1 // SPDX-License-Identifier: GPL-2.0-only 2 /* 3 * mm/truncate.c - code for taking down pages from address_spaces 4 * 5 * Copyright (C) 2002, Linus Torvalds 6 * 7 * 10Sep2002 Andrew Morton 8 * Initial version. 9 */ 10 11 #include <linux/kernel.h> 12 #include <linux/backing-dev.h> 13 #include <linux/dax.h> 14 #include <linux/gfp.h> 15 #include <linux/mm.h> 16 #include <linux/swap.h> 17 #include <linux/export.h> 18 #include <linux/pagemap.h> 19 #include <linux/highmem.h> 20 #include <linux/pagevec.h> 21 #include <linux/task_io_accounting_ops.h> 22 #include <linux/buffer_head.h> /* grr. try_to_release_page */ 23 #include <linux/shmem_fs.h> 24 #include <linux/rmap.h> 25 #include "internal.h" 26 27 /* 28 * Regular page slots are stabilized by the page lock even without the tree 29 * itself locked. These unlocked entries need verification under the tree 30 * lock. 31 */ 32 static inline void __clear_shadow_entry(struct address_space *mapping, 33 pgoff_t index, void *entry) 34 { 35 XA_STATE(xas, &mapping->i_pages, index); 36 37 xas_set_update(&xas, workingset_update_node); 38 if (xas_load(&xas) != entry) 39 return; 40 xas_store(&xas, NULL); 41 } 42 43 static void clear_shadow_entry(struct address_space *mapping, pgoff_t index, 44 void *entry) 45 { 46 spin_lock(&mapping->host->i_lock); 47 xa_lock_irq(&mapping->i_pages); 48 __clear_shadow_entry(mapping, index, entry); 49 xa_unlock_irq(&mapping->i_pages); 50 if (mapping_shrinkable(mapping)) 51 inode_add_lru(mapping->host); 52 spin_unlock(&mapping->host->i_lock); 53 } 54 55 /* 56 * Unconditionally remove exceptional entries. Usually called from truncate 57 * path. Note that the folio_batch may be altered by this function by removing 58 * exceptional entries similar to what folio_batch_remove_exceptionals() does. 59 */ 60 static void truncate_folio_batch_exceptionals(struct address_space *mapping, 61 struct folio_batch *fbatch, pgoff_t *indices) 62 { 63 int i, j; 64 bool dax; 65 66 /* Handled by shmem itself */ 67 if (shmem_mapping(mapping)) 68 return; 69 70 for (j = 0; j < folio_batch_count(fbatch); j++) 71 if (xa_is_value(fbatch->folios[j])) 72 break; 73 74 if (j == folio_batch_count(fbatch)) 75 return; 76 77 dax = dax_mapping(mapping); 78 if (!dax) { 79 spin_lock(&mapping->host->i_lock); 80 xa_lock_irq(&mapping->i_pages); 81 } 82 83 for (i = j; i < folio_batch_count(fbatch); i++) { 84 struct folio *folio = fbatch->folios[i]; 85 pgoff_t index = indices[i]; 86 87 if (!xa_is_value(folio)) { 88 fbatch->folios[j++] = folio; 89 continue; 90 } 91 92 if (unlikely(dax)) { 93 dax_delete_mapping_entry(mapping, index); 94 continue; 95 } 96 97 __clear_shadow_entry(mapping, index, folio); 98 } 99 100 if (!dax) { 101 xa_unlock_irq(&mapping->i_pages); 102 if (mapping_shrinkable(mapping)) 103 inode_add_lru(mapping->host); 104 spin_unlock(&mapping->host->i_lock); 105 } 106 fbatch->nr = j; 107 } 108 109 /* 110 * Invalidate exceptional entry if easily possible. This handles exceptional 111 * entries for invalidate_inode_pages(). 112 */ 113 static int invalidate_exceptional_entry(struct address_space *mapping, 114 pgoff_t index, void *entry) 115 { 116 /* Handled by shmem itself, or for DAX we do nothing. */ 117 if (shmem_mapping(mapping) || dax_mapping(mapping)) 118 return 1; 119 clear_shadow_entry(mapping, index, entry); 120 return 1; 121 } 122 123 /* 124 * Invalidate exceptional entry if clean. This handles exceptional entries for 125 * invalidate_inode_pages2() so for DAX it evicts only clean entries. 