; 187 if (PageDirty(page) || PageWriteback(page)) 188 return 0; 189 if (page_mapped(page)) 190 return 0; 191 return invalidate_complete_page(mapping, page); 192 } 193 194 /** 195 * truncate_inode_pages_range - truncate range of pages specified by start & end byte offsets 196 * @mapping: mapping to truncate 197 * @lstart: offset from which to truncate 198 * @lend: offset to which to truncate (inclusive) 199 * 200 * Truncate the page cache, removing the pages that are between 201 * specified offsets (and zeroing out partial pages 202 * if lstart or lend + 1 is not page aligned). 203 * 204 * Truncate takes two passes - the first pass is nonblocking. It will not 205 * block on page locks and it will not block on writeback. The second pass 206 * will wait. This is to prevent as much IO as possible in the affected region. 207 * The first pass will remove most pages, so the search cost of the second pass 208 * is low. 209 * 210 * We pass down the cache-hot hint to the page freeing code. Even if the 211 * mapping is large, it is probably the case that the final pages are the most 212 * recently touched, and freeing happens in ascending file offset order. 213 * 214 * Note that since ->invalidatepage() accepts range to invalidate 215 * truncate_inode_pages_range is able to handle cases where lend + 1 is not 216 * page aligned properly. 217 */ 218 void truncate_inode_pages_range(struct address_space *mapping, 219 loff_t lstart, loff_t lend) 220 { 221 pgoff_t start; /* inclusive */ 222 pgoff_t end; /* exclusive */ 223 unsigned int partial_start; /* inclusive */ 224 unsigned int partial_end; /* exclusive */ 225 struct pagevec pvec; 226 pgoff_t indices[PAGEVEC_SIZE]; 227 pgoff_t index; 228 int i; 229 230 cleancache_invalidate_inode(mapping); 231 if (mapping->nrpages == 0 && mapping->nrshadows == 0) 232 return; 233 234 /* Offsets within partial pages */ 235 partial_start = lstart & (PAGE_CACHE_SIZE - 1); 236 partial_end = (lend + 1) & (PAGE_CACHE_SIZE - 1); 237 238 /* 239 * 'start' and 'end' always covers the range of pages to be fully 240 * truncated. Partial pages are covered with 'partial_start' at the 241 * start of the range and 'partial_end' at the end of the range. 242 * Note that 'end' is exclusive while 'lend' is inclusive. 243 */ 244 start = (lstart + PAGE_CACHE_SIZE - 1) >> PAGE_CACHE_SHIFT; 245 if (lend == -1) 246 /* 247 * lend == -1 indicates end-of-file so we have to set 'end' 248 * to the highest possible pgoff_t and since the type is 249 * unsigned we're using -1. 250 */ 251 end = -1; 252 else 253 end = (lend + 1) >> PAGE_CACHE_SHIFT; 254 255 pagevec_init(&pvec, 0); 256 index = start; 257 while (index < end && pagevec_lookup_entries(&pvec, mapping, index, 258 min(end - index, (pgoff_t)PAGEVEC_SIZE), 259 indices)) { 260 for (i = 0; i < pagevec_count(&pvec); i++) { 261 struct page *page = pvec.pages[i]; 262 263 /* We rely upon deletion not changing page->index */ 264 index = indices[i]; 265 if (index >= end) 266 break; 267 268 if (radix_tree_exceptional_entry(page)) { 269 clear_exceptional_entry(mapping, index, page); 270 continue; 271 } 272 273 if (!trylock_page(page)) 274 continue; 275 WARN_ON(page->index != index); 276 if (PageWriteback(page)) { 277 unlock_page(page); 278 continue; 279 } 280 truncate_inode_page(mapping, page); 281 unlock_page(page); 282 } 283 pagevec_remove_exceptionals(&pvec); 284 pagevec_release(&pvec); 285 cond_resched(); 286 index++; 287 } 288 289 if (partial_start) { 290 struct page *page = find_lock_page(mapping, start - 1); 291 if (page) { 292 unsigned int top = PAGE_CACHE_SIZE; 293 if (start > end) { 294 /* Truncation within a single page */ 295 top = partial_end; 296 partial_end = 0; 297 } 298 wait_on_page_writeback(page); 299 zero_user_segment(page, partial_start, top); 300 cleancache_invalidate_page(mapping, page); 301 if (page_has_private(page)) 302 do_invalidatepage(page, partial_start, 303 top - partial_start); 304 unlock_page(page); 305 page_cache_release(page); 306 } 307 } 308 if (partial_end) { 309 struct page *page = find_lock_page(mapping, end); 