xref: /openbmc/linux/mm/truncate.c (revision 3932b9ca)
1 /*
2  * mm/truncate.c - code for taking down pages from address_spaces
3  *
4  * Copyright (C) 2002, Linus Torvalds
5  *
6  * 10Sep2002	Andrew Morton
7  *		Initial version.
8  */
9 
10 #include <linux/kernel.h>
11 #include <linux/backing-dev.h>
12 #include <linux/gfp.h>
13 #include <linux/mm.h>
14 #include <linux/swap.h>
15 #include <linux/export.h>
16 #include <linux/pagemap.h>
17 #include <linux/highmem.h>
18 #include <linux/pagevec.h>
19 #include <linux/task_io_accounting_ops.h>
20 #include <linux/buffer_head.h>	/* grr. try_to_release_page,
21 				   do_invalidatepage */
22 #include <linux/cleancache.h>
23 #include "internal.h"
24 
25 static void clear_exceptional_entry(struct address_space *mapping,
26 				    pgoff_t index, void *entry)
27 {
28 	struct radix_tree_node *node;
29 	void **slot;
30 
31 	/* Handled by shmem itself */
32 	if (shmem_mapping(mapping))
33 		return;
34 
35 	spin_lock_irq(&mapping->tree_lock);
36 	/*
37 	 * Regular page slots are stabilized by the page lock even
38 	 * without the tree itself locked.  These unlocked entries
39 	 * need verification under the tree lock.
40 	 */
41 	if (!__radix_tree_lookup(&mapping->page_tree, index, &node, &slot))
42 		goto unlock;
43 	if (*slot != entry)
44 		goto unlock;
45 	radix_tree_replace_slot(slot, NULL);
46 	mapping->nrshadows--;
47 	if (!node)
48 		goto unlock;
49 	workingset_node_shadows_dec(node);
50 	/*
51 	 * Don't track node without shadow entries.
52 	 *
53 	 * Avoid acquiring the list_lru lock if already untracked.
54 	 * The list_empty() test is safe as node->private_list is
55 	 * protected by mapping->tree_lock.
56 	 */
57 	if (!workingset_node_shadows(node) &&
58 	    !list_empty(&node->private_list))
59 		list_lru_del(&workingset_shadow_nodes, &node->private_list);
60 	__radix_tree_delete_node(&mapping->page_tree, node);
61 unlock:
62 	spin_unlock_irq(&mapping->tree_lock);
63 }
64 
65 /**
66  * do_invalidatepage - invalidate part or all of a page
67  * @page: the page which is affected
68  * @offset: start of the range to invalidate
69  * @length: length of the range to invalidate
70  *
71  * do_invalidatepage() is called when all or part of the page has become
72  * invalidated by a truncate operation.
73  *
74  * do_invalidatepage() does not have to release all buffers, but it must
75  * ensure that no dirty buffer is left outside @offset and that no I/O
76  * is underway against any of the blocks which are outside the truncation
77  * point.  Because the caller is about to free (and possibly reuse) those
78  * blocks on-disk.
79  */
80 void do_invalidatepage(struct page *page, unsigned int offset,
81 		       unsigned int length)
82 {
83 	void (*invalidatepage)(struct page *, unsigned int, unsigned int);
84 
85 	invalidatepage = page->mapping->a_ops->invalidatepage;
86 #ifdef CONFIG_BLOCK
87 	if (!invalidatepage)
88 		invalidatepage = block_invalidatepage;
89 #endif
90 	if (invalidatepage)
91 		(*invalidatepage)(page, offset, length);
92 }
93 
94 /*
95  * This cancels just the dirty bit on the kernel page itself, it
96  * does NOT actually remove dirty bits on any mmap's that may be
97  * around. It also leaves the page tagged dirty, so any sync
98  * activity will still find it on the dirty lists, and in particular,
99  * clear_page_dirty_for_io() will still look at the dirty bits in
100  * the VM.
101  *
102  * Doing this should *normally* only ever be done when a page
103  * is truncated, and is not actually mapped anywhere at all. However,
104  * fs/buffer.c does this when it notices that somebody has cleaned
105  * out all the buffers on a page without actually doing it through
106  * the VM. Can you say "ext3 is horribly ugly"? Tought you could.
