1 /* 2 * mm/truncate.c - code for taking down pages from address_spaces 3 * 4 * Copyright (C) 2002, Linus Torvalds 5 * 6 * 10Sep2002 Andrew Morton 7 * Initial version. 8 */ 9 10 #include <linux/kernel.h> 11 #include <linux/backing-dev.h> 12 #include <linux/dax.h> 13 #include <linux/gfp.h> 14 #include <linux/mm.h> 15 #include <linux/swap.h> 16 #include <linux/export.h> 17 #include <linux/pagemap.h> 18 #include <linux/highmem.h> 19 #include <linux/pagevec.h> 20 #include <linux/task_io_accounting_ops.h> 21 #include <linux/buffer_head.h> /* grr. try_to_release_page, 22 do_invalidatepage */ 23 #include <linux/shmem_fs.h> 24 #include <linux/cleancache.h> 25 #include <linux/rmap.h> 26 #include "internal.h" 27 28 static void clear_shadow_entry(struct address_space *mapping, pgoff_t index, 29 void *entry) 30 { 31 struct radix_tree_node *node; 32 void **slot; 33 34 spin_lock_irq(&mapping->tree_lock); 35 /* 36 * Regular page slots are stabilized by the page lock even 37 * without the tree itself locked. These unlocked entries 38 * need verification under the tree lock. 39 */ 40 if (!__radix_tree_lookup(&mapping->page_tree, index, &node, &slot)) 41 goto unlock; 42 if (*slot != entry) 43 goto unlock; 44 __radix_tree_replace(&mapping->page_tree, node, slot, NULL, 45 workingset_update_node, mapping); 46 mapping->nrexceptional--; 47 unlock: 48 spin_unlock_irq(&mapping->tree_lock); 49 } 50 51 /* 52 * Unconditionally remove exceptional entry. Usually called from truncate path. 53 */ 54 static void truncate_exceptional_entry(struct address_space *mapping, 55 pgoff_t index, void *entry) 56 { 57 /* Handled by shmem itself */ 58 if (shmem_mapping(mapping)) 59 return; 60 61 if (dax_mapping(mapping)) { 62 dax_delete_mapping_entry(mapping, index); 63 return; 64 } 65 clear_shadow_entry(mapping, index, entry); 66 } 67 68 /* 69 * Invalidate exceptional entry if easily possible. This handles exceptional 70 * entries for invalidate_inode_pages(). 71 */ 72 static int invalidate_exceptional_entry(struct address_space *mapping, 73 pgoff_t index, void *entry) 74 { 75 /* Handled by shmem itself, or for DAX we do nothing. */ 76 if (shmem_mapping(mapping) || dax_mapping(mapping)) 77 return 1; 78 clear_shadow_entry(mapping, index, entry); 79 return 1; 80 } 81 82 /* 83 * Invalidate exceptional entry if clean. This handles exceptional entries for 84 * invalidate_inode_pages2() so for DAX it evicts only clean entries. 85 */ 86 static int invalidate_exceptional_entry2(struct address_space *mapping, 87 pgoff_t index, void *entry) 88 { 89 /* Handled by shmem itself */ 90 if (shmem_mapping(mapping)) 91 return 1; 92 if (dax_mapping(mapping)) 93 return dax_invalidate_mapping_entry_sync(mapping, index); 94 clear_shadow_entry(mapping, index, entry); 95 return 1; 96 } 97 98 /** 99 * do_invalidatepage - invalidate part or all of a page 100 * @page: the page which is affected 101 * @offset: start of the range to invalidate 102 * @length: length of the range to invalidate 103 * 104 * do_invalidatepage() is called when all or part of the page has become 105 * invalidated by a truncate operation. 