1 /* 2 * mm/truncate.c - code for taking down pages from address_spaces 3 * 4 * Copyright (C) 2002, Linus Torvalds 5 * 6 * 10Sep2002 Andrew Morton 7 * Initial version. 8 */ 9 10 #include <linux/kernel.h> 11 #include <linux/backing-dev.h> 12 #include <linux/dax.h> 13 #include <linux/gfp.h> 14 #include <linux/mm.h> 15 #include <linux/swap.h> 16 #include <linux/export.h> 17 #include <linux/pagemap.h> 18 #include <linux/highmem.h> 19 #include <linux/pagevec.h> 20 #include <linux/task_io_accounting_ops.h> 21 #include <linux/buffer_head.h> /* grr. try_to_release_page, 22 do_invalidatepage */ 23 #include <linux/cleancache.h> 24 #include <linux/rmap.h> 25 #include "internal.h" 26 27 static void clear_shadow_entry(struct address_space *mapping, pgoff_t index, 28 void *entry) 29 { 30 struct radix_tree_node *node; 31 void **slot; 32 33 spin_lock_irq(&mapping->tree_lock); 34 /* 35 * Regular page slots are stabilized by the page lock even 36 * without the tree itself locked. These unlocked entries 37 * need verification under the tree lock. 38 */ 39 if (!__radix_tree_lookup(&mapping->page_tree, index, &node, &slot)) 40 goto unlock; 41 if (*slot != entry) 42 goto unlock; 43 __radix_tree_replace(&mapping->page_tree, node, slot, NULL, 44 workingset_update_node, mapping); 45 mapping->nrexceptional--; 46 unlock: 47 spin_unlock_irq(&mapping->tree_lock); 48 } 49 50 /* 51 * Unconditionally remove exceptional entry. Usually called from truncate path. 52 */ 53 static void truncate_exceptional_entry(struct address_space *mapping, 54 pgoff_t index, void *entry) 55 { 56 /* Handled by shmem itself */ 57 if (shmem_mapping(mapping)) 58 return; 59 60 if (dax_mapping(mapping)) { 61 dax_delete_mapping_entry(mapping, index); 62 return; 63 } 64 clear_shadow_entry(mapping, index, entry); 65 } 66 67 /* 68 * Invalidate exceptional entry if easily possible. This handles exceptional 69 * entries for invalidate_inode_pages() so for DAX it evicts only unlocked and 70 * clean entries. 71 */ 72 static int invalidate_exceptional_entry(struct address_space *mapping, 73 pgoff_t index, void *entry) 74 { 75 /* Handled by shmem itself */ 76 if (shmem_mapping(mapping)) 77 return 1; 78 if (dax_mapping(mapping)) 79 return dax_invalidate_mapping_entry(mapping, index); 80 clear_shadow_entry(mapping, index, entry); 81 return 1; 82 } 83 84 /* 85 * Invalidate exceptional entry if clean. This handles exceptional entries for 86 * invalidate_inode_pages2() so for DAX it evicts only clean entries. 87 */ 88 static int invalidate_exceptional_entry2(struct address_space *mapping, 89 pgoff_t index, void *entry) 90 { 91 /* Handled by shmem itself */ 92 if (shmem_mapping(mapping)) 93 return 1; 94 if (dax_mapping(mapping)) 95 return dax_invalidate_mapping_entry_sync(mapping, index); 96 clear_shadow_entry(mapping, index, entry); 97 return 1; 98 } 99 100 /** 101 * do_invalidatepage - invalidate part or all of a page 102 * @page: the page which is affected 103 * @offset: start of the range to invalidate 104 * @length: length of the range to invalidate 105 * 106 * do_invalidatepage() is called when all or part of the page has become 107 * invalidated by a truncate operation. 108 * 109 * do_invalidatepage() does not have to release all buffers, but it must 110 * ensure that no dirty buffer is left outside @offset and that no I/O 111 * is underway against any of the blocks which are outside the truncation 112 * point. Because the caller is about to free (and possibly reuse) those 113 * blocks on-disk. 114 */ 115 void do_invalidatepage(struct page *page, unsigned int offset, 116 unsigned int length) 117 { 118 void (*invalidatepage)(struct page *, unsigned int, unsigned int); 119 120 invalidatepage = page->mapping->a_ops->invalidatepage; 121 #ifdef CONFIG_BLOCK 122 if (!invalidatepage) 123 invalidatepage = block_invalidatepage; 124 #endif 125 if (invalidatepage) 126 (*invalidatepage)(page, offset, length); 127 } 128 129 /* 130 * If truncate cannot remove the fs-private metadata from the page, the page 131 * becomes orphaned. It will be left on the LRU and may even be mapped into 132 * user pagetables if we're racing with filemap_fault(). 