310 if (page) { 311 wait_on_page_writeback(page); 312 zero_user_segment(page, 0, partial_end); 313 cleancache_invalidate_page(mapping, page); 314 if (page_has_private(page)) 315 do_invalidatepage(page, 0, 316 partial_end); 317 unlock_page(page); 318 page_cache_release(page); 319 } 320 } 321 /* 322 * If the truncation happened within a single page no pages 323 * will be released, just zeroed, so we can bail out now. 324 */ 325 if (start >= end) 326 return; 327 328 index = start; 329 for ( ; ; ) { 330 cond_resched(); 331 if (!pagevec_lookup_entries(&pvec, mapping, index, 332 min(end - index, (pgoff_t)PAGEVEC_SIZE), indices)) { 333 /* If all gone from start onwards, we're done */ 334 if (index == start) 335 break; 336 /* Otherwise restart to make sure all gone */ 337 index = start; 338 continue; 339 } 340 if (index == start && indices[0] >= end) { 341 /* All gone out of hole to be punched, we're done */ 342 pagevec_remove_exceptionals(&pvec); 343 pagevec_release(&pvec); 344 break; 345 } 346 for (i = 0; i < pagevec_count(&pvec); i++) { 347 struct page *page = pvec.pages[i]; 348 349 /* We rely upon deletion not changing page->index */ 350 index = indices[i]; 351 if (index >= end) { 352 /* Restart punch to make sure all gone */ 353 index = start - 1; 354 break; 355 } 356 357 if (radix_tree_exceptional_entry(page)) { 358 clear_exceptional_entry(mapping, index, page); 359 continue; 360 } 361 362 lock_page(page); 363 WARN_ON(page->index != index); 364 wait_on_page_writeback(page); 365 truncate_inode_page(mapping, page); 366 unlock_page(page); 367 } 368 pagevec_remove_exceptionals(&pvec); 369 pagevec_release(&pvec); 370 index++; 371 } 372 cleancache_invalidate_inode(mapping); 373 } 374 EXPORT_SYMBOL(truncate_inode_pages_range); 375 376 /** 377 * truncate_inode_pages - truncate *all* the pages from an offset 378 * @mapping: mapping to truncate 379 * @lstart: offset from which to truncate 380 * 381 * Called under (and serialised by) inode->i_mutex. 382 * 383 * Note: When this function returns, there can be a page in the process of 384 * deletion (inside __delete_from_page_cache()) in the specified range. Thus 385 * mapping->nrpages can be non-zero when this function returns even after 386 * truncation of the whole mapping. 387 */ 388 void truncate_inode_pages(struct address_space *mapping, loff_t lstart) 389 { 390 truncate_inode_pages_range(mapping, lstart, (loff_t)-1); 391 } 392 EXPORT_SYMBOL(truncate_inode_pages); 393 394 /** 395 * truncate_inode_pages_final - truncate *all* pages before inode dies 396 * @mapping: mapping to truncate 397 * 398 * Called under (and serialized by) inode->i_mutex. 399 * 400 * Filesystems have to use this in the .evict_inode path to inform the 401 * VM that this is the final truncate and the inode is going away. 402 */ 403 void truncate_inode_pages_final(struct address_space *mapping) 404 { 405 unsigned long nrshadows; 406 unsigned long nrpages; 407 408 /* 409 * Page reclaim can not participate in regular inode lifetime 410 * management (can't call iput()) and thus can race with the 411 * inode teardown. Tell it when the address space is exiting, 412 * so that it does not install eviction information after the 413 * final truncate has begun. 414 */ 415 mapping_set_exiting(mapping); 416 417 /* 418 * When reclaim installs eviction entries, it increases 419 * nrshadows first, then decreases nrpages. Make sure we see 420 * this in the right order or we might miss an entry. 421 */ 422 nrpages = mapping->nrpages; 423 smp_rmb(); 424 nrshadows = mapping->nrshadows; 425 426 if (nrpages || nrshadows) { 427 /* 428 * As truncation uses a lockless tree lookup, cycle 429 * the tree lock to make sure any ongoing tree 430 * modification that does not see AS_EXITING is 431 * completed before starting the final truncate. 