1 /* 2 * mm/truncate.c - code for taking down pages from address_spaces 3 * 4 * Copyright (C) 2002, Linus Torvalds 5 * 6 * 10Sep2002 akpm@zip.com.au 7 * Initial version. 8 */ 9 10 #include <linux/kernel.h> 11 #include <linux/backing-dev.h> 12 #include <linux/mm.h> 13 #include <linux/swap.h> 14 #include <linux/module.h> 15 #include <linux/pagemap.h> 16 #include <linux/highmem.h> 17 #include <linux/pagevec.h> 18 #include <linux/task_io_accounting_ops.h> 19 #include <linux/buffer_head.h> /* grr. try_to_release_page, 20 do_invalidatepage */ 21 22 23 /** 24 * do_invalidatepage - invalidate part of all of a page 25 * @page: the page which is affected 26 * @offset: the index of the truncation point 27 * 28 * do_invalidatepage() is called when all or part of the page has become 29 * invalidated by a truncate operation. 30 * 31 * do_invalidatepage() does not have to release all buffers, but it must 32 * ensure that no dirty buffer is left outside @offset and that no I/O 33 * is underway against any of the blocks which are outside the truncation 34 * point. Because the caller is about to free (and possibly reuse) those 35 * blocks on-disk. 36 */ 37 void do_invalidatepage(struct page *page, unsigned long offset) 38 { 39 void (*invalidatepage)(struct page *, unsigned long); 40 invalidatepage = page->mapping->a_ops->invalidatepage; 41 #ifdef CONFIG_BLOCK 42 if (!invalidatepage) 43 invalidatepage = block_invalidatepage; 44 #endif 45 if (invalidatepage) 46 (*invalidatepage)(page, offset); 47 } 48 49 static inline void truncate_partial_page(struct page *page, unsigned partial) 50 { 51 zero_user_page(page, partial, PAGE_CACHE_SIZE - partial, KM_USER0); 52 if (PagePrivate(page)) 53 do_invalidatepage(page, partial); 54 } 55 56 /* 57 * This cancels just the dirty bit on the kernel page itself, it 58 * does NOT actually remove dirty bits on any mmap's that may be 59 * around. It also leaves the page tagged dirty, so any sync 60 * activity will still find it on the dirty lists, and in particular, 61 * clear_page_dirty_for_io() will still look at the dirty bits in 62 * the VM. 63 * 64 * Doing this should *normally* only ever be done when a page 65 * is truncated, and is not actually mapped anywhere at all. However, 66 * fs/buffer.c does this when it notices that somebody has cleaned 67 * out all the buffers on a page without actually doing it through 68 * the VM. Can you say "ext3 is horribly ugly"? Tought you could. 69 */ 70 void cancel_dirty_page(struct page *page, unsigned int account_size) 71 { 72 if (TestClearPageDirty(page)) { 73 struct address_space *mapping = page->mapping; 74 if (mapping && mapping_cap_account_dirty(mapping)) { 75 dec_zone_page_state(page, NR_FILE_DIRTY); 76 dec_bdi_stat(mapping->backing_dev_info, 77 BDI_RECLAIMABLE); 78 if (account_size) 79 task_io_account_cancelled_write(account_size); 80 } 81 } 82 } 83 EXPORT_SYMBOL(cancel_dirty_page); 84 85 /* 86 * If truncate cannot remove the fs-private metadata from the page, the page 87 * becomes anonymous. It will be left on the LRU and may even be mapped into 88 * user pagetables if we're racing with filemap_fault(). 89 * 90 * We need to bale out if page->mapping is no longer equal to the original 91 * mapping. This happens a) when the VM reclaimed the page while we waited on 92 * its lock, b) when a concurrent invalidate_mapping_pages got there first and 93 * c) when tmpfs swizzles a page between a tmpfs inode and swapper_space. 