xref: /openbmc/linux/mm/truncate.c (revision 6e10e219)
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  * mm/truncate.c - code for taking down pages from address_spaces
4  *
5  * Copyright (C) 2002, Linus Torvalds
6  *
7  * 10Sep2002	Andrew Morton
8  *		Initial version.
9  */
10 
11 #include <linux/kernel.h>
12 #include <linux/backing-dev.h>
13 #include <linux/dax.h>
14 #include <linux/gfp.h>
15 #include <linux/mm.h>
16 #include <linux/swap.h>
17 #include <linux/export.h>
18 #include <linux/pagemap.h>
19 #include <linux/highmem.h>
20 #include <linux/pagevec.h>
21 #include <linux/task_io_accounting_ops.h>
22 #include <linux/buffer_head.h>	/* grr. try_to_release_page,
23 				   do_invalidatepage */
24 #include <linux/shmem_fs.h>
25 #include <linux/cleancache.h>
26 #include <linux/rmap.h>
27 #include "internal.h"
28 
29 /*
30  * Regular page slots are stabilized by the page lock even without the tree
31  * itself locked.  These unlocked entries need verification under the tree
32  * lock.
33  */
34 static inline void __clear_shadow_entry(struct address_space *mapping,
35 				pgoff_t index, void *entry)
36 {
37 	XA_STATE(xas, &mapping->i_pages, index);
38 
39 	xas_set_update(&xas, workingset_update_node);
40 	if (xas_load(&xas) != entry)
41 		return;
42 	xas_store(&xas, NULL);
43 }
44 
45 static void clear_shadow_entry(struct address_space *mapping, pgoff_t index,
46 			       void *entry)
47 {
48 	spin_lock(&mapping->host->i_lock);
49 	xa_lock_irq(&mapping->i_pages);
50 	__clear_shadow_entry(mapping, index, entry);
51 	xa_unlock_irq(&mapping->i_pages);
52 	if (mapping_shrinkable(mapping))
53 		inode_add_lru(mapping->host);
54 	spin_unlock(&mapping->host->i_lock);
55 }
56 
57 /*
58  * Unconditionally remove exceptional entries. Usually called from truncate
59  * path. Note that the folio_batch may be altered by this function by removing
60  * exceptional entries similar to what folio_batch_remove_exceptionals() does.
61  */
62 static void truncate_folio_batch_exceptionals(struct address_space *mapping,
63 				struct folio_batch *fbatch, pgoff_t *indices)
64 {
65 	int i, j;
66 	bool dax;
67 
68 	/* Handled by shmem itself */
69 	if (shmem_mapping(mapping))
70 		return;
71 
72 	for (j = 0; j < folio_batch_count(fbatch); j++)
73 		if (xa_is_value(fbatch->folios[j]))
74 			break;
75 
76 	if (j == folio_batch_count(fbatch))
77 		return;
78 
79 	dax = dax_mapping(mapping);
80 	if (!dax) {
81 		spin_lock(&mapping->host->i_lock);
82 		xa_lock_irq(&mapping->i_pages);
83 	}
84 
85 	for (i = j; i < folio_batch_count(fbatch); i++) {
86 		struct folio *folio = fbatch->folios[i];
87 		pgoff_t index = indices[i];
88 
89 		if (!xa_is_value(folio)) {
90 			fbatch->folios[j++] = folio;
91 			continue;
92 		}
93 
94 		if (unlikely(dax)) {
95 			dax_delete_mapping_entry(mapping, index);
96 			continue;
97 		}
98 
99 		__clear_shadow_entry(mapping, index, folio);
100 	}
101 
102 	if (!dax) {
103 		xa_unlock_irq(&mapping->i_pages);
104 		if (mapping_shrinkable(mapping))
105 			inode_add_lru(mapping->host);
106 		spin_unlock(&mapping->host->i_lock);
107 	}
108 	fbatch->nr = j;
109 }
110 
111 /*
112  * Invalidate exceptional entry if easily possible. This handles exceptional
113  * entries for invalidate_inode_pages().
114  */
115 static int invalidate_exceptional_entry(struct address_space *mapping,
116 					pgoff_t index, void *entry)
117 {
118 	/* Handled by shmem itself, or for DAX we do nothing. */
119 	if (shmem_mapping(mapping) || dax_mapping(mapping))
120 		return 1;
121 	clear_shadow_entry(mapping, index, entry);
122 	return 1;
123 }
124 
125 /*
126  * Invalidate exceptional entry if clean. This handles exceptional entries for
127  * invalidate_inode_pages2() so for DAX it evicts only clean entries.
