xref: /openbmc/linux/mm/truncate.c (revision 384740dc)
1 /*
2  * mm/truncate.c - code for taking down pages from address_spaces
3  *
4  * Copyright (C) 2002, Linus Torvalds
5  *
6  * 10Sep2002	akpm@zip.com.au
7  *		Initial version.
8  */
9 
10 #include <linux/kernel.h>
11 #include <linux/backing-dev.h>
12 #include <linux/mm.h>
13 #include <linux/swap.h>
14 #include <linux/module.h>
15 #include <linux/pagemap.h>
16 #include <linux/highmem.h>
17 #include <linux/pagevec.h>
18 #include <linux/task_io_accounting_ops.h>
19 #include <linux/buffer_head.h>	/* grr. try_to_release_page,
20 				   do_invalidatepage */
21 
22 
23 /**
24  * do_invalidatepage - invalidate part or all of a page
25  * @page: the page which is affected
26  * @offset: the index of the truncation point
27  *
28  * do_invalidatepage() is called when all or part of the page has become
29  * invalidated by a truncate operation.
30  *
31  * do_invalidatepage() does not have to release all buffers, but it must
32  * ensure that no dirty buffer is left outside @offset and that no I/O
33  * is underway against any of the blocks which are outside the truncation
34  * point.  Because the caller is about to free (and possibly reuse) those
35  * blocks on-disk.
36  */
37 void do_invalidatepage(struct page *page, unsigned long offset)
38 {
39 	void (*invalidatepage)(struct page *, unsigned long);
40 	invalidatepage = page->mapping->a_ops->invalidatepage;
41 #ifdef CONFIG_BLOCK
42 	if (!invalidatepage)
43 		invalidatepage = block_invalidatepage;
44 #endif
45 	if (invalidatepage)
46 		(*invalidatepage)(page, offset);
47 }
48 
49 static inline void truncate_partial_page(struct page *page, unsigned partial)
50 {
51 	zero_user_segment(page, partial, PAGE_CACHE_SIZE);
52 	if (PagePrivate(page))
53 		do_invalidatepage(page, partial);
54 }
55 
56 /*
57  * This cancels just the dirty bit on the kernel page itself, it
58  * does NOT actually remove dirty bits on any mmap's that may be
59  * around. It also leaves the page tagged dirty, so any sync
60  * activity will still find it on the dirty lists, and in particular,
61  * clear_page_dirty_for_io() will still look at the dirty bits in
62  * the VM.
63  *
64  * Doing this should *normally* only ever be done when a page
65  * is truncated, and is not actually mapped anywhere at all. However,
66  * fs/buffer.c does this when it notices that somebody has cleaned
67  * out all the buffers on a page without actually doing it through
68  * the VM. Can you say "ext3 is horribly ugly"? Tought you could.
69  */
70 void cancel_dirty_page(struct page *page, unsigned int account_size)
71 {
72 	if (TestClearPageDirty(page)) {
73 		struct address_space *mapping = page->mapping;
74 		if (mapping && mapping_cap_account_dirty(mapping)) {
75 			dec_zone_page_state(page, NR_FILE_DIRTY);
76 			dec_bdi_stat(mapping->backing_dev_info,
77 					BDI_RECLAIMABLE);
78 			if (account_size)
79 				task_io_account_cancelled_write(account_size);
80 		}
81 	}
82 }
83 EXPORT_SYMBOL(cancel_dirty_page);
84 
85 /*
86  * If truncate cannot remove the fs-private metadata from the page, the page
87  * becomes orphaned.  It will be left on the LRU and may even be mapped into
88  * user pagetables if we're racing with filemap_fault().
89  *
90  * We need to bale out if page->mapping is no longer equal to the original
91  * mapping.  This happens a) when the VM reclaimed the page while we waited on
92  * its lock, b) when a concurrent invalidate_mapping_pages got there first and
93  * c) when tmpfs swizzles a page between a tmpfs inode and swapper_space.
