xref: /openbmc/linux/mm/truncate.c (revision 8730046c)
1 /*
2  * mm/truncate.c - code for taking down pages from address_spaces
3  *
4  * Copyright (C) 2002, Linus Torvalds
5  *
6  * 10Sep2002	Andrew Morton
7  *		Initial version.
8  */
9 
10 #include <linux/kernel.h>
11 #include <linux/backing-dev.h>
12 #include <linux/dax.h>
13 #include <linux/gfp.h>
14 #include <linux/mm.h>
15 #include <linux/swap.h>
16 #include <linux/export.h>
17 #include <linux/pagemap.h>
18 #include <linux/highmem.h>
19 #include <linux/pagevec.h>
20 #include <linux/task_io_accounting_ops.h>
21 #include <linux/buffer_head.h>	/* grr. try_to_release_page,
22 				   do_invalidatepage */
23 #include <linux/cleancache.h>
24 #include <linux/rmap.h>
25 #include "internal.h"
26 
27 static void clear_shadow_entry(struct address_space *mapping, pgoff_t index,
28 			       void *entry)
29 {
30 	struct radix_tree_node *node;
31 	void **slot;
32 
33 	spin_lock_irq(&mapping->tree_lock);
34 	/*
35 	 * Regular page slots are stabilized by the page lock even
36 	 * without the tree itself locked.  These unlocked entries
37 	 * need verification under the tree lock.
38 	 */
39 	if (!__radix_tree_lookup(&mapping->page_tree, index, &node, &slot))
40 		goto unlock;
41 	if (*slot != entry)
42 		goto unlock;
43 	__radix_tree_replace(&mapping->page_tree, node, slot, NULL,
44 			     workingset_update_node, mapping);
45 	mapping->nrexceptional--;
46 unlock:
47 	spin_unlock_irq(&mapping->tree_lock);
48 }
49 
50 /*
51  * Unconditionally remove exceptional entry. Usually called from truncate path.
52  */
53 static void truncate_exceptional_entry(struct address_space *mapping,
54 				       pgoff_t index, void *entry)
55 {
56 	/* Handled by shmem itself */
57 	if (shmem_mapping(mapping))
58 		return;
59 
60 	if (dax_mapping(mapping)) {
61 		dax_delete_mapping_entry(mapping, index);
62 		return;
63 	}
64 	clear_shadow_entry(mapping, index, entry);
65 }
66 
67 /*
68  * Invalidate exceptional entry if easily possible. This handles exceptional
69  * entries for invalidate_inode_pages() so for DAX it evicts only unlocked and
70  * clean entries.
71  */
72 static int invalidate_exceptional_entry(struct address_space *mapping,
73 					pgoff_t index, void *entry)
74 {
75 	/* Handled by shmem itself */
76 	if (shmem_mapping(mapping))
77 		return 1;
78 	if (dax_mapping(mapping))
79 		return dax_invalidate_mapping_entry(mapping, index);
80 	clear_shadow_entry(mapping, index, entry);
81 	return 1;
82 }
83 
84 /*
85  * Invalidate exceptional entry if clean. This handles exceptional entries for
86  * invalidate_inode_pages2() so for DAX it evicts only clean entries.
87  */
88 static int invalidate_exceptional_entry2(struct address_space *mapping,
89 					 pgoff_t index, void *entry)
90 {
91 	/* Handled by shmem itself */
92 	if (shmem_mapping(mapping))
93 		return 1;
94 	if (dax_mapping(mapping))
95 		return dax_invalidate_mapping_entry_sync(mapping, index);
96 	clear_shadow_entry(mapping, index, entry);
97 	return 1;
98 }
99 
100 /**
101  * do_invalidatepage - invalidate part or all of a page
102  * @page: the page which is affected
103  * @offset: start of the range to invalidate
104  * @length: length of the range to invalidate
105  *
106  * do_invalidatepage() is called when all or part of the page has become
107  * invalidated by a truncate operation.