107  */
108 void cancel_dirty_page(struct page *page, unsigned int account_size)
109 {
110 	if (TestClearPageDirty(page)) {
111 		struct address_space *mapping = page->mapping;
112 		if (mapping && mapping_cap_account_dirty(mapping)) {
113 			dec_zone_page_state(page, NR_FILE_DIRTY);
114 			dec_bdi_stat(mapping->backing_dev_info,
115 					BDI_RECLAIMABLE);
116 			if (account_size)
117 				task_io_account_cancelled_write(account_size);
118 		}
119 	}
120 }
121 EXPORT_SYMBOL(cancel_dirty_page);
122 
123 /*
124  * If truncate cannot remove the fs-private metadata from the page, the page
125  * becomes orphaned.  It will be left on the LRU and may even be mapped into
126  * user pagetables if we're racing with filemap_fault().
127  *
128  * We need to bale out if page->mapping is no longer equal to the original
129  * mapping.  This happens a) when the VM reclaimed the page while we waited on
130  * its lock, b) when a concurrent invalidate_mapping_pages got there first and
131  * c) when tmpfs swizzles a page between a tmpfs inode and swapper_space.
132  */
133 static int
134 truncate_complete_page(struct address_space *mapping, struct page *page)
135 {
136 	if (page->mapping != mapping)
137 		return -EIO;
138 
139 	if (page_has_private(page))
140 		do_invalidatepage(page, 0, PAGE_CACHE_SIZE);
141 
142 	cancel_dirty_page(page, PAGE_CACHE_SIZE);
143 
144 	ClearPageMappedToDisk(page);
145 	delete_from_page_cache(page);
146 	return 0;
147 }
148 
149 /*
150  * This is for invalidate_mapping_pages().  That function can be called at
151  * any time, and is not supposed to throw away dirty pages.  But pages can
152  * be marked dirty at any time too, so use remove_mapping which safely
153  * discards clean, unused pages.
154  *
155  * Returns non-zero if the page was successfully invalidated.
156  */
157 static int
158 invalidate_complete_page(struct address_space *mapping, struct page *page)
159 {
160 	int ret;
161 
162 	if (page->mapping != mapping)
163 		return 0;
164 
165 	if (page_has_private(page) && !try_to_release_page(page, 0))
166 		return 0;
167 
168 	ret = remove_mapping(mapping, page);
169 
170 	return ret;
171 }
172 
173 int truncate_inode_page(struct address_space *mapping, struct page *page)
174 {
175 	if (page_mapped(page)) {
176 		unmap_mapping_range(mapping,
177 				   (loff_t)page->index << PAGE_CACHE_SHIFT,
178 				   PAGE_CACHE_SIZE, 0);
179 	}
180 	return truncate_complete_page(mapping, page);
181 }
182 
183 /*
184  * Used to get rid of pages on hardware memory corruption.
185  */
186 int generic_error_remove_page(struct address_space *mapping, struct page *page)
187 {
188 	if (!mapping)
189 		return -EINVAL;
190 	/*
191 	 * Only punch for normal data pages for now.
192 	 * Handling other types like directories would need more auditing.
193 	 */
194 	if (!S_ISREG(mapping->host->i_mode))
195 		return -EIO;
196 	return truncate_inode_page(mapping, page);
197 }
198 EXPORT_SYMBOL(generic_error_remove_page);
199 
200 /*
201  * Safely invalidate one page from its pagecache mapping.
202  * It only drops clean, unused pages. The page must be locked.
203  *
204  * Returns 1 if the page is successfully invalidated, otherwise 0.
205  */
206 int invalidate_inode_page(struct page *page)
207 {
208 	struct address_space *mapping = page_mapping(page);
209 	if (!mapping)
210 		return 0;
211 	if (PageDirty(page) || PageWriteback(page))
212 		return 0;
213 	if (page_mapped(page))
214 		return 0;
215 	return invalidate_complete_page(mapping, page);
216 }
217 
218 /**
219  * truncate_inode_pages_range - truncate range of pages specified by start & end byte offsets
220  * @mapping: mapping to truncate
221  * @lstart: offset from which to truncate
222  * @lend: offset to which to truncate (inclusive)
223  *
224  * Truncate the page cache, removing the pages that are between
225  * specified offsets (and zeroing out partial pages
226  * if lstart or lend + 1 is not page aligned).
