xref: /openbmc/linux/mm/truncate.c (revision 98ddec80)
1 /*
2  * mm/truncate.c - code for taking down pages from address_spaces
3  *
4  * Copyright (C) 2002, Linus Torvalds
5  *
6  * 10Sep2002	Andrew Morton
7  *		Initial version.
8  */
9 
10 #include <linux/kernel.h>
11 #include <linux/backing-dev.h>
12 #include <linux/dax.h>
13 #include <linux/gfp.h>
14 #include <linux/mm.h>
15 #include <linux/swap.h>
16 #include <linux/export.h>
17 #include <linux/pagemap.h>
18 #include <linux/highmem.h>
19 #include <linux/pagevec.h>
20 #include <linux/task_io_accounting_ops.h>
21 #include <linux/buffer_head.h>	/* grr. try_to_release_page,
22 				   do_invalidatepage */
23 #include <linux/shmem_fs.h>
24 #include <linux/cleancache.h>
25 #include <linux/rmap.h>
26 #include "internal.h"
27 
28 /*
29  * Regular page slots are stabilized by the page lock even without the tree
30  * itself locked.  These unlocked entries need verification under the tree
31  * lock.
32  */
33 static inline void __clear_shadow_entry(struct address_space *mapping,
34 				pgoff_t index, void *entry)
35 {
36 	struct radix_tree_node *node;
37 	void **slot;
38 
39 	if (!__radix_tree_lookup(&mapping->i_pages, index, &node, &slot))
40 		return;
41 	if (*slot != entry)
42 		return;
43 	__radix_tree_replace(&mapping->i_pages, node, slot, NULL,
44 			     workingset_update_node);
45 	mapping->nrexceptional--;
46 }
47 
48 static void clear_shadow_entry(struct address_space *mapping, pgoff_t index,
49 			       void *entry)
50 {
51 	xa_lock_irq(&mapping->i_pages);
52 	__clear_shadow_entry(mapping, index, entry);
53 	xa_unlock_irq(&mapping->i_pages);
54 }
55 
56 /*
57  * Unconditionally remove exceptional entries. Usually called from truncate
58  * path. Note that the pagevec may be altered by this function by removing
59  * exceptional entries similar to what pagevec_remove_exceptionals does.
60  */
61 static void truncate_exceptional_pvec_entries(struct address_space *mapping,
62 				struct pagevec *pvec, pgoff_t *indices,
63 				pgoff_t end)
64 {
65 	int i, j;
66 	bool dax, lock;
67 
68 	/* Handled by shmem itself */
69 	if (shmem_mapping(mapping))
70 		return;
71 
72 	for (j = 0; j < pagevec_count(pvec); j++)
73 		if (radix_tree_exceptional_entry(pvec->pages[j]))
74 			break;
75 
76 	if (j == pagevec_count(pvec))
77 		return;
78 
79 	dax = dax_mapping(mapping);
80 	lock = !dax && indices[j] < end;
81 	if (lock)
82 		xa_lock_irq(&mapping->i_pages);
83 
84 	for (i = j; i < pagevec_count(pvec); i++) {
85 		struct page *page = pvec->pages[i];
86 		pgoff_t index = indices[i];
87 
88 		if (!radix_tree_exceptional_entry(page)) {
89 			pvec->pages[j++] = page;
90 			continue;
91 		}
92 
93 		if (index >= end)
94 			continue;
95 
96 		if (unlikely(dax)) {
97 			dax_delete_mapping_entry(mapping, index);
98 			continue;
99 		}
100 
101 		__clear_shadow_entry(mapping, index, page);
102 	}
103 
104 	if (lock)
105 		xa_unlock_irq(&mapping->i_pages);
106 	pvec->nr = j;
107 }
108 
109 /*
110  * Invalidate exceptional entry if easily possible. This handles exceptional
111  * entries for invalidate_inode_pages().
112  */
113 static int invalidate_exceptional_entry(struct address_space *mapping,
114 					pgoff_t index, void *entry)
115 {
116 	/* Handled by shmem itself, or for DAX we do nothing. */
117 	if (shmem_mapping(mapping) || dax_mapping(mapping))
118 		return 1;
119 	clear_shadow_entry(mapping, index, entry);
120 	return 1;
121 }
122 
123 /*
124  * Invalidate exceptional entry if clean. This handles exceptional entries for
125  * invalidate_inode_pages2() so for DAX it evicts only clean entries.