108  *
109  * do_invalidatepage() does not have to release all buffers, but it must
110  * ensure that no dirty buffer is left outside @offset and that no I/O
111  * is underway against any of the blocks which are outside the truncation
112  * point.  Because the caller is about to free (and possibly reuse) those
113  * blocks on-disk.
114  */
115 void do_invalidatepage(struct page *page, unsigned int offset,
116 		       unsigned int length)
117 {
118 	void (*invalidatepage)(struct page *, unsigned int, unsigned int);
119 
120 	invalidatepage = page->mapping->a_ops->invalidatepage;
121 #ifdef CONFIG_BLOCK
122 	if (!invalidatepage)
123 		invalidatepage = block_invalidatepage;
124 #endif
125 	if (invalidatepage)
126 		(*invalidatepage)(page, offset, length);
127 }
128 
129 /*
130  * If truncate cannot remove the fs-private metadata from the page, the page
131  * becomes orphaned.  It will be left on the LRU and may even be mapped into
132  * user pagetables if we're racing with filemap_fault().
133  *
134  * We need to bale out if page->mapping is no longer equal to the original
135  * mapping.  This happens a) when the VM reclaimed the page while we waited on
136  * its lock, b) when a concurrent invalidate_mapping_pages got there first and
137  * c) when tmpfs swizzles a page between a tmpfs inode and swapper_space.
138  */
139 static int
140 truncate_complete_page(struct address_space *mapping, struct page *page)
141 {
142 	if (page->mapping != mapping)
143 		return -EIO;
144 
145 	if (page_has_private(page))
146 		do_invalidatepage(page, 0, PAGE_SIZE);
147 
148 	/*
149 	 * Some filesystems seem to re-dirty the page even after
150 	 * the VM has canceled the dirty bit (eg ext3 journaling).
151 	 * Hence dirty accounting check is placed after invalidation.
152 	 */
153 	cancel_dirty_page(page);
154 	ClearPageMappedToDisk(page);
155 	delete_from_page_cache(page);
156 	return 0;
157 }
158 
159 /*
160  * This is for invalidate_mapping_pages().  That function can be called at
161  * any time, and is not supposed to throw away dirty pages.  But pages can
162  * be marked dirty at any time too, so use remove_mapping which safely
163  * discards clean, unused pages.
164  *
165  * Returns non-zero if the page was successfully invalidated.
166  */
167 static int
168 invalidate_complete_page(struct address_space *mapping, struct page *page)
169 {
170 	int ret;
171 
172 	if (page->mapping != mapping)
173 		return 0;
174 
175 	if (page_has_private(page) && !try_to_release_page(page, 0))
176 		return 0;
177 
178 	ret = remove_mapping(mapping, page);
179 
180 	return ret;
181 }
182 
183 int truncate_inode_page(struct address_space *mapping, struct page *page)
184 {
185 	loff_t holelen;
186 	VM_BUG_ON_PAGE(PageTail(page), page);
187 
188 	holelen = PageTransHuge(page) ? HPAGE_PMD_SIZE : PAGE_SIZE;
189 	if (page_mapped(page)) {
190 		unmap_mapping_range(mapping,
191 				   (loff_t)page->index << PAGE_SHIFT,
192 				   holelen, 0);
193 	}
194 	return truncate_complete_page(mapping, page);
195 }
196 
197 /*
198  * Used to get rid of pages on hardware memory corruption.
199  */
200 int generic_error_remove_page(struct address_space *mapping, struct page *page)
201 {
202 	if (!mapping)
203 		return -EINVAL;
204 	/*
205 	 * Only punch for normal data pages for now.
206 	 * Handling other types like directories would need more auditing.
207 	 */
208 	if (!S_ISREG(mapping->host->i_mode))
209 		return -EIO;
210 	return truncate_inode_page(mapping, page);
211 }
212 EXPORT_SYMBOL(generic_error_remove_page);
213 
214 /*
215  * Safely invalidate one page from its pagecache mapping.
216  * It only drops clean, unused pages. The page must be locked.
217  *
218  * Returns 1 if the page is successfully invalidated, otherwise 0.