227  *
228  * Truncate takes two passes - the first pass is nonblocking.  It will not
229  * block on page locks and it will not block on writeback.  The second pass
230  * will wait.  This is to prevent as much IO as possible in the affected region.
231  * The first pass will remove most pages, so the search cost of the second pass
232  * is low.
233  *
234  * We pass down the cache-hot hint to the page freeing code.  Even if the
235  * mapping is large, it is probably the case that the final pages are the most
236  * recently touched, and freeing happens in ascending file offset order.
237  *
238  * Note that since ->invalidatepage() accepts range to invalidate
239  * truncate_inode_pages_range is able to handle cases where lend + 1 is not
240  * page aligned properly.
241  */
242 void truncate_inode_pages_range(struct address_space *mapping,
243 				loff_t lstart, loff_t lend)
244 {
245 	pgoff_t		start;		/* inclusive */
246 	pgoff_t		end;		/* exclusive */
247 	unsigned int	partial_start;	/* inclusive */
248 	unsigned int	partial_end;	/* exclusive */
249 	struct pagevec	pvec;
250 	pgoff_t		indices[PAGEVEC_SIZE];
251 	pgoff_t		index;
252 	int		i;
253 
254 	cleancache_invalidate_inode(mapping);
255 	if (mapping->nrpages == 0 && mapping->nrshadows == 0)
256 		return;
257 
258 	/* Offsets within partial pages */
259 	partial_start = lstart & (PAGE_CACHE_SIZE - 1);
260 	partial_end = (lend + 1) & (PAGE_CACHE_SIZE - 1);
261 
262 	/*
263 	 * 'start' and 'end' always covers the range of pages to be fully
264 	 * truncated. Partial pages are covered with 'partial_start' at the
265 	 * start of the range and 'partial_end' at the end of the range.
266 	 * Note that 'end' is exclusive while 'lend' is inclusive.
267 	 */
268 	start = (lstart + PAGE_CACHE_SIZE - 1) >> PAGE_CACHE_SHIFT;
269 	if (lend == -1)
270 		/*
271 		 * lend == -1 indicates end-of-file so we have to set 'end'
272 		 * to the highest possible pgoff_t and since the type is
273 		 * unsigned we're using -1.
274 		 */
275 		end = -1;
276 	else
277 		end = (lend + 1) >> PAGE_CACHE_SHIFT;
278 
279 	pagevec_init(&pvec, 0);
280 	index = start;
281 	while (index < end && pagevec_lookup_entries(&pvec, mapping, index,
282 			min(end - index, (pgoff_t)PAGEVEC_SIZE),
283 			indices)) {
284 		for (i = 0; i < pagevec_count(&pvec); i++) {
285 			struct page *page = pvec.pages[i];
286 
287 			/* We rely upon deletion not changing page->index */
288 			index = indices[i];
289 			if (index >= end)
290 				break;
291 
292 			if (radix_tree_exceptional_entry(page)) {
293 				clear_exceptional_entry(mapping, index, page);
294 				continue;
295 			}
296 
297 			if (!trylock_page(page))
298 				continue;
299 			WARN_ON(page->index != index);
300 			if (PageWriteback(page)) {
301 				unlock_page(page);
302 				continue;
303 			}
304 			truncate_inode_page(mapping, page);
305 			unlock_page(page);
306 		}
307 		pagevec_remove_exceptionals(&pvec);
308 		pagevec_release(&pvec);
309 		cond_resched();
310 		index++;
311 	}
312 
313 	if (partial_start) {
314 		struct page *page = find_lock_page(mapping, start - 1);
315 		if (page) {
316 			unsigned int top = PAGE_CACHE_SIZE;
317 			if (start > end) {
318 				/* Truncation within a single page */
319 				top = partial_end;
320 				partial_end = 0;
321 			}
322 			wait_on_page_writeback(page);
323 			zero_user_segment(page, partial_start, top);
324 			cleancache_invalidate_page(mapping, page);
325 			if (page_has_private(page))
326 				do_invalidatepage(page, partial_start,
327 						  top - partial_start);
328 			unlock_page(page);
329 			page_cache_release(page);
330 		}
331 	}
332 	if (partial_end) {
333 		struct page *page = find_lock_page(mapping, end);
334 		if (page) {
335 			wait_on_page_writeback(page);
336 			zero_user_segment(page, 0, partial_end);
337 			cleancache_invalidate_page(mapping, page);
338 			if (page_has_private(page))
339 				do_invalidatepage(page, 0,
340 						  partial_end);
341 			unlock_page(page);
342 			page_cache_release(page);
343 		}
344 	}
345 	/*
346 	 * If the truncation happened within a single page no pages
347 	 * will be released, just zeroed, so we can bail out now.