126 */ 127 static int invalidate_exceptional_entry2(struct address_space *mapping, 128 pgoff_t index, void *entry) 129 { 130 /* Handled by shmem itself */ 131 if (shmem_mapping(mapping)) 132 return 1; 133 if (dax_mapping(mapping)) 134 return dax_invalidate_mapping_entry_sync(mapping, index); 135 clear_shadow_entry(mapping, index, entry); 136 return 1; 137 } 138 139 /** 140 * folio_invalidate - Invalidate part or all of a folio. 141 * @folio: The folio which is affected. 142 * @offset: start of the range to invalidate 143 * @length: length of the range to invalidate 144 * 145 * folio_invalidate() is called when all or part of the folio has become 146 * invalidated by a truncate operation. 147 * 148 * folio_invalidate() does not have to release all buffers, but it must 149 * ensure that no dirty buffer is left outside @offset and that no I/O 150 * is underway against any of the blocks which are outside the truncation 151 * point. Because the caller is about to free (and possibly reuse) those 152 * blocks on-disk. 153 */ 154 void folio_invalidate(struct folio *folio, size_t offset, size_t length) 155 { 156 const struct address_space_operations *aops = folio->mapping->a_ops; 157 158 if (aops->invalidate_folio) 159 aops->invalidate_folio(folio, offset, length); 160 } 161 EXPORT_SYMBOL_GPL(folio_invalidate); 162 163 /* 164 * If truncate cannot remove the fs-private metadata from the page, the page 165 * becomes orphaned. It will be left on the LRU and may even be mapped into 166 * user pagetables if we're racing with filemap_fault(). 167 * 168 * We need to bail out if page->mapping is no longer equal to the original 169 * mapping. This happens a) when the VM reclaimed the page while we waited on 170 * its lock, b) when a concurrent invalidate_mapping_pages got there first and 171 * c) when tmpfs swizzles a page between a tmpfs inode and swapper_space. 172 */ 173 static void truncate_cleanup_folio(struct folio *folio) 174 { 175 if (folio_mapped(folio)) 176 unmap_mapping_folio(folio); 177 178 if (folio_has_private(folio)) 179 folio_invalidate(folio, 0, folio_size(folio)); 180 181 /* 182 * Some filesystems seem to re-dirty the page even after 183 * the VM has canceled the dirty bit (eg ext3 journaling). 184 * Hence dirty accounting check is placed after invalidation. 185 */ 186 folio_cancel_dirty(folio); 187 folio_clear_mappedtodisk(folio); 188 } 189 190 int truncate_inode_folio(struct address_space *mapping, struct folio *folio) 191 { 192 if (folio->mapping != mapping) 193 return -EIO; 194 195 truncate_cleanup_folio(folio); 196 filemap_remove_folio(folio); 197 return 0; 198 } 199 200 /* 201 * Handle partial folios. The folio may be entirely within the 202 * range if a split has raced with us. If not, we zero the part of the 203 * folio that's within the [start, end] range, and then split the folio if 204 * it's large. split_page_range() will discard pages which now lie beyond 205 * i_size, and we rely on the caller to discard pages which lie within a 206 * newly created hole. 207 * 208 * Returns false if splitting failed so the caller can avoid 209 * discarding the entire folio which is stubbornly unsplit. 210 */ 211 bool truncate_inode_partial_folio(struct folio *folio, loff_t start, loff_t end) 212 { 213 loff_t pos = folio_pos(folio); 214 unsigned int offset, length; 215 216 if (pos < start) 217 offset = start - pos; 218 else 219 offset = 0; 220 length = folio_size(folio); 221 if (pos + length <= (u64)end) 222 length = length - offset; 223 else 224 length = end + 1 - pos - offset; 225 226 folio_wait_writeback(folio); 227 if (length == folio_size(folio)) { 228 truncate_inode_folio(folio->mapping, folio); 229 return true; 230 } 231 232 /* 233 * We may be zeroing pages we're about to discard, but it avoids 234 * doing a complex calculation here, and then doing the zeroing 235 * anyway if the page split fails. 