128  */
129 static int invalidate_exceptional_entry2(struct address_space *mapping,
130 					 pgoff_t index, void *entry)
131 {
132 	/* Handled by shmem itself */
133 	if (shmem_mapping(mapping))
134 		return 1;
135 	if (dax_mapping(mapping))
136 		return dax_invalidate_mapping_entry_sync(mapping, index);
137 	clear_shadow_entry(mapping, index, entry);
138 	return 1;
139 }
140 
141 /**
142  * do_invalidatepage - invalidate part or all of a page
143  * @page: the page which is affected
144  * @offset: start of the range to invalidate
145  * @length: length of the range to invalidate
146  *
147  * do_invalidatepage() is called when all or part of the page has become
148  * invalidated by a truncate operation.
149  *
150  * do_invalidatepage() does not have to release all buffers, but it must
151  * ensure that no dirty buffer is left outside @offset and that no I/O
152  * is underway against any of the blocks which are outside the truncation
153  * point.  Because the caller is about to free (and possibly reuse) those
154  * blocks on-disk.
155  */
156 void do_invalidatepage(struct page *page, unsigned int offset,
157 		       unsigned int length)
158 {
159 	void (*invalidatepage)(struct page *, unsigned int, unsigned int);
160 
161 	invalidatepage = page->mapping->a_ops->invalidatepage;
162 #ifdef CONFIG_BLOCK
163 	if (!invalidatepage)
164 		invalidatepage = block_invalidatepage;
165 #endif
166 	if (invalidatepage)
167 		(*invalidatepage)(page, offset, length);
168 }
169 
170 /*
171  * If truncate cannot remove the fs-private metadata from the page, the page
172  * becomes orphaned.  It will be left on the LRU and may even be mapped into
173  * user pagetables if we're racing with filemap_fault().
174  *
175  * We need to bail out if page->mapping is no longer equal to the original
176  * mapping.  This happens a) when the VM reclaimed the page while we waited on
177  * its lock, b) when a concurrent invalidate_mapping_pages got there first and
178  * c) when tmpfs swizzles a page between a tmpfs inode and swapper_space.
179  */
180 static void truncate_cleanup_folio(struct folio *folio)
181 {
182 	if (folio_mapped(folio))
183 		unmap_mapping_folio(folio);
184 
185 	if (folio_has_private(folio))
186 		do_invalidatepage(&folio->page, 0, folio_size(folio));
187 
188 	/*
189 	 * Some filesystems seem to re-dirty the page even after
190 	 * the VM has canceled the dirty bit (eg ext3 journaling).
191 	 * Hence dirty accounting check is placed after invalidation.
192 	 */
193 	folio_cancel_dirty(folio);
194 	folio_clear_mappedtodisk(folio);
195 }
196 
197 /*
198  * This is for invalidate_mapping_pages().  That function can be called at
199  * any time, and is not supposed to throw away dirty pages.  But pages can
200  * be marked dirty at any time too, so use remove_mapping which safely
201  * discards clean, unused pages.
202  *
203  * Returns non-zero if the page was successfully invalidated.
204  */
205 static int
206 invalidate_complete_page(struct address_space *mapping, struct page *page)
207 {
208 
209 	if (page->mapping != mapping)
210 		return 0;
211 
212 	if (page_has_private(page) && !try_to_release_page(page, 0))
213 		return 0;
214 
215 	return remove_mapping(mapping, page);
216 }
217 
218 int truncate_inode_folio(struct address_space *mapping, struct folio *folio)
219 {
220 	if (folio->mapping != mapping)
221 		return -EIO;
222 
223 	truncate_cleanup_folio(folio);
224 	filemap_remove_folio(folio);
225 	return 0;
226 }
227 
228 /*
229  * Handle partial folios.  The folio may be entirely within the
230  * range if a split has raced with us.  If not, we zero the part of the
231  * folio that's within the [start, end] range, and then split the folio if
232  * it's large.  split_page_range() will discard pages which now lie beyond
233  * i_size, and we rely on the caller to discard pages which lie within a
234  * newly created hole.