348 	 */
349 	if (start >= end)
350 		return;
351 
352 	index = start;
353 	for ( ; ; ) {
354 		cond_resched();
355 		if (!pagevec_lookup_entries(&pvec, mapping, index,
356 			min(end - index, (pgoff_t)PAGEVEC_SIZE), indices)) {
357 			/* If all gone from start onwards, we're done */
358 			if (index == start)
359 				break;
360 			/* Otherwise restart to make sure all gone */
361 			index = start;
362 			continue;
363 		}
364 		if (index == start && indices[0] >= end) {
365 			/* All gone out of hole to be punched, we're done */
366 			pagevec_remove_exceptionals(&pvec);
367 			pagevec_release(&pvec);
368 			break;
369 		}
370 		for (i = 0; i < pagevec_count(&pvec); i++) {
371 			struct page *page = pvec.pages[i];
372 
373 			/* We rely upon deletion not changing page->index */
374 			index = indices[i];
375 			if (index >= end) {
376 				/* Restart punch to make sure all gone */
377 				index = start - 1;
378 				break;
379 			}
380 
381 			if (radix_tree_exceptional_entry(page)) {
382 				clear_exceptional_entry(mapping, index, page);
383 				continue;
384 			}
385 
386 			lock_page(page);
387 			WARN_ON(page->index != index);
388 			wait_on_page_writeback(page);
389 			truncate_inode_page(mapping, page);
390 			unlock_page(page);
391 		}
392 		pagevec_remove_exceptionals(&pvec);
393 		pagevec_release(&pvec);
394 		index++;
395 	}
396 	cleancache_invalidate_inode(mapping);
397 }
398 EXPORT_SYMBOL(truncate_inode_pages_range);
399 
400 /**
401  * truncate_inode_pages - truncate *all* the pages from an offset
402  * @mapping: mapping to truncate
403  * @lstart: offset from which to truncate
404  *
405  * Called under (and serialised by) inode->i_mutex.
406  *
407  * Note: When this function returns, there can be a page in the process of
408  * deletion (inside __delete_from_page_cache()) in the specified range.  Thus
409  * mapping->nrpages can be non-zero when this function returns even after
410  * truncation of the whole mapping.
411  */
412 void truncate_inode_pages(struct address_space *mapping, loff_t lstart)
413 {
414 	truncate_inode_pages_range(mapping, lstart, (loff_t)-1);
415 }
416 EXPORT_SYMBOL(truncate_inode_pages);
417 
418 /**
419  * truncate_inode_pages_final - truncate *all* pages before inode dies
420  * @mapping: mapping to truncate
421  *
422  * Called under (and serialized by) inode->i_mutex.
423  *
424  * Filesystems have to use this in the .evict_inode path to inform the
425  * VM that this is the final truncate and the inode is going away.
426  */
427 void truncate_inode_pages_final(struct address_space *mapping)
428 {
429 	unsigned long nrshadows;
430 	unsigned long nrpages;
431 
432 	/*
433 	 * Page reclaim can not participate in regular inode lifetime
434 	 * management (can't call iput()) and thus can race with the
435 	 * inode teardown.  Tell it when the address space is exiting,
436 	 * so that it does not install eviction information after the
437 	 * final truncate has begun.