219  */
220 int invalidate_inode_page(struct page *page)
221 {
222 	struct address_space *mapping = page_mapping(page);
223 	if (!mapping)
224 		return 0;
225 	if (PageDirty(page) || PageWriteback(page))
226 		return 0;
227 	if (page_mapped(page))
228 		return 0;
229 	return invalidate_complete_page(mapping, page);
230 }
231 
232 /**
233  * truncate_inode_pages_range - truncate range of pages specified by start & end byte offsets
234  * @mapping: mapping to truncate
235  * @lstart: offset from which to truncate
236  * @lend: offset to which to truncate (inclusive)
237  *
238  * Truncate the page cache, removing the pages that are between
239  * specified offsets (and zeroing out partial pages
240  * if lstart or lend + 1 is not page aligned).
241  *
242  * Truncate takes two passes - the first pass is nonblocking.  It will not
243  * block on page locks and it will not block on writeback.  The second pass
244  * will wait.  This is to prevent as much IO as possible in the affected region.
245  * The first pass will remove most pages, so the search cost of the second pass
246  * is low.
247  *
248  * We pass down the cache-hot hint to the page freeing code.  Even if the
249  * mapping is large, it is probably the case that the final pages are the most
250  * recently touched, and freeing happens in ascending file offset order.
251  *
252  * Note that since ->invalidatepage() accepts range to invalidate
253  * truncate_inode_pages_range is able to handle cases where lend + 1 is not
254  * page aligned properly.
255  */
256 void truncate_inode_pages_range(struct address_space *mapping,
257 				loff_t lstart, loff_t lend)
258 {
259 	pgoff_t		start;		/* inclusive */
260 	pgoff_t		end;		/* exclusive */
261 	unsigned int	partial_start;	/* inclusive */
262 	unsigned int	partial_end;	/* exclusive */
263 	struct pagevec	pvec;
264 	pgoff_t		indices[PAGEVEC_SIZE];
265 	pgoff_t		index;
266 	int		i;
267 
268 	cleancache_invalidate_inode(mapping);
269 	if (mapping->nrpages == 0 && mapping->nrexceptional == 0)
270 		return;
271 
272 	/* Offsets within partial pages */
273 	partial_start = lstart & (PAGE_SIZE - 1);
274 	partial_end = (lend + 1) & (PAGE_SIZE - 1);
275 
276 	/*
277 	 * 'start' and 'end' always covers the range of pages to be fully
278 	 * truncated. Partial pages are covered with 'partial_start' at the
279 	 * start of the range and 'partial_end' at the end of the range.
280 	 * Note that 'end' is exclusive while 'lend' is inclusive.
281 	 */
282 	start = (lstart + PAGE_SIZE - 1) >> PAGE_SHIFT;
283 	if (lend == -1)
284 		/*
285 		 * lend == -1 indicates end-of-file so we have to set 'end'
286 		 * to the highest possible pgoff_t and since the type is
287 		 * unsigned we're using -1.