126  */
127 static int invalidate_exceptional_entry2(struct address_space *mapping,
128 					 pgoff_t index, void *entry)
129 {
130 	/* Handled by shmem itself */
131 	if (shmem_mapping(mapping))
132 		return 1;
133 	if (dax_mapping(mapping))
134 		return dax_invalidate_mapping_entry_sync(mapping, index);
135 	clear_shadow_entry(mapping, index, entry);
136 	return 1;
137 }
138 
139 /**
140  * do_invalidatepage - invalidate part or all of a page
141  * @page: the page which is affected
142  * @offset: start of the range to invalidate
143  * @length: length of the range to invalidate
144  *
145  * do_invalidatepage() is called when all or part of the page has become
146  * invalidated by a truncate operation.
147  *
148  * do_invalidatepage() does not have to release all buffers, but it must
149  * ensure that no dirty buffer is left outside @offset and that no I/O
150  * is underway against any of the blocks which are outside the truncation
151  * point.  Because the caller is about to free (and possibly reuse) those
152  * blocks on-disk.
153  */
154 void do_invalidatepage(struct page *page, unsigned int offset,
155 		       unsigned int length)
156 {
157 	void (*invalidatepage)(struct page *, unsigned int, unsigned int);
158 
159 	invalidatepage = page->mapping->a_ops->invalidatepage;
160 #ifdef CONFIG_BLOCK
161 	if (!invalidatepage)
162 		invalidatepage = block_invalidatepage;
163 #endif
164 	if (invalidatepage)
165 		(*invalidatepage)(page, offset, length);
166 }
167 
168 /*
169  * If truncate cannot remove the fs-private metadata from the page, the page
170  * becomes orphaned.  It will be left on the LRU and may even be mapped into
171  * user pagetables if we're racing with filemap_fault().
172  *
173  * We need to bale out if page->mapping is no longer equal to the original
174  * mapping.  This happens a) when the VM reclaimed the page while we waited on
175  * its lock, b) when a concurrent invalidate_mapping_pages got there first and
176  * c) when tmpfs swizzles a page between a tmpfs inode and swapper_space.
177  */
178 static void
179 truncate_cleanup_page(struct address_space *mapping, struct page *page)
180 {
181 	if (page_mapped(page)) {
182 		pgoff_t nr = PageTransHuge(page) ? HPAGE_PMD_NR : 1;
183 		unmap_mapping_pages(mapping, page->index, nr, false);
184 	}
185 
186 	if (page_has_private(page))
187 		do_invalidatepage(page, 0, PAGE_SIZE);
188 
189 	/*
190 	 * Some filesystems seem to re-dirty the page even after
191 	 * the VM has canceled the dirty bit (eg ext3 journaling).
192 	 * Hence dirty accounting check is placed after invalidation.
193 	 */
194 	cancel_dirty_page(page);
195 	ClearPageMappedToDisk(page);
196 }
197 
198 /*
199  * This is for invalidate_mapping_pages().  That function can be called at
200  * any time, and is not supposed to throw away dirty pages.  But pages can
201  * be marked dirty at any time too, so use remove_mapping which safely
202  * discards clean, unused pages.
203  *
204  * Returns non-zero if the page was successfully invalidated.
205  */
206 static int
207 invalidate_complete_page(struct address_space *mapping, struct page *page)
208 {
209 	int ret;
210 
211 	if (page->mapping != mapping)
212 		return 0;
213 
214 	if (page_has_private(page) && !try_to_release_page(page, 0))
215 		return 0;
216 
217 	ret = remove_mapping(mapping, page);
218 
219 	return ret;
220 }
221 
222 int truncate_inode_page(struct address_space *mapping, struct page *page)
223 {
224 	VM_BUG_ON_PAGE(PageTail(page), page);
225 
226 	if (page->mapping != mapping)
227 		return -EIO;
228 
229 	truncate_cleanup_page(mapping, page);
230 	delete_from_page_cache(page);
231 	return 0;
232 }
233 
234 /*
235  * Used to get rid of pages on hardware memory corruption.
236  */
237 int generic_error_remove_page(struct address_space *mapping, struct page *page)
238 {
239 	if (!mapping)
240 		return -EINVAL;
241 	/*
242 	 * Only punch for normal data pages for now.