432 */ 433 spin_lock_irq(&mapping->tree_lock); 434 spin_unlock_irq(&mapping->tree_lock); 435 436 truncate_inode_pages(mapping, 0); 437 } 438 } 439 EXPORT_SYMBOL(truncate_inode_pages_final); 440 441 /** 442 * invalidate_mapping_pages - Invalidate all the unlocked pages of one inode 443 * @mapping: the address_space which holds the pages to invalidate 444 * @start: the offset 'from' which to invalidate 445 * @end: the offset 'to' which to invalidate (inclusive) 446 * 447 * This function only removes the unlocked pages, if you want to 448 * remove all the pages of one inode, you must call truncate_inode_pages. 449 * 450 * invalidate_mapping_pages() will not block on IO activity. It will not 451 * invalidate pages which are dirty, locked, under writeback or mapped into 452 * pagetables. 453 */ 454 unsigned long invalidate_mapping_pages(struct address_space *mapping, 455 pgoff_t start, pgoff_t end) 456 { 457 pgoff_t indices[PAGEVEC_SIZE]; 458 struct pagevec pvec; 459 pgoff_t index = start; 460 unsigned long ret; 461 unsigned long count = 0; 462 int i; 463 464 pagevec_init(&pvec, 0); 465 while (index <= end && pagevec_lookup_entries(&pvec, mapping, index, 466 min(end - index, (pgoff_t)PAGEVEC_SIZE - 1) + 1, 467 indices)) { 468 for (i = 0; i < pagevec_count(&pvec); i++) { 469 struct page *page = pvec.pages[i]; 470 471 /* We rely upon deletion not changing page->index */ 472 index = indices[i]; 473 if (index > end) 474 break; 475 476 if (radix_tree_exceptional_entry(page)) { 477 clear_exceptional_entry(mapping, index, page); 478 continue; 479 } 480 481 if (!trylock_page(page)) 482 continue; 483 WARN_ON(page->index != index); 484 ret = invalidate_inode_page(page); 485 unlock_page(page); 486 /* 487 * Invalidation is a hint that the page is no longer 488 * of interest and try to speed up its reclaim. 489 */ 490 if (!ret) 491 deactivate_file_page(page); 492 count += ret; 493 } 494 pagevec_remove_exceptionals(&pvec); 495 pagevec_release(&pvec); 496 cond_resched(); 497 index++; 498 } 499 return count; 500 } 501 EXPORT_SYMBOL(invalidate_mapping_pages); 502 503 /* 504 * This is like invalidate_complete_page(), except it ignores the page's 505 * refcount. We do this because invalidate_inode_pages2() needs stronger 506 * invalidation guarantees, and cannot afford to leave pages behind because 507 * shrink_page_list() has a temp ref on them, or because they're transiently 508 * sitting in the lru_cache_add() pagevecs. 509 */ 510 static int 511 invalidate_complete_page2(struct address_space *mapping, struct page *page) 512 { 513 struct mem_cgroup *memcg; 514 unsigned long flags; 515 516 if (page->mapping != mapping) 517 return 0; 518 519 if (page_has_private(page) && !try_to_release_page(page, GFP_KERNEL)) 520 return 0; 521 522 memcg = mem_cgroup_begin_page_stat(page); 523 spin_lock_irqsave(&mapping->tree_lock, flags); 524 if (PageDirty(page)) 525 goto failed; 526 527 BUG_ON(page_has_private(page)); 528 __delete_from_page_cache(page, NULL, memcg); 529 spin_unlock_irqrestore(&mapping->tree_lock, flags); 530 mem_cgroup_end_page_stat(memcg); 531 532 if (mapping->a_ops->freepage) 533 mapping->a_ops->freepage(page); 534 535 page_cache_release(page); /* pagecache ref */ 536 return 1; 537 failed: 538 spin_unlock_irqrestore(&mapping->tree_lock, flags); 539 mem_cgroup_end_page_stat(memcg); 540 return 0; 541 } 542 543 static int do_launder_page(struct address_space *mapping, struct page *page) 544 { 545 if (!PageDirty(page)) 546 return 0; 547 if (page->mapping != mapping || mapping->a_ops->launder_page == NULL) 548 return 0; 549 return mapping->a_ops->launder_page(page); 550 } 551 552 /** 553 * invalidate_inode_pages2_range - remove range of pages from an address_space 554 * @mapping: the address_space 555 * @start: the page offset 'from' which to invalidate 556 * @end: the page offset 'to' which to invalidate (inclusive) 557 * 558 * Any pages which are found to be mapped into pagetables are unmapped prior to 559 * invalidation. 560 * 561 * Returns -EBUSY if any pages could not be invalidated. 