1 /* 2 * mm/truncate.c - code for taking down pages from address_spaces 3 * 4 * Copyright (C) 2002, Linus Torvalds 5 * 6 * 10Sep2002 Andrew Morton 7 * Initial version. 8 */ 9 10 #include <linux/kernel.h> 11 #include <linux/backing-dev.h> 12 #include <linux/dax.h> 13 #include <linux/gfp.h> 14 #include <linux/mm.h> 15 #include <linux/swap.h> 16 #include <linux/export.h> 17 #include <linux/pagemap.h> 18 #include <linux/highmem.h> 19 #include <linux/pagevec.h> 20 #include <linux/task_io_accounting_ops.h> 21 #include <linux/buffer_head.h> /* grr. try_to_release_page, 22 do_invalidatepage */ 23 #include <linux/cleancache.h> 24 #include <linux/rmap.h> 25 #include "internal.h" 26 27 static void clear_exceptional_entry(struct address_space *mapping, 28 pgoff_t index, void *entry) 29 { 30 struct radix_tree_node *node; 31 void **slot; 32 33 /* Handled by shmem itself */ 34 if (shmem_mapping(mapping)) 35 return; 36 37 if (dax_mapping(mapping)) { 38 dax_delete_mapping_entry(mapping, index); 39 return; 40 } 41 spin_lock_irq(&mapping->tree_lock); 42 /* 43 * Regular page slots are stabilized by the page lock even 44 * without the tree itself locked. These unlocked entries 45 * need verification under the tree lock. 46 */ 47 if (!__radix_tree_lookup(&mapping->page_tree, index, &node, 48 &slot)) 49 goto unlock; 50 if (*slot != entry) 51 goto unlock; 52 radix_tree_replace_slot(slot, NULL); 53 mapping->nrexceptional--; 54 if (!node) 55 goto unlock; 56 workingset_node_shadows_dec(node); 57 /* 58 * Don't track node without shadow entries. 59 * 60 * Avoid acquiring the list_lru lock if already untracked. 61 * The list_empty() test is safe as node->private_list is 62 * protected by mapping->tree_lock. 63 */ 64 if (!workingset_node_shadows(node) && 65 !list_empty(&node->private_list)) 66 list_lru_del(&workingset_shadow_nodes, 67 &node->private_list); 68 __radix_tree_delete_node(&mapping->page_tree, node); 69 unlock: 70 spin_unlock_irq(&mapping->tree_lock); 71 } 72 73 /** 74 * do_invalidatepage - invalidate part or all of a page 75 * @page: the page which is affected 76 * @offset: start of the range to invalidate 77 * @length: length of the range to invalidate 78 * 79 * do_invalidatepage() is called when all or part of the page has become 80 * invalidated by a truncate operation. 81 * 82 * do_invalidatepage() does not have to release all buffers, but it must 83 * ensure that no dirty buffer is left outside @offset and that no I/O 84 * is underway against any of the blocks which are outside the truncation 85 * point. Because the caller is about to free (and possibly reuse) those 86 * blocks on-disk. 87 */ 88 void do_invalidatepage(struct page *page, unsigned int offset, 89 unsigned int length) 90 { 91 void (*invalidatepage)(struct page *, unsigned int, unsigned int); 92 93 invalidatepage = page->mapping->a_ops->invalidatepage; 94 #ifdef CONFIG_BLOCK 95 if (!invalidatepage) 96 invalidatepage = block_invalidatepage; 97 #endif 98 if (invalidatepage) 99 (*invalidatepage)(page, offset, length); 100 } 101 102 /* 103 * If truncate cannot remove the fs-private metadata from the page, the page 104 * becomes orphaned. It will be left on the LRU and may even be mapped into 105 * user pagetables if we're racing with filemap_fault(). 106 * 107 * We need to bale out if page->mapping is no longer equal to the original 108 * mapping. This happens a) when the VM reclaimed the page while we waited on 109 * its lock, b) when a concurrent invalidate_mapping_pages got there first and 110 * c) when tmpfs swizzles a page between a tmpfs inode and swapper_space. 