243 	 * Handling other types like directories would need more auditing.
244 	 */
245 	if (!S_ISREG(mapping->host->i_mode))
246 		return -EIO;
247 	return truncate_inode_page(mapping, page);
248 }
249 EXPORT_SYMBOL(generic_error_remove_page);
250 
251 /*
252  * Safely invalidate one page from its pagecache mapping.
253  * It only drops clean, unused pages. The page must be locked.
254  *
255  * Returns 1 if the page is successfully invalidated, otherwise 0.
256  */
257 int invalidate_inode_page(struct page *page)
258 {
259 	struct address_space *mapping = page_mapping(page);
260 	if (!mapping)
261 		return 0;
262 	if (PageDirty(page) || PageWriteback(page))
263 		return 0;
264 	if (page_mapped(page))
265 		return 0;
266 	return invalidate_complete_page(mapping, page);
267 }
268 
269 /**
270  * truncate_inode_pages_range - truncate range of pages specified by start & end byte offsets
271  * @mapping: mapping to truncate
272  * @lstart: offset from which to truncate
273  * @lend: offset to which to truncate (inclusive)
274  *
275  * Truncate the page cache, removing the pages that are between
276  * specified offsets (and zeroing out partial pages
277  * if lstart or lend + 1 is not page aligned).
278  *
279  * Truncate takes two passes - the first pass is nonblocking.  It will not
280  * block on page locks and it will not block on writeback.  The second pass
281  * will wait.  This is to prevent as much IO as possible in the affected region.
282  * The first pass will remove most pages, so the search cost of the second pass
283  * is low.
284  *
285  * We pass down the cache-hot hint to the page freeing code.  Even if the
286  * mapping is large, it is probably the case that the final pages are the most
287  * recently touched, and freeing happens in ascending file offset order.
288  *
289  * Note that since ->invalidatepage() accepts range to invalidate
290  * truncate_inode_pages_range is able to handle cases where lend + 1 is not
291  * page aligned properly.
292  */
293 void truncate_inode_pages_range(struct address_space *mapping,
294 				loff_t lstart, loff_t lend)
295 {
296 	pgoff_t		start;		/* inclusive */
297 	pgoff_t		end;		/* exclusive */
298 	unsigned int	partial_start;	/* inclusive */
299 	unsigned int	partial_end;	/* exclusive */
300 	struct pagevec	pvec;
301 	pgoff_t		indices[PAGEVEC_SIZE];
302 	pgoff_t		index;
303 	int		i;
304 
305 	if (mapping->nrpages == 0 && mapping->nrexceptional == 0)
306 		goto out;
307 
308 	/* Offsets within partial pages */
309 	partial_start = lstart & (PAGE_SIZE - 1);
310 	partial_end = (lend + 1) & (PAGE_SIZE - 1);
311 
312 	/*
313 	 * 'start' and 'end' always covers the range of pages to be fully
314 	 * truncated. Partial pages are covered with 'partial_start' at the
315 	 * start of the range and 'partial_end' at the end of the range.
316 	 * Note that 'end' is exclusive while 'lend' is inclusive.
317 	 */
318 	start = (lstart + PAGE_SIZE - 1) >> PAGE_SHIFT;
319 	if (lend == -1)
320 		/*
321 		 * lend == -1 indicates end-of-file so we have to set 'end'
322 		 * to the highest possible pgoff_t and since the type is
323 		 * unsigned we're using -1.
324 		 */
325 		end = -1;
326 	else
327 		end = (lend + 1) >> PAGE_SHIFT;
328 
329 	pagevec_init(&pvec);
330 	index = start;
331 	while (index < end && pagevec_lookup_entries(&pvec, mapping, index,
332 			min(end - index, (pgoff_t)PAGEVEC_SIZE),
333 			indices)) {
334 		/*
335 		 * Pagevec array has exceptional entries and we may also fail
336 		 * to lock some pages. So we store pages that can be deleted
337 		 * in a new pagevec.