438 	 */
439 	mapping_set_exiting(mapping);
440 
441 	/*
442 	 * When reclaim installs eviction entries, it increases
443 	 * nrshadows first, then decreases nrpages.  Make sure we see
444 	 * this in the right order or we might miss an entry.
445 	 */
446 	nrpages = mapping->nrpages;
447 	smp_rmb();
448 	nrshadows = mapping->nrshadows;
449 
450 	if (nrpages || nrshadows) {
451 		/*
452 		 * As truncation uses a lockless tree lookup, cycle
453 		 * the tree lock to make sure any ongoing tree
454 		 * modification that does not see AS_EXITING is
455 		 * completed before starting the final truncate.
456 		 */
457 		spin_lock_irq(&mapping->tree_lock);
458 		spin_unlock_irq(&mapping->tree_lock);
459 
460 		truncate_inode_pages(mapping, 0);
461 	}
462 }
463 EXPORT_SYMBOL(truncate_inode_pages_final);
464 
465 /**
466  * invalidate_mapping_pages - Invalidate all the unlocked pages of one inode
467  * @mapping: the address_space which holds the pages to invalidate
468  * @start: the offset 'from' which to invalidate
469  * @end: the offset 'to' which to invalidate (inclusive)
470  *
471  * This function only removes the unlocked pages, if you want to
472  * remove all the pages of one inode, you must call truncate_inode_pages.
473  *
474  * invalidate_mapping_pages() will not block on IO activity. It will not
475  * invalidate pages which are dirty, locked, under writeback or mapped into
476  * pagetables.
477  */
478 unsigned long invalidate_mapping_pages(struct address_space *mapping,
479 		pgoff_t start, pgoff_t end)
480 {
481 	pgoff_t indices[PAGEVEC_SIZE];
482 	struct pagevec pvec;
483 	pgoff_t index = start;
484 	unsigned long ret;
485 	unsigned long count = 0;
486 	int i;
487 
488 	pagevec_init(&pvec, 0);
489 	while (index <= end && pagevec_lookup_entries(&pvec, mapping, index,
490 			min(end - index, (pgoff_t)PAGEVEC_SIZE - 1) + 1,
491 			indices)) {
492 		for (i = 0; i < pagevec_count(&pvec); i++) {
493 			struct page *page = pvec.pages[i];
494 
495 			/* We rely upon deletion not changing page->index */
496 			index = indices[i];
497 			if (index > end)
498 				break;
499 
500 			if (radix_tree_exceptional_entry(page)) {
501 				clear_exceptional_entry(mapping, index, page);
502 				continue;
503 			}
504 
505 			if (!trylock_page(page))
506 				continue;
507 			WARN_ON(page->index != index);
508 			ret = invalidate_inode_page(page);
509 			unlock_page(page);
510 			/*
511 			 * Invalidation is a hint that the page is no longer
512 			 * of interest and try to speed up its reclaim.
513 			 */
514 			if (!ret)
515 				deactivate_page(page);
516 			count += ret;
517 		}
518 		pagevec_remove_exceptionals(&pvec);
519 		pagevec_release(&pvec);
520 		cond_resched();
521 		index++;
522 	}
523 	return count;
524 }
525 EXPORT_SYMBOL(invalidate_mapping_pages);
526 
527 /*
528  * This is like invalidate_complete_page(), except it ignores the page's
529  * refcount.  We do this because invalidate_inode_pages2() needs stronger
530  * invalidation guarantees, and cannot afford to leave pages behind because
531  * shrink_page_list() has a temp ref on them, or because they're transiently
532  * sitting in the lru_cache_add() pagevecs.