94  */
95 static void
96 truncate_complete_page(struct address_space *mapping, struct page *page)
97 {
98 	if (page->mapping != mapping)
99 		return;
100 
101 	if (PagePrivate(page))
102 		do_invalidatepage(page, 0);
103 
104 	cancel_dirty_page(page, PAGE_CACHE_SIZE);
105 
106 	remove_from_page_cache(page);
107 	ClearPageMappedToDisk(page);
108 	page_cache_release(page);	/* pagecache ref */
109 }
110 
111 /*
112  * This is for invalidate_mapping_pages().  That function can be called at
113  * any time, and is not supposed to throw away dirty pages.  But pages can
114  * be marked dirty at any time too, so use remove_mapping which safely
115  * discards clean, unused pages.
116  *
117  * Returns non-zero if the page was successfully invalidated.
118  */
119 static int
120 invalidate_complete_page(struct address_space *mapping, struct page *page)
121 {
122 	int ret;
123 
124 	if (page->mapping != mapping)
125 		return 0;
126 
127 	if (PagePrivate(page) && !try_to_release_page(page, 0))
128 		return 0;
129 
130 	ret = remove_mapping(mapping, page);
131 
132 	return ret;
133 }
134 
135 /**
136  * truncate_inode_pages - truncate range of pages specified by start & end byte offsets
137  * @mapping: mapping to truncate
138  * @lstart: offset from which to truncate
139  * @lend: offset to which to truncate
140  *
141  * Truncate the page cache, removing the pages that are between
142  * specified offsets (and zeroing out partial page
143  * (if lstart is not page aligned)).
144  *
145  * Truncate takes two passes - the first pass is nonblocking.  It will not
146  * block on page locks and it will not block on writeback.  The second pass
147  * will wait.  This is to prevent as much IO as possible in the affected region.
148  * The first pass will remove most pages, so the search cost of the second pass
149  * is low.
150  *
151  * When looking at page->index outside the page lock we need to be careful to
152  * copy it into a local to avoid races (it could change at any time).
153  *
154  * We pass down the cache-hot hint to the page freeing code.  Even if the
155  * mapping is large, it is probably the case that the final pages are the most
156  * recently touched, and freeing happens in ascending file offset order.
157  */
158 void truncate_inode_pages_range(struct address_space *mapping,
159 				loff_t lstart, loff_t lend)
160 {
161 	const pgoff_t start = (lstart + PAGE_CACHE_SIZE-1) >> PAGE_CACHE_SHIFT;
162 	pgoff_t end;
163 	const unsigned partial = lstart & (PAGE_CACHE_SIZE - 1);
164 	struct pagevec pvec;
165 	pgoff_t next;
166 	int i;
167 
168 	if (mapping->nrpages == 0)
169 		return;
170 
171 	BUG_ON((lend & (PAGE_CACHE_SIZE - 1)) != (PAGE_CACHE_SIZE - 1));
172 	end = (lend >> PAGE_CACHE_SHIFT);
173 
174 	pagevec_init(&pvec, 0);
175 	next = start;
176 	while (next <= end &&
177 	       pagevec_lookup(&pvec, mapping, next, PAGEVEC_SIZE)) {
178 		for (i = 0; i < pagevec_count(&pvec); i++) {
179 			struct page *page = pvec.pages[i];
180 			pgoff_t page_index = page->index;
181 
182 			if (page_index > end) {
183 				next = page_index;
184 				break;
185 			}
186 
187 			if (page_index > next)
188 				next = page_index;
189 			next++;
190 			if (!trylock_page(page))
191 				continue;
192 			if (PageWriteback(page)) {
193 				unlock_page(page);
194 				continue;
195 			}
196 			if (page_mapped(page)) {
197 				unmap_mapping_range(mapping,
198 				  (loff_t)page_index<<PAGE_CACHE_SHIFT,
199 				  PAGE_CACHE_SIZE, 0);
200 			}
201 			truncate_complete_page(mapping, page);
202 			unlock_page(page);
203 		}
