1 /* 2 * mm/truncate.c - code for taking down pages from address_spaces 3 * 4 * Copyright (C) 2002, Linus Torvalds 5 * 6 * 10Sep2002 Andrew Morton 7 * Initial version. 8 */ 9 10 #include <linux/kernel.h> 11 #include <linux/backing-dev.h> 12 #include <linux/gfp.h> 13 #include <linux/mm.h> 14 #include <linux/swap.h> 15 #include <linux/module.h> 16 #include <linux/pagemap.h> 17 #include <linux/highmem.h> 18 #include <linux/pagevec.h> 19 #include <linux/task_io_accounting_ops.h> 20 #include <linux/buffer_head.h> /* grr. try_to_release_page, 21 do_invalidatepage */ 22 #include "internal.h" 23 24 25 /** 26 * do_invalidatepage - invalidate part or all of a page 27 * @page: the page which is affected 28 * @offset: the index of the truncation point 29 * 30 * do_invalidatepage() is called when all or part of the page has become 31 * invalidated by a truncate operation. 32 * 33 * do_invalidatepage() does not have to release all buffers, but it must 34 * ensure that no dirty buffer is left outside @offset and that no I/O 35 * is underway against any of the blocks which are outside the truncation 36 * point. Because the caller is about to free (and possibly reuse) those 37 * blocks on-disk. 38 */ 39 void do_invalidatepage(struct page *page, unsigned long offset) 40 { 41 void (*invalidatepage)(struct page *, unsigned long); 42 invalidatepage = page->mapping->a_ops->invalidatepage; 43 #ifdef CONFIG_BLOCK 44 if (!invalidatepage) 45 invalidatepage = block_invalidatepage; 46 #endif 47 if (invalidatepage) 48 (*invalidatepage)(page, offset); 49 } 50 51 static inline void truncate_partial_page(struct page *page, unsigned partial) 52 { 53 zero_user_segment(page, partial, PAGE_CACHE_SIZE); 54 if (page_has_private(page)) 55 do_invalidatepage(page, partial); 56 } 57 58 /* 59 * This cancels just the dirty bit on the kernel page itself, it 60 * does NOT actually remove dirty bits on any mmap's that may be 61 * around. It also leaves the page tagged dirty, so any sync 62 * activity will still find it on the dirty lists, and in particular, 63 * clear_page_dirty_for_io() will still look at the dirty bits in 64 * the VM. 65 * 66 * Doing this should *normally* only ever be done when a page 67 * is truncated, and is not actually mapped anywhere at all. However, 68 * fs/buffer.c does this when it notices that somebody has cleaned 69 * out all the buffers on a page without actually doing it through 70 * the VM. Can you say "ext3 is horribly ugly"? Tought you could. 71 */ 72 void cancel_dirty_page(struct page *page, unsigned int account_size) 73 { 74 if (TestClearPageDirty(page)) { 75 struct address_space *mapping = page->mapping; 76 if (mapping && mapping_cap_account_dirty(mapping)) { 77 dec_zone_page_state(page, NR_FILE_DIRTY); 78 dec_bdi_stat(mapping->backing_dev_info, 79 BDI_RECLAIMABLE); 80 if (account_size) 81 task_io_account_cancelled_write(account_size); 82 } 83 } 84 } 85 EXPORT_SYMBOL(cancel_dirty_page); 86 87 /* 88 * If truncate cannot remove the fs-private metadata from the page, the page 89 * becomes orphaned. It will be left on the LRU and may even be mapped into 90 * user pagetables if we're racing with filemap_fault(). 91 * 92 * We need to bale out if page->mapping is no longer equal to the original 93 * mapping. This happens a) when the VM reclaimed the page while we waited on 94 * its lock, b) when a concurrent invalidate_mapping_pages got there first and 95 * c) when tmpfs swizzles a page between a tmpfs inode and swapper_space. 