288 		 */
289 		end = -1;
290 	else
291 		end = (lend + 1) >> PAGE_SHIFT;
292 
293 	pagevec_init(&pvec, 0);
294 	index = start;
295 	while (index < end && pagevec_lookup_entries(&pvec, mapping, index,
296 			min(end - index, (pgoff_t)PAGEVEC_SIZE),
297 			indices)) {
298 		for (i = 0; i < pagevec_count(&pvec); i++) {
299 			struct page *page = pvec.pages[i];
300 
301 			/* We rely upon deletion not changing page->index */
302 			index = indices[i];
303 			if (index >= end)
304 				break;
305 
306 			if (radix_tree_exceptional_entry(page)) {
307 				truncate_exceptional_entry(mapping, index,
308 							   page);
309 				continue;
310 			}
311 
312 			if (!trylock_page(page))
313 				continue;
314 			WARN_ON(page_to_index(page) != index);
315 			if (PageWriteback(page)) {
316 				unlock_page(page);
317 				continue;
318 			}
319 			truncate_inode_page(mapping, page);
320 			unlock_page(page);
321 		}
322 		pagevec_remove_exceptionals(&pvec);
323 		pagevec_release(&pvec);
324 		cond_resched();
325 		index++;
326 	}
327 
328 	if (partial_start) {
329 		struct page *page = find_lock_page(mapping, start - 1);
330 		if (page) {
331 			unsigned int top = PAGE_SIZE;
332 			if (start > end) {
333 				/* Truncation within a single page */
334 				top = partial_end;
335 				partial_end = 0;
336 			}
337 			wait_on_page_writeback(page);
338 			zero_user_segment(page, partial_start, top);
339 			cleancache_invalidate_page(mapping, page);
340 			if (page_has_private(page))
341 				do_invalidatepage(page, partial_start,
342 						  top - partial_start);
343 			unlock_page(page);
344 			put_page(page);
345 		}
346 	}
347 	if (partial_end) {
348 		struct page *page = find_lock_page(mapping, end);
349 		if (page) {
350 			wait_on_page_writeback(page);
351 			zero_user_segment(page, 0, partial_end);
352 			cleancache_invalidate_page(mapping, page);
353 			if (page_has_private(page))
354 				do_invalidatepage(page, 0,
355 						  partial_end);
356 			unlock_page(page);
357 			put_page(page);
358 		}
359 	}
360 	/*
361 	 * If the truncation happened within a single page no pages
362 	 * will be released, just zeroed, so we can bail out now.
363 	 */
364 	if (start >= end)
365 		return;
366 
367 	index = start;
368 	for ( ; ; ) {
369 		cond_resched();
370 		if (!pagevec_lookup_entries(&pvec, mapping, index,
371 			min(end - index, (pgoff_t)PAGEVEC_SIZE), indices)) {
372 			/* If all gone from start onwards, we're done */
373 			if (index == start)
374 				break;
375 			/* Otherwise restart to make sure all gone */
376 			index = start;
377 			continue;
378 		}
379 		if (index == start && indices[0] >= end) {
380 			/* All gone out of hole to be punched, we're done */
381 			pagevec_remove_exceptionals(&pvec);
382 			pagevec_release(&pvec);
383 			break;
384 		}
385 		for (i = 0; i < pagevec_count(&pvec); i++) {
386 			struct page *page = pvec.pages[i];
387 
388 			/* We rely upon deletion not changing page->index */
389 			index = indices[i];
390 			if (index >= end) {
391 				/* Restart punch to make sure all gone */
392 				index = start - 1;
393 				break;
394 			}
395 
396 			if (radix_tree_exceptional_entry(page)) {
397 				truncate_exceptional_entry(mapping, index,
398 							   page);
399 				continue;
400 			}
401 
402 			lock_page(page);
403 			WARN_ON(page_to_index(page) != index);
404 			wait_on_page_writeback(page);
405 			truncate_inode_page(mapping, page);
406 			unlock_page(page);
407 		}
408 		pagevec_remove_exceptionals(&pvec);
409 		pagevec_release(&pvec);
410 		index++;
411 	}
412 	cleancache_invalidate_inode(mapping);
413 }
414 EXPORT_SYMBOL(truncate_inode_pages_range);
415 
416 /**
417  * truncate_inode_pages - truncate *all* the pages from an offset
418  * @mapping: mapping to truncate
419  * @lstart: offset from which to truncate
420  *
421  * Called under (and serialised by) inode->i_mutex.
422  *
423  * Note: When this function returns, there can be a page in the process of
424  * deletion (inside __delete_from_page_cache()) in the specified range.  Thus
425  * mapping->nrpages can be non-zero when this function returns even after
426  * truncation of the whole mapping.
427  */
428 void truncate_inode_pages(struct address_space *mapping, loff_t lstart)
429 {
430 	truncate_inode_pages_range(mapping, lstart, (loff_t)-1);
431 }
432 EXPORT_SYMBOL(truncate_inode_pages);
433 
434 /**
435  * truncate_inode_pages_final - truncate *all* pages before inode dies
436  * @mapping: mapping to truncate
437  *
438  * Called under (and serialized by) inode->i_mutex.