94 */ 95 static void 96 truncate_complete_page(struct address_space *mapping, struct page *page) 97 { 98 if (page->mapping != mapping) 99 return; 100 101 cancel_dirty_page(page, PAGE_CACHE_SIZE); 102 103 if (PagePrivate(page)) 104 do_invalidatepage(page, 0); 105 106 remove_from_page_cache(page); 107 ClearPageUptodate(page); 108 ClearPageMappedToDisk(page); 109 page_cache_release(page); /* pagecache ref */ 110 } 111 112 /* 113 * This is for invalidate_mapping_pages(). That function can be called at 114 * any time, and is not supposed to throw away dirty pages. But pages can 115 * be marked dirty at any time too, so use remove_mapping which safely 116 * discards clean, unused pages. 117 * 118 * Returns non-zero if the page was successfully invalidated. 119 */ 120 static int 121 invalidate_complete_page(struct address_space *mapping, struct page *page) 122 { 123 int ret; 124 125 if (page->mapping != mapping) 126 return 0; 127 128 if (PagePrivate(page) && !try_to_release_page(page, 0)) 129 return 0; 130 131 ret = remove_mapping(mapping, page); 132 133 return ret; 134 } 135 136 /** 137 * truncate_inode_pages - truncate range of pages specified by start and 138 * end byte offsets 139 * @mapping: mapping to truncate 140 * @lstart: offset from which to truncate 141 * @lend: offset to which to truncate 142 * 143 * Truncate the page cache, removing the pages that are between 144 * specified offsets (and zeroing out partial page 145 * (if lstart is not page aligned)). 146 * 147 * Truncate takes two passes - the first pass is nonblocking. It will not 148 * block on page locks and it will not block on writeback. The second pass 149 * will wait. This is to prevent as much IO as possible in the affected region. 150 * The first pass will remove most pages, so the search cost of the second pass 151 * is low. 152 * 153 * When looking at page->index outside the page lock we need to be careful to 154 * copy it into a local to avoid races (it could change at any time). 155 * 156 * We pass down the cache-hot hint to the page freeing code. Even if the 157 * mapping is large, it is probably the case that the final pages are the most 158 * recently touched, and freeing happens in ascending file offset order. 159 */ 160 void truncate_inode_pages_range(struct address_space *mapping, 161 loff_t lstart, loff_t lend) 162 { 163 const pgoff_t start = (lstart + PAGE_CACHE_SIZE-1) >> PAGE_CACHE_SHIFT; 164 pgoff_t end; 165 const unsigned partial = lstart & (PAGE_CACHE_SIZE - 1); 166 struct pagevec pvec; 167 pgoff_t next; 168 int i; 169 170 if (mapping->nrpages == 0) 171 return; 172 173 BUG_ON((lend & (PAGE_CACHE_SIZE - 1)) != (PAGE_CACHE_SIZE - 1)); 174 end = (lend >> PAGE_CACHE_SHIFT); 175 176 pagevec_init(&pvec, 0); 177 next = start; 178 while (next <= end && 179 pagevec_lookup(&pvec, mapping, next, PAGEVEC_SIZE)) { 180 for (i = 0; i < pagevec_count(&pvec); i++) { 181 struct page *page = pvec.pages[i]; 182 pgoff_t page_index = page->index; 183 184 if (page_index > end) { 185 next = page_index; 186 break; 187 } 188 189 if (page_index > next) 190 next = page_index; 191 next++; 192 if (TestSetPageLocked(page)) 193 continue; 194 if (PageWriteback(page)) { 195 unlock_page(page); 196 continue; 197 } 198 if (page_mapped(page)) { 199 unmap_mapping_range(mapping, 200 (loff_t)page_index<<PAGE_CACHE_SHIFT, 201 PAGE_CACHE_SIZE, 0); 202 } 203 truncate_complete_page(mapping, page); 204 unlock_page(page); 205 } 206 pagevec_release(&pvec); 207 cond_resched(); 208 } 209 210 if (partial) { 211 struct page *page = find_lock_page(mapping, start - 1); 212 if (page) { 213 wait_on_page_writeback(page); 214 truncate_partial_page(page, partial); 