236 */ 237 folio_zero_range(folio, offset, length); 238 239 if (folio_has_private(folio)) 240 folio_invalidate(folio, offset, length); 241 if (!folio_test_large(folio)) 242 return true; 243 if (split_folio(folio) == 0) 244 return true; 245 if (folio_test_dirty(folio)) 246 return false; 247 truncate_inode_folio(folio->mapping, folio); 248 return true; 249 } 250 251 /* 252 * Used to get rid of pages on hardware memory corruption. 253 */ 254 int generic_error_remove_page(struct address_space *mapping, struct page *page) 255 { 256 VM_BUG_ON_PAGE(PageTail(page), page); 257 258 if (!mapping) 259 return -EINVAL; 260 /* 261 * Only punch for normal data pages for now. 262 * Handling other types like directories would need more auditing. 263 */ 264 if (!S_ISREG(mapping->host->i_mode)) 265 return -EIO; 266 return truncate_inode_folio(mapping, page_folio(page)); 267 } 268 EXPORT_SYMBOL(generic_error_remove_page); 269 270 static long mapping_evict_folio(struct address_space *mapping, 271 struct folio *folio) 272 { 273 if (folio_test_dirty(folio) || folio_test_writeback(folio)) 274 return 0; 275 /* The refcount will be elevated if any page in the folio is mapped */ 276 if (folio_ref_count(folio) > 277 folio_nr_pages(folio) + folio_has_private(folio) + 1) 278 return 0; 279 if (folio_has_private(folio) && !filemap_release_folio(folio, 0)) 280 return 0; 281 282 return remove_mapping(mapping, folio); 283 } 284 285 /** 286 * invalidate_inode_page() - Remove an unused page from the pagecache. 287 * @page: The page to remove. 288 * 289 * Safely invalidate one page from its pagecache mapping. 290 * It only drops clean, unused pages. 291 * 292 * Context: Page must be locked. 293 * Return: The number of pages successfully removed. 294 */ 295 long invalidate_inode_page(struct page *page) 296 { 297 struct folio *folio = page_folio(page); 298 struct address_space *mapping = folio_mapping(folio); 299 300 /* The page may have been truncated before it was locked */ 301 if (!mapping) 302 return 0; 303 return mapping_evict_folio(mapping, folio); 304 } 305 306 /** 307 * truncate_inode_pages_range - truncate range of pages specified by start & end byte offsets 308 * @mapping: mapping to truncate 309 * @lstart: offset from which to truncate 310 * @lend: offset to which to truncate (inclusive) 311 * 312 * Truncate the page cache, removing the pages that are between 313 * specified offsets (and zeroing out partial pages 314 * if lstart or lend + 1 is not page aligned). 315 * 316 * Truncate takes two passes - the first pass is nonblocking. It will not 317 * block on page locks and it will not block on writeback. The second pass 318 * will wait. This is to prevent as much IO as possible in the affected region. 319 * The first pass will remove most pages, so the search cost of the second pass 320 * is low. 321 * 322 * We pass down the cache-hot hint to the page freeing code. Even if the 323 * mapping is large, it is probably the case that the final pages are the most 324 * recently touched, and freeing happens in ascending file offset order. 325 * 326 * Note that since ->invalidate_folio() accepts range to invalidate 327 * truncate_inode_pages_range is able to handle cases where lend + 1 is not 328 * page aligned properly. 