338 		 */
339 		struct pagevec locked_pvec;
340 
341 		pagevec_init(&locked_pvec);
342 		for (i = 0; i < pagevec_count(&pvec); i++) {
343 			struct page *page = pvec.pages[i];
344 
345 			/* We rely upon deletion not changing page->index */
346 			index = indices[i];
347 			if (index >= end)
348 				break;
349 
350 			if (radix_tree_exceptional_entry(page))
351 				continue;
352 
353 			if (!trylock_page(page))
354 				continue;
355 			WARN_ON(page_to_index(page) != index);
356 			if (PageWriteback(page)) {
357 				unlock_page(page);
358 				continue;
359 			}
360 			if (page->mapping != mapping) {
361 				unlock_page(page);
362 				continue;
363 			}
364 			pagevec_add(&locked_pvec, page);
365 		}
366 		for (i = 0; i < pagevec_count(&locked_pvec); i++)
367 			truncate_cleanup_page(mapping, locked_pvec.pages[i]);
368 		delete_from_page_cache_batch(mapping, &locked_pvec);
369 		for (i = 0; i < pagevec_count(&locked_pvec); i++)
370 			unlock_page(locked_pvec.pages[i]);
371 		truncate_exceptional_pvec_entries(mapping, &pvec, indices, end);
372 		pagevec_release(&pvec);
373 		cond_resched();
374 		index++;
375 	}
376 	if (partial_start) {
377 		struct page *page = find_lock_page(mapping, start - 1);
378 		if (page) {
379 			unsigned int top = PAGE_SIZE;
380 			if (start > end) {
381 				/* Truncation within a single page */
382 				top = partial_end;
383 				partial_end = 0;
384 			}
385 			wait_on_page_writeback(page);
386 			zero_user_segment(page, partial_start, top);
387 			cleancache_invalidate_page(mapping, page);
388 			if (page_has_private(page))
389 				do_invalidatepage(page, partial_start,
390 						  top - partial_start);
391 			unlock_page(page);
392 			put_page(page);
393 		}
394 	}
395 	if (partial_end) {
396 		struct page *page = find_lock_page(mapping, end);
397 		if (page) {
398 			wait_on_page_writeback(page);
399 			zero_user_segment(page, 0, partial_end);
400 			cleancache_invalidate_page(mapping, page);
401 			if (page_has_private(page))
402 				do_invalidatepage(page, 0,
403 						  partial_end);
404 			unlock_page(page);
405 			put_page(page);
406 		}
407 	}
408 	/*
409 	 * If the truncation happened within a single page no pages
410 	 * will be released, just zeroed, so we can bail out now.
411 	 */
412 	if (start >= end)
413 		goto out;
414 
415 	index = start;
416 	for ( ; ; ) {
417 		cond_resched();
418 		if (!pagevec_lookup_entries(&pvec, mapping, index,
419 			min(end - index, (pgoff_t)PAGEVEC_SIZE), indices)) {
420 			/* If all gone from start onwards, we're done */
421 			if (index == start)
422 				break;
423 			/* Otherwise restart to make sure all gone */
424 			index = start;
425 			continue;
426 		}
427 		if (index == start && indices[0] >= end) {
428 			/* All gone out of hole to be punched, we're done */
429 			pagevec_remove_exceptionals(&pvec);
430 			pagevec_release(&pvec);
431 			break;
432 		}
433 
434 		for (i = 0; i < pagevec_count(&pvec); i++) {
435 			struct page *page = pvec.pages[i];
436 
437 			/* We rely upon deletion not changing page->index */
438 			index = indices[i];
439 			if (index >= end) {
440 				/* Restart punch to make sure all gone */
441 				index = start - 1;
442 				break;
443 			}
444 
445 			if (radix_tree_exceptional_entry(page))
446 				continue;
447 
448 			lock_page(page);
449 			WARN_ON(page_to_index(page) != index);
450 			wait_on_page_writeback(page);
451 			truncate_inode_page(mapping, page);
452 			unlock_page(page);
453 		}
454 		truncate_exceptional_pvec_entries(mapping, &pvec, indices, end);
455 		pagevec_release(&pvec);
456 		index++;
457 	}
458 
459 out:
460 	cleancache_invalidate_inode(mapping);
461 }
462 EXPORT_SYMBOL(truncate_inode_pages_range);
463 
464 /**
465  * truncate_inode_pages - truncate *all* the pages from an offset
466  * @mapping: mapping to truncate
467  * @lstart: offset from which to truncate
468  *
469  * Called under (and serialised by) inode->i_mutex.