235  *
236  * Returns false if splitting failed so the caller can avoid
237  * discarding the entire folio which is stubbornly unsplit.
238  */
239 bool truncate_inode_partial_folio(struct folio *folio, loff_t start, loff_t end)
240 {
241 	loff_t pos = folio_pos(folio);
242 	unsigned int offset, length;
243 
244 	if (pos < start)
245 		offset = start - pos;
246 	else
247 		offset = 0;
248 	length = folio_size(folio);
249 	if (pos + length <= (u64)end)
250 		length = length - offset;
251 	else
252 		length = end + 1 - pos - offset;
253 
254 	folio_wait_writeback(folio);
255 	if (length == folio_size(folio)) {
256 		truncate_inode_folio(folio->mapping, folio);
257 		return true;
258 	}
259 
260 	/*
261 	 * We may be zeroing pages we're about to discard, but it avoids
262 	 * doing a complex calculation here, and then doing the zeroing
263 	 * anyway if the page split fails.
264 	 */
265 	folio_zero_range(folio, offset, length);
266 
267 	cleancache_invalidate_page(folio->mapping, &folio->page);
268 	if (folio_has_private(folio))
269 		do_invalidatepage(&folio->page, offset, length);
270 	if (!folio_test_large(folio))
271 		return true;
272 	if (split_huge_page(&folio->page) == 0)
273 		return true;
274 	if (folio_test_dirty(folio))
275 		return false;
276 	truncate_inode_folio(folio->mapping, folio);
277 	return true;
278 }
279 
280 /*
281  * Used to get rid of pages on hardware memory corruption.
282  */
283 int generic_error_remove_page(struct address_space *mapping, struct page *page)
284 {
285 	VM_BUG_ON_PAGE(PageTail(page), page);
286 
287 	if (!mapping)
288 		return -EINVAL;
289 	/*
290 	 * Only punch for normal data pages for now.
291 	 * Handling other types like directories would need more auditing.
292 	 */
293 	if (!S_ISREG(mapping->host->i_mode))
294 		return -EIO;
295 	return truncate_inode_folio(mapping, page_folio(page));
296 }
297 EXPORT_SYMBOL(generic_error_remove_page);
298 
299 /*
300  * Safely invalidate one page from its pagecache mapping.
301  * It only drops clean, unused pages. The page must be locked.
302  *
303  * Returns 1 if the page is successfully invalidated, otherwise 0.
304  */
305 int invalidate_inode_page(struct page *page)
306 {
307 	struct address_space *mapping = page_mapping(page);
308 	if (!mapping)
309 		return 0;
310 	if (PageDirty(page) || PageWriteback(page))
311 		return 0;
312 	if (page_mapped(page))
313 		return 0;
314 	return invalidate_complete_page(mapping, page);
315 }
316 
317 /**
318  * truncate_inode_pages_range - truncate range of pages specified by start & end byte offsets
319  * @mapping: mapping to truncate
320  * @lstart: offset from which to truncate
321  * @lend: offset to which to truncate (inclusive)
322  *
323  * Truncate the page cache, removing the pages that are between
324  * specified offsets (and zeroing out partial pages
325  * if lstart or lend + 1 is not page aligned).
326  *
327  * Truncate takes two passes - the first pass is nonblocking.  It will not
328  * block on page locks and it will not block on writeback.  The second pass
329  * will wait.  This is to prevent as much IO as possible in the affected region.
330  * The first pass will remove most pages, so the search cost of the second pass
331  * is low.
332  *
333  * We pass down the cache-hot hint to the page freeing code.  Even if the
334  * mapping is large, it is probably the case that the final pages are the most
335  * recently touched, and freeing happens in ascending file offset order.
336  *
337  * Note that since ->invalidatepage() accepts range to invalidate
338  * truncate_inode_pages_range is able to handle cases where lend + 1 is not
339  * page aligned properly.
340  */
341 void truncate_inode_pages_range(struct address_space *mapping,
342 				loff_t lstart, loff_t lend)
343 {
344 	pgoff_t		start;		/* inclusive */
345 	pgoff_t		end;		/* exclusive */
346 	struct folio_batch fbatch;
347 	pgoff_t		indices[PAGEVEC_SIZE];
348 	pgoff_t		index;
349 	int		i;
350 	struct folio	*folio;
351 	bool		same_folio;
352 
353 	if (mapping_empty(mapping))
354 		goto out;
355 
356 	/*
357 	 * 'start' and 'end' always covers the range of pages to be fully
358 	 * truncated. Partial pages are covered with 'partial_start' at the
359 	 * start of the range and 'partial_end' at the end of the range.