106 * 107 * do_invalidatepage() does not have to release all buffers, but it must 108 * ensure that no dirty buffer is left outside @offset and that no I/O 109 * is underway against any of the blocks which are outside the truncation 110 * point. Because the caller is about to free (and possibly reuse) those 111 * blocks on-disk. 112 */ 113 void do_invalidatepage(struct page *page, unsigned int offset, 114 unsigned int length) 115 { 116 void (*invalidatepage)(struct page *, unsigned int, unsigned int); 117 118 invalidatepage = page->mapping->a_ops->invalidatepage; 119 #ifdef CONFIG_BLOCK 120 if (!invalidatepage) 121 invalidatepage = block_invalidatepage; 122 #endif 123 if (invalidatepage) 124 (*invalidatepage)(page, offset, length); 125 } 126 127 /* 128 * If truncate cannot remove the fs-private metadata from the page, the page 129 * becomes orphaned. It will be left on the LRU and may even be mapped into 130 * user pagetables if we're racing with filemap_fault(). 131 * 132 * We need to bale out if page->mapping is no longer equal to the original 133 * mapping. This happens a) when the VM reclaimed the page while we waited on 134 * its lock, b) when a concurrent invalidate_mapping_pages got there first and 135 * c) when tmpfs swizzles a page between a tmpfs inode and swapper_space. 136 */ 137 static int 138 truncate_complete_page(struct address_space *mapping, struct page *page) 139 { 140 if (page->mapping != mapping) 141 return -EIO; 142 143 if (page_has_private(page)) 144 do_invalidatepage(page, 0, PAGE_SIZE); 145 146 /* 147 * Some filesystems seem to re-dirty the page even after 148 * the VM has canceled the dirty bit (eg ext3 journaling). 149 * Hence dirty accounting check is placed after invalidation. 150 */ 151 cancel_dirty_page(page); 152 ClearPageMappedToDisk(page); 153 delete_from_page_cache(page); 154 return 0; 155 } 156 157 /* 158 * This is for invalidate_mapping_pages(). That function can be called at 159 * any time, and is not supposed to throw away dirty pages. But pages can 160 * be marked dirty at any time too, so use remove_mapping which safely 161 * discards clean, unused pages. 162 * 163 * Returns non-zero if the page was successfully invalidated. 164 */ 165 static int 166 invalidate_complete_page(struct address_space *mapping, struct page *page) 167 { 168 int ret; 169 170 if (page->mapping != mapping) 171 return 0; 172 173 if (page_has_private(page) && !try_to_release_page(page, 0)) 174 return 0; 175 176 ret = remove_mapping(mapping, page); 177 178 return ret; 179 } 180 181 int truncate_inode_page(struct address_space *mapping, struct page *page) 182 { 183 loff_t holelen; 184 VM_BUG_ON_PAGE(PageTail(page), page); 185 186 holelen = PageTransHuge(page) ? HPAGE_PMD_SIZE : PAGE_SIZE; 187 if (page_mapped(page)) { 188 unmap_mapping_range(mapping, 189 (loff_t)page->index << PAGE_SHIFT, 190 holelen, 0); 191 } 192 return truncate_complete_page(mapping, page); 193 } 194 195 /* 196 * Used to get rid of pages on hardware memory corruption. 197 */ 198 int generic_error_remove_page(struct address_space *mapping, struct page *page) 199 { 200 if (!mapping) 201 return -EINVAL; 202 /* 203 * Only punch for normal data pages for now. 204 * Handling other types like directories would need more auditing. 205 */ 206 if (!S_ISREG(mapping->host->i_mode)) 207 return -EIO; 208 return truncate_inode_page(mapping, page); 209 } 210 EXPORT_SYMBOL(generic_error_remove_page); 211 212 /* 213 * Safely invalidate one page from its pagecache mapping. 214 * It only drops clean, unused pages. The page must be locked. 215 * 216 * Returns 1 if the page is successfully invalidated, otherwise 0. 