439  *
440  * Filesystems have to use this in the .evict_inode path to inform the
441  * VM that this is the final truncate and the inode is going away.
442  */
443 void truncate_inode_pages_final(struct address_space *mapping)
444 {
445 	unsigned long nrexceptional;
446 	unsigned long nrpages;
447 
448 	/*
449 	 * Page reclaim can not participate in regular inode lifetime
450 	 * management (can't call iput()) and thus can race with the
451 	 * inode teardown.  Tell it when the address space is exiting,
452 	 * so that it does not install eviction information after the
453 	 * final truncate has begun.
454 	 */
455 	mapping_set_exiting(mapping);
456 
457 	/*
458 	 * When reclaim installs eviction entries, it increases
459 	 * nrexceptional first, then decreases nrpages.  Make sure we see
460 	 * this in the right order or we might miss an entry.
461 	 */
462 	nrpages = mapping->nrpages;
463 	smp_rmb();
464 	nrexceptional = mapping->nrexceptional;
465 
466 	if (nrpages || nrexceptional) {
467 		/*
468 		 * As truncation uses a lockless tree lookup, cycle
469 		 * the tree lock to make sure any ongoing tree
470 		 * modification that does not see AS_EXITING is
471 		 * completed before starting the final truncate.
472 		 */
473 		spin_lock_irq(&mapping->tree_lock);
474 		spin_unlock_irq(&mapping->tree_lock);
475 
476 		truncate_inode_pages(mapping, 0);
477 	}
478 }
479 EXPORT_SYMBOL(truncate_inode_pages_final);
480 
481 /**
482  * invalidate_mapping_pages - Invalidate all the unlocked pages of one inode
483  * @mapping: the address_space which holds the pages to invalidate
484  * @start: the offset 'from' which to invalidate
485  * @end: the offset 'to' which to invalidate (inclusive)
486  *
487  * This function only removes the unlocked pages, if you want to
488  * remove all the pages of one inode, you must call truncate_inode_pages.
489  *
490  * invalidate_mapping_pages() will not block on IO activity. It will not
491  * invalidate pages which are dirty, locked, under writeback or mapped into
492  * pagetables.
493  */
494 unsigned long invalidate_mapping_pages(struct address_space *mapping,
495 		pgoff_t start, pgoff_t end)
496 {
497 	pgoff_t indices[PAGEVEC_SIZE];
498 	struct pagevec pvec;
499 	pgoff_t index = start;
500 	unsigned long ret;
501 	unsigned long count = 0;
502 	int i;
503 
504 	pagevec_init(&pvec, 0);
505 	while (index <= end && pagevec_lookup_entries(&pvec, mapping, index,
506 			min(end - index, (pgoff_t)PAGEVEC_SIZE - 1) + 1,
507 			indices)) {
508 		for (i = 0; i < pagevec_count(&pvec); i++) {
509 			struct page *page = pvec.pages[i];
510 
511 			/* We rely upon deletion not changing page->index */
512 			index = indices[i];
513 			if (index > end)
514 				break;
515 
516 			if (radix_tree_exceptional_entry(page)) {
517 				invalidate_exceptional_entry(mapping, index,
518 							     page);
519 				continue;
520 			}
521 
522 			if (!trylock_page(page))
523 				continue;
524 
525 			WARN_ON(page_to_index(page) != index);
526 
527 			/* Middle of THP: skip */
528 			if (PageTransTail(page)) {
529 				unlock_page(page);
530 				continue;
531 			} else if (PageTransHuge(page)) {
532 				index += HPAGE_PMD_NR - 1;
533 				i += HPAGE_PMD_NR - 1;
534 				/* 'end' is in the middle of THP */
535 				if (index ==  round_down(end, HPAGE_PMD_NR))
536 					continue;
537 			}
538 
539 			ret = invalidate_inode_page(page);
540 			unlock_page(page);
541 			/*
542 			 * Invalidation is a hint that the page is no longer
543 			 * of interest and try to speed up its reclaim.