360 	 * Note that 'end' is exclusive while 'lend' is inclusive.
361 	 */
362 	start = (lstart + PAGE_SIZE - 1) >> PAGE_SHIFT;
363 	if (lend == -1)
364 		/*
365 		 * lend == -1 indicates end-of-file so we have to set 'end'
366 		 * to the highest possible pgoff_t and since the type is
367 		 * unsigned we're using -1.
368 		 */
369 		end = -1;
370 	else
371 		end = (lend + 1) >> PAGE_SHIFT;
372 
373 	folio_batch_init(&fbatch);
374 	index = start;
375 	while (index < end && find_lock_entries(mapping, index, end - 1,
376 			&fbatch, indices)) {
377 		index = indices[folio_batch_count(&fbatch) - 1] + 1;
378 		truncate_folio_batch_exceptionals(mapping, &fbatch, indices);
379 		for (i = 0; i < folio_batch_count(&fbatch); i++)
380 			truncate_cleanup_folio(fbatch.folios[i]);
381 		delete_from_page_cache_batch(mapping, &fbatch);
382 		for (i = 0; i < folio_batch_count(&fbatch); i++)
383 			folio_unlock(fbatch.folios[i]);
384 		folio_batch_release(&fbatch);
385 		cond_resched();
386 	}
387 
388 	same_folio = (lstart >> PAGE_SHIFT) == (lend >> PAGE_SHIFT);
389 	folio = __filemap_get_folio(mapping, lstart >> PAGE_SHIFT, FGP_LOCK, 0);
390 	if (folio) {
391 		same_folio = lend < folio_pos(folio) + folio_size(folio);
392 		if (!truncate_inode_partial_folio(folio, lstart, lend)) {
393 			start = folio->index + folio_nr_pages(folio);
394 			if (same_folio)
395 				end = folio->index;
396 		}
397 		folio_unlock(folio);
398 		folio_put(folio);
399 		folio = NULL;
400 	}
401 
402 	if (!same_folio)
403 		folio = __filemap_get_folio(mapping, lend >> PAGE_SHIFT,
404 						FGP_LOCK, 0);
405 	if (folio) {
406 		if (!truncate_inode_partial_folio(folio, lstart, lend))
407 			end = folio->index;
408 		folio_unlock(folio);
409 		folio_put(folio);
410 	}
411 
412 	index = start;
413 	while (index < end) {
414 		cond_resched();
415 		if (!find_get_entries(mapping, index, end - 1, &fbatch,
416 				indices)) {
417 			/* If all gone from start onwards, we're done */
418 			if (index == start)
419 				break;
420 			/* Otherwise restart to make sure all gone */
421 			index = start;
422 			continue;
423 		}
424 
425 		for (i = 0; i < folio_batch_count(&fbatch); i++) {
426 			struct folio *folio = fbatch.folios[i];
427 
428 			/* We rely upon deletion not changing page->index */
429 			index = indices[i];
430 
431 			if (xa_is_value(folio))
432 				continue;
433 
434 			folio_lock(folio);
435 			VM_BUG_ON_FOLIO(!folio_contains(folio, index), folio);
436 			folio_wait_writeback(folio);
437 			truncate_inode_folio(mapping, folio);
438 			folio_unlock(folio);
439 			index = folio_index(folio) + folio_nr_pages(folio) - 1;
440 		}
441 		truncate_folio_batch_exceptionals(mapping, &fbatch, indices);
442 		folio_batch_release(&fbatch);
443 		index++;
444 	}
445 
446 out:
447 	cleancache_invalidate_inode(mapping);
448 }
449 EXPORT_SYMBOL(truncate_inode_pages_range);
450 
451 /**
452  * truncate_inode_pages - truncate *all* the pages from an offset
453  * @mapping: mapping to truncate
454  * @lstart: offset from which to truncate
455  *
456  * Called under (and serialised by) inode->i_rwsem and
457  * mapping->invalidate_lock.