329 */ 330 void truncate_inode_pages_range(struct address_space *mapping, 331 loff_t lstart, loff_t lend) 332 { 333 pgoff_t start; /* inclusive */ 334 pgoff_t end; /* exclusive */ 335 struct folio_batch fbatch; 336 pgoff_t indices[PAGEVEC_SIZE]; 337 pgoff_t index; 338 int i; 339 struct folio *folio; 340 bool same_folio; 341 342 if (mapping_empty(mapping)) 343 return; 344 345 /* 346 * 'start' and 'end' always covers the range of pages to be fully 347 * truncated. Partial pages are covered with 'partial_start' at the 348 * start of the range and 'partial_end' at the end of the range. 349 * Note that 'end' is exclusive while 'lend' is inclusive. 350 */ 351 start = (lstart + PAGE_SIZE - 1) >> PAGE_SHIFT; 352 if (lend == -1) 353 /* 354 * lend == -1 indicates end-of-file so we have to set 'end' 355 * to the highest possible pgoff_t and since the type is 356 * unsigned we're using -1. 357 */ 358 end = -1; 359 else 360 end = (lend + 1) >> PAGE_SHIFT; 361 362 folio_batch_init(&fbatch); 363 index = start; 364 while (index < end && find_lock_entries(mapping, &index, end - 1, 365 &fbatch, indices)) { 366 truncate_folio_batch_exceptionals(mapping, &fbatch, indices); 367 for (i = 0; i < folio_batch_count(&fbatch); i++) 368 truncate_cleanup_folio(fbatch.folios[i]); 369 delete_from_page_cache_batch(mapping, &fbatch); 370 for (i = 0; i < folio_batch_count(&fbatch); i++) 371 folio_unlock(fbatch.folios[i]); 372 folio_batch_release(&fbatch); 373 cond_resched(); 374 } 375 376 same_folio = (lstart >> PAGE_SHIFT) == (lend >> PAGE_SHIFT); 377 folio = __filemap_get_folio(mapping, lstart >> PAGE_SHIFT, FGP_LOCK, 0); 378 if (!IS_ERR(folio)) { 379 same_folio = lend < folio_pos(folio) + folio_size(folio); 380 if (!truncate_inode_partial_folio(folio, lstart, lend)) { 381 start = folio->index + folio_nr_pages(folio); 382 if (same_folio) 383 end = folio->index; 384 } 385 folio_unlock(folio); 386 folio_put(folio); 387 folio = NULL; 388 } 389 390 if (!same_folio) { 391 folio = __filemap_get_folio(mapping, lend >> PAGE_SHIFT, 392 FGP_LOCK, 0); 393 if (!IS_ERR(folio)) { 394 if (!truncate_inode_partial_folio(folio, lstart, lend)) 395 end = folio->index; 396 folio_unlock(folio); 397 folio_put(folio); 398 } 399 } 400 401 index = start; 402 while (index < end) { 403 cond_resched(); 404 if (!find_get_entries(mapping, &index, end - 1, &fbatch, 405 indices)) { 406 /* If all gone from start onwards, we're done */ 407 if (index == start) 408 break; 409 /* Otherwise restart to make sure all gone */ 410 index = start; 411 continue; 412 } 413 414 for (i = 0; i < folio_batch_count(&fbatch); i++) { 415 struct folio *folio = fbatch.folios[i]; 416 417 /* We rely upon deletion not changing page->index */ 418 419 if (xa_is_value(folio)) 420 continue; 421 422 folio_lock(folio); 423 VM_BUG_ON_FOLIO(!folio_contains(folio, indices[i]), folio); 424 folio_wait_writeback(folio); 425 truncate_inode_folio(mapping, folio); 426 folio_unlock(folio); 427 } 428 truncate_folio_batch_exceptionals(mapping, &fbatch, indices); 429 folio_batch_release(&fbatch); 430 } 431 } 432 EXPORT_SYMBOL(truncate_inode_pages_range); 433 434 /** 435 * truncate_inode_pages - truncate *all* the pages from an offset 436 * @mapping: mapping to truncate 437 * @lstart: offset from which to truncate 438 * 439 * Called under (and serialised by) inode->i_rwsem and 440 * mapping->invalidate_lock. 441 * 442 * Note: When this function returns, there can be a page in the process of 443 * deletion (inside __filemap_remove_folio()) in the specified range. Thus 444 * mapping->nrpages can be non-zero when this function returns even after 445 * truncation of the whole mapping. 