96 */ 97 static int 98 truncate_complete_page(struct address_space *mapping, struct page *page) 99 { 100 if (page->mapping != mapping) 101 return -EIO; 102 103 if (page_has_private(page)) 104 do_invalidatepage(page, 0); 105 106 cancel_dirty_page(page, PAGE_CACHE_SIZE); 107 108 clear_page_mlock(page); 109 remove_from_page_cache(page); 110 ClearPageMappedToDisk(page); 111 page_cache_release(page); /* pagecache ref */ 112 return 0; 113 } 114 115 /* 116 * This is for invalidate_mapping_pages(). That function can be called at 117 * any time, and is not supposed to throw away dirty pages. But pages can 118 * be marked dirty at any time too, so use remove_mapping which safely 119 * discards clean, unused pages. 120 * 121 * Returns non-zero if the page was successfully invalidated. 122 */ 123 static int 124 invalidate_complete_page(struct address_space *mapping, struct page *page) 125 { 126 int ret; 127 128 if (page->mapping != mapping) 129 return 0; 130 131 if (page_has_private(page) && !try_to_release_page(page, 0)) 132 return 0; 133 134 clear_page_mlock(page); 135 ret = remove_mapping(mapping, page); 136 137 return ret; 138 } 139 140 int truncate_inode_page(struct address_space *mapping, struct page *page) 141 { 142 if (page_mapped(page)) { 143 unmap_mapping_range(mapping, 144 (loff_t)page->index << PAGE_CACHE_SHIFT, 145 PAGE_CACHE_SIZE, 0); 146 } 147 return truncate_complete_page(mapping, page); 148 } 149 150 /* 151 * Used to get rid of pages on hardware memory corruption. 152 */ 153 int generic_error_remove_page(struct address_space *mapping, struct page *page) 154 { 155 if (!mapping) 156 return -EINVAL; 157 /* 158 * Only punch for normal data pages for now. 159 * Handling other types like directories would need more auditing. 160 */ 161 if (!S_ISREG(mapping->host->i_mode)) 162 return -EIO; 163 return truncate_inode_page(mapping, page); 164 } 165 EXPORT_SYMBOL(generic_error_remove_page); 166 167 /* 168 * Safely invalidate one page from its pagecache mapping. 169 * It only drops clean, unused pages. The page must be locked. 170 * 171 * Returns 1 if the page is successfully invalidated, otherwise 0. 172 */ 173 int invalidate_inode_page(struct page *page) 174 { 175 struct address_space *mapping = page_mapping(page); 176 if (!mapping) 177 return 0; 178 if (PageDirty(page) || PageWriteback(page)) 179 return 0; 180 if (page_mapped(page)) 181 return 0; 182 return invalidate_complete_page(mapping, page); 183 } 184 185 /** 186 * truncate_inode_pages - truncate range of pages specified by start & end byte offsets 187 * @mapping: mapping to truncate 188 * @lstart: offset from which to truncate 189 * @lend: offset to which to truncate 190 * 191 * Truncate the page cache, removing the pages that are between 192 * specified offsets (and zeroing out partial page 193 * (if lstart is not page aligned)). 194 * 195 * Truncate takes two passes - the first pass is nonblocking. It will not 196 * block on page locks and it will not block on writeback. The second pass 197 * will wait. This is to prevent as much IO as possible in the affected region. 198 * The first pass will remove most pages, so the search cost of the second pass 199 * is low. 200 * 201 * When looking at page->index outside the page lock we need to be careful to 202 * copy it into a local to avoid races (it could change at any time). 203 * 204 * We pass down the cache-hot hint to the page freeing code. Even if the 205 * mapping is large, it is probably the case that the final pages are the most 206 * recently touched, and freeing happens in ascending file offset order. 