215 unlock_page(page); 216 page_cache_release(page); 217 } 218 } 219 220 next = start; 221 for ( ; ; ) { 222 cond_resched(); 223 if (!pagevec_lookup(&pvec, mapping, next, PAGEVEC_SIZE)) { 224 if (next == start) 225 break; 226 next = start; 227 continue; 228 } 229 if (pvec.pages[0]->index > end) { 230 pagevec_release(&pvec); 231 break; 232 } 233 for (i = 0; i < pagevec_count(&pvec); i++) { 234 struct page *page = pvec.pages[i]; 235 236 if (page->index > end) 237 break; 238 lock_page(page); 239 wait_on_page_writeback(page); 240 if (page_mapped(page)) { 241 unmap_mapping_range(mapping, 242 (loff_t)page->index<<PAGE_CACHE_SHIFT, 243 PAGE_CACHE_SIZE, 0); 244 } 245 if (page->index > next) 246 next = page->index; 247 next++; 248 truncate_complete_page(mapping, page); 249 unlock_page(page); 250 } 251 pagevec_release(&pvec); 252 } 253 } 254 EXPORT_SYMBOL(truncate_inode_pages_range); 255 256 /** 257 * truncate_inode_pages - truncate *all* the pages from an offset 258 * @mapping: mapping to truncate 259 * @lstart: offset from which to truncate 260 * 261 * Called under (and serialised by) inode->i_mutex. 262 */ 263 void truncate_inode_pages(struct address_space *mapping, loff_t lstart) 264 { 265 truncate_inode_pages_range(mapping, lstart, (loff_t)-1); 266 } 267 EXPORT_SYMBOL(truncate_inode_pages); 268 269 unsigned long __invalidate_mapping_pages(struct address_space *mapping, 270 pgoff_t start, pgoff_t end, bool be_atomic) 271 { 272 struct pagevec pvec; 273 pgoff_t next = start; 274 unsigned long ret = 0; 275 int i; 276 277 pagevec_init(&pvec, 0); 278 while (next <= end && 279 pagevec_lookup(&pvec, mapping, next, PAGEVEC_SIZE)) { 280 for (i = 0; i < pagevec_count(&pvec); i++) { 281 struct page *page = pvec.pages[i]; 282 pgoff_t index; 283 int lock_failed; 284 285 lock_failed = TestSetPageLocked(page); 286 287 /* 288 * We really shouldn't be looking at the ->index of an 289 * unlocked page. But we're not allowed to lock these 290 * pages. So we rely upon nobody altering the ->index 291 * of this (pinned-by-us) page. 292 */ 293 index = page->index; 294 if (index > next) 295 next = index; 296 next++; 297 if (lock_failed) 298 continue; 299 300 if (PageDirty(page) || PageWriteback(page)) 301 goto unlock; 302 if (page_mapped(page)) 303 goto unlock; 304 ret += invalidate_complete_page(mapping, page); 305 unlock: 306 unlock_page(page); 307 if (next > end) 308 break; 309 } 310 pagevec_release(&pvec); 311 if (likely(!be_atomic)) 312 cond_resched(); 313 } 314 return ret; 315 } 316 317 /** 318 * invalidate_mapping_pages - Invalidate all the unlocked pages of one inode 319 * @mapping: the address_space which holds the pages to invalidate 320 * @start: the offset 'from' which to invalidate 321 * @end: the offset 'to' which to invalidate (inclusive) 322 * 323 * This function only removes the unlocked pages, if you want to 324 * remove all the pages of one inode, you must call truncate_inode_pages. 325 * 326 * invalidate_mapping_pages() will not block on IO activity. It will not 327 * invalidate pages which are dirty, locked, under writeback or mapped into 328 * pagetables. 329 */ 330 unsigned long invalidate_mapping_pages(struct address_space *mapping, 331 pgoff_t start, pgoff_t end) 332 { 333 return __invalidate_mapping_pages(mapping, start, end, false); 334 } 335 EXPORT_SYMBOL(invalidate_mapping_pages); 336 337 /* 338 * This is like invalidate_complete_page(), except it ignores the page's 339 * refcount. We do this because invalidate_inode_pages2() needs stronger 340 * invalidation guarantees, and cannot afford to leave pages behind because 341 * shrink_page_list() has a temp ref on them, or because they're transiently 342 * sitting in the lru_cache_add() pagevecs. 