446 */ 447 void truncate_inode_pages(struct address_space *mapping, loff_t lstart) 448 { 449 truncate_inode_pages_range(mapping, lstart, (loff_t)-1); 450 } 451 EXPORT_SYMBOL(truncate_inode_pages); 452 453 /** 454 * truncate_inode_pages_final - truncate *all* pages before inode dies 455 * @mapping: mapping to truncate 456 * 457 * Called under (and serialized by) inode->i_rwsem. 458 * 459 * Filesystems have to use this in the .evict_inode path to inform the 460 * VM that this is the final truncate and the inode is going away. 461 */ 462 void truncate_inode_pages_final(struct address_space *mapping) 463 { 464 /* 465 * Page reclaim can not participate in regular inode lifetime 466 * management (can't call iput()) and thus can race with the 467 * inode teardown. Tell it when the address space is exiting, 468 * so that it does not install eviction information after the 469 * final truncate has begun. 470 */ 471 mapping_set_exiting(mapping); 472 473 if (!mapping_empty(mapping)) { 474 /* 475 * As truncation uses a lockless tree lookup, cycle 476 * the tree lock to make sure any ongoing tree 477 * modification that does not see AS_EXITING is 478 * completed before starting the final truncate. 479 */ 480 xa_lock_irq(&mapping->i_pages); 481 xa_unlock_irq(&mapping->i_pages); 482 } 483 484 truncate_inode_pages(mapping, 0); 485 } 486 EXPORT_SYMBOL(truncate_inode_pages_final); 487 488 /** 489 * mapping_try_invalidate - Invalidate all the evictable folios of one inode 490 * @mapping: the address_space which holds the folios to invalidate 491 * @start: the offset 'from' which to invalidate 492 * @end: the offset 'to' which to invalidate (inclusive) 493 * @nr_failed: How many folio invalidations failed 494 * 495 * This function is similar to invalidate_mapping_pages(), except that it 496 * returns the number of folios which could not be evicted in @nr_failed. 497 */ 498 unsigned long mapping_try_invalidate(struct address_space *mapping, 499 pgoff_t start, pgoff_t end, unsigned long *nr_failed) 500 { 501 pgoff_t indices[PAGEVEC_SIZE]; 502 struct folio_batch fbatch; 503 pgoff_t index = start; 504 unsigned long ret; 505 unsigned long count = 0; 506 int i; 507 508 folio_batch_init(&fbatch); 509 while (find_lock_entries(mapping, &index, end, &fbatch, indices)) { 510 for (i = 0; i < folio_batch_count(&fbatch); i++) { 511 struct folio *folio = fbatch.folios[i]; 512 513 /* We rely upon deletion not changing folio->index */ 514 515 if (xa_is_value(folio)) { 516 count += invalidate_exceptional_entry(mapping, 517 indices[i], folio); 518 continue; 519 } 520 521 ret = mapping_evict_folio(mapping, folio); 522 folio_unlock(folio); 523 /* 524 * Invalidation is a hint that the folio is no longer 525 * of interest and try to speed up its reclaim. 526 */ 527 if (!ret) { 528 deactivate_file_folio(folio); 529 /* Likely in the lru cache of a remote CPU */ 530 if (nr_failed) 531 (*nr_failed)++; 532 } 533 count += ret; 534 } 535 folio_batch_remove_exceptionals(&fbatch); 536 folio_batch_release(&fbatch); 537 cond_resched(); 538 } 539 return count; 540 } 541 542 /** 543 * invalidate_mapping_pages - Invalidate all clean, unlocked cache of one inode 544 * @mapping: the address_space which holds the cache to invalidate 545 * @start: the offset 'from' which to invalidate 546 * @end: the offset 'to' which to invalidate (inclusive) 547 * 548 * This function removes pages that are clean, unmapped and unlocked, 549 * as well as shadow entries. It will not block on IO activity. 550 * 551 * If you want to remove all the pages of one inode, regardless of 552 * their use and writeback state, use truncate_inode_pages(). 