111 */ 112 static int 113 truncate_complete_page(struct address_space *mapping, struct page *page) 114 { 115 if (page->mapping != mapping) 116 return -EIO; 117 118 if (page_has_private(page)) 119 do_invalidatepage(page, 0, PAGE_SIZE); 120 121 /* 122 * Some filesystems seem to re-dirty the page even after 123 * the VM has canceled the dirty bit (eg ext3 journaling). 124 * Hence dirty accounting check is placed after invalidation. 125 */ 126 cancel_dirty_page(page); 127 ClearPageMappedToDisk(page); 128 delete_from_page_cache(page); 129 return 0; 130 } 131 132 /* 133 * This is for invalidate_mapping_pages(). That function can be called at 134 * any time, and is not supposed to throw away dirty pages. But pages can 135 * be marked dirty at any time too, so use remove_mapping which safely 136 * discards clean, unused pages. 137 * 138 * Returns non-zero if the page was successfully invalidated. 139 */ 140 static int 141 invalidate_complete_page(struct address_space *mapping, struct page *page) 142 { 143 int ret; 144 145 if (page->mapping != mapping) 146 return 0; 147 148 if (page_has_private(page) && !try_to_release_page(page, 0)) 149 return 0; 150 151 ret = remove_mapping(mapping, page); 152 153 return ret; 154 } 155 156 int truncate_inode_page(struct address_space *mapping, struct page *page) 157 { 158 if (page_mapped(page)) { 159 unmap_mapping_range(mapping, 160 (loff_t)page->index << PAGE_SHIFT, 161 PAGE_SIZE, 0); 162 } 163 return truncate_complete_page(mapping, page); 164 } 165 166 /* 167 * Used to get rid of pages on hardware memory corruption. 168 */ 169 int generic_error_remove_page(struct address_space *mapping, struct page *page) 170 { 171 if (!mapping) 172 return -EINVAL; 173 /* 174 * Only punch for normal data pages for now. 175 * Handling other types like directories would need more auditing. 176 */ 177 if (!S_ISREG(mapping->host->i_mode)) 178 return -EIO; 179 return truncate_inode_page(mapping, page); 180 } 181 EXPORT_SYMBOL(generic_error_remove_page); 182 183 /* 184 * Safely invalidate one page from its pagecache mapping. 185 * It only drops clean, unused pages. The page must be locked. 186 * 187 * Returns 1 if the page is successfully invalidated, otherwise 0. 188 */ 189 int invalidate_inode_page(struct page *page) 190 { 191 struct address_space *mapping = page_mapping(page); 192 if (!mapping) 193 return 0; 194 if (PageDirty(page) || PageWriteback(page)) 195 return 0; 196 if (page_mapped(page)) 197 return 0; 198 return invalidate_complete_page(mapping, page); 199 } 200 201 /** 202 * truncate_inode_pages_range - truncate range of pages specified by start & end byte offsets 203 * @mapping: mapping to truncate 204 * @lstart: offset from which to truncate 205 * @lend: offset to which to truncate (inclusive) 206 * 207 * Truncate the page cache, removing the pages that are between 208 * specified offsets (and zeroing out partial pages 209 * if lstart or lend + 1 is not page aligned). 210 * 211 * Truncate takes two passes - the first pass is nonblocking. It will not 212 * block on page locks and it will not block on writeback. The second pass 213 * will wait. This is to prevent as much IO as possible in the affected region. 214 * The first pass will remove most pages, so the search cost of the second pass 215 * is low. 216 * 217 * We pass down the cache-hot hint to the page freeing code. Even if the 218 * mapping is large, it is probably the case that the final pages are the most 219 * recently touched, and freeing happens in ascending file offset order. 220 * 221 * Note that since ->invalidatepage() accepts range to invalidate 222 * truncate_inode_pages_range is able to handle cases where lend + 1 is not 223 * page aligned properly. 