133 * 134 * We need to bale out if page->mapping is no longer equal to the original 135 * mapping. This happens a) when the VM reclaimed the page while we waited on 136 * its lock, b) when a concurrent invalidate_mapping_pages got there first and 137 * c) when tmpfs swizzles a page between a tmpfs inode and swapper_space. 138 */ 139 static int 140 truncate_complete_page(struct address_space *mapping, struct page *page) 141 { 142 if (page->mapping != mapping) 143 return -EIO; 144 145 if (page_has_private(page)) 146 do_invalidatepage(page, 0, PAGE_SIZE); 147 148 /* 149 * Some filesystems seem to re-dirty the page even after 150 * the VM has canceled the dirty bit (eg ext3 journaling). 151 * Hence dirty accounting check is placed after invalidation. 152 */ 153 cancel_dirty_page(page); 154 ClearPageMappedToDisk(page); 155 delete_from_page_cache(page); 156 return 0; 157 } 158 159 /* 160 * This is for invalidate_mapping_pages(). That function can be called at 161 * any time, and is not supposed to throw away dirty pages. But pages can 162 * be marked dirty at any time too, so use remove_mapping which safely 163 * discards clean, unused pages. 164 * 165 * Returns non-zero if the page was successfully invalidated. 166 */ 167 static int 168 invalidate_complete_page(struct address_space *mapping, struct page *page) 169 { 170 int ret; 171 172 if (page->mapping != mapping) 173 return 0; 174 175 if (page_has_private(page) && !try_to_release_page(page, 0)) 176 return 0; 177 178 ret = remove_mapping(mapping, page); 179 180 return ret; 181 } 182 183 int truncate_inode_page(struct address_space *mapping, struct page *page) 184 { 185 loff_t holelen; 186 VM_BUG_ON_PAGE(PageTail(page), page); 187 188 holelen = PageTransHuge(page) ? HPAGE_PMD_SIZE : PAGE_SIZE; 189 if (page_mapped(page)) { 190 unmap_mapping_range(mapping, 191 (loff_t)page->index << PAGE_SHIFT, 192 holelen, 0); 193 } 194 return truncate_complete_page(mapping, page); 195 } 196 197 /* 198 * Used to get rid of pages on hardware memory corruption. 199 */ 200 int generic_error_remove_page(struct address_space *mapping, struct page *page) 201 { 202 if (!mapping) 203 return -EINVAL; 204 /* 205 * Only punch for normal data pages for now. 206 * Handling other types like directories would need more auditing. 207 */ 208 if (!S_ISREG(mapping->host->i_mode)) 209 return -EIO; 210 return truncate_inode_page(mapping, page); 211 } 212 EXPORT_SYMBOL(generic_error_remove_page); 213 214 /* 215 * Safely invalidate one page from its pagecache mapping. 216 * It only drops clean, unused pages. The page must be locked. 217 * 218 * Returns 1 if the page is successfully invalidated, otherwise 0. 219 */ 220 int invalidate_inode_page(struct page *page) 221 { 222 struct address_space *mapping = page_mapping(page); 223 if (!mapping) 224 return 0; 225 if (PageDirty(page) || PageWriteback(page)) 226 return 0; 227 if (page_mapped(page)) 228 return 0; 229 return invalidate_complete_page(mapping, page); 230 } 231 232 /** 233 * truncate_inode_pages_range - truncate range of pages specified by start & end byte offsets 234 * @mapping: mapping to truncate 235 * @lstart: offset from which to truncate 236 * @lend: offset to which to truncate (inclusive) 237 * 238 * Truncate the page cache, removing the pages that are between 239 * specified offsets (and zeroing out partial pages 240 * if lstart or lend + 1 is not page aligned). 241 * 242 * Truncate takes two passes - the first pass is nonblocking. It will not 243 * block on page locks and it will not block on writeback. The second pass 244 * will wait. This is to prevent as much IO as possible in the affected region. 