553 * 554 * Return: The number of indices that had their contents invalidated 555 */ 556 unsigned long invalidate_mapping_pages(struct address_space *mapping, 557 pgoff_t start, pgoff_t end) 558 { 559 return mapping_try_invalidate(mapping, start, end, NULL); 560 } 561 EXPORT_SYMBOL(invalidate_mapping_pages); 562 563 /* 564 * This is like invalidate_inode_page(), except it ignores the page's 565 * refcount. We do this because invalidate_inode_pages2() needs stronger 566 * invalidation guarantees, and cannot afford to leave pages behind because 567 * shrink_page_list() has a temp ref on them, or because they're transiently 568 * sitting in the folio_add_lru() caches. 569 */ 570 static int invalidate_complete_folio2(struct address_space *mapping, 571 struct folio *folio) 572 { 573 if (folio->mapping != mapping) 574 return 0; 575 576 if (folio_has_private(folio) && 577 !filemap_release_folio(folio, GFP_KERNEL)) 578 return 0; 579 580 spin_lock(&mapping->host->i_lock); 581 xa_lock_irq(&mapping->i_pages); 582 if (folio_test_dirty(folio)) 583 goto failed; 584 585 BUG_ON(folio_has_private(folio)); 586 __filemap_remove_folio(folio, NULL); 587 xa_unlock_irq(&mapping->i_pages); 588 if (mapping_shrinkable(mapping)) 589 inode_add_lru(mapping->host); 590 spin_unlock(&mapping->host->i_lock); 591 592 filemap_free_folio(mapping, folio); 593 return 1; 594 failed: 595 xa_unlock_irq(&mapping->i_pages); 596 spin_unlock(&mapping->host->i_lock); 597 return 0; 598 } 599 600 static int folio_launder(struct address_space *mapping, struct folio *folio) 601 { 602 if (!folio_test_dirty(folio)) 603 return 0; 604 if (folio->mapping != mapping || mapping->a_ops->launder_folio == NULL) 605 return 0; 606 return mapping->a_ops->launder_folio(folio); 607 } 608 609 /** 610 * invalidate_inode_pages2_range - remove range of pages from an address_space 611 * @mapping: the address_space 612 * @start: the page offset 'from' which to invalidate 613 * @end: the page offset 'to' which to invalidate (inclusive) 614 * 615 * Any pages which are found to be mapped into pagetables are unmapped prior to 616 * invalidation. 617 * 618 * Return: -EBUSY if any pages could not be invalidated. 619 */ 620 int invalidate_inode_pages2_range(struct address_space *mapping, 621 pgoff_t start, pgoff_t end) 622 { 623 pgoff_t indices[PAGEVEC_SIZE]; 624 struct folio_batch fbatch; 625 pgoff_t index; 626 int i; 627 int ret = 0; 628 int ret2 = 0; 629 int did_range_unmap = 0; 630 631 if (mapping_empty(mapping)) 632 return 0; 633 634 folio_batch_init(&fbatch); 635 index = start; 636 while (find_get_entries(mapping, &index, end, &fbatch, indices)) { 637 for (i = 0; i < folio_batch_count(&fbatch); i++) { 638 struct folio *folio = fbatch.folios[i]; 639 640 /* We rely upon deletion not changing folio->index */ 641 642 if (xa_is_value(folio)) { 643 if (!invalidate_exceptional_entry2(mapping, 644 indices[i], folio)) 645 ret = -EBUSY; 646 continue; 647 } 648 649 if (!did_range_unmap && folio_mapped(folio)) { 650 /* 651 * If folio is mapped, before taking its lock, 652 * zap the rest of the file in one hit. 653 */ 654 unmap_mapping_pages(mapping, indices[i], 655 (1 + end - indices[i]), false); 656 did_range_unmap = 1; 657 } 658 659 folio_lock(folio); 660 VM_BUG_ON_FOLIO(!folio_contains(folio, indices[i]), folio); 661 if (folio->mapping != mapping) { 662 folio_unlock(folio); 663 continue; 664 } 665 folio_wait_writeback(folio); 666 667 if (folio_mapped(folio)) 668 unmap_mapping_folio(folio); 669 BUG_ON(folio_mapped(folio)); 670 671 ret2 = folio_launder(mapping, folio); 672 if (ret2 == 0) { 673 if (!invalidate_complete_folio2(mapping, folio)) 674 ret2 = -EBUSY; 675 } 676 if (ret2 < 0) 677 ret = ret2; 678 folio_unlock(folio); 679 } 680 folio_batch_remove_exceptionals(&fbatch); 681 folio_batch_release(&fbatch); 682 cond_resched(); 683 } 684 /* 685 * For DAX we invalidate page tables after invalidating page cache. We 686 * could invalidate page tables while invalidating each entry however 687 * that would be expensive. And doing range unmapping before doesn't 688 * work as we have no cheap way to find whether page cache entry didn't 689 * get remapped later. 690 */ 691 if (dax_mapping(mapping)) { 692 unmap_mapping_pages(mapping, start, end - start + 1, false); 693 } 694 return ret; 695 } 696 EXPORT_SYMBOL_GPL(invalidate_inode_pages2_range); 697 698 /** 699 * invalidate_inode_pages2 - remove all pages from an address_space 700 * @mapping: the address_space 701 * 702 * Any pages which are found to be mapped into pagetables are unmapped prior to 703 * invalidation. 704 * 705 * Return: -EBUSY if any pages could not be invalidated. 706 */ 707 int invalidate_inode_pages2(struct address_space *mapping) 708 { 709 return invalidate_inode_pages2_range(mapping, 0, -1); 710 } 711 EXPORT_SYMBOL_GPL(invalidate_inode_pages2); 712 713 /** 714 * truncate_pagecache - unmap and remove pagecache that has been truncated 715 * @inode: inode 716 * @newsize: new file size 717 * 718 * inode's new i_size must already be written before truncate_pagecache 719 * is called. 720 * 721 * This function should typically be called before the filesystem 722 * releases resources associated with the freed range (eg. deallocates 723 * blocks). This way, pagecache will always stay logically coherent 724 * with on-disk format, and the filesystem would not have to deal with 725 * situations such as writepage being called for a page that has already 726 * had its underlying blocks deallocated. 727 */ 728 void truncate_pagecache(struct inode *inode, loff_t newsize) 729 { 730 struct address_space *mapping = inode->i_mapping; 731 loff_t holebegin = round_up(newsize, PAGE_SIZE); 732 733 /* 734 * unmap_mapping_range is called twice, first simply for 735 * efficiency so that truncate_inode_pages does fewer 736 * single-page unmaps. However after this first call, and 737 * before truncate_inode_pages finishes, it is possible for 738 * private pages to be COWed, which remain after 739 * truncate_inode_pages finishes, hence the second 740 * unmap_mapping_range call must be made for correctness. 741 */ 742 unmap_mapping_range(mapping, holebegin, 0, 1); 743 truncate_inode_pages(mapping, newsize); 744 unmap_mapping_range(mapping, holebegin, 0, 1); 745 } 746 EXPORT_SYMBOL(truncate_pagecache); 747 748 /** 749 * truncate_setsize - update inode and pagecache for a new file size 750 * @inode: inode 751 * @newsize: new file size 752 * 753 * truncate_setsize updates i_size and performs pagecache truncation (if 754 * necessary) to @newsize. It will be typically be called from the filesystem's 755 * setattr function when ATTR_SIZE is passed in. 756 * 757 * Must be called with a lock serializing truncates and writes (generally 758 * i_rwsem but e.g. xfs uses a different lock) and before all filesystem 759 * specific block truncation has been performed. 