207 */ 208 void truncate_inode_pages_range(struct address_space *mapping, 209 loff_t lstart, loff_t lend) 210 { 211 const pgoff_t start = (lstart + PAGE_CACHE_SIZE-1) >> PAGE_CACHE_SHIFT; 212 pgoff_t end; 213 const unsigned partial = lstart & (PAGE_CACHE_SIZE - 1); 214 struct pagevec pvec; 215 pgoff_t next; 216 int i; 217 218 if (mapping->nrpages == 0) 219 return; 220 221 BUG_ON((lend & (PAGE_CACHE_SIZE - 1)) != (PAGE_CACHE_SIZE - 1)); 222 end = (lend >> PAGE_CACHE_SHIFT); 223 224 pagevec_init(&pvec, 0); 225 next = start; 226 while (next <= end && 227 pagevec_lookup(&pvec, mapping, next, PAGEVEC_SIZE)) { 228 mem_cgroup_uncharge_start(); 229 for (i = 0; i < pagevec_count(&pvec); i++) { 230 struct page *page = pvec.pages[i]; 231 pgoff_t page_index = page->index; 232 233 if (page_index > end) { 234 next = page_index; 235 break; 236 } 237 238 if (page_index > next) 239 next = page_index; 240 next++; 241 if (!trylock_page(page)) 242 continue; 243 if (PageWriteback(page)) { 244 unlock_page(page); 245 continue; 246 } 247 truncate_inode_page(mapping, page); 248 unlock_page(page); 249 } 250 pagevec_release(&pvec); 251 mem_cgroup_uncharge_end(); 252 cond_resched(); 253 } 254 255 if (partial) { 256 struct page *page = find_lock_page(mapping, start - 1); 257 if (page) { 258 wait_on_page_writeback(page); 259 truncate_partial_page(page, partial); 260 unlock_page(page); 261 page_cache_release(page); 262 } 263 } 264 265 next = start; 266 for ( ; ; ) { 267 cond_resched(); 268 if (!pagevec_lookup(&pvec, mapping, next, PAGEVEC_SIZE)) { 269 if (next == start) 270 break; 271 next = start; 272 continue; 273 } 274 if (pvec.pages[0]->index > end) { 275 pagevec_release(&pvec); 276 break; 277 } 278 mem_cgroup_uncharge_start(); 279 for (i = 0; i < pagevec_count(&pvec); i++) { 280 struct page *page = pvec.pages[i]; 281 282 if (page->index > end) 283 break; 284 lock_page(page); 285 wait_on_page_writeback(page); 286 truncate_inode_page(mapping, page); 287 if (page->index > next) 288 next = page->index; 289 next++; 290 unlock_page(page); 291 } 292 pagevec_release(&pvec); 293 mem_cgroup_uncharge_end(); 294 } 295 } 296 EXPORT_SYMBOL(truncate_inode_pages_range); 297 298 /** 299 * truncate_inode_pages - truncate *all* the pages from an offset 300 * @mapping: mapping to truncate 301 * @lstart: offset from which to truncate 302 * 303 * Called under (and serialised by) inode->i_mutex. 304 */ 305 void truncate_inode_pages(struct address_space *mapping, loff_t lstart) 306 { 307 truncate_inode_pages_range(mapping, lstart, (loff_t)-1); 308 } 309 EXPORT_SYMBOL(truncate_inode_pages); 310 311 /** 312 * invalidate_mapping_pages - Invalidate all the unlocked pages of one inode 313 * @mapping: the address_space which holds the pages to invalidate 314 * @start: the offset 'from' which to invalidate 315 * @end: the offset 'to' which to invalidate (inclusive) 316 * 317 * This function only removes the unlocked pages, if you want to 318 * remove all the pages of one inode, you must call truncate_inode_pages. 319 * 320 * invalidate_mapping_pages() will not block on IO activity. It will not 321 * invalidate pages which are dirty, locked, under writeback or mapped into 322 * pagetables. 323 */ 324 unsigned long invalidate_mapping_pages(struct address_space *mapping, 325 pgoff_t start, pgoff_t end) 326 { 327 struct pagevec pvec; 328 pgoff_t next = start; 329 unsigned long ret = 0; 330 int i; 331 332 pagevec_init(&pvec, 0); 333 while (next <= end && 334 pagevec_lookup(&pvec, mapping, next, PAGEVEC_SIZE)) { 335 mem_cgroup_uncharge_start(); 336 for (i = 0; i < pagevec_count(&pvec); i++) { 337 struct page *page = pvec.pages[i]; 338 pgoff_t index; 339 int lock_failed; 340 341 lock_failed = !trylock_page(page); 342 343 /* 344 * We really shouldn't be looking at the ->index of an 345 * unlocked page. But we're not allowed to lock these 346 * pages. So we rely upon