xref: /openbmc/linux/mm/truncate.c (revision 5d0e4d78)
1 /*
2  * mm/truncate.c - code for taking down pages from address_spaces
3  *
4  * Copyright (C) 2002, Linus Torvalds
5  *
6  * 10Sep2002	Andrew Morton
7  *		Initial version.
8  */
9 
10 #include <linux/kernel.h>
11 #include <linux/backing-dev.h>
12 #include <linux/dax.h>
13 #include <linux/gfp.h>
14 #include <linux/mm.h>
15 #include <linux/swap.h>
16 #include <linux/export.h>
17 #include <linux/pagemap.h>
18 #include <linux/highmem.h>
19 #include <linux/pagevec.h>
20 #include <linux/task_io_accounting_ops.h>
21 #include <linux/buffer_head.h>	/* grr. try_to_release_page,
22 				   do_invalidatepage */
23 #include <linux/shmem_fs.h>
24 #include <linux/cleancache.h>
25 #include <linux/rmap.h>
26 #include "internal.h"
27 
28 static void clear_shadow_entry(struct address_space *mapping, pgoff_t index,
29 			       void *entry)
30 {
31 	struct radix_tree_node *node;
32 	void **slot;
33 
34 	spin_lock_irq(&mapping->tree_lock);
35 	/*
36 	 * Regular page slots are stabilized by the page lock even
37 	 * without the tree itself locked.  These unlocked entries
38 	 * need verification under the tree lock.
39 	 */
40 	if (!__radix_tree_lookup(&mapping->page_tree, index, &node, &slot))
41 		goto unlock;
42 	if (*slot != entry)
43 		goto unlock;
44 	__radix_tree_replace(&mapping->page_tree, node, slot, NULL,
45 			     workingset_update_node, mapping);
46 	mapping->nrexceptional--;
47 unlock:
48 	spin_unlock_irq(&mapping->tree_lock);
49 }
50 
51 /*
52  * Unconditionally remove exceptional entry. Usually called from truncate path.
53  */
54 static void truncate_exceptional_entry(struct address_space *mapping,
55 				       pgoff_t index, void *entry)
56 {
57 	/* Handled by shmem itself */
58 	if (shmem_mapping(mapping))
59 		return;
60 
61 	if (dax_mapping(mapping)) {
62 		dax_delete_mapping_entry(mapping, index);
63 		return;
64 	}
65 	clear_shadow_entry(mapping, index, entry);
66 }
67 
68 /*
69  * Invalidate exceptional entry if easily possible. This handles exceptional
70  * entries for invalidate_inode_pages().
71  */
72 static int invalidate_exceptional_entry(struct address_space *mapping,
73 					pgoff_t index, void *entry)
74 {
75 	/* Handled by shmem itself, or for DAX we do nothing. */
76 	if (shmem_mapping(mapping) || dax_mapping(mapping))
77 		return 1;
78 	clear_shadow_entry(mapping, index, entry);
79 	return 1;
80 }
81 
82 /*
83  * Invalidate exceptional entry if clean. This handles exceptional entries for
84  * invalidate_inode_pages2() so for DAX it evicts only clean entries.
85  */
86 static int invalidate_exceptional_entry2(struct address_space *mapping,
87 					 pgoff_t index, void *entry)
88 {
89 	/* Handled by shmem itself */
90 	if (shmem_mapping(mapping))
91 		return 1;
92 	if (dax_mapping(mapping))
93 		return dax_invalidate_mapping_entry_sync(mapping, index);
94 	clear_shadow_entry(mapping, index, entry);
95 	return 1;
96 }
97 
98 /**
99  * do_invalidatepage - invalidate part or all of a page
100  * @page: the page which is affected
101  * @offset: start of the range to invalidate
102  * @length: length of the range to invalidate
103  *
104  * do_invalidatepage() is called when all or part of the page has become
105  * invalidated by a truncate operation.
106  *
107  * do_invalidatepage() does not have to release all buffers, but it must
108  * ensure that no dirty buffer is left outside @offset and that no I/O
109  * is underway against any of the blocks which are outside the truncation
110  * point.  Because the caller is about to free (and possibly reuse) those
111  * blocks on-disk.
