xref: /openbmc/linux/mm/truncate.c (revision 643d1f7f)
1 /*
2  * mm/truncate.c - code for taking down pages from address_spaces
3  *
4  * Copyright (C) 2002, Linus Torvalds
5  *
6  * 10Sep2002	akpm@zip.com.au
7  *		Initial version.
8  */
9 
10 #include <linux/kernel.h>
11 #include <linux/backing-dev.h>
12 #include <linux/mm.h>
13 #include <linux/swap.h>
14 #include <linux/module.h>
15 #include <linux/pagemap.h>
16 #include <linux/highmem.h>
17 #include <linux/pagevec.h>
18 #include <linux/task_io_accounting_ops.h>
19 #include <linux/buffer_head.h>	/* grr. try_to_release_page,
20 				   do_invalidatepage */
21 
22 
23 /**
24  * do_invalidatepage - invalidate part of all of a page
25  * @page: the page which is affected
26  * @offset: the index of the truncation point
27  *
28  * do_invalidatepage() is called when all or part of the page has become
29  * invalidated by a truncate operation.
30  *
31  * do_invalidatepage() does not have to release all buffers, but it must
32  * ensure that no dirty buffer is left outside @offset and that no I/O
33  * is underway against any of the blocks which are outside the truncation
34  * point.  Because the caller is about to free (and possibly reuse) those
35  * blocks on-disk.
36  */
37 void do_invalidatepage(struct page *page, unsigned long offset)
38 {
39 	void (*invalidatepage)(struct page *, unsigned long);
40 	invalidatepage = page->mapping->a_ops->invalidatepage;
41 #ifdef CONFIG_BLOCK
42 	if (!invalidatepage)
43 		invalidatepage = block_invalidatepage;
44 #endif
45 	if (invalidatepage)
46 		(*invalidatepage)(page, offset);
47 }
48 
49 static inline void truncate_partial_page(struct page *page, unsigned partial)
50 {
51 	zero_user_page(page, partial, PAGE_CACHE_SIZE - partial, KM_USER0);
52 	if (PagePrivate(page))
53 		do_invalidatepage(page, partial);
54 }
55 
56 /*
57  * This cancels just the dirty bit on the kernel page itself, it
58  * does NOT actually remove dirty bits on any mmap's that may be
59  * around. It also leaves the page tagged dirty, so any sync
60  * activity will still find it on the dirty lists, and in particular,
61  * clear_page_dirty_for_io() will still look at the dirty bits in
62  * the VM.
63  *
64  * Doing this should *normally* only ever be done when a page
65  * is truncated, and is not actually mapped anywhere at all. However,
66  * fs/buffer.c does this when it notices that somebody has cleaned
67  * out all the buffers on a page without actually doing it through
68  * the VM. Can you say "ext3 is horribly ugly"? Tought you could.
69  */
70 void cancel_dirty_page(struct page *page, unsigned int account_size)
71 {
72 	if (TestClearPageDirty(page)) {
73 		struct address_space *mapping = page->mapping;
74 		if (mapping && mapping_cap_account_dirty(mapping)) {
75 			dec_zone_page_state(page, NR_FILE_DIRTY);
76 			dec_bdi_stat(mapping->backing_dev_info,
77 					BDI_RECLAIMABLE);
78 			if (account_size)
79 				task_io_account_cancelled_write(account_size);
80 		}
81 	}
82 }
83 EXPORT_SYMBOL(cancel_dirty_page);
84 
85 /*
86  * If truncate cannot remove the fs-private metadata from the page, the page
87  * becomes anonymous.  It will be left on the LRU and may even be mapped into
88  * user pagetables if we're racing with filemap_fault().
89  *
90  * We need to bale out if page->mapping is no longer equal to the original
91  * mapping.  This happens a) when the VM reclaimed the page while we waited on
92  * its lock, b) when a concurrent invalidate_mapping_pages got there first and
93  * c) when tmpfs swizzles a page between a tmpfs inode and swapper_space.