533  */
534 static int
535 invalidate_complete_page2(struct address_space *mapping, struct page *page)
536 {
537 	if (page->mapping != mapping)
538 		return 0;
539 
540 	if (page_has_private(page) && !try_to_release_page(page, GFP_KERNEL))
541 		return 0;
542 
543 	spin_lock_irq(&mapping->tree_lock);
544 	if (PageDirty(page))
545 		goto failed;
546 
547 	BUG_ON(page_has_private(page));
548 	__delete_from_page_cache(page, NULL);
549 	spin_unlock_irq(&mapping->tree_lock);
550 
551 	if (mapping->a_ops->freepage)
552 		mapping->a_ops->freepage(page);
553 
554 	page_cache_release(page);	/* pagecache ref */
555 	return 1;
556 failed:
557 	spin_unlock_irq(&mapping->tree_lock);
558 	return 0;
559 }
560 
561 static int do_launder_page(struct address_space *mapping, struct page *page)
562 {
563 	if (!PageDirty(page))
564 		return 0;
565 	if (page->mapping != mapping || mapping->a_ops->launder_page == NULL)
566 		return 0;
567 	return mapping->a_ops->launder_page(page);
568 }
569 
570 /**
571  * invalidate_inode_pages2_range - remove range of pages from an address_space
572  * @mapping: the address_space
573  * @start: the page offset 'from' which to invalidate
574  * @end: the page offset 'to' which to invalidate (inclusive)
575  *
576  * Any pages which are found to be mapped into pagetables are unmapped prior to
577  * invalidation.
578  *
579  * Returns -EBUSY if any pages could not be invalidated.
580  */
581 int invalidate_inode_pages2_range(struct address_space *mapping,
582 				  pgoff_t start, pgoff_t end)
583 {
584 	pgoff_t indices[PAGEVEC_SIZE];
585 	struct pagevec pvec;
586 	pgoff_t index;
587 	int i;
588 	int ret = 0;
589 	int ret2 = 0;
590 	int did_range_unmap = 0;
591 
592 	cleancache_invalidate_inode(mapping);
593 	pagevec_init(&pvec, 0);
594 	index = start;
595 	while (index <= end && pagevec_lookup_entries(&pvec, mapping, index,
596 			min(end - index, (pgoff_t)PAGEVEC_SIZE - 1) + 1,
597 			indices)) {
598 		for (i = 0; i < pagevec_count(&pvec); i++) {
599 			struct page *page = pvec.pages[i];
600 
601 			/* We rely upon deletion not changing page->index */
602 			index = indices[i];
603 			if (index > end)
604 				break;
605 
606 			if (radix_tree_exceptional_entry(page)) {
607 				clear_exceptional_entry(mapping, index, page);
608 				continue;
609 			}
610 
611 			lock_page(page);
612 			WARN_ON(page->index != index);
613 			if (page->mapping != mapping) {
614 				unlock_page(page);
615 				continue;
616 			}
617 			wait_on_page_writeback(page);
618 			if (page_mapped(page)) {
619 				if (!did_range_unmap) {
620 					/*
621 					 * Zap the rest of the file in one hit.
622 					 */
623 					unmap_mapping_range(mapping,
624 					   (loff_t)index << PAGE_CACHE_SHIFT,
625 					   (loff_t)(1 + end - index)
626 							 << PAGE_CACHE_SHIFT,
627 					    0);
628 					did_range_unmap = 1;
629 				} else {
630 					/*
631 					 * Just zap this page
632 					 */
633 					unmap_mapping_range(mapping,
634 					   (loff_t)index << PAGE_CACHE_SHIFT,
635 					   PAGE_CACHE_SIZE, 0);
636 				}
637 			}
638 			BUG_ON(page_mapped(page));
639 			ret2 = do_launder_page(mapping, page);
640 			if (ret2 == 0) {
641 				if (!invalidate_complete_page2(mapping, page))
642 					ret2 = -EBUSY;
643 			}
644 			if (ret2 < 0)
645 				ret = ret2;
646 			unlock_page(page);
647 		}
648 		pagevec_remove_exceptionals(&pvec);
649 		pagevec_release(&pvec);
650 		cond_resched();
651 		index++;
652 	}
653 	cleancache_invalidate_inode(mapping);
654 	return ret;
655 }
656 EXPORT_SYMBOL_GPL(invalidate_inode_pages2_range);
657 
658 /**
659  * invalidate_inode_pages2 - remove all pages from an address_space
660  * @mapping: the address_space
661  *
662  * Any pages which are found to be mapped into pagetables are unmapped prior to
663  * invalidation.
664  *
665  * Returns -EBUSY if any pages could not be invalidated.