112  */
113 void do_invalidatepage(struct page *page, unsigned int offset,
114 		       unsigned int length)
115 {
116 	void (*invalidatepage)(struct page *, unsigned int, unsigned int);
117 
118 	invalidatepage = page->mapping->a_ops->invalidatepage;
119 #ifdef CONFIG_BLOCK
120 	if (!invalidatepage)
121 		invalidatepage = block_invalidatepage;
122 #endif
123 	if (invalidatepage)
124 		(*invalidatepage)(page, offset, length);
125 }
126 
127 /*
128  * If truncate cannot remove the fs-private metadata from the page, the page
129  * becomes orphaned.  It will be left on the LRU and may even be mapped into
130  * user pagetables if we're racing with filemap_fault().
131  *
132  * We need to bale out if page->mapping is no longer equal to the original
133  * mapping.  This happens a) when the VM reclaimed the page while we waited on
134  * its lock, b) when a concurrent invalidate_mapping_pages got there first and
135  * c) when tmpfs swizzles a page between a tmpfs inode and swapper_space.
136  */
137 static int
138 truncate_complete_page(struct address_space *mapping, struct page *page)
139 {
140 	if (page->mapping != mapping)
141 		return -EIO;
142 
143 	if (page_has_private(page))
144 		do_invalidatepage(page, 0, PAGE_SIZE);
145 
146 	/*
147 	 * Some filesystems seem to re-dirty the page even after
148 	 * the VM has canceled the dirty bit (eg ext3 journaling).
149 	 * Hence dirty accounting check is placed after invalidation.
150 	 */
151 	cancel_dirty_page(page);
152 	ClearPageMappedToDisk(page);
153 	delete_from_page_cache(page);
154 	return 0;
155 }
156 
157 /*
158  * This is for invalidate_mapping_pages().  That function can be called at
159  * any time, and is not supposed to throw away dirty pages.  But pages can
160  * be marked dirty at any time too, so use remove_mapping which safely
161  * discards clean, unused pages.
162  *
163  * Returns non-zero if the page was successfully invalidated.
164  */
165 static int
166 invalidate_complete_page(struct address_space *mapping, struct page *page)
167 {
168 	int ret;
169 
170 	if (page->mapping != mapping)
171 		return 0;
172 
173 	if (page_has_private(page) && !try_to_release_page(page, 0))
174 		return 0;
175 
176 	ret = remove_mapping(mapping, page);
177 
178 	return ret;
179 }
180 
181 int truncate_inode_page(struct address_space *mapping, struct page *page)
182 {
183 	loff_t holelen;
184 	VM_BUG_ON_PAGE(PageTail(page), page);
185 
186 	holelen = PageTransHuge(page) ? HPAGE_PMD_SIZE : PAGE_SIZE;
187 	if (page_mapped(page)) {
188 		unmap_mapping_range(mapping,
189 				   (loff_t)page->index << PAGE_SHIFT,
190 				   holelen, 0);
191 	}
192 	return truncate_complete_page(mapping, page);
193 }
194 
195 /*
196  * Used to get rid of pages on hardware memory corruption.
197  */
198 int generic_error_remove_page(struct address_space *mapping, struct page *page)
199 {
200 	if (!mapping)
201 		return -EINVAL;
202 	/*
203 	 * Only punch for normal data pages for now.
204 	 * Handling other types like directories would need more auditing.
205 	 */
206 	if (!S_ISREG(mapping->host->i_mode))
207 		return -EIO;
208 	return truncate_inode_page(mapping, page);
209 }
210 EXPORT_SYMBOL(generic_error_remove_page);
211 
212 /*
213  * Safely invalidate one page from its pagecache mapping.
214  * It only drops clean, unused pages. The page must be locked.
215  *
216  * Returns 1 if the page is successfully invalidated, otherwise 0.