204 		pagevec_release(&pvec);
205 		cond_resched();
206 	}
207 
208 	if (partial) {
209 		struct page *page = find_lock_page(mapping, start - 1);
210 		if (page) {
211 			wait_on_page_writeback(page);
212 			truncate_partial_page(page, partial);
213 			unlock_page(page);
214 			page_cache_release(page);
215 		}
216 	}
217 
218 	next = start;
219 	for ( ; ; ) {
220 		cond_resched();
221 		if (!pagevec_lookup(&pvec, mapping, next, PAGEVEC_SIZE)) {
222 			if (next == start)
223 				break;
224 			next = start;
225 			continue;
226 		}
227 		if (pvec.pages[0]->index > end) {
228 			pagevec_release(&pvec);
229 			break;
230 		}
231 		for (i = 0; i < pagevec_count(&pvec); i++) {
232 			struct page *page = pvec.pages[i];
233 
234 			if (page->index > end)
235 				break;
236 			lock_page(page);
237 			wait_on_page_writeback(page);
238 			if (page_mapped(page)) {
239 				unmap_mapping_range(mapping,
240 				  (loff_t)page->index<<PAGE_CACHE_SHIFT,
241 				  PAGE_CACHE_SIZE, 0);
242 			}
243 			if (page->index > next)
244 				next = page->index;
245 			next++;
246 			truncate_complete_page(mapping, page);
247 			unlock_page(page);
248 		}
249 		pagevec_release(&pvec);
250 	}
251 }
252 EXPORT_SYMBOL(truncate_inode_pages_range);
253 
254 /**
255  * truncate_inode_pages - truncate *all* the pages from an offset
256  * @mapping: mapping to truncate
257  * @lstart: offset from which to truncate
258  *
259  * Called under (and serialised by) inode->i_mutex.
260  */
261 void truncate_inode_pages(struct address_space *mapping, loff_t lstart)
262 {
263 	truncate_inode_pages_range(mapping, lstart, (loff_t)-1);
264 }
265 EXPORT_SYMBOL(truncate_inode_pages);
266 
267 unsigned long __invalidate_mapping_pages(struct address_space *mapping,
268 				pgoff_t start, pgoff_t end, bool be_atomic)
269 {
270 	struct pagevec pvec;
271 	pgoff_t next = start;
272 	unsigned long ret = 0;
273 	int i;
274 
275 	pagevec_init(&pvec, 0);
276 	while (next <= end &&
277 			pagevec_lookup(&pvec, mapping, next, PAGEVEC_SIZE)) {
278 		for (i = 0; i < pagevec_count(&pvec); i++) {
279 			struct page *page = pvec.pages[i];
280 			pgoff_t index;
281 			int lock_failed;
282 
283 			lock_failed = !trylock_page(page);
284 
285 			/*
286 			 * We really shouldn't be looking at the ->index of an
287 			 * unlocked page.  But we're not allowed to lock these
288 			 * pages.  So we rely upon nobody altering the ->index
289 			 * of this (pinned-by-us) page.
290 			 */
291 			index = page->index;
292 			if (index > next)
293 				next = index;
294 			next++;
295 			if (lock_failed)
296 				continue;
297 
298 			if (PageDirty(page) || PageWriteback(page))
299 				goto unlock;
300 			if (page_mapped(page))
301 				goto unlock;
302 			ret += invalidate_complete_page(mapping, page);
303 unlock:
304 			unlock_page(page);
305 			if (next > end)
306 				break;
307 		}
308 		pagevec_release(&pvec);
309 		if (likely(!be_atomic))
310 			cond_resched();
311 	}
312 	return ret;
313 }
314 
315 /**
316  * invalidate_mapping_pages - Invalidate all the unlocked pages of one inode
317  * @mapping: the address_space which holds the pages to invalidate
318  * @start: the offset 'from' which to invalidate
319  * @end: the offset 'to' which to invalidate (inclusive)
320  *
321  * This function only removes the unlocked pages, if you want to
322  * remove all the pages of one inode, you must call truncate_inode_pages.
323  *
324  * invalidate_mapping_pages() will not block on IO activity. It will not
325  * invalidate pages which are dirty, locked, under writeback or mapped into
326  * pagetables.