544 			 */
545 			if (!ret)
546 				deactivate_file_page(page);
547 			count += ret;
548 		}
549 		pagevec_remove_exceptionals(&pvec);
550 		pagevec_release(&pvec);
551 		cond_resched();
552 		index++;
553 	}
554 	return count;
555 }
556 EXPORT_SYMBOL(invalidate_mapping_pages);
557 
558 /*
559  * This is like invalidate_complete_page(), except it ignores the page's
560  * refcount.  We do this because invalidate_inode_pages2() needs stronger
561  * invalidation guarantees, and cannot afford to leave pages behind because
562  * shrink_page_list() has a temp ref on them, or because they're transiently
563  * sitting in the lru_cache_add() pagevecs.
564  */
565 static int
566 invalidate_complete_page2(struct address_space *mapping, struct page *page)
567 {
568 	unsigned long flags;
569 
570 	if (page->mapping != mapping)
571 		return 0;
572 
573 	if (page_has_private(page) && !try_to_release_page(page, GFP_KERNEL))
574 		return 0;
575 
576 	spin_lock_irqsave(&mapping->tree_lock, flags);
577 	if (PageDirty(page))
578 		goto failed;
579 
580 	BUG_ON(page_has_private(page));
581 	__delete_from_page_cache(page, NULL);
582 	spin_unlock_irqrestore(&mapping->tree_lock, flags);
583 
584 	if (mapping->a_ops->freepage)
585 		mapping->a_ops->freepage(page);
586 
587 	put_page(page);	/* pagecache ref */
588 	return 1;
589 failed:
590 	spin_unlock_irqrestore(&mapping->tree_lock, flags);
591 	return 0;
592 }
593 
594 static int do_launder_page(struct address_space *mapping, struct page *page)
595 {
596 	if (!PageDirty(page))
597 		return 0;
598 	if (page->mapping != mapping || mapping->a_ops->launder_page == NULL)
599 		return 0;
600 	return mapping->a_ops->launder_page(page);
601 }
602 
603 /**
604  * invalidate_inode_pages2_range - remove range of pages from an address_space
605  * @mapping: the address_space
606  * @start: the page offset 'from' which to invalidate
607  * @end: the page offset 'to' which to invalidate (inclusive)
608  *
609  * Any pages which are found to be mapped into pagetables are unmapped prior to
610  * invalidation.
611  *
612  * Returns -EBUSY if any pages could not be invalidated.
613  */
614 int invalidate_inode_pages2_range(struct address_space *mapping,
615 				  pgoff_t start, pgoff_t end)
616 {
617 	pgoff_t indices[PAGEVEC_SIZE];
618 	struct pagevec pvec;
619 	pgoff_t index;
620 	int i;
621 	int ret = 0;
622 	int ret2 = 0;
623 	int did_range_unmap = 0;
624 
625 	cleancache_invalidate_inode(mapping);
626 	pagevec_init(&pvec, 0);
627 	index = start;
628 	while (index <= end && pagevec_lookup_entries(&pvec, mapping, index,
629 			min(end - index, (pgoff_t)PAGEVEC_SIZE - 1) + 1,
630 			indices)) {
631 		for (i = 0; i < pagevec_count(&pvec); i++) {
632 			struct page *page = pvec.pages[i];
633 
634 			/* We rely upon deletion not changing page->index */
635 			index = indices[i];
636 			if (index > end)
637 				break;
638 
639 			if (radix_tree_exceptional_entry(page)) {
640 				if (!invalidate_exceptional_entry2(mapping,
641 								   index, page))
642 					ret = -EBUSY;
643 				continue;
644 			}
645 
646 			lock_page(page);
647 			WARN_ON(page_to_index(page) != index);
648 			if (page->mapping != mapping) {
649 				unlock_page(page);
650 				continue;
651 			}
652 			wait_on_page_writeback(page);
653 			if (page_mapped(page)) {
654 				if (!did_range_unmap) {
655 					/*
656 					 * Zap the rest of the file in one hit.