562 */ 563 int invalidate_inode_pages2_range(struct address_space *mapping, 564 pgoff_t start, pgoff_t end) 565 { 566 pgoff_t indices[PAGEVEC_SIZE]; 567 struct pagevec pvec; 568 pgoff_t index; 569 int i; 570 int ret = 0; 571 int ret2 = 0; 572 int did_range_unmap = 0; 573 574 cleancache_invalidate_inode(mapping); 575 pagevec_init(&pvec, 0); 576 index = start; 577 while (index <= end && pagevec_lookup_entries(&pvec, mapping, index, 578 min(end - index, (pgoff_t)PAGEVEC_SIZE - 1) + 1, 579 indices)) { 580 for (i = 0; i < pagevec_count(&pvec); i++) { 581 struct page *page = pvec.pages[i]; 582 583 /* We rely upon deletion not changing page->index */ 584 index = indices[i]; 585 if (index > end) 586 break; 587 588 if (radix_tree_exceptional_entry(page)) { 589 clear_exceptional_entry(mapping, index, page); 590 continue; 591 } 592 593 lock_page(page); 594 WARN_ON(page->index != index); 595 if (page->mapping != mapping) { 596 unlock_page(page); 597 continue; 598 } 599 wait_on_page_writeback(page); 600 if (page_mapped(page)) { 601 if (!did_range_unmap) { 602 /* 603 * Zap the rest of the file in one hit. 604 */ 605 unmap_mapping_range(mapping, 606 (loff_t)index << PAGE_CACHE_SHIFT, 607 (loff_t)(1 + end - index) 608 << PAGE_CACHE_SHIFT, 609 0); 610 did_range_unmap = 1; 611 } else { 612 /* 613 * Just zap this page 614 */ 615 unmap_mapping_range(mapping, 616 (loff_t)index << PAGE_CACHE_SHIFT, 617 PAGE_CACHE_SIZE, 0); 618 } 619 } 620 BUG_ON(page_mapped(page)); 621 ret2 = do_launder_page(mapping, page); 622 if (ret2 == 0) { 623 if (!invalidate_complete_page2(mapping, page)) 624 ret2 = -EBUSY; 625 } 626 if (ret2 < 0) 627 ret = ret2; 628 unlock_page(page); 629 } 630 pagevec_remove_exceptionals(&pvec); 631 pagevec_release(&pvec); 632 cond_resched(); 633 index++; 634 } 635 cleancache_invalidate_inode(mapping); 636 return ret; 637 } 638 EXPORT_SYMBOL_GPL(invalidate_inode_pages2_range); 639 640 /** 641 * invalidate_inode_pages2 - remove all pages from an address_space 642 * @mapping: the address_space 643 * 644 * Any pages which are found to be mapped into pagetables are unmapped prior to 645 * invalidation. 646 * 647 * Returns -EBUSY if any pages could not be invalidated. 648 */ 649 int invalidate_inode_pages2(struct address_space *mapping) 650 { 651 return invalidate_inode_pages2_range(mapping, 0, -1); 652 } 653 EXPORT_SYMBOL_GPL(invalidate_inode_pages2); 654 655 /** 656 * truncate_pagecache - unmap and remove pagecache that has been truncated 657 * @inode: inode 658 * @newsize: new file size 659 * 660 * inode's new i_size must already be written before truncate_pagecache 661 * is called. 662 * 663 * This function should typically be called before the filesystem 664 * releases resources associated with the freed range (eg. deallocates 665 * blocks). This way, pagecache will always stay logically coherent 666 * with on-disk format, and the filesystem would not have to deal with 667 * situations such as writepage being called for a page that has already 668 * had its underlying blocks deallocated. 669 */ 670 void truncate_pagecache(struct inode *inode, loff_t newsize) 671 { 672 struct address_space *mapping = inode->i_mapping; 673 loff_t holebegin = round_up(newsize, PAGE_SIZE); 674 675 /* 676 * unmap_mapping_range is called twice, first simply for 677 * efficiency so that truncate_inode_pages does fewer 678 * single-page unmaps. However after this first call, and 679 * before truncate_inode_pages finishes, it is possible for 680 * private pages to be COWed, which remain after 681 * truncate_inode_pages finishes, hence the second 682 * unmap_mapping_range call must be made for correctness. 683 */ 684 unmap_mapping_range(mapping, holebegin, 0, 1); 685 truncate_inode_pages(mapping, newsize); 686 unmap_mapping_range(mapping, holebegin, 0, 1); 687 } 688 EXPORT_SYMBOL(truncate_pagecache); 689 690 /** 691 * truncate_setsize - update inode and pagecache for a new file size 692 * @inode: inode 693 * @newsize: new file size 694 * 695 * truncate_setsize updates i_size and performs pagecache truncation (if 696 * necessary) to @newsize. It will be typically be called from the filesystem's 697 * setattr function when ATTR_SIZE is passed in. 698 * 699 * Must be called with a lock serializing truncates and writes (generally 700 * i_mutex but e.g. xfs uses a different lock) and before all filesystem 701 * specific block truncation has been performed. 