217 */ 218 int invalidate_inode_page(struct page *page) 219 { 220 struct address_space *mapping = page_mapping(page); 221 if (!mapping) 222 return 0; 223 if (PageDirty(page) || PageWriteback(page)) 224 return 0; 225 if (page_mapped(page)) 226 return 0; 227 return invalidate_complete_page(mapping, page); 228 } 229 230 /** 231 * truncate_inode_pages_range - truncate range of pages specified by start & end byte offsets 232 * @mapping: mapping to truncate 233 * @lstart: offset from which to truncate 234 * @lend: offset to which to truncate (inclusive) 235 * 236 * Truncate the page cache, removing the pages that are between 237 * specified offsets (and zeroing out partial pages 238 * if lstart or lend + 1 is not page aligned). 239 * 240 * Truncate takes two passes - the first pass is nonblocking. It will not 241 * block on page locks and it will not block on writeback. The second pass 242 * will wait. This is to prevent as much IO as possible in the affected region. 243 * The first pass will remove most pages, so the search cost of the second pass 244 * is low. 245 * 246 * We pass down the cache-hot hint to the page freeing code. Even if the 247 * mapping is large, it is probably the case that the final pages are the most 248 * recently touched, and freeing happens in ascending file offset order. 249 * 250 * Note that since ->invalidatepage() accepts range to invalidate 251 * truncate_inode_pages_range is able to handle cases where lend + 1 is not 252 * page aligned properly. 253 */ 254 void truncate_inode_pages_range(struct address_space *mapping, 255 loff_t lstart, loff_t lend) 256 { 257 pgoff_t start; /* inclusive */ 258 pgoff_t end; /* exclusive */ 259 unsigned int partial_start; /* inclusive */ 260 unsigned int partial_end; /* exclusive */ 261 struct pagevec pvec; 262 pgoff_t indices[PAGEVEC_SIZE]; 263 pgoff_t index; 264 int i; 265 266 if (mapping->nrpages == 0 && mapping->nrexceptional == 0) 267 goto out; 268 269 /* Offsets within partial pages */ 270 partial_start = lstart & (PAGE_SIZE - 1); 271 partial_end = (lend + 1) & (PAGE_SIZE - 1); 272 273 /* 274 * 'start' and 'end' always covers the range of pages to be fully 275 * truncated. Partial pages are covered with 'partial_start' at the 276 * start of the range and 'partial_end' at the end of the range. 277 * Note that 'end' is exclusive while 'lend' is inclusive. 278 */ 279 start = (lstart + PAGE_SIZE - 1) >> PAGE_SHIFT; 280 if (lend == -1) 281 /* 282 * lend == -1 indicates end-of-file so we have to set 'end' 283 * to the highest possible pgoff_t and since the type is 284 * unsigned we're using -1. 285 */ 286 end = -1; 287 else 288 end = (lend + 1) >> PAGE_SHIFT; 289 290 pagevec_init(&pvec, 0); 291 index = start; 292 while (index < end && pagevec_lookup_entries(&pvec, mapping, index, 293 min(end - index, (pgoff_t)PAGEVEC_SIZE), 294 indices)) { 295 for (i = 0; i < pagevec_count(&pvec); i++) { 296 struct page *page = pvec.pages[i]; 297 298 /* We rely upon deletion not changing page->index */ 299 index = indices[i]; 300 if (index >= end) 301 break; 302 303 if (radix_tree_exceptional_entry(page)) { 304 truncate_exceptional_entry(mapping, index, 305 page); 306 continue; 307 } 308 309 if (!trylock_page(page)) 310 continue; 311 WARN_ON(page_to_index(page) != index); 312 if (PageWriteback(page)) { 313 unlock_page(page); 314 continue; 315 } 316 truncate_inode_page(mapping, page); 317 unlock_page(page); 318 } 319 pagevec_remove_exceptionals(&pvec); 320 pagevec_release(&pvec); 321 cond_resched(); 322 index++; 323 } 324 325 if (partial_start) { 326 struct page *page = find_lock_page(mapping, start - 1); 327 if (page) { 328 unsigned int top = PAGE_SIZE; 329 if (start > end) { 330 /* Truncation within a single