458  *
459  * Note: When this function returns, there can be a page in the process of
460  * deletion (inside __delete_from_page_cache()) in the specified range.  Thus
461  * mapping->nrpages can be non-zero when this function returns even after
462  * truncation of the whole mapping.
463  */
464 void truncate_inode_pages(struct address_space *mapping, loff_t lstart)
465 {
466 	truncate_inode_pages_range(mapping, lstart, (loff_t)-1);
467 }
468 EXPORT_SYMBOL(truncate_inode_pages);
469 
470 /**
471  * truncate_inode_pages_final - truncate *all* pages before inode dies
472  * @mapping: mapping to truncate
473  *
474  * Called under (and serialized by) inode->i_rwsem.
475  *
476  * Filesystems have to use this in the .evict_inode path to inform the
477  * VM that this is the final truncate and the inode is going away.
478  */
479 void truncate_inode_pages_final(struct address_space *mapping)
480 {
481 	/*
482 	 * Page reclaim can not participate in regular inode lifetime
483 	 * management (can't call iput()) and thus can race with the
484 	 * inode teardown.  Tell it when the address space is exiting,
485 	 * so that it does not install eviction information after the
486 	 * final truncate has begun.
487 	 */
488 	mapping_set_exiting(mapping);
489 
490 	if (!mapping_empty(mapping)) {
491 		/*
492 		 * As truncation uses a lockless tree lookup, cycle
493 		 * the tree lock to make sure any ongoing tree
494 		 * modification that does not see AS_EXITING is
495 		 * completed before starting the final truncate.
496 		 */
497 		xa_lock_irq(&mapping->i_pages);
498 		xa_unlock_irq(&mapping->i_pages);
499 	}
500 
501 	/*
502 	 * Cleancache needs notification even if there are no pages or shadow
503 	 * entries.
504 	 */
505 	truncate_inode_pages(mapping, 0);
506 }
507 EXPORT_SYMBOL(truncate_inode_pages_final);
508 
509 static unsigned long __invalidate_mapping_pages(struct address_space *mapping,
510 		pgoff_t start, pgoff_t end, unsigned long *nr_pagevec)
511 {
512 	pgoff_t indices[PAGEVEC_SIZE];
513 	struct folio_batch fbatch;
514 	pgoff_t index = start;
515 	unsigned long ret;
516 	unsigned long count = 0;
517 	int i;
518 
519 	folio_batch_init(&fbatch);
520 	while (find_lock_entries(mapping, index, end, &fbatch, indices)) {
521 		for (i = 0; i < folio_batch_count(&fbatch); i++) {
522 			struct page *page = &fbatch.folios[i]->page;
523 
524 			/* We rely upon deletion not changing page->index */
525 			index = indices[i];
526 
527 			if (xa_is_value(page)) {
528 				count += invalidate_exceptional_entry(mapping,
529 								      index,
530 								      page);
531 				continue;
532 			}
533 			index += thp_nr_pages(page) - 1;
534 
535 			ret = invalidate_inode_page(page);
536 			unlock_page(page);
537 			/*
538 			 * Invalidation is a hint that the page is no longer
539 			 * of interest and try to speed up its reclaim.
540 			 */
541 			if (!ret) {
542 				deactivate_file_page(page);
543 				/* It is likely on the pagevec of a remote CPU */
544 				if (nr_pagevec)
545 					(*nr_pagevec)++;
546 			}
547 			count += ret;
548 		}
549 		folio_batch_remove_exceptionals(&fbatch);
550 		folio_batch_release(&fbatch);
551 		cond_resched();
552 		index++;
553 	}
554 	return count;
555 }
556 
557 /**
558  * invalidate_mapping_pages - Invalidate all clean, unlocked cache of one inode
559  * @mapping: the address_space which holds the cache to invalidate
560  * @start: the offset 'from' which to invalidate
561  * @end: the offset 'to' which to invalidate (inclusive)
562  *
563  * This function removes pages that are clean, unmapped and unlocked,
564  * as well as shadow entries. It will not block on IO activity.
565  *
566  * If you want to remove all the pages of one inode, regardless of
567  * their use and writeback state, use truncate_inode_pages().