nobody altering the ->index 347 * of this (pinned-by-us) page. 348 */ 349 index = page->index; 350 if (index > next) 351 next = index; 352 next++; 353 if (lock_failed) 354 continue; 355 356 ret += invalidate_inode_page(page); 357 358 unlock_page(page); 359 if (next > end) 360 break; 361 } 362 pagevec_release(&pvec); 363 mem_cgroup_uncharge_end(); 364 cond_resched(); 365 } 366 return ret; 367 } 368 EXPORT_SYMBOL(invalidate_mapping_pages); 369 370 /* 371 * This is like invalidate_complete_page(), except it ignores the page's 372 * refcount. We do this because invalidate_inode_pages2() needs stronger 373 * invalidation guarantees, and cannot afford to leave pages behind because 374 * shrink_page_list() has a temp ref on them, or because they're transiently 375 * sitting in the lru_cache_add() pagevecs. 376 */ 377 static int 378 invalidate_complete_page2(struct address_space *mapping, struct page *page) 379 { 380 if (page->mapping != mapping) 381 return 0; 382 383 if (page_has_private(page) && !try_to_release_page(page, GFP_KERNEL)) 384 return 0; 385 386 spin_lock_irq(&mapping->tree_lock); 387 if (PageDirty(page)) 388 goto failed; 389 390 clear_page_mlock(page); 391 BUG_ON(page_has_private(page)); 392 __remove_from_page_cache(page); 393 spin_unlock_irq(&mapping->tree_lock); 394 mem_cgroup_uncharge_cache_page(page); 395 396 if (mapping->a_ops->freepage) 397 mapping->a_ops->freepage(page); 398 399 page_cache_release(page); /* pagecache ref */ 400 return 1; 401 failed: 402 spin_unlock_irq(&mapping->tree_lock); 403 return 0; 404 } 405 406 static int do_launder_page(struct address_space *mapping, struct page *page) 407 { 408 if (!PageDirty(page)) 409 return 0; 410 if (page->mapping != mapping || mapping->a_ops->launder_page == NULL) 411 return 0; 412 return mapping->a_ops->launder_page(page); 413 } 414 415 /** 416 * invalidate_inode_pages2_range - remove range of pages from an address_space 417 * @mapping: the address_space 418 * @start: the page offset 'from' which to invalidate 419 * @end: the page offset 'to' which to invalidate (inclusive) 420 * 421 * Any pages which are found to be mapped into pagetables are unmapped prior to 422 * invalidation. 423 * 424 * Returns -EBUSY if any pages could not be invalidated. 425 */ 426 int invalidate_inode_pages2_range(struct address_space *mapping, 427 pgoff_t start, pgoff_t end) 428 { 429 struct pagevec pvec; 430 pgoff_t next; 431 int i; 432 int ret = 0; 433 int ret2 = 0; 434 int did_range_unmap = 0; 435 int wrapped = 0; 436 437 pagevec_init(&pvec, 0); 438 next = start; 439 while (next <= end && !wrapped && 440 pagevec_lookup(&pvec, mapping, next, 441 min(end - next, (pgoff_t)PAGEVEC_SIZE - 1) + 1)) { 442 mem_cgroup_uncharge_start(); 443 for (i = 0; i < pagevec_count(&pvec); i++) { 444 struct page *page = pvec.pages[i]; 445 pgoff_t page_index; 446 447 lock_page(page); 448 if (page->mapping != mapping) { 449 unlock_page(page); 450 continue; 451 } 452 page_index = page->index; 453 next = page_index + 1; 454 if (next == 0) 455 wrapped = 1; 456 if (page_index > end) { 457 unlock_page(page); 458 break; 459 } 460 wait_on_page_writeback(page); 461 if (page_mapped(page)) { 462 if (!did_range_unmap) { 463 /* 464 * Zap the rest of the file in one hit. 465 */ 466 unmap_mapping_range(mapping, 467 (loff_t)page_index<<PAGE_CACHE_SHIFT, 468 (loff_t)(end - page_index + 1) 469 << PAGE_CACHE_SHIFT, 470 0); 471 did_range_unmap = 1; 472 } else { 473 /* 474 * Just zap this page 475 */ 476 unmap_mapping_range(mapping, 477 (loff_t)page_index<<PAGE_CACHE_SHIFT, 478 PAGE_CACHE_SIZE, 0); 479 } 480 } 481 BUG_ON(page_mapped(page)); 482 ret2 = do_launder_page(mapping, page); 