94  */
95 static void
96 truncate_complete_page(struct address_space *mapping, struct page *page)
97 {
98 	if (page->mapping != mapping)
99 		return;
100 
101 	cancel_dirty_page(page, PAGE_CACHE_SIZE);
102 
103 	if (PagePrivate(page))
104 		do_invalidatepage(page, 0);
105 
106 	remove_from_page_cache(page);
107 	ClearPageUptodate(page);
108 	ClearPageMappedToDisk(page);
109 	page_cache_release(page);	/* pagecache ref */
110 }
111 
112 /*
113  * This is for invalidate_mapping_pages().  That function can be called at
114  * any time, and is not supposed to throw away dirty pages.  But pages can
115  * be marked dirty at any time too, so use remove_mapping which safely
116  * discards clean, unused pages.
117  *
118  * Returns non-zero if the page was successfully invalidated.
119  */
120 static int
121 invalidate_complete_page(struct address_space *mapping, struct page *page)
122 {
123 	int ret;
124 
125 	if (page->mapping != mapping)
126 		return 0;
127 
128 	if (PagePrivate(page) && !try_to_release_page(page, 0))
129 		return 0;
130 
131 	ret = remove_mapping(mapping, page);
132 
133 	return ret;
134 }
135 
136 /**
137  * truncate_inode_pages - truncate range of pages specified by start and
138  * end byte offsets
139  * @mapping: mapping to truncate
140  * @lstart: offset from which to truncate
141  * @lend: offset to which to truncate
142  *
143  * Truncate the page cache, removing the pages that are between
144  * specified offsets (and zeroing out partial page
145  * (if lstart is not page aligned)).
146  *
147  * Truncate takes two passes - the first pass is nonblocking.  It will not
148  * block on page locks and it will not block on writeback.  The second pass
149  * will wait.  This is to prevent as much IO as possible in the affected region.
150  * The first pass will remove most pages, so the search cost of the second pass
151  * is low.
152  *
153  * When looking at page->index outside the page lock we need to be careful to
154  * copy it into a local to avoid races (it could change at any time).
155  *
156  * We pass down the cache-hot hint to the page freeing code.  Even if the
157  * mapping is large, it is probably the case that the final pages are the most
158  * recently touched, and freeing happens in ascending file offset order.
159  */
160 void truncate_inode_pages_range(struct address_space *mapping,
161 				loff_t lstart, loff_t lend)
162 {
163 	const pgoff_t start = (lstart + PAGE_CACHE_SIZE-1) >> PAGE_CACHE_SHIFT;
164 	pgoff_t end;
165 	const unsigned partial = lstart & (PAGE_CACHE_SIZE - 1);
166 	struct pagevec pvec;
167 	pgoff_t next;
168 	int i;
169 
170 	if (mapping->nrpages == 0)
171 		return;
172 
173 	BUG_ON((lend & (PAGE_CACHE_SIZE - 1)) != (PAGE_CACHE_SIZE - 1));
174 	end = (lend >> PAGE_CACHE_SHIFT);
175 
176 	pagevec_init(&pvec, 0);
177 	next = start;
178 	while (next <= end &&
179 	       pagevec_lookup(&pvec, mapping, next, PAGEVEC_SIZE)) {
180 		for (i = 0; i < pagevec_count(&pvec); i++) {
181 			struct page *page = pvec.pages[i];
182 			pgoff_t page_index = page->index;
183 
184 			if (page_index > end) {
185 				next = page_index;
186 				break;
187 			}
188 
189 			if (page_index > next)
190 				next = page_index;
191 			next++;
192 			if (TestSetPageLocked(page))
193 				continue;
194 			if (PageWriteback(page)) {
195 				unlock_page(page);
196 				continue;
197 			}
198 			if (page_mapped(page)) {
199 				unmap_mapping_range(mapping,
200 				  (loff_t)page_index<<PAGE_CACHE_SHIFT,
201 				  PAGE_CACHE_SIZE, 0);
202 			}
203 			truncate_complete_page(mapping, page);
204 			unlock_page(page);
205 		}
206 		pagevec_release(&pvec);
207 		cond_resched();
208 	}
209 
210 	if (partial) {
211 		struct page *page = find_lock_page(mapping, start - 1);
212 		if (page) {
213 			wait_on_page_writeback(page);
214 			truncate_partial_page(page, partial);
215 			unlock_page(page);
216 			page_cache_release(page);
217 		}
218 	}
219 
220 	next = start;
221 	for ( ; ; ) {
222 		cond_resched();
223 		if (!pagevec_lookup(&pvec, mapping, next, PAGEVEC_SIZE)) {
224 			if (next == start)
225 				break;
226 			next = start;
227 			continue;
228 		}
229 		if (pvec.pages[0]->index > end) {
230 			pagevec_release(&pvec);
231 			break;
232 		}
233 		for (i = 0; i < pagevec_count(&pvec); i++) {
234 			struct page *page = pvec.pages[i];
235 
236 			if (page->index > end)
237 				break;
238 			lock_page(page);
239 			wait_on_page_writeback(page);
240 			if (page_mapped(page)) {
241 				unmap_mapping_range(mapping,
242 				  (loff_t)page->index<<PAGE_CACHE_SHIFT,
243 				  PAGE_CACHE_SIZE, 0);
244 			}
245 			if (page->index > next)
246 				next = page->index;
247 			next++;
248 			truncate_complete_page(mapping, page);
249 			unlock_page(page);
250 		}
251 		pagevec_release(&pvec);
252 	}
253 }
254 EXPORT_SYMBOL(truncate_inode_pages_range);
255 
256 /**
257  * truncate_inode_pages - truncate *all* the pages from an offset
258  * @mapping: mapping to truncate
259  * @lstart: offset from which to truncate
260  *
261  * Called under (and serialised by) inode->i_mutex.