245 * The first pass will remove most pages, so the search cost of the second pass 246 * is low. 247 * 248 * We pass down the cache-hot hint to the page freeing code. Even if the 249 * mapping is large, it is probably the case that the final pages are the most 250 * recently touched, and freeing happens in ascending file offset order. 251 * 252 * Note that since ->invalidatepage() accepts range to invalidate 253 * truncate_inode_pages_range is able to handle cases where lend + 1 is not 254 * page aligned properly. 255 */ 256 void truncate_inode_pages_range(struct address_space *mapping, 257 loff_t lstart, loff_t lend) 258 { 259 pgoff_t start; /* inclusive */ 260 pgoff_t end; /* exclusive */ 261 unsigned int partial_start; /* inclusive */ 262 unsigned int partial_end; /* exclusive */ 263 struct pagevec pvec; 264 pgoff_t indices[PAGEVEC_SIZE]; 265 pgoff_t index; 266 int i; 267 268 cleancache_invalidate_inode(mapping); 269 if (mapping->nrpages == 0 && mapping->nrexceptional == 0) 270 return; 271 272 /* Offsets within partial pages */ 273 partial_start = lstart & (PAGE_SIZE - 1); 274 partial_end = (lend + 1) & (PAGE_SIZE - 1); 275 276 /* 277 * 'start' and 'end' always covers the range of pages to be fully 278 * truncated. Partial pages are covered with 'partial_start' at the 279 * start of the range and 'partial_end' at the end of the range. 280 * Note that 'end' is exclusive while 'lend' is inclusive. 281 */ 282 start = (lstart + PAGE_SIZE - 1) >> PAGE_SHIFT; 283 if (lend == -1) 284 /* 285 * lend == -1 indicates end-of-file so we have to set 'end' 286 * to the highest possible pgoff_t and since the type is 287 * unsigned we're using -1. 288 */ 289 end = -1; 290 else 291 end = (lend + 1) >> PAGE_SHIFT; 292 293 pagevec_init(&pvec, 0); 294 index = start; 295 while (index < end && pagevec_lookup_entries(&pvec, mapping, index, 296 min(end - index, (pgoff_t)PAGEVEC_SIZE), 297 indices)) { 298 for (i = 0; i < pagevec_count(&pvec); i++) { 299 struct page *page = pvec.pages[i]; 300 301 /* We rely upon deletion not changing page->index */ 302 index = indices[i]; 303 if (index >= end) 304 break; 305 306 if (radix_tree_exceptional_entry(page)) { 307 truncate_exceptional_entry(mapping, index, 308 page); 309 continue; 310 } 311 312 if (!trylock_page(page)) 313 continue; 314 WARN_ON(page_to_index(page) != index); 315 if (PageWriteback(page)) { 316 unlock_page(page); 317 continue; 318 } 319 truncate_inode_page(mapping, page); 320 unlock_page(page); 321 } 322 pagevec_remove_exceptionals(&pvec); 323 pagevec_release(&pvec); 324 cond_resched(); 325 index++; 326 } 327 328 if (partial_start) { 329 struct page *page = find_lock_page(mapping, start - 1); 330 if (page) { 331 unsigned int top = PAGE_SIZE; 332 if (start > end) { 333 /* Truncation within a single page */ 334 top = partial_end; 335 partial_end = 0; 336 } 337 wait_on_page_writeback(page); 338 zero_user_segment(page, partial_start, top); 339 cleancache_invalidate_page(mapping, page); 340 if (page_has_private(page)) 341 do_invalidatepage(page, partial_start, 342 top - partial_start); 343 unlock_page(page); 344 put_page(page); 345 } 346 } 347 if (partial_end) { 348 struct page *page = find_lock_page(mapping, end); 349 if (page) { 350 wait_on_page_writeback(page); 351 zero_user_segment(page, 0, partial_end); 352 cleancache_invalidate_page(mapping, page); 353 if (page_has_private(page)) 354 do_invalidatepage(page, 0, 355 partial_end); 356 unlock_page(page); 357 put_page(page); 358 } 359 } 360 /* 361 * If the truncation happened within a single page no pages 362 * will be released, just zeroed, so we can bail out now. 363 */ 364 if (start >= end) 365 return; 366 367 index = start; 368 for ( ; ; ) { 369 cond_resched(); 370 if (!pagevec_lookup_entries(&pvec, mapping, index, 371 min(end - index, (pgoff_t)PAGEVEC_SIZE), indices)) { 372 /* If all gone from start onwards, we're done */ 373 if (index == start) 374 break; 375 /* Otherwise restart