page */ 331 top = partial_end; 332 partial_end = 0; 333 } 334 wait_on_page_writeback(page); 335 zero_user_segment(page, partial_start, top); 336 cleancache_invalidate_page(mapping, page); 337 if (page_has_private(page)) 338 do_invalidatepage(page, partial_start, 339 top - partial_start); 340 unlock_page(page); 341 put_page(page); 342 } 343 } 344 if (partial_end) { 345 struct page *page = find_lock_page(mapping, end); 346 if (page) { 347 wait_on_page_writeback(page); 348 zero_user_segment(page, 0, partial_end); 349 cleancache_invalidate_page(mapping, page); 350 if (page_has_private(page)) 351 do_invalidatepage(page, 0, 352 partial_end); 353 unlock_page(page); 354 put_page(page); 355 } 356 } 357 /* 358 * If the truncation happened within a single page no pages 359 * will be released, just zeroed, so we can bail out now. 360 */ 361 if (start >= end) 362 goto out; 363 364 index = start; 365 for ( ; ; ) { 366 cond_resched(); 367 if (!pagevec_lookup_entries(&pvec, mapping, index, 368 min(end - index, (pgoff_t)PAGEVEC_SIZE), indices)) { 369 /* If all gone from start onwards, we're done */ 370 if (index == start) 371 break; 372 /* Otherwise restart to make sure all gone */ 373 index = start; 374 continue; 375 } 376 if (index == start && indices[0] >= end) { 377 /* All gone out of hole to be punched, we're done */ 378 pagevec_remove_exceptionals(&pvec); 379 pagevec_release(&pvec); 380 break; 381 } 382 for (i = 0; i < pagevec_count(&pvec); i++) { 383 struct page *page = pvec.pages[i]; 384 385 /* We rely upon deletion not changing page->index */ 386 index = indices[i]; 387 if (index >= end) { 388 /* Restart punch to make sure all gone */ 389 index = start - 1; 390 break; 391 } 392 393 if (radix_tree_exceptional_entry(page)) { 394 truncate_exceptional_entry(mapping, index, 395 page); 396 continue; 397 } 398 399 lock_page(page); 400 WARN_ON(page_to_index(page) != index); 401 wait_on_page_writeback(page); 402 truncate_inode_page(mapping, page); 403 unlock_page(page); 404 } 405 pagevec_remove_exceptionals(&pvec); 406 pagevec_release(&pvec); 407 index++; 408 } 409 410 out: 411 cleancache_invalidate_inode(mapping); 412 } 413 EXPORT_SYMBOL(truncate_inode_pages_range); 414 415 /** 416 * truncate_inode_pages - truncate *all* the pages from an offset 417 * @mapping: mapping to truncate 418 * @lstart: offset from which to truncate 419 * 420 * Called under (and serialised by) inode->i_mutex. 421 * 422 * Note: When this function returns, there can be a page in the process of 423 * deletion (inside __delete_from_page_cache()) in the specified range. Thus 424 * mapping->nrpages can be non-zero when this function returns even after 425 * truncation of the whole mapping. 426 */ 427 void truncate_inode_pages(struct address_space *mapping, loff_t lstart) 428 { 429 truncate_inode_pages_range(mapping, lstart, (loff_t)-1); 430 } 431 EXPORT_SYMBOL(truncate_inode_pages); 432 433 /** 434 * truncate_inode_pages_final - truncate *all* pages before inode dies 435 * @mapping: mapping to truncate 436 * 437 * Called under (and serialized by) inode->i_mutex. 438 * 439 * Filesystems have to use this in the .evict_inode path to inform the 440 * VM that this is the final truncate and the inode is going away. 441 */ 442 void truncate_inode_pages_final(struct address_space *mapping) 443 { 444 unsigned long nrexceptional; 445 unsigned long nrpages; 446 447 /* 448 * Page reclaim can not participate in regular inode lifetime 449 * management (can't call iput()) and thus can race with the 450 * inode teardown. Tell it when the address space is exiting, 451 * so that it does not install eviction information after the 452 * final truncate has begun. 