470  *
471  * Note: When this function returns, there can be a page in the process of
472  * deletion (inside __delete_from_page_cache()) in the specified range.  Thus
473  * mapping->nrpages can be non-zero when this function returns even after
474  * truncation of the whole mapping.
475  */
476 void truncate_inode_pages(struct address_space *mapping, loff_t lstart)
477 {
478 	truncate_inode_pages_range(mapping, lstart, (loff_t)-1);
479 }
480 EXPORT_SYMBOL(truncate_inode_pages);
481 
482 /**
483  * truncate_inode_pages_final - truncate *all* pages before inode dies
484  * @mapping: mapping to truncate
485  *
486  * Called under (and serialized by) inode->i_mutex.
487  *
488  * Filesystems have to use this in the .evict_inode path to inform the
489  * VM that this is the final truncate and the inode is going away.
490  */
491 void truncate_inode_pages_final(struct address_space *mapping)
492 {
493 	unsigned long nrexceptional;
494 	unsigned long nrpages;
495 
496 	/*
497 	 * Page reclaim can not participate in regular inode lifetime
498 	 * management (can't call iput()) and thus can race with the
499 	 * inode teardown.  Tell it when the address space is exiting,
500 	 * so that it does not install eviction information after the
501 	 * final truncate has begun.
502 	 */
503 	mapping_set_exiting(mapping);
504 
505 	/*
506 	 * When reclaim installs eviction entries, it increases
507 	 * nrexceptional first, then decreases nrpages.  Make sure we see
508 	 * this in the right order or we might miss an entry.
509 	 */
510 	nrpages = mapping->nrpages;
511 	smp_rmb();
512 	nrexceptional = mapping->nrexceptional;
513 
514 	if (nrpages || nrexceptional) {
515 		/*
516 		 * As truncation uses a lockless tree lookup, cycle
517 		 * the tree lock to make sure any ongoing tree
518 		 * modification that does not see AS_EXITING is
519 		 * completed before starting the final truncate.
520 		 */
521 		xa_lock_irq(&mapping->i_pages);
522 		xa_unlock_irq(&mapping->i_pages);
523 
524 		truncate_inode_pages(mapping, 0);
525 	}
526 }
527 EXPORT_SYMBOL(truncate_inode_pages_final);
528 
529 /**
530  * invalidate_mapping_pages - Invalidate all the unlocked pages of one inode
531  * @mapping: the address_space which holds the pages to invalidate
532  * @start: the offset 'from' which to invalidate
533  * @end: the offset 'to' which to invalidate (inclusive)
534  *
535  * This function only removes the unlocked pages, if you want to
536  * remove all the pages of one inode, you must call truncate_inode_pages.
537  *
538  * invalidate_mapping_pages() will not block on IO activity. It will not
539  * invalidate pages which are dirty, locked, under writeback or mapped into
540  * pagetables.
541  */
542 unsigned long invalidate_mapping_pages(struct address_space *mapping,
543 		pgoff_t start, pgoff_t end)
544 {
545 	pgoff_t indices[PAGEVEC_SIZE];
546 	struct pagevec pvec;
547 	pgoff_t index = start;
548 	unsigned long ret;
549 	unsigned long count = 0;
550 	int i;
551 
552 	pagevec_init(&pvec);
553 	while (index <= end && pagevec_lookup_entries(&pvec, mapping, index,
554 			min(end - index, (pgoff_t)PAGEVEC_SIZE - 1) + 1,
555 			indices)) {
556 		for (i = 0; i < pagevec_count(&pvec); i++) {
557 			struct page *page = pvec.pages[i];
558 
559 			/* We rely upon deletion not changing page->index */
560 			index = indices[i];
561 			if (index > end)
562 				break;
563 
564 			if (radix_tree_exceptional_entry(page)) {
565 				invalidate_exceptional_entry(mapping, index,
566 							     page);
567 				continue;
568 			}
569 
570 			if (!trylock_page(page))
571 				continue;
572 
573 			WARN_ON(page_to_index(page) != index);
574 
575 			/* Middle of THP: skip */
576 			if (PageTransTail(page)) {
577 				unlock_page(page);
578 				continue;
579 			} else if (PageTransHuge(page)) {
580 				index += HPAGE_PMD_NR - 1;
581 				i += HPAGE_PMD_NR - 1;
582 				/*
583 				 * 'end' is in the middle of THP. Don't
584 				 * invalidate the page as the part outside of
585 				 * 'end' could be still useful.