760 */ 761 void truncate_setsize(struct inode *inode, loff_t newsize) 762 { 763 loff_t oldsize = inode->i_size; 764 765 i_size_write(inode, newsize); 766 if (newsize > oldsize) 767 pagecache_isize_extended(inode, oldsize, newsize); 768 truncate_pagecache(inode, newsize); 769 } 770 EXPORT_SYMBOL(truncate_setsize); 771 772 /** 773 * pagecache_isize_extended - update pagecache after extension of i_size 774 * @inode: inode for which i_size was extended 775 * @from: original inode size 776 * @to: new inode size 777 * 778 * Handle extension of inode size either caused by extending truncate or by 779 * write starting after current i_size. We mark the page straddling current 780 * i_size RO so that page_mkwrite() is called on the nearest write access to 781 * the page. This way filesystem can be sure that page_mkwrite() is called on 782 * the page before user writes to the page via mmap after the i_size has been 783 * changed. 784 * 785 * The function must be called after i_size is updated so that page fault 786 * coming after we unlock the page will already see the new i_size. 787 * The function must be called while we still hold i_rwsem - this not only 788 * makes sure i_size is stable but also that userspace cannot observe new 789 * i_size value before we are prepared to store mmap writes at new inode size. 790 */ 791 void pagecache_isize_extended(struct inode *inode, loff_t from, loff_t to) 792 { 793 int bsize = i_blocksize(inode); 794 loff_t rounded_from; 795 struct page *page; 796 pgoff_t index; 797 798 WARN_ON(to > inode->i_size); 799 800 if (from >= to || bsize == PAGE_SIZE) 801 return; 802 /* Page straddling @from will not have any hole block created? */ 803 rounded_from = round_up(from, bsize); 804 if (to <= rounded_from || !(rounded_from & (PAGE_SIZE - 1))) 805 return; 806 807 index = from >> PAGE_SHIFT; 808 page = find_lock_page(inode->i_mapping, index); 809 /* Page not cached? Nothing to do */ 810 if (!page) 811 return; 812 /* 813 * See clear_page_dirty_for_io() for details why set_page_dirty() 814 * is needed. 815 */ 816 if (page_mkclean(page)) 817 set_page_dirty(page); 818 unlock_page(page); 819 put_page(page); 820 } 821 EXPORT_SYMBOL(pagecache_isize_extended); 822 823 /** 824 * truncate_pagecache_range - unmap and remove pagecache that is hole-punched 825 * @inode: inode 826 * @lstart: offset of beginning of hole 827 * @lend: offset of last byte of hole 828 * 829 * This function should typically be called before the filesystem 830 * releases resources associated with the freed range (eg. deallocates 831 * blocks). This way, pagecache will always stay logically coherent 832 * with on-disk format, and the filesystem would not have to deal with 833 * situations such as writepage being called for a page that has already 834 * had its underlying blocks deallocated. 835 */ 836 void truncate_pagecache_range(struct inode *inode, loff_t lstart, loff_t lend) 837 { 838 struct address_space *mapping = inode->i_mapping; 839 loff_t unmap_start = round_up(lstart, PAGE_SIZE); 840 loff_t unmap_end = round_down(1 + lend, PAGE_SIZE) - 1; 841 /* 842 * This rounding is currently just for example: unmap_mapping_range 843 * expands its hole outwards, whereas we want it to contract the hole 844 * inwards. However, existing callers of truncate_pagecache_range are 845 * doing their own page rounding first. Note that unmap_mapping_range 846 * allows holelen 0 for all, and we allow lend -1 for end of file. 847 */ 848 849 /* 850 * Unlike in truncate_pagecache, unmap_mapping_range is called only 851 * once (before truncating pagecache), and without "even_cows" flag: 852 * hole-punching should not remove private COWed pages from the hole. 853 */ 854 if ((u64)unmap_end > (u64)unmap_start) 855 unmap_mapping_range(mapping, unmap_start, 856 1 + unmap_end - unmap_start, 0); 857 truncate_inode_pages_range(mapping, lstart, lend); 858 } 859 EXPORT_SYMBOL(truncate_pagecache_range); 860