453 */ 454 mapping_set_exiting(mapping); 455 456 /* 457 * When reclaim installs eviction entries, it increases 458 * nrexceptional first, then decreases nrpages. Make sure we see 459 * this in the right order or we might miss an entry. 460 */ 461 nrpages = mapping->nrpages; 462 smp_rmb(); 463 nrexceptional = mapping->nrexceptional; 464 465 if (nrpages || nrexceptional) { 466 /* 467 * As truncation uses a lockless tree lookup, cycle 468 * the tree lock to make sure any ongoing tree 469 * modification that does not see AS_EXITING is 470 * completed before starting the final truncate. 471 */ 472 spin_lock_irq(&mapping->tree_lock); 473 spin_unlock_irq(&mapping->tree_lock); 474 475 truncate_inode_pages(mapping, 0); 476 } 477 } 478 EXPORT_SYMBOL(truncate_inode_pages_final); 479 480 /** 481 * invalidate_mapping_pages - Invalidate all the unlocked pages of one inode 482 * @mapping: the address_space which holds the pages to invalidate 483 * @start: the offset 'from' which to invalidate 484 * @end: the offset 'to' which to invalidate (inclusive) 485 * 486 * This function only removes the unlocked pages, if you want to 487 * remove all the pages of one inode, you must call truncate_inode_pages. 488 * 489 * invalidate_mapping_pages() will not block on IO activity. It will not 490 * invalidate pages which are dirty, locked, under writeback or mapped into 491 * pagetables. 492 */ 493 unsigned long invalidate_mapping_pages(struct address_space *mapping, 494 pgoff_t start, pgoff_t end) 495 { 496 pgoff_t indices[PAGEVEC_SIZE]; 497 struct pagevec pvec; 498 pgoff_t index = start; 499 unsigned long ret; 500 unsigned long count = 0; 501 int i; 502 503 pagevec_init(&pvec, 0); 504 while (index <= end && pagevec_lookup_entries(&pvec, mapping, index, 505 min(end - index, (pgoff_t)PAGEVEC_SIZE - 1) + 1, 506 indices)) { 507 for (i = 0; i < pagevec_count(&pvec); i++) { 508 struct page *page = pvec.pages[i]; 509 510 /* We rely upon deletion not changing page->index */ 511 index = indices[i]; 512 if (index > end) 513 break; 514 515 if (radix_tree_exceptional_entry(page)) { 516 invalidate_exceptional_entry(mapping, index, 517 page); 518 continue; 519 } 520 521 if (!trylock_page(page)) 522 continue; 523 524 WARN_ON(page_to_index(page) != index); 525 526 /* Middle of THP: skip */ 527 if (PageTransTail(page)) { 528 unlock_page(page); 529 continue; 530 } else if (PageTransHuge(page)) { 531 index += HPAGE_PMD_NR - 1; 532 i += HPAGE_PMD_NR - 1; 533 /* 534 * 'end' is in the middle of THP. Don't 535 * invalidate the page as the part outside of 536 * 'end' could be still useful. 537 */ 538 if (index > end) { 539 unlock_page(page); 540 continue; 541 } 542 } 543 544 ret = invalidate_inode_page(page); 545 unlock_page(page); 546 /* 547 * Invalidation is a hint that the page is no longer 548 * of interest and try to speed up its reclaim. 549 */ 550 if (!ret) 551 deactivate_file_page(page); 552 count += ret; 553 } 554 pagevec_remove_exceptionals(&pvec); 555 pagevec_release(&pvec); 556 cond_resched(); 557 index++; 558 } 559 return count; 560 } 561 EXPORT_SYMBOL(invalidate_mapping_pages); 562 563 /* 564 * This is like invalidate_complete_page(), except it ignores the page's 565 * refcount. We do this because invalidate_inode_pages2() needs stronger 566 * invalidation guarantees, and cannot afford to leave pages behind because 567 * shrink_page_list() has a temp ref on them, or because they're transiently 568 * sitting in the lru_cache_add() pagevecs. 