657 					 */
658 					unmap_mapping_range(mapping,
659 					   (loff_t)index << PAGE_SHIFT,
660 					   (loff_t)(1 + end - index)
661 							 << PAGE_SHIFT,
662 							 0);
663 					did_range_unmap = 1;
664 				} else {
665 					/*
666 					 * Just zap this page
667 					 */
668 					unmap_mapping_range(mapping,
669 					   (loff_t)index << PAGE_SHIFT,
670 					   PAGE_SIZE, 0);
671 				}
672 			}
673 			BUG_ON(page_mapped(page));
674 			ret2 = do_launder_page(mapping, page);
675 			if (ret2 == 0) {
676 				if (!invalidate_complete_page2(mapping, page))
677 					ret2 = -EBUSY;
678 			}
679 			if (ret2 < 0)
680 				ret = ret2;
681 			unlock_page(page);
682 		}
683 		pagevec_remove_exceptionals(&pvec);
684 		pagevec_release(&pvec);
685 		cond_resched();
686 		index++;
687 	}
688 	cleancache_invalidate_inode(mapping);
689 	return ret;
690 }
691 EXPORT_SYMBOL_GPL(invalidate_inode_pages2_range);
692 
693 /**
694  * invalidate_inode_pages2 - remove all pages from an address_space
695  * @mapping: the address_space
696  *
697  * Any pages which are found to be mapped into pagetables are unmapped prior to
698  * invalidation.
699  *
700  * Returns -EBUSY if any pages could not be invalidated.
701  */
702 int invalidate_inode_pages2(struct address_space *mapping)
703 {
704 	return invalidate_inode_pages2_range(mapping, 0, -1);
705 }
706 EXPORT_SYMBOL_GPL(invalidate_inode_pages2);
707 
708 /**
709  * truncate_pagecache - unmap and remove pagecache that has been truncated
710  * @inode: inode
711  * @newsize: new file size
712  *
713  * inode's new i_size must already be written before truncate_pagecache
714  * is called.
715  *
716  * This function should typically be called before the filesystem
717  * releases resources associated with the freed range (eg. deallocates
718  * blocks). This way, pagecache will always stay logically coherent
719  * with on-disk format, and the filesystem would not have to deal with
720  * situations such as writepage being called for a page that has already
721  * had its underlying blocks deallocated.
722  */
723 void truncate_pagecache(struct inode *inode, loff_t newsize)
724 {
725 	struct address_space *mapping = inode->i_mapping;
726 	loff_t holebegin = round_up(newsize, PAGE_SIZE);
727 
728 	/*
729 	 * unmap_mapping_range is called twice, first simply for
730 	 * efficiency so that truncate_inode_pages does fewer
731 	 * single-page unmaps.  However after this first call, and
732 	 * before truncate_inode_pages finishes, it is possible for
733 	 * private pages to be COWed, which remain after
734 	 * truncate_inode_pages finishes, hence the second
735 	 * unmap_mapping_range call must be made for correctness.
736 	 */
737 	unmap_mapping_range(mapping, holebegin, 0, 1);
738 	truncate_inode_pages(mapping, newsize);
739 	unmap_mapping_range(mapping, holebegin, 0, 1);
740 }
741 EXPORT_SYMBOL(truncate_pagecache);
742 
743 /**
744  * truncate_setsize - update inode and pagecache for a new file size
745  * @inode: inode
746  * @newsize: new file size
747  *
748  * truncate_setsize updates i_size and performs pagecache truncation (if
749  * necessary) to @newsize. It will be typically be called from the filesystem's
750  * setattr function when ATTR_SIZE is passed in.
751  *
752  * Must be called with a lock serializing truncates and writes (generally
753  * i_mutex but e.g. xfs uses a different lock) and before all filesystem
754  * specific block truncation has been performed.