217  */
218 int invalidate_inode_page(struct page *page)
219 {
220 	struct address_space *mapping = page_mapping(page);
221 	if (!mapping)
222 		return 0;
223 	if (PageDirty(page) || PageWriteback(page))
224 		return 0;
225 	if (page_mapped(page))
226 		return 0;
227 	return invalidate_complete_page(mapping, page);
228 }
229 
230 /**
231  * truncate_inode_pages_range - truncate range of pages specified by start & end byte offsets
232  * @mapping: mapping to truncate
233  * @lstart: offset from which to truncate
234  * @lend: offset to which to truncate (inclusive)
235  *
236  * Truncate the page cache, removing the pages that are between
237  * specified offsets (and zeroing out partial pages
238  * if lstart or lend + 1 is not page aligned).
239  *
240  * Truncate takes two passes - the first pass is nonblocking.  It will not
241  * block on page locks and it will not block on writeback.  The second pass
242  * will wait.  This is to prevent as much IO as possible in the affected region.
243  * The first pass will remove most pages, so the search cost of the second pass
244  * is low.
245  *
246  * We pass down the cache-hot hint to the page freeing code.  Even if the
247  * mapping is large, it is probably the case that the final pages are the most
248  * recently touched, and freeing happens in ascending file offset order.
249  *
250  * Note that since ->invalidatepage() accepts range to invalidate
251  * truncate_inode_pages_range is able to handle cases where lend + 1 is not
252  * page aligned properly.
253  */
254 void truncate_inode_pages_range(struct address_space *mapping,
255 				loff_t lstart, loff_t lend)
256 {
257 	pgoff_t		start;		/* inclusive */
258 	pgoff_t		end;		/* exclusive */
259 	unsigned int	partial_start;	/* inclusive */
260 	unsigned int	partial_end;	/* exclusive */
261 	struct pagevec	pvec;
262 	pgoff_t		indices[PAGEVEC_SIZE];
263 	pgoff_t		index;
264 	int		i;
265 
266 	if (mapping->nrpages == 0 && mapping->nrexceptional == 0)
267 		goto out;
268 
269 	/* Offsets within partial pages */
270 	partial_start = lstart & (PAGE_SIZE - 1);
271 	partial_end = (lend + 1) & (PAGE_SIZE - 1);
272 
273 	/*
274 	 * 'start' and 'end' always covers the range of pages to be fully
275 	 * truncated. Partial pages are covered with 'partial_start' at the
276 	 * start of the range and 'partial_end' at the end of the range.
277 	 * Note that 'end' is exclusive while 'lend' is inclusive.
278 	 */
279 	start = (lstart + PAGE_SIZE - 1) >> PAGE_SHIFT;
280 	if (lend == -1)
281 		/*
282 		 * lend == -1 indicates end-of-file so we have to set 'end'
283 		 * to the highest possible pgoff_t and since the type is
284 		 * unsigned we're using -1.
285 		 */
286 		end = -1;
287 	else
288 		end = (lend + 1) >> PAGE_SHIFT;
289 
290 	pagevec_init(&pvec, 0);
291 	index = start;
292 	while (index < end && pagevec_lookup_entries(&pvec, mapping, index,
293 			min(end - index, (pgoff_t)PAGEVEC_SIZE),
294 			indices)) {
295 		for (i = 0; i < pagevec_count(&pvec); i++) {
296 			struct page *page = pvec.pages[i];
297 
298 			/* We rely upon deletion not changing page->index */
299 			index = indices[i];
300 			if (index >= end)
301 				break;
302 
303 			if (radix_tree_exceptional_entry(page)) {
304 				truncate_exceptional_entry(mapping, index,
305 							   page);
306 				continue;
307 			}
308 
309 			if (!trylock_page(page))
310 				continue;
311 			WARN_ON(page_to_index(page) != index);
312 			if (PageWriteback(page)) {
313 				unlock_page(page);
314 				continue;
315 			}
316 			truncate_inode_page(mapping, page);
317 			unlock_page(page);
318 		}
319 		pagevec_remove_exceptionals(&pvec);
320 		pagevec_release(&pvec);
321 		cond_resched();
322 		index++;
323 	}
324 
325 	if (partial_start) {
326 		struct page *page = find_lock_page(mapping, start - 1);
327 		if (page) {
328 			unsigned int top = PAGE_SIZE;
329 			if (start > end) {
330 				/* Truncation within a single page */
331 				top = partial_end;
332 				partial_end = 0;
333 			}
334 			wait_on_page_writeback(page);
335 			zero_user_segment(page, partial_start, top);
336 			cleancache_invalidate_page(mapping, page);
337 			if (page_has_private(page))
338 				do_invalidatepage(page, partial_start,
339 						  top - partial_start);
340 			unlock_page(page);
341 			put_page(page);
342 		}
343 	}
344 	if (partial_end) {
345 		struct page *page = find_lock_page(mapping, end);
346 		if (page) {
347 			wait_on_page_writeback(page);
348 			zero_user_segment(page, 0, partial_end);
349 			cleancache_invalidate_page(mapping, page);
350 			if (page_has_private(page))
351 				do_invalidatepage(page, 0,
352 						  partial_end);
353 			unlock_page(page);
354 			put_page(page);
355 		}
356 	}
357 	/*
358 	 * If the truncation happened within a single page no pages
359 	 * will be released, just zeroed, so we can bail out now.