569 */ 570 static int 571 invalidate_complete_page2(struct address_space *mapping, struct page *page) 572 { 573 unsigned long flags; 574 575 if (page->mapping != mapping) 576 return 0; 577 578 if (page_has_private(page) && !try_to_release_page(page, GFP_KERNEL)) 579 return 0; 580 581 spin_lock_irqsave(&mapping->tree_lock, flags); 582 if (PageDirty(page)) 583 goto failed; 584 585 BUG_ON(page_has_private(page)); 586 __delete_from_page_cache(page, NULL); 587 spin_unlock_irqrestore(&mapping->tree_lock, flags); 588 589 if (mapping->a_ops->freepage) 590 mapping->a_ops->freepage(page); 591 592 put_page(page); /* pagecache ref */ 593 return 1; 594 failed: 595 spin_unlock_irqrestore(&mapping->tree_lock, flags); 596 return 0; 597 } 598 599 static int do_launder_page(struct address_space *mapping, struct page *page) 600 { 601 if (!PageDirty(page)) 602 return 0; 603 if (page->mapping != mapping || mapping->a_ops->launder_page == NULL) 604 return 0; 605 return mapping->a_ops->launder_page(page); 606 } 607 608 /** 609 * invalidate_inode_pages2_range - remove range of pages from an address_space 610 * @mapping: the address_space 611 * @start: the page offset 'from' which to invalidate 612 * @end: the page offset 'to' which to invalidate (inclusive) 613 * 614 * Any pages which are found to be mapped into pagetables are unmapped prior to 615 * invalidation. 616 * 617 * Returns -EBUSY if any pages could not be invalidated. 618 */ 619 int invalidate_inode_pages2_range(struct address_space *mapping, 620 pgoff_t start, pgoff_t end) 621 { 622 pgoff_t indices[PAGEVEC_SIZE]; 623 struct pagevec pvec; 624 pgoff_t index; 625 int i; 626 int ret = 0; 627 int ret2 = 0; 628 int did_range_unmap = 0; 629 630 if (mapping->nrpages == 0 && mapping->nrexceptional == 0) 631 goto out; 632 633 pagevec_init(&pvec, 0); 634 index = start; 635 while (index <= end && pagevec_lookup_entries(&pvec, mapping, index, 636 min(end - index, (pgoff_t)PAGEVEC_SIZE - 1) + 1, 637 indices)) { 638 for (i = 0; i < pagevec_count(&pvec); i++) { 639 struct page *page = pvec.pages[i]; 640 641 /* We rely upon deletion not changing page->index */ 642 index = indices[i]; 643 if (index > end) 644 break; 645 646 if (radix_tree_exceptional_entry(page)) { 647 if (!invalidate_exceptional_entry2(mapping, 648 index, page)) 649 ret = -EBUSY; 650 continue; 651 } 652 653 lock_page(page); 654 WARN_ON(page_to_index(page) != index); 655 if (page->mapping != mapping) { 656 unlock_page(page); 657 continue; 658 } 659 wait_on_page_writeback(page); 660 if (page_mapped(page)) { 661 if (!did_range_unmap) { 662 /* 663 * Zap the rest of the file in one hit. 664 */ 665 unmap_mapping_range(mapping, 666 (loff_t)index << PAGE_SHIFT, 667 (loff_t)(1 + end - index) 668 << PAGE_SHIFT, 669 0); 670 did_range_unmap = 1; 671 } else { 672 /* 673 * Just zap this page 674 */ 675 unmap_mapping_range(mapping, 676 (loff_t)index << PAGE_SHIFT, 677 PAGE_SIZE, 0); 678 } 679 } 680 BUG_ON(page_mapped(page)); 681 ret2 = do_launder_page(mapping, page); 682 if (ret2 == 0) { 683 if (!invalidate_complete_page2(mapping, page)) 684 ret2 = -EBUSY; 685 } 686 if (ret2 < 0) 687 ret = ret2; 688 unlock_page(page); 689 } 690 pagevec_remove_exceptionals(&pvec); 691 pagevec_release(&pvec); 692 cond_resched(); 693 index++; 694 } 695 /* 696 * For DAX we invalidate page tables after invalidating radix tree. We 697 * could invalidate page tables while invalidating each entry however 698 * that would be expensive. And doing range unmapping before doesn't 699 * work as we have no cheap way to find whether radix tree entry didn't 700 * get remapped later. 