586 				 */
587 				if (index > end) {
588 					unlock_page(page);
589 					continue;
590 				}
591 			}
592 
593 			ret = invalidate_inode_page(page);
594 			unlock_page(page);
595 			/*
596 			 * Invalidation is a hint that the page is no longer
597 			 * of interest and try to speed up its reclaim.
598 			 */
599 			if (!ret)
600 				deactivate_file_page(page);
601 			count += ret;
602 		}
603 		pagevec_remove_exceptionals(&pvec);
604 		pagevec_release(&pvec);
605 		cond_resched();
606 		index++;
607 	}
608 	return count;
609 }
610 EXPORT_SYMBOL(invalidate_mapping_pages);
611 
612 /*
613  * This is like invalidate_complete_page(), except it ignores the page's
614  * refcount.  We do this because invalidate_inode_pages2() needs stronger
615  * invalidation guarantees, and cannot afford to leave pages behind because
616  * shrink_page_list() has a temp ref on them, or because they're transiently
617  * sitting in the lru_cache_add() pagevecs.
618  */
619 static int
620 invalidate_complete_page2(struct address_space *mapping, struct page *page)
621 {
622 	unsigned long flags;
623 
624 	if (page->mapping != mapping)
625 		return 0;
626 
627 	if (page_has_private(page) && !try_to_release_page(page, GFP_KERNEL))
628 		return 0;
629 
630 	xa_lock_irqsave(&mapping->i_pages, flags);
631 	if (PageDirty(page))
632 		goto failed;
633 
634 	BUG_ON(page_has_private(page));
635 	__delete_from_page_cache(page, NULL);
636 	xa_unlock_irqrestore(&mapping->i_pages, flags);
637 
638 	if (mapping->a_ops->freepage)
639 		mapping->a_ops->freepage(page);
640 
641 	put_page(page);	/* pagecache ref */
642 	return 1;
643 failed:
644 	xa_unlock_irqrestore(&mapping->i_pages, flags);
645 	return 0;
646 }
647 
648 static int do_launder_page(struct address_space *mapping, struct page *page)
649 {
650 	if (!PageDirty(page))
651 		return 0;
652 	if (page->mapping != mapping || mapping->a_ops->launder_page == NULL)
653 		return 0;
654 	return mapping->a_ops->launder_page(page);
655 }
656 
657 /**
658  * invalidate_inode_pages2_range - remove range of pages from an address_space
659  * @mapping: the address_space
660  * @start: the page offset 'from' which to invalidate
661  * @end: the page offset 'to' which to invalidate (inclusive)
662  *
663  * Any pages which are found to be mapped into pagetables are unmapped prior to
664  * invalidation.
665  *
666  * Returns -EBUSY if any pages could not be invalidated.
667  */
668 int invalidate_inode_pages2_range(struct address_space *mapping,
669 				  pgoff_t start, pgoff_t end)
670 {
671 	pgoff_t indices[PAGEVEC_SIZE];
672 	struct pagevec pvec;
673 	pgoff_t index;
674 	int i;
675 	int ret = 0;
676 	int ret2 = 0;
677 	int did_range_unmap = 0;
678 
679 	if (mapping->nrpages == 0 && mapping->nrexceptional == 0)
680 		goto out;
681 
682 	pagevec_init(&pvec);
683 	index = start;
684 	while (index <= end && pagevec_lookup_entries(&pvec, mapping, index,
685 			min(end - index, (pgoff_t)PAGEVEC_SIZE - 1) + 1,
686 			indices)) {
687 		for (i = 0; i < pagevec_count(&pvec); i++) {
688 			struct page *page = pvec.pages[i];
689 
690 			/* We rely upon deletion not changing page->index */
691 			index = indices[i];
692 			if (index > end)
693 				break;
694 
695 			if (radix_tree_exceptional_entry(page)) {
696 				if (!invalidate_exceptional_entry2(mapping,
697 								   index, page))
698 					ret = -EBUSY;
699 				continue;
700 			}
701 
702 			lock_page(page);
703 			WARN_ON(page_to_index(page) != index);
704 			if (page->mapping != mapping) {
705 				unlock_page(page);
706 				continue;
707 			}
708 			wait_on_page_writeback(page);
709 			if (page_mapped(page)) {
710 				if (!did_range_unmap) {
711 					/*
712 					 * Zap the rest of the file in one hit.