666  */
667 int invalidate_inode_pages2(struct address_space *mapping)
668 {
669 	return invalidate_inode_pages2_range(mapping, 0, -1);
670 }
671 EXPORT_SYMBOL_GPL(invalidate_inode_pages2);
672 
673 /**
674  * truncate_pagecache - unmap and remove pagecache that has been truncated
675  * @inode: inode
676  * @newsize: new file size
677  *
678  * inode's new i_size must already be written before truncate_pagecache
679  * is called.
680  *
681  * This function should typically be called before the filesystem
682  * releases resources associated with the freed range (eg. deallocates
683  * blocks). This way, pagecache will always stay logically coherent
684  * with on-disk format, and the filesystem would not have to deal with
685  * situations such as writepage being called for a page that has already
686  * had its underlying blocks deallocated.
687  */
688 void truncate_pagecache(struct inode *inode, loff_t newsize)
689 {
690 	struct address_space *mapping = inode->i_mapping;
691 	loff_t holebegin = round_up(newsize, PAGE_SIZE);
692 
693 	/*
694 	 * unmap_mapping_range is called twice, first simply for
695 	 * efficiency so that truncate_inode_pages does fewer
696 	 * single-page unmaps.  However after this first call, and
697 	 * before truncate_inode_pages finishes, it is possible for
698 	 * private pages to be COWed, which remain after
699 	 * truncate_inode_pages finishes, hence the second
700 	 * unmap_mapping_range call must be made for correctness.
701 	 */
702 	unmap_mapping_range(mapping, holebegin, 0, 1);
703 	truncate_inode_pages(mapping, newsize);
704 	unmap_mapping_range(mapping, holebegin, 0, 1);
705 }
706 EXPORT_SYMBOL(truncate_pagecache);
707 
708 /**
709  * truncate_setsize - update inode and pagecache for a new file size
710  * @inode: inode
711  * @newsize: new file size
712  *
713  * truncate_setsize updates i_size and performs pagecache truncation (if
714  * necessary) to @newsize. It will be typically be called from the filesystem's
715  * setattr function when ATTR_SIZE is passed in.
716  *
717  * Must be called with inode_mutex held and before all filesystem specific
718  * block truncation has been performed.
719  */
720 void truncate_setsize(struct inode *inode, loff_t newsize)
721 {
722 	i_size_write(inode, newsize);
723 	truncate_pagecache(inode, newsize);
724 }
725 EXPORT_SYMBOL(truncate_setsize);
726 
727 /**
728  * truncate_pagecache_range - unmap and remove pagecache that is hole-punched
729  * @inode: inode
730  * @lstart: offset of beginning of hole
731  * @lend: offset of last byte of hole
732  *
733  * This function should typically be called before the filesystem
734  * releases resources associated with the freed range (eg. deallocates
735  * blocks). This way, pagecache will always stay logically coherent
736  * with on-disk format, and the filesystem would not have to deal with
737  * situations such as writepage being called for a page that has already
738  * had its underlying blocks deallocated.
739  */
740 void truncate_pagecache_range(struct inode *inode, loff_t lstart, loff_t lend)
741 {
742 	struct address_space *mapping = inode->i_mapping;
743 	loff_t unmap_start = round_up(lstart, PAGE_SIZE);
744 	loff_t unmap_end = round_down(1 + lend, PAGE_SIZE) - 1;
745 	/*
746 	 * This rounding is currently just for example: unmap_mapping_range
747 	 * expands its hole outwards, whereas we want it to contract the hole
748 	 * inwards.  However, existing callers of truncate_pagecache_range are
749 	 * doing their own page rounding first.  Note that unmap_mapping_range
750 	 * allows holelen 0 for all, and we allow lend -1 for end of file.
751 	 */
752 
753 	/*
754 	 * Unlike in truncate_pagecache, unmap_mapping_range is called only
755 	 * once (before truncating pagecache), and without "even_cows" flag:
756 	 * hole-punching should not remove private COWed pages from the hole.
757 	 */
758 	if ((u64)unmap_end > (u64)unmap_start)
759 		unmap_mapping_range(mapping, unmap_start,
760 				    1 + unmap_end - unmap_start, 0);
761 	truncate_inode_pages_range(mapping, lstart, lend);
762 }
763 EXPORT_SYMBOL(truncate_pagecache_range);
764