to make sure all gone */ 376 index = start; 377 continue; 378 } 379 if (index == start && indices[0] >= end) { 380 /* All gone out of hole to be punched, we're done */ 381 pagevec_remove_exceptionals(&pvec); 382 pagevec_release(&pvec); 383 break; 384 } 385 for (i = 0; i < pagevec_count(&pvec); i++) { 386 struct page *page = pvec.pages[i]; 387 388 /* We rely upon deletion not changing page->index */ 389 index = indices[i]; 390 if (index >= end) { 391 /* Restart punch to make sure all gone */ 392 index = start - 1; 393 break; 394 } 395 396 if (radix_tree_exceptional_entry(page)) { 397 truncate_exceptional_entry(mapping, index, 398 page); 399 continue; 400 } 401 402 lock_page(page); 403 WARN_ON(page_to_index(page) != index); 404 wait_on_page_writeback(page); 405 truncate_inode_page(mapping, page); 406 unlock_page(page); 407 } 408 pagevec_remove_exceptionals(&pvec); 409 pagevec_release(&pvec); 410 index++; 411 } 412 cleancache_invalidate_inode(mapping); 413 } 414 EXPORT_SYMBOL(truncate_inode_pages_range); 415 416 /** 417 * truncate_inode_pages - truncate *all* the pages from an offset 418 * @mapping: mapping to truncate 419 * @lstart: offset from which to truncate 420 * 421 * Called under (and serialised by) inode->i_mutex. 422 * 423 * Note: When this function returns, there can be a page in the process of 424 * deletion (inside __delete_from_page_cache()) in the specified range. Thus 425 * mapping->nrpages can be non-zero when this function returns even after 426 * truncation of the whole mapping. 427 */ 428 void truncate_inode_pages(struct address_space *mapping, loff_t lstart) 429 { 430 truncate_inode_pages_range(mapping, lstart, (loff_t)-1); 431 } 432 EXPORT_SYMBOL(truncate_inode_pages); 433 434 /** 435 * truncate_inode_pages_final - truncate *all* pages before inode dies 436 * @mapping: mapping to truncate 437 * 438 * Called under (and serialized by) inode->i_mutex. 439 * 440 * Filesystems have to use this in the .evict_inode path to inform the 441 * VM that this is the final truncate and the inode is going away. 442 */ 443 void truncate_inode_pages_final(struct address_space *mapping) 444 { 445 unsigned long nrexceptional; 446 unsigned long nrpages; 447 448 /* 449 * Page reclaim can not participate in regular inode lifetime 450 * management (can't call iput()) and thus can race with the 451 * inode teardown. Tell it when the address space is exiting, 452 * so that it does not install eviction information after the 453 * final truncate has begun. 454 */ 455 mapping_set_exiting(mapping); 456 457 /* 458 * When reclaim installs eviction entries, it increases 459 * nrexceptional first, then decreases nrpages. Make sure we see 460 * this in the right order or we might miss an entry. 461 */ 462 nrpages = mapping->nrpages; 463 smp_rmb(); 464 nrexceptional = mapping->nrexceptional; 465 466 if (nrpages || nrexceptional) { 467 /* 468 * As truncation uses a lockless tree lookup, cycle 469 * the tree lock to make sure any ongoing tree 470 * modification that does not see AS_EXITING is 471 * completed before starting the final truncate. 472 */ 473 spin_lock_irq(&mapping->tree_lock); 474 spin_unlock_irq(&mapping->tree_lock); 475 476 truncate_inode_pages(mapping, 0); 477 } 478 } 479 EXPORT_SYMBOL(truncate_inode_pages_final); 480 481 /** 482 * invalidate_mapping_pages - Invalidate all the unlocked pages of one inode 483 * @mapping: the address_space which holds the pages to invalidate 484 * @start: the offset 'from' which to invalidate 485 * @end: the offset 'to' which to invalidate (inclusive) 486 * 487 * This function only removes the unlocked pages, if you want to 488 * remove all the pages of one inode, you must call truncate_inode_pages. 489 * 490 * invalidate_mapping_pages() will not block on IO activity. It will not 491 * invalidate pages which are dirty, locked, under writeback or mapped into 492 * pagetables. 