701 */ 702 if (dax_mapping(mapping)) { 703 unmap_mapping_range(mapping, (loff_t)start << PAGE_SHIFT, 704 (loff_t)(end - start + 1) << PAGE_SHIFT, 0); 705 } 706 out: 707 cleancache_invalidate_inode(mapping); 708 return ret; 709 } 710 EXPORT_SYMBOL_GPL(invalidate_inode_pages2_range); 711 712 /** 713 * invalidate_inode_pages2 - remove all pages from an address_space 714 * @mapping: the address_space 715 * 716 * Any pages which are found to be mapped into pagetables are unmapped prior to 717 * invalidation. 718 * 719 * Returns -EBUSY if any pages could not be invalidated. 720 */ 721 int invalidate_inode_pages2(struct address_space *mapping) 722 { 723 return invalidate_inode_pages2_range(mapping, 0, -1); 724 } 725 EXPORT_SYMBOL_GPL(invalidate_inode_pages2); 726 727 /** 728 * truncate_pagecache - unmap and remove pagecache that has been truncated 729 * @inode: inode 730 * @newsize: new file size 731 * 732 * inode's new i_size must already be written before truncate_pagecache 733 * is called. 734 * 735 * This function should typically be called before the filesystem 736 * releases resources associated with the freed range (eg. deallocates 737 * blocks). This way, pagecache will always stay logically coherent 738 * with on-disk format, and the filesystem would not have to deal with 739 * situations such as writepage being called for a page that has already 740 * had its underlying blocks deallocated. 741 */ 742 void truncate_pagecache(struct inode *inode, loff_t newsize) 743 { 744 struct address_space *mapping = inode->i_mapping; 745 loff_t holebegin = round_up(newsize, PAGE_SIZE); 746 747 /* 748 * unmap_mapping_range is called twice, first simply for 749 * efficiency so that truncate_inode_pages does fewer 750 * single-page unmaps. However after this first call, and 751 * before truncate_inode_pages finishes, it is possible for 752 * private pages to be COWed, which remain after 753 * truncate_inode_pages finishes, hence the second 754 * unmap_mapping_range call must be made for correctness. 755 */ 756 unmap_mapping_range(mapping, holebegin, 0, 1); 757 truncate_inode_pages(mapping, newsize); 758 unmap_mapping_range(mapping, holebegin, 0, 1); 759 } 760 EXPORT_SYMBOL(truncate_pagecache); 761 762 /** 763 * truncate_setsize - update inode and pagecache for a new file size 764 * @inode: inode 765 * @newsize: new file size 766 * 767 * truncate_setsize updates i_size and performs pagecache truncation (if 768 * necessary) to @newsize. It will be typically be called from the filesystem's 769 * setattr function when ATTR_SIZE is passed in. 770 * 771 * Must be called with a lock serializing truncates and writes (generally 772 * i_mutex but e.g. xfs uses a different lock) and before all filesystem 773 * specific block truncation has been performed. 