568  *
569  * Return: the number of the cache entries that were invalidated
570  */
571 unsigned long invalidate_mapping_pages(struct address_space *mapping,
572 		pgoff_t start, pgoff_t end)
573 {
574 	return __invalidate_mapping_pages(mapping, start, end, NULL);
575 }
576 EXPORT_SYMBOL(invalidate_mapping_pages);
577 
578 /**
579  * invalidate_mapping_pagevec - Invalidate all the unlocked pages of one inode
580  * @mapping: the address_space which holds the pages to invalidate
581  * @start: the offset 'from' which to invalidate
582  * @end: the offset 'to' which to invalidate (inclusive)
583  * @nr_pagevec: invalidate failed page number for caller
584  *
585  * This helper is similar to invalidate_mapping_pages(), except that it accounts
586  * for pages that are likely on a pagevec and counts them in @nr_pagevec, which
587  * will be used by the caller.
588  */
589 void invalidate_mapping_pagevec(struct address_space *mapping,
590 		pgoff_t start, pgoff_t end, unsigned long *nr_pagevec)
591 {
592 	__invalidate_mapping_pages(mapping, start, end, nr_pagevec);
593 }
594 
595 /*
596  * This is like invalidate_complete_page(), except it ignores the page's
597  * refcount.  We do this because invalidate_inode_pages2() needs stronger
598  * invalidation guarantees, and cannot afford to leave pages behind because
599  * shrink_page_list() has a temp ref on them, or because they're transiently
600  * sitting in the lru_cache_add() pagevecs.
601  */
602 static int invalidate_complete_folio2(struct address_space *mapping,
603 					struct folio *folio)
604 {
605 	if (folio->mapping != mapping)
606 		return 0;
607 
608 	if (folio_has_private(folio) &&
609 	    !filemap_release_folio(folio, GFP_KERNEL))
610 		return 0;
611 
612 	spin_lock(&mapping->host->i_lock);
613 	xa_lock_irq(&mapping->i_pages);
614 	if (folio_test_dirty(folio))
615 		goto failed;
616 
617 	BUG_ON(folio_has_private(folio));
618 	__filemap_remove_folio(folio, NULL);
619 	xa_unlock_irq(&mapping->i_pages);
620 	if (mapping_shrinkable(mapping))
621 		inode_add_lru(mapping->host);
622 	spin_unlock(&mapping->host->i_lock);
623 
624 	filemap_free_folio(mapping, folio);
625 	return 1;
626 failed:
627 	xa_unlock_irq(&mapping->i_pages);
628 	spin_unlock(&mapping->host->i_lock);
629 	return 0;
630 }
631 
632 static int do_launder_folio(struct address_space *mapping, struct folio *folio)
633 {
634 	if (!folio_test_dirty(folio))
635 		return 0;
636 	if (folio->mapping != mapping || mapping->a_ops->launder_page == NULL)
637 		return 0;
638 	return mapping->a_ops->launder_page(&folio->page);
639 }
640 
641 /**
642  * invalidate_inode_pages2_range - remove range of pages from an address_space
643  * @mapping: the address_space
644  * @start: the page offset 'from' which to invalidate
645  * @end: the page offset 'to' which to invalidate (inclusive)
646  *
647  * Any pages which are found to be mapped into pagetables are unmapped prior to
648  * invalidation.
649  *
650  * Return: -EBUSY if any pages could not be invalidated.
651  */
652 int invalidate_inode_pages2_range(struct address_space *mapping,
653 				  pgoff_t start, pgoff_t end)
654 {
655 	pgoff_t indices[PAGEVEC_SIZE];
656 	struct folio_batch fbatch;
657 	pgoff_t index;
658 	int i;
659 	int ret = 0;
660 	int ret2 = 0;
661 	int did_range_unmap = 0;
662 
663 	if (mapping_empty(mapping))
664 		goto out;
665 
666 	folio_batch_init(&fbatch);
667 	index = start;
668 	while (find_get_entries(mapping, index, end, &fbatch, indices)) {
669 		for (i = 0; i < folio_batch_count(&fbatch); i++) {
670 			struct folio *folio = fbatch.folios[i];
671 
672 			/* We rely upon deletion not changing folio->index */
673 			index = indices[i];
674 
675 			if (xa_is_value(folio)) {
676 				if (!invalidate_exceptional_entry2(mapping,
677 						index, folio))
678 					ret = -EBUSY;
679 				continue;
680 			}
681 
682 			if (!did_range_unmap && folio_mapped(folio)) {
683 				/*
684 				 * If folio is mapped, before taking its lock,
685 				 * zap the rest of the file in one hit.