493 */ 494 unsigned long invalidate_mapping_pages(struct address_space *mapping, 495 pgoff_t start, pgoff_t end) 496 { 497 pgoff_t indices[PAGEVEC_SIZE]; 498 struct pagevec pvec; 499 pgoff_t index = start; 500 unsigned long ret; 501 unsigned long count = 0; 502 int i; 503 504 pagevec_init(&pvec, 0); 505 while (index <= end && pagevec_lookup_entries(&pvec, mapping, index, 506 min(end - index, (pgoff_t)PAGEVEC_SIZE - 1) + 1, 507 indices)) { 508 for (i = 0; i < pagevec_count(&pvec); i++) { 509 struct page *page = pvec.pages[i]; 510 511 /* We rely upon deletion not changing page->index */ 512 index = indices[i]; 513 if (index > end) 514 break; 515 516 if (radix_tree_exceptional_entry(page)) { 517 invalidate_exceptional_entry(mapping, index, 518 page); 519 continue; 520 } 521 522 if (!trylock_page(page)) 523 continue; 524 525 WARN_ON(page_to_index(page) != index); 526 527 /* Middle of THP: skip */ 528 if (PageTransTail(page)) { 529 unlock_page(page); 530 continue; 531 } else if (PageTransHuge(page)) { 532 index += HPAGE_PMD_NR - 1; 533 i += HPAGE_PMD_NR - 1; 534 /* 'end' is in the middle of THP */ 535 if (index == round_down(end, HPAGE_PMD_NR)) 536 continue; 537 } 538 539 ret = invalidate_inode_page(page); 540 unlock_page(page); 541 /* 542 * Invalidation is a hint that the page is no longer 543 * of interest and try to speed up its reclaim. 544 */ 545 if (!ret) 546 deactivate_file_page(page); 547 count += ret; 548 } 549 pagevec_remove_exceptionals(&pvec); 550 pagevec_release(&pvec); 551 cond_resched(); 552 index++; 553 } 554 return count; 555 } 556 EXPORT_SYMBOL(invalidate_mapping_pages); 557 558 /* 559 * This is like invalidate_complete_page(), except it ignores the page's 560 * refcount. We do this because invalidate_inode_pages2() needs stronger 561 * invalidation guarantees, and cannot afford to leave pages behind because 562 * shrink_page_list() has a temp ref on them, or because they're transiently 563 * sitting in the lru_cache_add() pagevecs. 564 */ 565 static int 566 invalidate_complete_page2(struct address_space *mapping, struct page *page) 567 { 568 unsigned long flags; 569 570 if (page->mapping != mapping) 571 return 0; 572 573 if (page_has_private(page) && !try_to_release_page(page, GFP_KERNEL)) 574 return 0; 575 576 spin_lock_irqsave(&mapping->tree_lock, flags); 577 if (PageDirty(page)) 578 goto failed; 579 580 BUG_ON(page_has_private(page)); 581 __delete_from_page_cache(page, NULL); 582 spin_unlock_irqrestore(&mapping->tree_lock, flags); 583 584 if (mapping->a_ops->freepage) 585 mapping->a_ops->freepage(page); 586 587 put_page(page); /* pagecache ref */ 588 return 1; 589 failed: 590 spin_unlock_irqrestore(&mapping->tree_lock, flags); 591 return 0; 592 } 593 594 static int do_launder_page(struct address_space *mapping, struct page *page) 595 { 596 if (!PageDirty(page)) 597 return 0; 598 if (page->mapping != mapping || mapping->a_ops->launder_page == NULL) 599 return 0; 600 return mapping->a_ops->launder_page(page); 601 } 602 603 /** 604 * invalidate_inode_pages2_range - remove range of pages from an address_space 605 * @mapping: the address_space 606 * @start: the page offset 'from' which to invalidate 607 * @end: the page offset 'to' which to invalidate (inclusive) 608 * 609 * Any pages which are found to be mapped into pagetables are unmapped prior to 610 * invalidation. 611 * 612 * Returns -EBUSY if any pages could not be invalidated. 