224 */ 225 void truncate_inode_pages_range(struct address_space *mapping, 226 loff_t lstart, loff_t lend) 227 { 228 pgoff_t start; /* inclusive */ 229 pgoff_t end; /* exclusive */ 230 unsigned int partial_start; /* inclusive */ 231 unsigned int partial_end; /* exclusive */ 232 struct pagevec pvec; 233 pgoff_t indices[PAGEVEC_SIZE]; 234 pgoff_t index; 235 int i; 236 237 cleancache_invalidate_inode(mapping); 238 if (mapping->nrpages == 0 && mapping->nrexceptional == 0) 239 return; 240 241 /* Offsets within partial pages */ 242 partial_start = lstart & (PAGE_SIZE - 1); 243 partial_end = (lend + 1) & (PAGE_SIZE - 1); 244 245 /* 246 * 'start' and 'end' always covers the range of pages to be fully 247 * truncated. Partial pages are covered with 'partial_start' at the 248 * start of the range and 'partial_end' at the end of the range. 249 * Note that 'end' is exclusive while 'lend' is inclusive. 250 */ 251 start = (lstart + PAGE_SIZE - 1) >> PAGE_SHIFT; 252 if (lend == -1) 253 /* 254 * lend == -1 indicates end-of-file so we have to set 'end' 255 * to the highest possible pgoff_t and since the type is 256 * unsigned we're using -1. 257 */ 258 end = -1; 259 else 260 end = (lend + 1) >> PAGE_SHIFT; 261 262 pagevec_init(&pvec, 0); 263 index = start; 264 while (index < end && pagevec_lookup_entries(&pvec, mapping, index, 265 min(end - index, (pgoff_t)PAGEVEC_SIZE), 266 indices)) { 267 for (i = 0; i < pagevec_count(&pvec); i++) { 268 struct page *page = pvec.pages[i]; 269 270 /* We rely upon deletion not changing page->index */ 271 index = indices[i]; 272 if (index >= end) 273 break; 274 275 if (radix_tree_exceptional_entry(page)) { 276 clear_exceptional_entry(mapping, index, page); 277 continue; 278 } 279 280 if (!trylock_page(page)) 281 continue; 282 WARN_ON(page->index != index); 283 if (PageWriteback(page)) { 284 unlock_page(page); 285 continue; 286 } 287 truncate_inode_page(mapping, page); 288 unlock_page(page); 289 } 290 pagevec_remove_exceptionals(&pvec); 291 pagevec_release(&pvec); 292 cond_resched(); 293 index++; 294 } 295 296 if (partial_start) { 297 struct page *page = find_lock_page(mapping, start - 1); 298 if (page) { 299 unsigned int top = PAGE_SIZE; 300 if (start > end) { 301 /* Truncation within a single page */ 302 top = partial_end; 303 partial_end = 0; 304 } 305 wait_on_page_writeback(page); 306 zero_user_segment(page, partial_start, top); 307 cleancache_invalidate_page(mapping, page); 308 if (page_has_private(page)) 309 do_invalidatepage(page, partial_start, 310 top - partial_start); 311 unlock_page(page); 312 put_page(page); 313 } 314 } 315 if (partial_end) { 316 struct page *page = find_lock_page(mapping, end); 317 if (page) { 318 wait_on_page_writeback(page); 319 zero_user_segment(page, 0, partial_end); 320 cleancache_invalidate_page(mapping, page); 321 if (page_has_private(page)) 322 do_invalidatepage(page, 0, 323 partial_end); 324 unlock_page(page); 325 put_page(page); 326 } 327 } 328 /* 329 * If the truncation happened within a single page no pages 330 * will be released, just zeroed, so we can bail out now. 331 */ 332 if (start >= end) 333 return; 334 335 index = start; 336 for ( ; ; ) { 337 cond_resched(); 338 if (!pagevec_lookup_entries(&pvec, mapping, index, 339 min(end - index, (pgoff_t)PAGEVEC_SIZE), indices)) { 340 /* If all gone from start onwards, we're done */ 341 if (index == start) 342 break; 343 /* Otherwise restart to make sure all gone */ 344 index = start; 345 continue; 346 } 347 if (index == start && indices[0] >= end) { 348 /* All gone out of hole to be punched, we're done */ 349 pagevec_remove_exceptionals(&pvec); 350 pagevec_release(&pvec); 351 break; 352 } 353 for (i = 0; i < pagevec_count(&pvec); i++) { 354 struct page *page = pvec.pages[i]; 355 356 /* We rely upon deletion not changing page->index */ 357 index = indices[i]; 