686 				 */
687 				unmap_mapping_pages(mapping, index,
688 						(1 + end - index), false);
689 				did_range_unmap = 1;
690 			}
691 
692 			folio_lock(folio);
693 			VM_BUG_ON_FOLIO(!folio_contains(folio, index), folio);
694 			if (folio->mapping != mapping) {
695 				folio_unlock(folio);
696 				continue;
697 			}
698 			folio_wait_writeback(folio);
699 
700 			if (folio_mapped(folio))
701 				unmap_mapping_folio(folio);
702 			BUG_ON(folio_mapped(folio));
703 
704 			ret2 = do_launder_folio(mapping, folio);
705 			if (ret2 == 0) {
706 				if (!invalidate_complete_folio2(mapping, folio))
707 					ret2 = -EBUSY;
708 			}
709 			if (ret2 < 0)
710 				ret = ret2;
711 			folio_unlock(folio);
712 		}
713 		folio_batch_remove_exceptionals(&fbatch);
714 		folio_batch_release(&fbatch);
715 		cond_resched();
716 		index++;
717 	}
718 	/*
719 	 * For DAX we invalidate page tables after invalidating page cache.  We
720 	 * could invalidate page tables while invalidating each entry however
721 	 * that would be expensive. And doing range unmapping before doesn't
722 	 * work as we have no cheap way to find whether page cache entry didn't
723 	 * get remapped later.
724 	 */
725 	if (dax_mapping(mapping)) {
726 		unmap_mapping_pages(mapping, start, end - start + 1, false);
727 	}
728 out:
729 	cleancache_invalidate_inode(mapping);
730 	return ret;
731 }
732 EXPORT_SYMBOL_GPL(invalidate_inode_pages2_range);
733 
734 /**
735  * invalidate_inode_pages2 - remove all pages from an address_space
736  * @mapping: the address_space
737  *
738  * Any pages which are found to be mapped into pagetables are unmapped prior to
739  * invalidation.
740  *
741  * Return: -EBUSY if any pages could not be invalidated.
742  */
743 int invalidate_inode_pages2(struct address_space *mapping)
744 {
745 	return invalidate_inode_pages2_range(mapping, 0, -1);
746 }
747 EXPORT_SYMBOL_GPL(invalidate_inode_pages2);
748 
749 /**
750  * truncate_pagecache - unmap and remove pagecache that has been truncated
751  * @inode: inode
752  * @newsize: new file size
753  *
754  * inode's new i_size must already be written before truncate_pagecache
755  * is called.
756  *
757  * This function should typically be called before the filesystem
758  * releases resources associated with the freed range (eg. deallocates
759  * blocks). This way, pagecache will always stay logically coherent
760  * with on-disk format, and the filesystem would not have to deal with
761  * situations such as writepage being called for a page that has already
762  * had its underlying blocks deallocated.
763  */
764 void truncate_pagecache(struct inode *inode, loff_t newsize)
765 {
766 	struct address_space *mapping = inode->i_mapping;
767 	loff_t holebegin = round_up(newsize, PAGE_SIZE);
768 
769 	/*
770 	 * unmap_mapping_range is called twice, first simply for
771 	 * efficiency so that truncate_inode_pages does fewer
772 	 * single-page unmaps.  However after this first call, and
773 	 * before truncate_inode_pages finishes, it is possible for
774 	 * private pages to be COWed, which remain after
775 	 * truncate_inode_pages finishes, hence the second
776 	 * unmap_mapping_range call must be made for correctness.
777 	 */
778 	unmap_mapping_range(mapping, holebegin, 0, 1);
779 	truncate_inode_pages(mapping, newsize);
780 	unmap_mapping_range(mapping, holebegin, 0, 1);
781 }
782 EXPORT_SYMBOL(truncate_pagecache);
783 
784 /**
785  * truncate_setsize - update inode and pagecache for a new file size
786  * @inode: inode
787  * @newsize: new file size
788  *
789  * truncate_setsize updates i_size and performs pagecache truncation (if
790  * necessary) to @newsize. It will be typically be called from the filesystem's
791  * setattr function when ATTR_SIZE is passed in.
792  *
793  * Must be called with a lock serializing truncates and writes (generally
794  * i_rwsem but e.g. xfs uses a different lock) and before all filesystem
795  * specific block truncation has been performed.