613 */ 614 int invalidate_inode_pages2_range(struct address_space *mapping, 615 pgoff_t start, pgoff_t end) 616 { 617 pgoff_t indices[PAGEVEC_SIZE]; 618 struct pagevec pvec; 619 pgoff_t index; 620 int i; 621 int ret = 0; 622 int ret2 = 0; 623 int did_range_unmap = 0; 624 625 cleancache_invalidate_inode(mapping); 626 pagevec_init(&pvec, 0); 627 index = start; 628 while (index <= end && pagevec_lookup_entries(&pvec, mapping, index, 629 min(end - index, (pgoff_t)PAGEVEC_SIZE - 1) + 1, 630 indices)) { 631 for (i = 0; i < pagevec_count(&pvec); i++) { 632 struct page *page = pvec.pages[i]; 633 634 /* We rely upon deletion not changing page->index */ 635 index = indices[i]; 636 if (index > end) 637 break; 638 639 if (radix_tree_exceptional_entry(page)) { 640 if (!invalidate_exceptional_entry2(mapping, 641 index, page)) 642 ret = -EBUSY; 643 continue; 644 } 645 646 lock_page(page); 647 WARN_ON(page_to_index(page) != index); 648 if (page->mapping != mapping) { 649 unlock_page(page); 650 continue; 651 } 652 wait_on_page_writeback(page); 653 if (page_mapped(page)) { 654 if (!did_range_unmap) { 655 /* 656 * Zap the rest of the file in one hit. 657 */ 658 unmap_mapping_range(mapping, 659 (loff_t)index << PAGE_SHIFT, 660 (loff_t)(1 + end - index) 661 << PAGE_SHIFT, 662 0); 663 did_range_unmap = 1; 664 } else { 665 /* 666 * Just zap this page 667 */ 668 unmap_mapping_range(mapping, 669 (loff_t)index << PAGE_SHIFT, 670 PAGE_SIZE, 0); 671 } 672 } 673 BUG_ON(page_mapped(page)); 674 ret2 = do_launder_page(mapping, page); 675 if (ret2 == 0) { 676 if (!invalidate_complete_page2(mapping, page)) 677 ret2 = -EBUSY; 678 } 679 if (ret2 < 0) 680 ret = ret2; 681 unlock_page(page); 682 } 683 pagevec_remove_exceptionals(&pvec); 684 pagevec_release(&pvec); 685 cond_resched(); 686 index++; 687 } 688 cleancache_invalidate_inode(mapping); 689 return ret; 690 } 691 EXPORT_SYMBOL_GPL(invalidate_inode_pages2_range); 692 693 /** 694 * invalidate_inode_pages2 - remove all pages from an address_space 695 * @mapping: the address_space 696 * 697 * Any pages which are found to be mapped into pagetables are unmapped prior to 698 * invalidation. 699 * 700 * Returns -EBUSY if any pages could not be invalidated. 701 */ 702 int invalidate_inode_pages2(struct address_space *mapping) 703 { 704 return invalidate_inode_pages2_range(mapping, 0, -1); 705 } 706 EXPORT_SYMBOL_GPL(invalidate_inode_pages2); 707 708 /** 709 * truncate_pagecache - unmap and remove pagecache that has been truncated 710 * @inode: inode 711 * @newsize: new file size 712 * 713 * inode's new i_size must already be written before truncate_pagecache 714 * is called. 715 * 716 * This function should typically be called before the filesystem 717 * releases resources associated with the freed range (eg. deallocates 718 * blocks). This way, pagecache will always stay logically coherent 719 * with on-disk format, and the filesystem would not have to deal with 720 * situations such as writepage being called for a page that has already 721 * had its underlying blocks deallocated. 722 */ 723 void truncate_pagecache(struct inode *inode, loff_t newsize) 724 { 725 struct address_space *mapping = inode->i_mapping; 726 loff_t holebegin = round_up(newsize, PAGE_SIZE); 727 728 /* 729 * unmap_mapping_range is called twice, first simply for 730 * efficiency so that truncate_inode_pages does fewer 731 * single-page unmaps. However after this first call, and 732 * before truncate_inode_pages finishes, it is possible for 733 * private pages to be COWed, which remain after 734 * truncate_inode_pages finishes, hence the second 735 * unmap_mapping_range call must be made for correctness. 736 */ 737 unmap_mapping_range(mapping, holebegin, 0, 1); 738 truncate_inode_pages(mapping, newsize); 739 unmap_mapping_range(mapping, holebegin, 0, 1); 740 } 741 EXPORT_SYMBOL(truncate_pagecache); 742 743 /** 744 * truncate_setsize - update inode and pagecache for a new file size 745 * @inode: inode 746 * @newsize: new file size 747 * 748 * truncate_setsize updates i_size and performs pagecache truncation (if 749 * necessary) to @newsize. It will be typically be called from the filesystem's 750 * setattr function when ATTR_SIZE is passed in. 751 * 752 * Must be called with a lock serializing truncates and writes (generally 753 * i_mutex but e.g. xfs uses a different lock) and before all filesystem 754 * specific block truncation has been performed. 