713 					 */
714 					unmap_mapping_pages(mapping, index,
715 						(1 + end - index), false);
716 					did_range_unmap = 1;
717 				} else {
718 					/*
719 					 * Just zap this page
720 					 */
721 					unmap_mapping_pages(mapping, index,
722 								1, false);
723 				}
724 			}
725 			BUG_ON(page_mapped(page));
726 			ret2 = do_launder_page(mapping, page);
727 			if (ret2 == 0) {
728 				if (!invalidate_complete_page2(mapping, page))
729 					ret2 = -EBUSY;
730 			}
731 			if (ret2 < 0)
732 				ret = ret2;
733 			unlock_page(page);
734 		}
735 		pagevec_remove_exceptionals(&pvec);
736 		pagevec_release(&pvec);
737 		cond_resched();
738 		index++;
739 	}
740 	/*
741 	 * For DAX we invalidate page tables after invalidating radix tree.  We
742 	 * could invalidate page tables while invalidating each entry however
743 	 * that would be expensive. And doing range unmapping before doesn't
744 	 * work as we have no cheap way to find whether radix tree entry didn't
745 	 * get remapped later.
746 	 */
747 	if (dax_mapping(mapping)) {
748 		unmap_mapping_pages(mapping, start, end - start + 1, false);
749 	}
750 out:
751 	cleancache_invalidate_inode(mapping);
752 	return ret;
753 }
754 EXPORT_SYMBOL_GPL(invalidate_inode_pages2_range);
755 
756 /**
757  * invalidate_inode_pages2 - remove all pages from an address_space
758  * @mapping: the address_space
759  *
760  * Any pages which are found to be mapped into pagetables are unmapped prior to
761  * invalidation.
762  *
763  * Returns -EBUSY if any pages could not be invalidated.
764  */
765 int invalidate_inode_pages2(struct address_space *mapping)
766 {
767 	return invalidate_inode_pages2_range(mapping, 0, -1);
768 }
769 EXPORT_SYMBOL_GPL(invalidate_inode_pages2);
770 
771 /**
772  * truncate_pagecache - unmap and remove pagecache that has been truncated
773  * @inode: inode
774  * @newsize: new file size
775  *
776  * inode's new i_size must already be written before truncate_pagecache
777  * is called.
778  *
779  * This function should typically be called before the filesystem
780  * releases resources associated with the freed range (eg. deallocates
781  * blocks). This way, pagecache will always stay logically coherent
782  * with on-disk format, and the filesystem would not have to deal with
783  * situations such as writepage being called for a page that has already
784  * had its underlying blocks deallocated.
785  */
786 void truncate_pagecache(struct inode *inode, loff_t newsize)
787 {
788 	struct address_space *mapping = inode->i_mapping;
789 	loff_t holebegin = round_up(newsize, PAGE_SIZE);
790 
791 	/*
792 	 * unmap_mapping_range is called twice, first simply for
793 	 * efficiency so that truncate_inode_pages does fewer
794 	 * single-page unmaps.  However after this first call, and
795 	 * before truncate_inode_pages finishes, it is possible for
796 	 * private pages to be COWed, which remain after
797 	 * truncate_inode_pages finishes, hence the second
798 	 * unmap_mapping_range call must be made for correctness.
799 	 */
800 	unmap_mapping_range(mapping, holebegin, 0, 1);
801 	truncate_inode_pages(mapping, newsize);
802 	unmap_mapping_range(mapping, holebegin, 0, 1);
803 }
804 EXPORT_SYMBOL(truncate_pagecache);
805 
806 /**
807  * truncate_setsize - update inode and pagecache for a new file size
808  * @inode: inode
809  * @newsize: new file size
810  *
811  * truncate_setsize updates i_size and performs pagecache truncation (if
812  * necessary) to @newsize. It will be typically be called from the filesystem's
813  * setattr function when ATTR_SIZE is passed in.
814  *
815  * Must be called with a lock serializing truncates and writes (generally
816  * i_mutex but e.g. xfs uses a different lock) and before all filesystem
817  * specific block truncation has been performed.