360 	 */
361 	if (start >= end)
362 		goto out;
363 
364 	index = start;
365 	for ( ; ; ) {
366 		cond_resched();
367 		if (!pagevec_lookup_entries(&pvec, mapping, index,
368 			min(end - index, (pgoff_t)PAGEVEC_SIZE), indices)) {
369 			/* If all gone from start onwards, we're done */
370 			if (index == start)
371 				break;
372 			/* Otherwise restart to make sure all gone */
373 			index = start;
374 			continue;
375 		}
376 		if (index == start && indices[0] >= end) {
377 			/* All gone out of hole to be punched, we're done */
378 			pagevec_remove_exceptionals(&pvec);
379 			pagevec_release(&pvec);
380 			break;
381 		}
382 		for (i = 0; i < pagevec_count(&pvec); i++) {
383 			struct page *page = pvec.pages[i];
384 
385 			/* We rely upon deletion not changing page->index */
386 			index = indices[i];
387 			if (index >= end) {
388 				/* Restart punch to make sure all gone */
389 				index = start - 1;
390 				break;
391 			}
392 
393 			if (radix_tree_exceptional_entry(page)) {
394 				truncate_exceptional_entry(mapping, index,
395 							   page);
396 				continue;
397 			}
398 
399 			lock_page(page);
400 			WARN_ON(page_to_index(page) != index);
401 			wait_on_page_writeback(page);
402 			truncate_inode_page(mapping, page);
403 			unlock_page(page);
404 		}
405 		pagevec_remove_exceptionals(&pvec);
406 		pagevec_release(&pvec);
407 		index++;
408 	}
409 
410 out:
411 	cleancache_invalidate_inode(mapping);
412 }
413 EXPORT_SYMBOL(truncate_inode_pages_range);
414 
415 /**
416  * truncate_inode_pages - truncate *all* the pages from an offset
417  * @mapping: mapping to truncate
418  * @lstart: offset from which to truncate
419  *
420  * Called under (and serialised by) inode->i_mutex.
421  *
422  * Note: When this function returns, there can be a page in the process of
423  * deletion (inside __delete_from_page_cache()) in the specified range.  Thus
424  * mapping->nrpages can be non-zero when this function returns even after
425  * truncation of the whole mapping.
426  */
427 void truncate_inode_pages(struct address_space *mapping, loff_t lstart)
428 {
429 	truncate_inode_pages_range(mapping, lstart, (loff_t)-1);
430 }
431 EXPORT_SYMBOL(truncate_inode_pages);
432 
433 /**
434  * truncate_inode_pages_final - truncate *all* pages before inode dies
435  * @mapping: mapping to truncate
436  *
437  * Called under (and serialized by) inode->i_mutex.
438  *
439  * Filesystems have to use this in the .evict_inode path to inform the
440  * VM that this is the final truncate and the inode is going away.