358 if (index >= end) { 359 /* Restart punch to make sure all gone */ 360 index = start - 1; 361 break; 362 } 363 364 if (radix_tree_exceptional_entry(page)) { 365 clear_exceptional_entry(mapping, index, page); 366 continue; 367 } 368 369 lock_page(page); 370 WARN_ON(page->index != index); 371 wait_on_page_writeback(page); 372 truncate_inode_page(mapping, page); 373 unlock_page(page); 374 } 375 pagevec_remove_exceptionals(&pvec); 376 pagevec_release(&pvec); 377 index++; 378 } 379 cleancache_invalidate_inode(mapping); 380 } 381 EXPORT_SYMBOL(truncate_inode_pages_range); 382 383 /** 384 * truncate_inode_pages - truncate *all* the pages from an offset 385 * @mapping: mapping to truncate 386 * @lstart: offset from which to truncate 387 * 388 * Called under (and serialised by) inode->i_mutex. 389 * 390 * Note: When this function returns, there can be a page in the process of 391 * deletion (inside __delete_from_page_cache()) in the specified range. Thus 392 * mapping->nrpages can be non-zero when this function returns even after 393 * truncation of the whole mapping. 394 */ 395 void truncate_inode_pages(struct address_space *mapping, loff_t lstart) 396 { 397 truncate_inode_pages_range(mapping, lstart, (loff_t)-1); 398 } 399 EXPORT_SYMBOL(truncate_inode_pages); 400 401 /** 402 * truncate_inode_pages_final - truncate *all* pages before inode dies 403 * @mapping: mapping to truncate 404 * 405 * Called under (and serialized by) inode->i_mutex. 406 * 407 * Filesystems have to use this in the .evict_inode path to inform the 408 * VM that this is the final truncate and the inode is going away. 409 */ 410 void truncate_inode_pages_final(struct address_space *mapping) 411 { 412 unsigned long nrexceptional; 413 unsigned long nrpages; 414 415 /* 416 * Page reclaim can not participate in regular inode lifetime 417 * management (can't call iput()) and thus can race with the 418 * inode teardown. Tell it when the address space is exiting, 419 * so that it does not install eviction information after the 420 * final truncate has begun. 421 */ 422 mapping_set_exiting(mapping); 423 424 /* 425 * When reclaim installs eviction entries, it increases 426 * nrexceptional first, then decreases nrpages. Make sure we see 427 * this in the right order or we might miss an entry. 428 */ 429 nrpages = mapping->nrpages; 430 smp_rmb(); 431 nrexceptional = mapping->nrexceptional; 432 433 if (nrpages || nrexceptional) { 434 /* 435 * As truncation uses a lockless tree lookup, cycle 436 * the tree lock to make sure any ongoing tree 437 * modification that does not see AS_EXITING is 438 * completed before starting the final truncate. 439 */ 440 spin_lock_irq(&mapping->tree_lock); 441 spin_unlock_irq(&mapping->tree_lock); 442 443 truncate_inode_pages(mapping, 0); 444 } 445 } 446 EXPORT_SYMBOL(truncate_inode_pages_final); 447 448 /** 449 * invalidate_mapping_pages - Invalidate all the unlocked pages of one inode 450 * @mapping: the address_space which holds the pages to invalidate 451 * @start: the offset 'from' which to invalidate 452 * @end: the offset 'to' which to invalidate (inclusive) 453 * 454 * This function only removes the unlocked pages, if you want to 455 * remove all the pages of one inode, you must call truncate_inode_pages. 456 * 457 * invalidate_mapping_pages() will not block on IO activity. It will not 458 * invalidate pages which are dirty, locked, under writeback or mapped into 459 * pagetables. 