483 if (ret2 == 0) { 484 if (!invalidate_complete_page2(mapping, page)) 485 ret2 = -EBUSY; 486 } 487 if (ret2 < 0) 488 ret = ret2; 489 unlock_page(page); 490 } 491 pagevec_release(&pvec); 492 mem_cgroup_uncharge_end(); 493 cond_resched(); 494 } 495 return ret; 496 } 497 EXPORT_SYMBOL_GPL(invalidate_inode_pages2_range); 498 499 /** 500 * invalidate_inode_pages2 - remove all pages from an address_space 501 * @mapping: the address_space 502 * 503 * Any pages which are found to be mapped into pagetables are unmapped prior to 504 * invalidation. 505 * 506 * Returns -EBUSY if any pages could not be invalidated. 507 */ 508 int invalidate_inode_pages2(struct address_space *mapping) 509 { 510 return invalidate_inode_pages2_range(mapping, 0, -1); 511 } 512 EXPORT_SYMBOL_GPL(invalidate_inode_pages2); 513 514 /** 515 * truncate_pagecache - unmap and remove pagecache that has been truncated 516 * @inode: inode 517 * @old: old file offset 518 * @new: new file offset 519 * 520 * inode's new i_size must already be written before truncate_pagecache 521 * is called. 522 * 523 * This function should typically be called before the filesystem 524 * releases resources associated with the freed range (eg. deallocates 525 * blocks). This way, pagecache will always stay logically coherent 526 * with on-disk format, and the filesystem would not have to deal with 527 * situations such as writepage being called for a page that has already 528 * had its underlying blocks deallocated. 529 */ 530 void truncate_pagecache(struct inode *inode, loff_t old, loff_t new) 531 { 532 struct address_space *mapping = inode->i_mapping; 533 534 /* 535 * unmap_mapping_range is called twice, first simply for 536 * efficiency so that truncate_inode_pages does fewer 537 * single-page unmaps. However after this first call, and 538 * before truncate_inode_pages finishes, it is possible for 539 * private pages to be COWed, which remain after 540 * truncate_inode_pages finishes, hence the second 541 * unmap_mapping_range call must be made for correctness. 542 */ 543 unmap_mapping_range(mapping, new + PAGE_SIZE - 1, 0, 1); 544 truncate_inode_pages(mapping, new); 545 unmap_mapping_range(mapping, new + PAGE_SIZE - 1, 0, 1); 546 } 547 EXPORT_SYMBOL(truncate_pagecache); 548 549 /** 550 * truncate_setsize - update inode and pagecache for a new file size 551 * @inode: inode 552 * @newsize: new file size 553 * 554 * truncate_setsize updates i_size and performs pagecache truncation (if 555 * necessary) to @newsize. It will be typically be called from the filesystem's 556 * setattr function when ATTR_SIZE is passed in. 557 * 558 * Must be called with inode_mutex held and before all filesystem specific 559 * block truncation has been performed. 560 */ 561 void truncate_setsize(struct inode *inode, loff_t newsize) 562 { 563 loff_t oldsize; 564 565 oldsize = inode->i_size; 566 i_size_write(inode, newsize); 567 568 truncate_pagecache(inode, oldsize, newsize); 569 } 570 EXPORT_SYMBOL(truncate_setsize); 571 572 /** 573 * vmtruncate - unmap mappings "freed" by truncate() syscall 574 * @inode: inode of the file used 575 * @offset: file offset to start truncating 576 * 577 * This function is deprecated and truncate_setsize or truncate_pagecache 578 * should be used instead, together with filesystem specific block truncation. 579 */ 580 int vmtruncate(struct inode *inode, loff_t offset) 581 { 582 int error; 583 584 error = inode_newsize_ok(inode, offset); 585 if (error) 586 return error; 587 588 truncate_setsize(inode, offset); 589 if (inode->i_op->truncate) 590 inode->i_op->truncate(inode); 591 return 0; 592 } 593 EXPORT_SYMBOL(vmtruncate); 594