441  */
442 void truncate_inode_pages_final(struct address_space *mapping)
443 {
444 	unsigned long nrexceptional;
445 	unsigned long nrpages;
446 
447 	/*
448 	 * Page reclaim can not participate in regular inode lifetime
449 	 * management (can't call iput()) and thus can race with the
450 	 * inode teardown.  Tell it when the address space is exiting,
451 	 * so that it does not install eviction information after the
452 	 * final truncate has begun.
453 	 */
454 	mapping_set_exiting(mapping);
455 
456 	/*
457 	 * When reclaim installs eviction entries, it increases
458 	 * nrexceptional first, then decreases nrpages.  Make sure we see
459 	 * this in the right order or we might miss an entry.
460 	 */
461 	nrpages = mapping->nrpages;
462 	smp_rmb();
463 	nrexceptional = mapping->nrexceptional;
464 
465 	if (nrpages || nrexceptional) {
466 		/*
467 		 * As truncation uses a lockless tree lookup, cycle
468 		 * the tree lock to make sure any ongoing tree
469 		 * modification that does not see AS_EXITING is
470 		 * completed before starting the final truncate.
471 		 */
472 		spin_lock_irq(&mapping->tree_lock);
473 		spin_unlock_irq(&mapping->tree_lock);
474 
475 		truncate_inode_pages(mapping, 0);
476 	}
477 }
478 EXPORT_SYMBOL(truncate_inode_pages_final);
479 
480 /**
481  * invalidate_mapping_pages - Invalidate all the unlocked pages of one inode
482  * @mapping: the address_space which holds the pages to invalidate
483  * @start: the offset 'from' which to invalidate
484  * @end: the offset 'to' which to invalidate (inclusive)
485  *
486  * This function only removes the unlocked pages, if you want to
487  * remove all the pages of one inode, you must call truncate_inode_pages.
488  *
489  * invalidate_mapping_pages() will not block on IO activity. It will not
490  * invalidate pages which are dirty, locked, under writeback or mapped into
491  * pagetables.
492  */
493 unsigned long invalidate_mapping_pages(struct address_space *mapping,
494 		pgoff_t start, pgoff_t end)
495 {
496 	pgoff_t indices[PAGEVEC_SIZE];
497 	struct pagevec pvec;
498 	pgoff_t index = start;
499 	unsigned long ret;
500 	unsigned long count = 0;
501 	int i;
502 
503 	pagevec_init(&pvec, 0);
504 	while (index <= end && pagevec_lookup_entries(&pvec, mapping, index,
505 			min(end - index, (pgoff_t)PAGEVEC_SIZE - 1) + 1,
506 			indices)) {
507 		for (i = 0; i < pagevec_count(&pvec); i++) {
508 			struct page *page = pvec.pages[i];
509 
510 			/* We rely upon deletion not changing page->index */
511 			index = indices[i];
512 			if (index > end)
513 				break;
514 
515 			if (radix_tree_exceptional_entry(page)) {
516 				invalidate_exceptional_entry(mapping, index,
517 							     page);
518 				continue;
519 			}
520 
521 			if (!trylock_page(page))
522 				continue;
523 
524 			WARN_ON(page_to_index(page) != index);
525 
526 			/* Middle of THP: skip */
527 			if (PageTransTail(page)) {
528 				unlock_page(page);
529 				continue;
530 			} else if (PageTransHuge(page)) {
531 				index += HPAGE_PMD_NR - 1;
532 				i += HPAGE_PMD_NR - 1;
533 				/*
534 				 * 'end' is in the middle of THP. Don't
535 				 * invalidate the page as the part outside of
536 				 * 'end' could be still useful.
537 				 */
538 				if (index > end) {
539 					unlock_page(page);
540 					continue;
541 				}
542 			}
543 
544 			ret = invalidate_inode_page(page);
545 			unlock_page(page);
546 			/*
547 			 * Invalidation is a hint that the page is no longer
548 			 * of interest and try to speed up its reclaim.
549 			 */
550 			if (!ret)
551 				deactivate_file_page(page);
552 			count += ret;
553 		}
554 		pagevec_remove_exceptionals(&pvec);
555 		pagevec_release(&pvec);
556 		cond_resched();
557 		index++;
558 	}
559 	return count;
560 }
561 EXPORT_SYMBOL(invalidate_mapping_pages);
562 
563 /*
564  * This is like invalidate_complete_page(), except it ignores the page's
565  * refcount.  We do this because invalidate_inode_pages2() needs stronger
566  * invalidation guarantees, and cannot afford to leave pages behind because
567  * shrink_page_list() has a temp ref on them, or because they're transiently
568  * sitting in the lru_cache_add() pagevecs.