755 */ 756 void truncate_setsize(struct inode *inode, loff_t newsize) 757 { 758 loff_t oldsize = inode->i_size; 759 760 i_size_write(inode, newsize); 761 if (newsize > oldsize) 762 pagecache_isize_extended(inode, oldsize, newsize); 763 truncate_pagecache(inode, newsize); 764 } 765 EXPORT_SYMBOL(truncate_setsize); 766 767 /** 768 * pagecache_isize_extended - update pagecache after extension of i_size 769 * @inode: inode for which i_size was extended 770 * @from: original inode size 771 * @to: new inode size 772 * 773 * Handle extension of inode size either caused by extending truncate or by 774 * write starting after current i_size. We mark the page straddling current 775 * i_size RO so that page_mkwrite() is called on the nearest write access to 776 * the page. This way filesystem can be sure that page_mkwrite() is called on 777 * the page before user writes to the page via mmap after the i_size has been 778 * changed. 779 * 780 * The function must be called after i_size is updated so that page fault 781 * coming after we unlock the page will already see the new i_size. 782 * The function must be called while we still hold i_mutex - this not only 783 * makes sure i_size is stable but also that userspace cannot observe new 784 * i_size value before we are prepared to store mmap writes at new inode size. 785 */ 786 void pagecache_isize_extended(struct inode *inode, loff_t from, loff_t to) 787 { 788 int bsize = 1 << inode->i_blkbits; 789 loff_t rounded_from; 790 struct page *page; 791 pgoff_t index; 792 793 WARN_ON(to > inode->i_size); 794 795 if (from >= to || bsize == PAGE_SIZE) 796 return; 797 /* Page straddling @from will not have any hole block created? */ 798 rounded_from = round_up(from, bsize); 799 if (to <= rounded_from || !(rounded_from & (PAGE_SIZE - 1))) 800 return; 801 802 index = from >> PAGE_SHIFT; 803 page = find_lock_page(inode->i_mapping, index); 804 /* Page not cached? Nothing to do */ 805 if (!page) 806 return; 807 /* 808 * See clear_page_dirty_for_io() for details why set_page_dirty() 809 * is needed. 810 */ 811 if (page_mkclean(page)) 812 set_page_dirty(page); 813 unlock_page(page); 814 put_page(page); 815 } 816 EXPORT_SYMBOL(pagecache_isize_extended); 817 818 /** 819 * truncate_pagecache_range - unmap and remove pagecache that is hole-punched 820 * @inode: inode 821 * @lstart: offset of beginning of hole 822 * @lend: offset of last byte of hole 823 * 824 * This function should typically be called before the filesystem 825 * releases resources associated with the freed range (eg. deallocates 826 * blocks). This way, pagecache will always stay logically coherent 827 * with on-disk format, and the filesystem would not have to deal with 828 * situations such as writepage being called for a page that has already 829 * had its underlying blocks deallocated. 830 */ 831 void truncate_pagecache_range(struct inode *inode, loff_t lstart, loff_t lend) 832 { 833 struct address_space *mapping = inode->i_mapping; 834 loff_t unmap_start = round_up(lstart, PAGE_SIZE); 835 loff_t unmap_end = round_down(1 + lend, PAGE_SIZE) - 1; 836 /* 837 * This rounding is currently just for example: unmap_mapping_range 838 * expands its hole outwards, whereas we want it to contract the hole 839 * inwards. However, existing callers of truncate_pagecache_range are 840 * doing their own page rounding first. Note that unmap_mapping_range 841 * allows holelen 0 for all, and we allow lend -1 for end of file. 842 */ 843 844 /* 845 * Unlike in truncate_pagecache, unmap_mapping_range is called only 846 * once (before truncating pagecache), and without "even_cows" flag: 847 * hole-punching should not remove private COWed pages from the hole. 848 */ 849 if ((u64)unmap_end > (u64)unmap_start) 850 unmap_mapping_range(mapping, unmap_start, 851 1 + unmap_end - unmap_start, 0); 852 truncate_inode_pages_range(mapping, lstart, lend); 853 } 854 EXPORT_SYMBOL(truncate_pagecache_range); 855