702 */ 703 void truncate_setsize(struct inode *inode, loff_t newsize) 704 { 705 loff_t oldsize = inode->i_size; 706 707 i_size_write(inode, newsize); 708 if (newsize > oldsize) 709 pagecache_isize_extended(inode, oldsize, newsize); 710 truncate_pagecache(inode, newsize); 711 } 712 EXPORT_SYMBOL(truncate_setsize); 713 714 /** 715 * pagecache_isize_extended - update pagecache after extension of i_size 716 * @inode: inode for which i_size was extended 717 * @from: original inode size 718 * @to: new inode size 719 * 720 * Handle extension of inode size either caused by extending truncate or by 721 * write starting after current i_size. We mark the page straddling current 722 * i_size RO so that page_mkwrite() is called on the nearest write access to 723 * the page. This way filesystem can be sure that page_mkwrite() is called on 724 * the page before user writes to the page via mmap after the i_size has been 725 * changed. 726 * 727 * The function must be called after i_size is updated so that page fault 728 * coming after we unlock the page will already see the new i_size. 729 * The function must be called while we still hold i_mutex - this not only 730 * makes sure i_size is stable but also that userspace cannot observe new 731 * i_size value before we are prepared to store mmap writes at new inode size. 732 */ 733 void pagecache_isize_extended(struct inode *inode, loff_t from, loff_t to) 734 { 735 int bsize = 1 << inode->i_blkbits; 736 loff_t rounded_from; 737 struct page *page; 738 pgoff_t index; 739 740 WARN_ON(to > inode->i_size); 741 742 if (from >= to || bsize == PAGE_CACHE_SIZE) 743 return; 744 /* Page straddling @from will not have any hole block created? */ 745 rounded_from = round_up(from, bsize); 746 if (to <= rounded_from || !(rounded_from & (PAGE_CACHE_SIZE - 1))) 747 return; 748 749 index = from >> PAGE_CACHE_SHIFT; 750 page = find_lock_page(inode->i_mapping, index); 751 /* Page not cached? Nothing to do */ 752 if (!page) 753 return; 754 /* 755 * See clear_page_dirty_for_io() for details why set_page_dirty() 756 * is needed. 757 */ 758 if (page_mkclean(page)) 759 set_page_dirty(page); 760 unlock_page(page); 761 page_cache_release(page); 762 } 763 EXPORT_SYMBOL(pagecache_isize_extended); 764 765 /** 766 * truncate_pagecache_range - unmap and remove pagecache that is hole-punched 767 * @inode: inode 768 * @lstart: offset of beginning of hole 769 * @lend: offset of last byte of hole 770 * 771 * This function should typically be called before the filesystem 772 * releases resources associated with the freed range (eg. deallocates 773 * blocks). This way, pagecache will always stay logically coherent 774 * with on-disk format, and the filesystem would not have to deal with 775 * situations such as writepage being called for a page that has already 776 * had its underlying blocks deallocated. 777 */ 778 void truncate_pagecache_range(struct inode *inode, loff_t lstart, loff_t lend) 779 { 780 struct address_space *mapping = inode->i_mapping; 781 loff_t unmap_start = round_up(lstart, PAGE_SIZE); 782 loff_t unmap_end = round_down(1 + lend, PAGE_SIZE) - 1; 783 /* 784 * This rounding is currently just for example: unmap_mapping_range 785 * expands its hole outwards, whereas we want it to contract the hole 786 * inwards. However, existing callers of truncate_pagecache_range are 787 * doing their own page rounding first. Note that unmap_mapping_range 788 * allows holelen 0 for all, and we allow lend -1 for end of file. 789 */ 790 791 /* 792 * Unlike in truncate_pagecache, unmap_mapping_range is called only 793 * once (before truncating pagecache), and without "even_cows" flag: 794 * hole-punching should not remove private COWed pages from the hole. 795 */ 796 if ((u64)unmap_end > (u64)unmap_start) 797 unmap_mapping_range(mapping, unmap_start, 798 1 + unmap_end - unmap_start, 0); 799 truncate_inode_pages_range(mapping, lstart, lend); 800 } 801 EXPORT_SYMBOL(truncate_pagecache_range); 802