343 */ 344 static int 345 invalidate_complete_page2(struct address_space *mapping, struct page *page) 346 { 347 if (page->mapping != mapping) 348 return 0; 349 350 if (PagePrivate(page) && !try_to_release_page(page, GFP_KERNEL)) 351 return 0; 352 353 write_lock_irq(&mapping->tree_lock); 354 if (PageDirty(page)) 355 goto failed; 356 357 BUG_ON(PagePrivate(page)); 358 __remove_from_page_cache(page); 359 write_unlock_irq(&mapping->tree_lock); 360 ClearPageUptodate(page); 361 page_cache_release(page); /* pagecache ref */ 362 return 1; 363 failed: 364 write_unlock_irq(&mapping->tree_lock); 365 return 0; 366 } 367 368 static int do_launder_page(struct address_space *mapping, struct page *page) 369 { 370 if (!PageDirty(page)) 371 return 0; 372 if (page->mapping != mapping || mapping->a_ops->launder_page == NULL) 373 return 0; 374 return mapping->a_ops->launder_page(page); 375 } 376 377 /** 378 * invalidate_inode_pages2_range - remove range of pages from an address_space 379 * @mapping: the address_space 380 * @start: the page offset 'from' which to invalidate 381 * @end: the page offset 'to' which to invalidate (inclusive) 382 * 383 * Any pages which are found to be mapped into pagetables are unmapped prior to 384 * invalidation. 385 * 386 * Returns -EIO if any pages could not be invalidated. 387 */ 388 int invalidate_inode_pages2_range(struct address_space *mapping, 389 pgoff_t start, pgoff_t end) 390 { 391 struct pagevec pvec; 392 pgoff_t next; 393 int i; 394 int ret = 0; 395 int did_range_unmap = 0; 396 int wrapped = 0; 397 398 pagevec_init(&pvec, 0); 399 next = start; 400 while (next <= end && !wrapped && 401 pagevec_lookup(&pvec, mapping, next, 402 min(end - next, (pgoff_t)PAGEVEC_SIZE - 1) + 1)) { 403 for (i = 0; i < pagevec_count(&pvec); i++) { 404 struct page *page = pvec.pages[i]; 405 pgoff_t page_index; 406 407 lock_page(page); 408 if (page->mapping != mapping) { 409 unlock_page(page); 410 continue; 411 } 412 page_index = page->index; 413 next = page_index + 1; 414 if (next == 0) 415 wrapped = 1; 416 if (page_index > end) { 417 unlock_page(page); 418 break; 419 } 420 wait_on_page_writeback(page); 421 if (page_mapped(page)) { 422 if (!did_range_unmap) { 423 /* 424 * Zap the rest of the file in one hit. 425 */ 426 unmap_mapping_range(mapping, 427 (loff_t)page_index<<PAGE_CACHE_SHIFT, 428 (loff_t)(end - page_index + 1) 429 << PAGE_CACHE_SHIFT, 430 0); 431 did_range_unmap = 1; 432 } else { 433 /* 434 * Just zap this page 435 */ 436 unmap_mapping_range(mapping, 437 (loff_t)page_index<<PAGE_CACHE_SHIFT, 438 PAGE_CACHE_SIZE, 0); 439 } 440 } 441 BUG_ON(page_mapped(page)); 442 ret = do_launder_page(mapping, page); 443 if (ret == 0 && !invalidate_complete_page2(mapping, page)) 444 ret = -EIO; 445 unlock_page(page); 446 } 447 pagevec_release(&pvec); 448 cond_resched(); 449 } 450 return ret; 451 } 452 EXPORT_SYMBOL_GPL(invalidate_inode_pages2_range); 453 454 /** 455 * invalidate_inode_pages2 - remove all pages from an address_space 456 * @mapping: the address_space 457 * 458 * Any pages which are found to be mapped into pagetables are unmapped prior to 459 * invalidation. 460 * 461 * Returns -EIO if any pages could not be invalidated. 462 */ 463 int invalidate_inode_pages2(struct address_space *mapping) 464 { 465 return invalidate_inode_pages2_range(mapping, 0, -1); 466 } 467 EXPORT_SYMBOL_GPL(invalidate_inode_pages2); 468