460 */ 461 unsigned long invalidate_mapping_pages(struct address_space *mapping, 462 pgoff_t start, pgoff_t end) 463 { 464 pgoff_t indices[PAGEVEC_SIZE]; 465 struct pagevec pvec; 466 pgoff_t index = start; 467 unsigned long ret; 468 unsigned long count = 0; 469 int i; 470 471 pagevec_init(&pvec, 0); 472 while (index <= end && pagevec_lookup_entries(&pvec, mapping, index, 473 min(end - index, (pgoff_t)PAGEVEC_SIZE - 1) + 1, 474 indices)) { 475 for (i = 0; i < pagevec_count(&pvec); i++) { 476 struct page *page = pvec.pages[i]; 477 478 /* We rely upon deletion not changing page->index */ 479 index = indices[i]; 480 if (index > end) 481 break; 482 483 if (radix_tree_exceptional_entry(page)) { 484 clear_exceptional_entry(mapping, index, page); 485 continue; 486 } 487 488 if (!trylock_page(page)) 489 continue; 490 WARN_ON(page->index != index); 491 ret = invalidate_inode_page(page); 492 unlock_page(page); 493 /* 494 * Invalidation is a hint that the page is no longer 495 * of interest and try to speed up its reclaim. 496 */ 497 if (!ret) 498 deactivate_file_page(page); 499 count += ret; 500 } 501 pagevec_remove_exceptionals(&pvec); 502 pagevec_release(&pvec); 503 cond_resched(); 504 index++; 505 } 506 return count; 507 } 508 EXPORT_SYMBOL(invalidate_mapping_pages); 509 510 /* 511 * This is like invalidate_complete_page(), except it ignores the page's 512 * refcount. We do this because invalidate_inode_pages2() needs stronger 513 * invalidation guarantees, and cannot afford to leave pages behind because 514 * shrink_page_list() has a temp ref on them, or because they're transiently 515 * sitting in the lru_cache_add() pagevecs. 516 */ 517 static int 518 invalidate_complete_page2(struct address_space *mapping, struct page *page) 519 { 520 unsigned long flags; 521 522 if (page->mapping != mapping) 523 return 0; 524 525 if (page_has_private(page) && !try_to_release_page(page, GFP_KERNEL)) 526 return 0; 527 528 spin_lock_irqsave(&mapping->tree_lock, flags); 529 if (PageDirty(page)) 530 goto failed; 531 532 BUG_ON(page_has_private(page)); 533 __delete_from_page_cache(page, NULL); 534 spin_unlock_irqrestore(&mapping->tree_lock, flags); 535 536 if (mapping->a_ops->freepage) 537 mapping->a_ops->freepage(page); 538 539 put_page(page); /* pagecache ref */ 540 return 1; 541 failed: 542 spin_unlock_irqrestore(&mapping->tree_lock, flags); 543 return 0; 544 } 545 546 static int do_launder_page(struct address_space *mapping, struct page *page) 547 { 548 if (!PageDirty(page)) 549 return 0; 550 if (page->mapping != mapping || mapping->a_ops->launder_page == NULL) 551 return 0; 552 return mapping->a_ops->launder_page(page); 553 } 554 555 /** 556 * invalidate_inode_pages2_range - remove range of pages from an address_space 557 * @mapping: the address_space 558 * @start: the page offset 'from' which to invalidate 559 * @end: the page offset 'to' which to invalidate (inclusive) 560 * 561 * Any pages which are found to be mapped into pagetables are unmapped prior to 562 * invalidation. 563 * 564 * Returns -EBUSY if any pages could not be invalidated. 565 */ 566 int invalidate_inode_pages2_range(struct address_space *mapping, 567 pgoff_t start, pgoff_t end) 568 { 569 pgoff_t indices[PAGEVEC_SIZE]; 570 struct pagevec pvec; 571 pgoff_t index; 572 int i; 573 int ret = 0; 574 int ret2 = 0; 575 int did_range_unmap = 0; 576 577 cleancache_invalidate_inode(mapping); 578 pagevec_init(&pvec, 0); 579 index = start; 580 while (index <= end && pagevec_lookup_entries(&pvec, mapping, index, 581 min(end - index, (pgoff_t)PAGEVEC_SIZE - 1) + 1, 582 indices)) { 583 for (i = 0; i < pagevec_count(&pvec); i++) { 584 struct page *page = pvec.pages[i]; 585 586 /* We rely upon deletion not changing page->index */ 587 index = indices[i]; 588 if (index > end) 589 break; 590 591 if (radix_tree_exceptional_entry(page)) { 592 clear_exceptional_entry(mapping, index, page); 593 continue; 594 } 595 596 lock_page(page); 597 WARN_ON(page->index != index); 598 