796  */
797 void truncate_setsize(struct inode *inode, loff_t newsize)
798 {
799 	loff_t oldsize = inode->i_size;
800 
801 	i_size_write(inode, newsize);
802 	if (newsize > oldsize)
803 		pagecache_isize_extended(inode, oldsize, newsize);
804 	truncate_pagecache(inode, newsize);
805 }
806 EXPORT_SYMBOL(truncate_setsize);
807 
808 /**
809  * pagecache_isize_extended - update pagecache after extension of i_size
810  * @inode:	inode for which i_size was extended
811  * @from:	original inode size
812  * @to:		new inode size
813  *
814  * Handle extension of inode size either caused by extending truncate or by
815  * write starting after current i_size. We mark the page straddling current
816  * i_size RO so that page_mkwrite() is called on the nearest write access to
817  * the page.  This way filesystem can be sure that page_mkwrite() is called on
818  * the page before user writes to the page via mmap after the i_size has been
819  * changed.
820  *
821  * The function must be called after i_size is updated so that page fault
822  * coming after we unlock the page will already see the new i_size.
823  * The function must be called while we still hold i_rwsem - this not only
824  * makes sure i_size is stable but also that userspace cannot observe new
825  * i_size value before we are prepared to store mmap writes at new inode size.
826  */
827 void pagecache_isize_extended(struct inode *inode, loff_t from, loff_t to)
828 {
829 	int bsize = i_blocksize(inode);
830 	loff_t rounded_from;
831 	struct page *page;
832 	pgoff_t index;
833 
834 	WARN_ON(to > inode->i_size);
835 
836 	if (from >= to || bsize == PAGE_SIZE)
837 		return;
838 	/* Page straddling @from will not have any hole block created? */
839 	rounded_from = round_up(from, bsize);
840 	if (to <= rounded_from || !(rounded_from & (PAGE_SIZE - 1)))
841 		return;
842 
843 	index = from >> PAGE_SHIFT;
844 	page = find_lock_page(inode->i_mapping, index);
845 	/* Page not cached? Nothing to do */
846 	if (!page)
847 		return;
848 	/*
849 	 * See clear_page_dirty_for_io() for details why set_page_dirty()
850 	 * is needed.
851 	 */
852 	if (page_mkclean(page))
853 		set_page_dirty(page);
854 	unlock_page(page);
855 	put_page(page);
856 }
857 EXPORT_SYMBOL(pagecache_isize_extended);
858 
859 /**
860  * truncate_pagecache_range - unmap and remove pagecache that is hole-punched
861  * @inode: inode
862  * @lstart: offset of beginning of hole
863  * @lend: offset of last byte of hole
864  *
865  * This function should typically be called before the filesystem
866  * releases resources associated with the freed range (eg. deallocates
867  * blocks). This way, pagecache will always stay logically coherent
868  * with on-disk format, and the filesystem would not have to deal with
869  * situations such as writepage being called for a page that has already
870  * had its underlying blocks deallocated.
871  */
872 void truncate_pagecache_range(struct inode *inode, loff_t lstart, loff_t lend)
873 {
874 	struct address_space *mapping = inode->i_mapping;
875 	loff_t unmap_start = round_up(lstart, PAGE_SIZE);
876 	loff_t unmap_end = round_down(1 + lend, PAGE_SIZE) - 1;
877 	/*
878 	 * This rounding is currently just for example: unmap_mapping_range
879 	 * expands its hole outwards, whereas we want it to contract the hole
880 	 * inwards.  However, existing callers of truncate_pagecache_range are
881 	 * doing their own page rounding first.  Note that unmap_mapping_range
882 	 * allows holelen 0 for all, and we allow lend -1 for end of file.
883 	 */
884 
885 	/*
886 	 * Unlike in truncate_pagecache, unmap_mapping_range is called only
887 	 * once (before truncating pagecache), and without "even_cows" flag:
888 	 * hole-punching should not remove private COWed pages from the hole.
889 	 */
890 	if ((u64)unmap_end > (u64)unmap_start)
891 		unmap_mapping_range(mapping, unmap_start,
892 				    1 + unmap_end - unmap_start, 0);
893 	truncate_inode_pages_range(mapping, lstart, lend);
894 }
895 EXPORT_SYMBOL(truncate_pagecache_range);
896