569  */
570 static int
571 invalidate_complete_page2(struct address_space *mapping, struct page *page)
572 {
573 	unsigned long flags;
574 
575 	if (page->mapping != mapping)
576 		return 0;
577 
578 	if (page_has_private(page) && !try_to_release_page(page, GFP_KERNEL))
579 		return 0;
580 
581 	spin_lock_irqsave(&mapping->tree_lock, flags);
582 	if (PageDirty(page))
583 		goto failed;
584 
585 	BUG_ON(page_has_private(page));
586 	__delete_from_page_cache(page, NULL);
587 	spin_unlock_irqrestore(&mapping->tree_lock, flags);
588 
589 	if (mapping->a_ops->freepage)
590 		mapping->a_ops->freepage(page);
591 
592 	put_page(page);	/* pagecache ref */
593 	return 1;
594 failed:
595 	spin_unlock_irqrestore(&mapping->tree_lock, flags);
596 	return 0;
597 }
598 
599 static int do_launder_page(struct address_space *mapping, struct page *page)
600 {
601 	if (!PageDirty(page))
602 		return 0;
603 	if (page->mapping != mapping || mapping->a_ops->launder_page == NULL)
604 		return 0;
605 	return mapping->a_ops->launder_page(page);
606 }
607 
608 /**
609  * invalidate_inode_pages2_range - remove range of pages from an address_space
610  * @mapping: the address_space
611  * @start: the page offset 'from' which to invalidate
612  * @end: the page offset 'to' which to invalidate (inclusive)
613  *
614  * Any pages which are found to be mapped into pagetables are unmapped prior to
615  * invalidation.
616  *
617  * Returns -EBUSY if any pages could not be invalidated.
618  */
619 int invalidate_inode_pages2_range(struct address_space *mapping,
620 				  pgoff_t start, pgoff_t end)
621 {
622 	pgoff_t indices[PAGEVEC_SIZE];
623 	struct pagevec pvec;
624 	pgoff_t index;
625 	int i;
626 	int ret = 0;
627 	int ret2 = 0;
628 	int did_range_unmap = 0;
629 
630 	if (mapping->nrpages == 0 && mapping->nrexceptional == 0)
631 		goto out;
632 
633 	pagevec_init(&pvec, 0);
634 	index = start;
635 	while (index <= end && pagevec_lookup_entries(&pvec, mapping, index,
636 			min(end - index, (pgoff_t)PAGEVEC_SIZE - 1) + 1,
637 			indices)) {
638 		for (i = 0; i < pagevec_count(&pvec); i++) {
639 			struct page *page = pvec.pages[i];
640 
641 			/* We rely upon deletion not changing page->index */
642 			index = indices[i];
643 			if (index > end)
644 				break;
645 
646 			if (radix_tree_exceptional_entry(page)) {
647 				if (!invalidate_exceptional_entry2(mapping,
648 								   index, page))
649 					ret = -EBUSY;
650 				continue;
651 			}
652 
653 			lock_page(page);
654 			WARN_ON(page_to_index(page) != index);
655 			if (page->mapping != mapping) {
656 				unlock_page(page);
657 				continue;
658 			}
659 			wait_on_page_writeback(page);
660 			if (page_mapped(page)) {
661 				if (!did_range_unmap) {
662 					/*
663 					 * Zap the rest of the file in one hit.