if (page->mapping != mapping) { 599 unlock_page(page); 600 continue; 601 } 602 wait_on_page_writeback(page); 603 if (page_mapped(page)) { 604 if (!did_range_unmap) { 605 /* 606 * Zap the rest of the file in one hit. 607 */ 608 unmap_mapping_range(mapping, 609 (loff_t)index << PAGE_SHIFT, 610 (loff_t)(1 + end - index) 611 << PAGE_SHIFT, 612 0); 613 did_range_unmap = 1; 614 } else { 615 /* 616 * Just zap this page 617 */ 618 unmap_mapping_range(mapping, 619 (loff_t)index << PAGE_SHIFT, 620 PAGE_SIZE, 0); 621 } 622 } 623 BUG_ON(page_mapped(page)); 624 ret2 = do_launder_page(mapping, page); 625 if (ret2 == 0) { 626 if (!invalidate_complete_page2(mapping, page)) 627 ret2 = -EBUSY; 628 } 629 if (ret2 < 0) 630 ret = ret2; 631 unlock_page(page); 632 } 633 pagevec_remove_exceptionals(&pvec); 634 pagevec_release(&pvec); 635 cond_resched(); 636 index++; 637 } 638 cleancache_invalidate_inode(mapping); 639 return ret; 640 } 641 EXPORT_SYMBOL_GPL(invalidate_inode_pages2_range); 642 643 /** 644 * invalidate_inode_pages2 - remove all pages from an address_space 645 * @mapping: the address_space 646 * 647 * Any pages which are found to be mapped into pagetables are unmapped prior to 648 * invalidation. 649 * 650 * Returns -EBUSY if any pages could not be invalidated. 651 */ 652 int invalidate_inode_pages2(struct address_space *mapping) 653 { 654 return invalidate_inode_pages2_range(mapping, 0, -1); 655 } 656 EXPORT_SYMBOL_GPL(invalidate_inode_pages2); 657 658 /** 659 * truncate_pagecache - unmap and remove pagecache that has been truncated 660 * @inode: inode 661 * @newsize: new file size 662 * 663 * inode's new i_size must already be written before truncate_pagecache 664 * is called. 665 * 666 * This function should typically be called before the filesystem 667 * releases resources associated with the freed range (eg. deallocates 668 * blocks). This way, pagecache will always stay logically coherent 669 * with on-disk format, and the filesystem would not have to deal with 670 * situations such as writepage being called for a page that has already 671 * had its underlying blocks deallocated. 672 */ 673 void truncate_pagecache(struct inode *inode, loff_t newsize) 674 { 675 struct address_space *mapping = inode->i_mapping; 676 loff_t holebegin = round_up(newsize, PAGE_SIZE); 677 678 /* 679 * unmap_mapping_range is called twice, first simply for 680 * efficiency so that truncate_inode_pages does fewer 681 * single-page unmaps. However after this first call, and 682 * before truncate_inode_pages finishes, it is possible for 683 * private pages to be COWed, which remain after 684 * truncate_inode_pages finishes, hence the second 685 * unmap_mapping_range call must be made for correctness. 686 */ 687 unmap_mapping_range(mapping, holebegin, 0, 1); 688 truncate_inode_pages(mapping, newsize); 689 unmap_mapping_range(mapping, holebegin, 0, 1); 690 } 691 EXPORT_SYMBOL(truncate_pagecache); 692 693 /** 694 * truncate_setsize - update inode and pagecache for a new file size 695 * @inode: inode 696 * @newsize: new file size 697 * 698 * truncate_setsize updates i_size and performs pagecache truncation (if 699 * necessary) to @newsize. It will be typically be called from the filesystem's 700 * setattr function when ATTR_SIZE is passed in. 701 * 702 * Must be called with a lock serializing truncates and writes (generally 703 * i_mutex but e.g. xfs uses a different lock) and before all filesystem 704 * specific block truncation has been performed. 