774 */ 775 void truncate_setsize(struct inode *inode, loff_t newsize) 776 { 777 loff_t oldsize = inode->i_size; 778 779 i_size_write(inode, newsize); 780 if (newsize > oldsize) 781 pagecache_isize_extended(inode, oldsize, newsize); 782 truncate_pagecache(inode, newsize); 783 } 784 EXPORT_SYMBOL(truncate_setsize); 785 786 /** 787 * pagecache_isize_extended - update pagecache after extension of i_size 788 * @inode: inode for which i_size was extended 789 * @from: original inode size 790 * @to: new inode size 791 * 792 * Handle extension of inode size either caused by extending truncate or by 793 * write starting after current i_size. We mark the page straddling current 794 * i_size RO so that page_mkwrite() is called on the nearest write access to 795 * the page. This way filesystem can be sure that page_mkwrite() is called on 796 * the page before user writes to the page via mmap after the i_size has been 797 * changed. 798 * 799 * The function must be called after i_size is updated so that page fault 800 * coming after we unlock the page will already see the new i_size. 801 * The function must be called while we still hold i_mutex - this not only 802 * makes sure i_size is stable but also that userspace cannot observe new 803 * i_size value before we are prepared to store mmap writes at new inode size. 804 */ 805 void pagecache_isize_extended(struct inode *inode, loff_t from, loff_t to) 806 { 807 int bsize = i_blocksize(inode); 808 loff_t rounded_from; 809 struct page *page; 810 pgoff_t index; 811 812 WARN_ON(to > inode->i_size); 813 814 if (from >= to || bsize == PAGE_SIZE) 815 return; 816 /* Page straddling @from will not have any hole block created? */ 817 rounded_from = round_up(from, bsize); 818 if (to <= rounded_from || !(rounded_from & (PAGE_SIZE - 1))) 819 return; 820 821 index = from >> PAGE_SHIFT; 822 page = find_lock_page(inode->i_mapping, index); 823 /* Page not cached? Nothing to do */ 824 if (!page) 825 return; 826 /* 827 * See clear_page_dirty_for_io() for details why set_page_dirty() 828 * is needed. 829 */ 830 if (page_mkclean(page)) 831 set_page_dirty(page); 832 unlock_page(page); 833 put_page(page); 834 } 835 EXPORT_SYMBOL(pagecache_isize_extended); 836 837 /** 838 * truncate_pagecache_range - unmap and remove pagecache that is hole-punched 839 * @inode: inode 840 * @lstart: offset of beginning of hole 841 * @lend: offset of last byte of hole 842 * 843 * This function should typically be called before the filesystem 844 * releases resources associated with the freed range (eg. deallocates 845 * blocks). This way, pagecache will always stay logically coherent 846 * with on-disk format, and the filesystem would not have to deal with 847 * situations such as writepage being called for a page that has already 848 * had its underlying blocks deallocated. 849 */ 850 void truncate_pagecache_range(struct inode *inode, loff_t lstart, loff_t lend) 851 { 852 struct address_space *mapping = inode->i_mapping; 853 loff_t unmap_start = round_up(lstart, PAGE_SIZE); 854 loff_t unmap_end = round_down(1 + lend, PAGE_SIZE) - 1; 855 /* 856 * This rounding is currently just for example: unmap_mapping_range 857 * expands its hole outwards, whereas we want it to contract the hole 858 * inwards. However, existing callers of truncate_pagecache_range are 859 * doing their own page rounding first. Note that unmap_mapping_range 860 * allows holelen 0 for all, and we allow lend -1 for end of file. 861 */ 862 863 /* 864 * Unlike in truncate_pagecache, unmap_mapping_range is called only 865 * once (before truncating pagecache), and without "even_cows" flag: 866 * hole-punching should not remove private COWed pages from the hole. 867 */ 868 if ((u64)unmap_end > (u64)unmap_start) 869 unmap_mapping_range(mapping, unmap_start, 870 1 + unmap_end - unmap_start, 0); 871 truncate_inode_pages_range(mapping, lstart, lend); 872 } 873 EXPORT_SYMBOL(truncate_pagecache_range); 874