664 					 */
665 					unmap_mapping_range(mapping,
666 					   (loff_t)index << PAGE_SHIFT,
667 					   (loff_t)(1 + end - index)
668 							 << PAGE_SHIFT,
669 							 0);
670 					did_range_unmap = 1;
671 				} else {
672 					/*
673 					 * Just zap this page
674 					 */
675 					unmap_mapping_range(mapping,
676 					   (loff_t)index << PAGE_SHIFT,
677 					   PAGE_SIZE, 0);
678 				}
679 			}
680 			BUG_ON(page_mapped(page));
681 			ret2 = do_launder_page(mapping, page);
682 			if (ret2 == 0) {
683 				if (!invalidate_complete_page2(mapping, page))
684 					ret2 = -EBUSY;
685 			}
686 			if (ret2 < 0)
687 				ret = ret2;
688 			unlock_page(page);
689 		}
690 		pagevec_remove_exceptionals(&pvec);
691 		pagevec_release(&pvec);
692 		cond_resched();
693 		index++;
694 	}
695 	/*
696 	 * For DAX we invalidate page tables after invalidating radix tree.  We
697 	 * could invalidate page tables while invalidating each entry however
698 	 * that would be expensive. And doing range unmapping before doesn't
699 	 * work as we have no cheap way to find whether radix tree entry didn't
700 	 * get remapped later.
701 	 */
702 	if (dax_mapping(mapping)) {
703 		unmap_mapping_range(mapping, (loff_t)start << PAGE_SHIFT,
704 				    (loff_t)(end - start + 1) << PAGE_SHIFT, 0);
705 	}
706 out:
707 	cleancache_invalidate_inode(mapping);
708 	return ret;
709 }
710 EXPORT_SYMBOL_GPL(invalidate_inode_pages2_range);
711 
712 /**
713  * invalidate_inode_pages2 - remove all pages from an address_space
714  * @mapping: the address_space
715  *
716  * Any pages which are found to be mapped into pagetables are unmapped prior to
717  * invalidation.
718  *
719  * Returns -EBUSY if any pages could not be invalidated.
720  */
721 int invalidate_inode_pages2(struct address_space *mapping)
722 {
723 	return invalidate_inode_pages2_range(mapping, 0, -1);
724 }
725 EXPORT_SYMBOL_GPL(invalidate_inode_pages2);
726 
727 /**
728  * truncate_pagecache - unmap and remove pagecache that has been truncated
729  * @inode: inode
730  * @newsize: new file size
731  *
732  * inode's new i_size must already be written before truncate_pagecache
733  * is called.
734  *
735  * This function should typically be called before the filesystem
736  * releases resources associated with the freed range (eg. deallocates
737  * blocks). This way, pagecache will always stay logically coherent
738  * with on-disk format, and the filesystem would not have to deal with
739  * situations such as writepage being called for a page that has already
740  * had its underlying blocks deallocated.
741  */
742 void truncate_pagecache(struct inode *inode, loff_t newsize)
743 {
744 	struct address_space *mapping = inode->i_mapping;
745 	loff_t holebegin = round_up(newsize, PAGE_SIZE);
746 
747 	/*
748 	 * unmap_mapping_range is called twice, first simply for
749 	 * efficiency so that truncate_inode_pages does fewer
750 	 * single-page unmaps.  However after this first call, and
751 	 * before truncate_inode_pages finishes, it is possible for
752 	 * private pages to be COWed, which remain after
753 	 * truncate_inode_pages finishes, hence the second
754 	 * unmap_mapping_range call must be made for correctness.
755 	 */
756 	unmap_mapping_range(mapping, holebegin, 0, 1);
757 	truncate_inode_pages(mapping, newsize);
758 	unmap_mapping_range(mapping, holebegin, 0, 1);
759 }
760 EXPORT_SYMBOL(truncate_pagecache);
761 
762 /**
763  * truncate_setsize - update inode and pagecache for a new file size
764  * @inode: inode
765  * @newsize: new file size
766  *
767  * truncate_setsize updates i_size and performs pagecache truncation (if
768  * necessary) to @newsize. It will be typically be called from the filesystem's
769  * setattr function when ATTR_SIZE is passed in.
770  *
771  * Must be called with a lock serializing truncates and writes (generally
772  * i_mutex but e.g. xfs uses a different lock) and before all filesystem
773  * specific block truncation has been performed.