705 */ 706 void truncate_setsize(struct inode *inode, loff_t newsize) 707 { 708 loff_t oldsize = inode->i_size; 709 710 i_size_write(inode, newsize); 711 if (newsize > oldsize) 712 pagecache_isize_extended(inode, oldsize, newsize); 713 truncate_pagecache(inode, newsize); 714 } 715 EXPORT_SYMBOL(truncate_setsize); 716 717 /** 718 * pagecache_isize_extended - update pagecache after extension of i_size 719 * @inode: inode for which i_size was extended 720 * @from: original inode size 721 * @to: new inode size 722 * 723 * Handle extension of inode size either caused by extending truncate or by 724 * write starting after current i_size. We mark the page straddling current 725 * i_size RO so that page_mkwrite() is called on the nearest write access to 726 * the page. This way filesystem can be sure that page_mkwrite() is called on 727 * the page before user writes to the page via mmap after the i_size has been 728 * changed. 729 * 730 * The function must be called after i_size is updated so that page fault 731 * coming after we unlock the page will already see the new i_size. 732 * The function must be called while we still hold i_mutex - this not only 733 * makes sure i_size is stable but also that userspace cannot observe new 734 * i_size value before we are prepared to store mmap writes at new inode size. 735 */ 736 void pagecache_isize_extended(struct inode *inode, loff_t from, loff_t to) 737 { 738 int bsize = 1 << inode->i_blkbits; 739 loff_t rounded_from; 740 struct page *page; 741 pgoff_t index; 742 743 WARN_ON(to > inode->i_size); 744 745 if (from >= to || bsize == PAGE_SIZE) 746 return; 747 /* Page straddling @from will not have any hole block created? */ 748 rounded_from = round_up(from, bsize); 749 if (to <= rounded_from || !(rounded_from & (PAGE_SIZE - 1))) 750 return; 751 752 index = from >> PAGE_SHIFT; 753 page = find_lock_page(inode->i_mapping, index); 754 /* Page not cached? Nothing to do */ 755 if (!page) 756 return; 757 /* 758 * See clear_page_dirty_for_io() for details why set_page_dirty() 759 * is needed. 760 */ 761 if (page_mkclean(page)) 762 set_page_dirty(page); 763 unlock_page(page); 764 put_page(page); 765 } 766 EXPORT_SYMBOL(pagecache_isize_extended); 767 768 /** 769 * truncate_pagecache_range - unmap and remove pagecache that is hole-punched 770 * @inode: inode 771 * @lstart: offset of beginning of hole 772 * @lend: offset of last byte of hole 773 * 774 * This function should typically be called before the filesystem 775 * releases resources associated with the freed range (eg. deallocates 776 * blocks). This way, pagecache will always stay logically coherent 777 * with on-disk format, and the filesystem would not have to deal with 778 * situations such as writepage being called for a page that has already 779 * had its underlying blocks deallocated. 780 */ 781 void truncate_pagecache_range(struct inode *inode, loff_t lstart, loff_t lend) 782 { 783 struct address_space *mapping = inode->i_mapping; 784 loff_t unmap_start = round_up(lstart, PAGE_SIZE); 785 loff_t unmap_end = round_down(1 + lend, PAGE_SIZE) - 1; 786 /* 787 * This rounding is currently just for example: unmap_mapping_range 788 * expands its hole outwards, whereas we want it to contract the hole 789 * inwards. However, existing callers of truncate_pagecache_range are 790 * doing their own page rounding first. Note that unmap_mapping_range 791 * allows holelen 0 for all, and we allow lend -1 for end of file. 792 */ 793 794 /* 795 * Unlike in truncate_pagecache, unmap_mapping_range is called only 796 * once (before truncating pagecache), and without "even_cows" flag: 797 * hole-punching should not remove private COWed pages from the hole. 798 */ 799 if ((u64)unmap_end > (u64)unmap_start) 800 unmap_mapping_range(mapping, unmap_start, 801 1 + unmap_end - unmap_start, 0); 802 truncate_inode_pages_range(mapping, lstart, lend); 803 } 804 EXPORT_SYMBOL(truncate_pagecache_range); 805