818  */
819 void truncate_setsize(struct inode *inode, loff_t newsize)
820 {
821 	loff_t oldsize = inode->i_size;
822 
823 	i_size_write(inode, newsize);
824 	if (newsize > oldsize)
825 		pagecache_isize_extended(inode, oldsize, newsize);
826 	truncate_pagecache(inode, newsize);
827 }
828 EXPORT_SYMBOL(truncate_setsize);
829 
830 /**
831  * pagecache_isize_extended - update pagecache after extension of i_size
832  * @inode:	inode for which i_size was extended
833  * @from:	original inode size
834  * @to:		new inode size
835  *
836  * Handle extension of inode size either caused by extending truncate or by
837  * write starting after current i_size. We mark the page straddling current
838  * i_size RO so that page_mkwrite() is called on the nearest write access to
839  * the page.  This way filesystem can be sure that page_mkwrite() is called on
840  * the page before user writes to the page via mmap after the i_size has been
841  * changed.
842  *
843  * The function must be called after i_size is updated so that page fault
844  * coming after we unlock the page will already see the new i_size.
845  * The function must be called while we still hold i_mutex - this not only
846  * makes sure i_size is stable but also that userspace cannot observe new
847  * i_size value before we are prepared to store mmap writes at new inode size.
848  */
849 void pagecache_isize_extended(struct inode *inode, loff_t from, loff_t to)
850 {
851 	int bsize = i_blocksize(inode);
852 	loff_t rounded_from;
853 	struct page *page;
854 	pgoff_t index;
855 
856 	WARN_ON(to > inode->i_size);
857 
858 	if (from >= to || bsize == PAGE_SIZE)
859 		return;
860 	/* Page straddling @from will not have any hole block created? */
861 	rounded_from = round_up(from, bsize);
862 	if (to <= rounded_from || !(rounded_from & (PAGE_SIZE - 1)))
863 		return;
864 
865 	index = from >> PAGE_SHIFT;
866 	page = find_lock_page(inode->i_mapping, index);
867 	/* Page not cached? Nothing to do */
868 	if (!page)
869 		return;
870 	/*
871 	 * See clear_page_dirty_for_io() for details why set_page_dirty()
872 	 * is needed.
873 	 */
874 	if (page_mkclean(page))
875 		set_page_dirty(page);
876 	unlock_page(page);
877 	put_page(page);
878 }
879 EXPORT_SYMBOL(pagecache_isize_extended);
880 
881 /**
882  * truncate_pagecache_range - unmap and remove pagecache that is hole-punched
883  * @inode: inode
884  * @lstart: offset of beginning of hole
885  * @lend: offset of last byte of hole
886  *
887  * This function should typically be called before the filesystem
888  * releases resources associated with the freed range (eg. deallocates
889  * blocks). This way, pagecache will always stay logically coherent
890  * with on-disk format, and the filesystem would not have to deal with
891  * situations such as writepage being called for a page that has already
892  * had its underlying blocks deallocated.
893  */
894 void truncate_pagecache_range(struct inode *inode, loff_t lstart, loff_t lend)
895 {
896 	struct address_space *mapping = inode->i_mapping;
897 	loff_t unmap_start = round_up(lstart, PAGE_SIZE);
898 	loff_t unmap_end = round_down(1 + lend, PAGE_SIZE) - 1;
899 	/*
900 	 * This rounding is currently just for example: unmap_mapping_range
901 	 * expands its hole outwards, whereas we want it to contract the hole
902 	 * inwards.  However, existing callers of truncate_pagecache_range are
903 	 * doing their own page rounding first.  Note that unmap_mapping_range
904 	 * allows holelen 0 for all, and we allow lend -1 for end of file.
905 	 */
906 
907 	/*
908 	 * Unlike in truncate_pagecache, unmap_mapping_range is called only
909 	 * once (before truncating pagecache), and without "even_cows" flag:
910 	 * hole-punching should not remove private COWed pages from the hole.
911 	 */
912 	if ((u64)unmap_end > (u64)unmap_start)
913 		unmap_mapping_range(mapping, unmap_start,
914 				    1 + unmap_end - unmap_start, 0);
915 	truncate_inode_pages_range(mapping, lstart, lend);
916 }
917 EXPORT_SYMBOL(truncate_pagecache_range);
918