262  */
263 void truncate_inode_pages(struct address_space *mapping, loff_t lstart)
264 {
265 	truncate_inode_pages_range(mapping, lstart, (loff_t)-1);
266 }
267 EXPORT_SYMBOL(truncate_inode_pages);
268 
269 unsigned long __invalidate_mapping_pages(struct address_space *mapping,
270 				pgoff_t start, pgoff_t end, bool be_atomic)
271 {
272 	struct pagevec pvec;
273 	pgoff_t next = start;
274 	unsigned long ret = 0;
275 	int i;
276 
277 	pagevec_init(&pvec, 0);
278 	while (next <= end &&
279 			pagevec_lookup(&pvec, mapping, next, PAGEVEC_SIZE)) {
280 		for (i = 0; i < pagevec_count(&pvec); i++) {
281 			struct page *page = pvec.pages[i];
282 			pgoff_t index;
283 			int lock_failed;
284 
285 			lock_failed = TestSetPageLocked(page);
286 
287 			/*
288 			 * We really shouldn't be looking at the ->index of an
289 			 * unlocked page.  But we're not allowed to lock these
290 			 * pages.  So we rely upon nobody altering the ->index
291 			 * of this (pinned-by-us) page.
292 			 */
293 			index = page->index;
294 			if (index > next)
295 				next = index;
296 			next++;
297 			if (lock_failed)
298 				continue;
299 
300 			if (PageDirty(page) || PageWriteback(page))
301 				goto unlock;
302 			if (page_mapped(page))
303 				goto unlock;
304 			ret += invalidate_complete_page(mapping, page);
305 unlock:
306 			unlock_page(page);
307 			if (next > end)
308 				break;
309 		}
310 		pagevec_release(&pvec);
311 		if (likely(!be_atomic))
312 			cond_resched();
313 	}
314 	return ret;
315 }
316 
317 /**
318  * invalidate_mapping_pages - Invalidate all the unlocked pages of one inode
319  * @mapping: the address_space which holds the pages to invalidate
320  * @start: the offset 'from' which to invalidate
321  * @end: the offset 'to' which to invalidate (inclusive)
322  *
323  * This function only removes the unlocked pages, if you want to
324  * remove all the pages of one inode, you must call truncate_inode_pages.
325  *
326  * invalidate_mapping_pages() will not block on IO activity. It will not
327  * invalidate pages which are dirty, locked, under writeback or mapped into
328  * pagetables.
329  */
330 unsigned long invalidate_mapping_pages(struct address_space *mapping,
331 				pgoff_t start, pgoff_t end)
332 {
333 	return __invalidate_mapping_pages(mapping, start, end, false);
334 }
335 EXPORT_SYMBOL(invalidate_mapping_pages);
336 
337 /*
338  * This is like invalidate_complete_page(), except it ignores the page's
339  * refcount.  We do this because invalidate_inode_pages2() needs stronger
340  * invalidation guarantees, and cannot afford to leave pages behind because
341  * shrink_page_list() has a temp ref on them, or because they're transiently
342  * sitting in the lru_cache_add() pagevecs.