755  */
756 void truncate_setsize(struct inode *inode, loff_t newsize)
757 {
758 	loff_t oldsize = inode->i_size;
759 
760 	i_size_write(inode, newsize);
761 	if (newsize > oldsize)
762 		pagecache_isize_extended(inode, oldsize, newsize);
763 	truncate_pagecache(inode, newsize);
764 }
765 EXPORT_SYMBOL(truncate_setsize);
766 
767 /**
768  * pagecache_isize_extended - update pagecache after extension of i_size
769  * @inode:	inode for which i_size was extended
770  * @from:	original inode size
771  * @to:		new inode size
772  *
773  * Handle extension of inode size either caused by extending truncate or by
774  * write starting after current i_size. We mark the page straddling current
775  * i_size RO so that page_mkwrite() is called on the nearest write access to
776  * the page.  This way filesystem can be sure that page_mkwrite() is called on
777  * the page before user writes to the page via mmap after the i_size has been
778  * changed.
779  *
780  * The function must be called after i_size is updated so that page fault
781  * coming after we unlock the page will already see the new i_size.
782  * The function must be called while we still hold i_mutex - this not only
783  * makes sure i_size is stable but also that userspace cannot observe new
784  * i_size value before we are prepared to store mmap writes at new inode size.
785  */
786 void pagecache_isize_extended(struct inode *inode, loff_t from, loff_t to)
787 {
788 	int bsize = 1 << inode->i_blkbits;
789 	loff_t rounded_from;
790 	struct page *page;
791 	pgoff_t index;
792 
793 	WARN_ON(to > inode->i_size);
794 
795 	if (from >= to || bsize == PAGE_SIZE)
796 		return;
797 	/* Page straddling @from will not have any hole block created? */
798 	rounded_from = round_up(from, bsize);
799 	if (to <= rounded_from || !(rounded_from & (PAGE_SIZE - 1)))
800 		return;
801 
802 	index = from >> PAGE_SHIFT;
803 	page = find_lock_page(inode->i_mapping, index);
804 	/* Page not cached? Nothing to do */
805 	if (!page)
806 		return;
807 	/*
808 	 * See clear_page_dirty_for_io() for details why set_page_dirty()
809 	 * is needed.
810 	 */
811 	if (page_mkclean(page))
812 		set_page_dirty(page);
813 	unlock_page(page);
814 	put_page(page);
815 }
816 EXPORT_SYMBOL(pagecache_isize_extended);
817 
818 /**
819  * truncate_pagecache_range - unmap and remove pagecache that is hole-punched
820  * @inode: inode
821  * @lstart: offset of beginning of hole
822  * @lend: offset of last byte of hole
823  *
824  * This function should typically be called before the filesystem
825  * releases resources associated with the freed range (eg. deallocates
826  * blocks). This way, pagecache will always stay logically coherent
827  * with on-disk format, and the filesystem would not have to deal with
828  * situations such as writepage being called for a page that has already
829  * had its underlying blocks deallocated.
830  */
831 void truncate_pagecache_range(struct inode *inode, loff_t lstart, loff_t lend)
832 {
833 	struct address_space *mapping = inode->i_mapping;
834 	loff_t unmap_start = round_up(lstart, PAGE_SIZE);
835 	loff_t unmap_end = round_down(1 + lend, PAGE_SIZE) - 1;
836 	/*
837 	 * This rounding is currently just for example: unmap_mapping_range
838 	 * expands its hole outwards, whereas we want it to contract the hole
839 	 * inwards.  However, existing callers of truncate_pagecache_range are
840 	 * doing their own page rounding first.  Note that unmap_mapping_range
841 	 * allows holelen 0 for all, and we allow lend -1 for end of file.
842 	 */
843 
844 	/*
845 	 * Unlike in truncate_pagecache, unmap_mapping_range is called only
846 	 * once (before truncating pagecache), and without "even_cows" flag:
847 	 * hole-punching should not remove private COWed pages from the hole.
848 	 */
849 	if ((u64)unmap_end > (u64)unmap_start)
850 		unmap_mapping_range(mapping, unmap_start,
851 				    1 + unmap_end - unmap_start, 0);
852 	truncate_inode_pages_range(mapping, lstart, lend);
853 }
854 EXPORT_SYMBOL(truncate_pagecache_range);
855