774  */
775 void truncate_setsize(struct inode *inode, loff_t newsize)
776 {
777 	loff_t oldsize = inode->i_size;
778 
779 	i_size_write(inode, newsize);
780 	if (newsize > oldsize)
781 		pagecache_isize_extended(inode, oldsize, newsize);
782 	truncate_pagecache(inode, newsize);
783 }
784 EXPORT_SYMBOL(truncate_setsize);
785 
786 /**
787  * pagecache_isize_extended - update pagecache after extension of i_size
788  * @inode:	inode for which i_size was extended
789  * @from:	original inode size
790  * @to:		new inode size
791  *
792  * Handle extension of inode size either caused by extending truncate or by
793  * write starting after current i_size. We mark the page straddling current
794  * i_size RO so that page_mkwrite() is called on the nearest write access to
795  * the page.  This way filesystem can be sure that page_mkwrite() is called on
796  * the page before user writes to the page via mmap after the i_size has been
797  * changed.
798  *
799  * The function must be called after i_size is updated so that page fault
800  * coming after we unlock the page will already see the new i_size.
801  * The function must be called while we still hold i_mutex - this not only
802  * makes sure i_size is stable but also that userspace cannot observe new
803  * i_size value before we are prepared to store mmap writes at new inode size.
804  */
805 void pagecache_isize_extended(struct inode *inode, loff_t from, loff_t to)
806 {
807 	int bsize = i_blocksize(inode);
808 	loff_t rounded_from;
809 	struct page *page;
810 	pgoff_t index;
811 
812 	WARN_ON(to > inode->i_size);
813 
814 	if (from >= to || bsize == PAGE_SIZE)
815 		return;
816 	/* Page straddling @from will not have any hole block created? */
817 	rounded_from = round_up(from, bsize);
818 	if (to <= rounded_from || !(rounded_from & (PAGE_SIZE - 1)))
819 		return;
820 
821 	index = from >> PAGE_SHIFT;
822 	page = find_lock_page(inode->i_mapping, index);
823 	/* Page not cached? Nothing to do */
824 	if (!page)
825 		return;
826 	/*
827 	 * See clear_page_dirty_for_io() for details why set_page_dirty()
828 	 * is needed.
829 	 */
830 	if (page_mkclean(page))
831 		set_page_dirty(page);
832 	unlock_page(page);
833 	put_page(page);
834 }
835 EXPORT_SYMBOL(pagecache_isize_extended);
836 
837 /**
838  * truncate_pagecache_range - unmap and remove pagecache that is hole-punched
839  * @inode: inode
840  * @lstart: offset of beginning of hole
841  * @lend: offset of last byte of hole
842  *
843  * This function should typically be called before the filesystem
844  * releases resources associated with the freed range (eg. deallocates
845  * blocks). This way, pagecache will always stay logically coherent
846  * with on-disk format, and the filesystem would not have to deal with
847  * situations such as writepage being called for a page that has already
848  * had its underlying blocks deallocated.
849  */
850 void truncate_pagecache_range(struct inode *inode, loff_t lstart, loff_t lend)
851 {
852 	struct address_space *mapping = inode->i_mapping;
853 	loff_t unmap_start = round_up(lstart, PAGE_SIZE);
854 	loff_t unmap_end = round_down(1 + lend, PAGE_SIZE) - 1;
855 	/*
856 	 * This rounding is currently just for example: unmap_mapping_range
857 	 * expands its hole outwards, whereas we want it to contract the hole
858 	 * inwards.  However, existing callers of truncate_pagecache_range are
859 	 * doing their own page rounding first.  Note that unmap_mapping_range
860 	 * allows holelen 0 for all, and we allow lend -1 for end of file.
861 	 */
862 
863 	/*
864 	 * Unlike in truncate_pagecache, unmap_mapping_range is called only
865 	 * once (before truncating pagecache), and without "even_cows" flag:
866 	 * hole-punching should not remove private COWed pages from the hole.
867 	 */
868 	if ((u64)unmap_end > (u64)unmap_start)
869 		unmap_mapping_range(mapping, unmap_start,
870 				    1 + unmap_end - unmap_start, 0);
871 	truncate_inode_pages_range(mapping, lstart, lend);
872 }
873 EXPORT_SYMBOL(truncate_pagecache_range);
874