343  */
344 static int
345 invalidate_complete_page2(struct address_space *mapping, struct page *page)
346 {
347 	if (page->mapping != mapping)
348 		return 0;
349 
350 	if (PagePrivate(page) && !try_to_release_page(page, GFP_KERNEL))
351 		return 0;
352 
353 	write_lock_irq(&mapping->tree_lock);
354 	if (PageDirty(page))
355 		goto failed;
356 
357 	BUG_ON(PagePrivate(page));
358 	__remove_from_page_cache(page);
359 	write_unlock_irq(&mapping->tree_lock);
360 	ClearPageUptodate(page);
361 	page_cache_release(page);	/* pagecache ref */
362 	return 1;
363 failed:
364 	write_unlock_irq(&mapping->tree_lock);
365 	return 0;
366 }
367 
368 static int do_launder_page(struct address_space *mapping, struct page *page)
369 {
370 	if (!PageDirty(page))
371 		return 0;
372 	if (page->mapping != mapping || mapping->a_ops->launder_page == NULL)
373 		return 0;
374 	return mapping->a_ops->launder_page(page);
375 }
376 
377 /**
378  * invalidate_inode_pages2_range - remove range of pages from an address_space
379  * @mapping: the address_space
380  * @start: the page offset 'from' which to invalidate
381  * @end: the page offset 'to' which to invalidate (inclusive)
382  *
383  * Any pages which are found to be mapped into pagetables are unmapped prior to
384  * invalidation.
385  *
386  * Returns -EIO if any pages could not be invalidated.
387  */
388 int invalidate_inode_pages2_range(struct address_space *mapping,
389 				  pgoff_t start, pgoff_t end)
390 {
391 	struct pagevec pvec;
392 	pgoff_t next;
393 	int i;
394 	int ret = 0;
395 	int did_range_unmap = 0;
396 	int wrapped = 0;
397 
398 	pagevec_init(&pvec, 0);
399 	next = start;
400 	while (next <= end && !wrapped &&
401 		pagevec_lookup(&pvec, mapping, next,
402 			min(end - next, (pgoff_t)PAGEVEC_SIZE - 1) + 1)) {
403 		for (i = 0; i < pagevec_count(&pvec); i++) {
404 			struct page *page = pvec.pages[i];
405 			pgoff_t page_index;
406 
407 			lock_page(page);
408 			if (page->mapping != mapping) {
409 				unlock_page(page);
410 				continue;
411 			}
412 			page_index = page->index;
413 			next = page_index + 1;
414 			if (next == 0)
415 				wrapped = 1;
416 			if (page_index > end) {
417 				unlock_page(page);
418 				break;
419 			}
420 			wait_on_page_writeback(page);
421 			if (page_mapped(page)) {
422 				if (!did_range_unmap) {
423 					/*
424 					 * Zap the rest of the file in one hit.
425 					 */
426 					unmap_mapping_range(mapping,
427 					   (loff_t)page_index<<PAGE_CACHE_SHIFT,
428 					   (loff_t)(end - page_index + 1)
429 							<< PAGE_CACHE_SHIFT,
430 					    0);
431 					did_range_unmap = 1;
432 				} else {
433 					/*
434 					 * Just zap this page
435 					 */
436 					unmap_mapping_range(mapping,
437 					  (loff_t)page_index<<PAGE_CACHE_SHIFT,
438 					  PAGE_CACHE_SIZE, 0);
439 				}
440 			}
441 			BUG_ON(page_mapped(page));
442 			ret = do_launder_page(mapping, page);
443 			if (ret == 0 && !invalidate_complete_page2(mapping, page))
444 				ret = -EIO;
445 			unlock_page(page);
446 		}
447 		pagevec_release(&pvec);
448 		cond_resched();
449 	}
450 	return ret;
451 }
452 EXPORT_SYMBOL_GPL(invalidate_inode_pages2_range);
453 
454 /**
455  * invalidate_inode_pages2 - remove all pages from an address_space
456  * @mapping: the address_space
457  *
458  * Any pages which are found to be mapped into pagetables are unmapped prior to
459  * invalidation.
460  *
461  * Returns -EIO if any pages could not be invalidated.
462  */
463 int invalidate_inode_pages2(struct address_space *mapping)
464 {
465 	return invalidate_inode_pages2_range(mapping, 0, -1);
466 }
467 EXPORT_SYMBOL_GPL(invalidate_inode_pages2);
468