327  */
328 unsigned long invalidate_mapping_pages(struct address_space *mapping,
329 				pgoff_t start, pgoff_t end)
330 {
331 	return __invalidate_mapping_pages(mapping, start, end, false);
332 }
333 EXPORT_SYMBOL(invalidate_mapping_pages);
334 
335 /*
336  * This is like invalidate_complete_page(), except it ignores the page's
337  * refcount.  We do this because invalidate_inode_pages2() needs stronger
338  * invalidation guarantees, and cannot afford to leave pages behind because
339  * shrink_page_list() has a temp ref on them, or because they're transiently
340  * sitting in the lru_cache_add() pagevecs.
341  */
342 static int
343 invalidate_complete_page2(struct address_space *mapping, struct page *page)
344 {
345 	if (page->mapping != mapping)
346 		return 0;
347 
348 	if (PagePrivate(page) && !try_to_release_page(page, GFP_KERNEL))
349 		return 0;
350 
351 	spin_lock_irq(&mapping->tree_lock);
352 	if (PageDirty(page))
353 		goto failed;
354 
355 	BUG_ON(PagePrivate(page));
356 	__remove_from_page_cache(page);
357 	spin_unlock_irq(&mapping->tree_lock);
358 	page_cache_release(page);	/* pagecache ref */
359 	return 1;
360 failed:
361 	spin_unlock_irq(&mapping->tree_lock);
362 	return 0;
363 }
364 
365 static int do_launder_page(struct address_space *mapping, struct page *page)
366 {
367 	if (!PageDirty(page))
368 		return 0;
369 	if (page->mapping != mapping || mapping->a_ops->launder_page == NULL)
370 		return 0;
371 	return mapping->a_ops->launder_page(page);
372 }
373 
374 /**
375  * invalidate_inode_pages2_range - remove range of pages from an address_space
376  * @mapping: the address_space
377  * @start: the page offset 'from' which to invalidate
378  * @end: the page offset 'to' which to invalidate (inclusive)
379  *
380  * Any pages which are found to be mapped into pagetables are unmapped prior to
381  * invalidation.
382  *
383  * Returns -EBUSY if any pages could not be invalidated.
384  */
385 int invalidate_inode_pages2_range(struct address_space *mapping,
386 				  pgoff_t start, pgoff_t end)
387 {
388 	struct pagevec pvec;
389 	pgoff_t next;
390 	int i;
391 	int ret = 0;
392 	int ret2 = 0;
393 	int did_range_unmap = 0;
394 	int wrapped = 0;
395 
396 	pagevec_init(&pvec, 0);
397 	next = start;
398 	while (next <= end && !wrapped &&
399 		pagevec_lookup(&pvec, mapping, next,
400 			min(end - next, (pgoff_t)PAGEVEC_SIZE - 1) + 1)) {
401 		for (i = 0; i < pagevec_count(&pvec); i++) {
402 			struct page *page = pvec.pages[i];
403 			pgoff_t page_index;
404 
405 			lock_page(page);
406 			if (page->mapping != mapping) {
407 				unlock_page(page);
408 				continue;
409 			}
410 			page_index = page->index;
411 			next = page_index + 1;
412 			if (next == 0)
413 				wrapped = 1;
414 			if (page_index > end) {
415 				unlock_page(page);
416 				break;
417 			}
418 			wait_on_page_writeback(page);
419 			if (page_mapped(page)) {
420 				if (!did_range_unmap) {
421 					/*
422 					 * Zap the rest of the file in one hit.
423 					 */
424 					unmap_mapping_range(mapping,
425 					   (loff_t)page_index<<PAGE_CACHE_SHIFT,
426 					   (loff_t)(end - page_index + 1)
427 							<< PAGE_CACHE_SHIFT,
428 					    0);
429 					did_range_unmap = 1;
430 				} else {
431 					/*
432 					 * Just zap this page
433 					 */
434 					unmap_mapping_range(mapping,
435 					  (loff_t)page_index<<PAGE_CACHE_SHIFT,
436 					  PAGE_CACHE_SIZE, 0);
437 				}
438 			}
439 			BUG_ON(page_mapped(page));
440 			ret2 = do_launder_page(mapping, page);
441 			if (ret2 == 0) {
442 				if (!invalidate_complete_page2(mapping, page))
443 					ret2 = -EBUSY;
444 			}
445 			if (ret2 < 0)
446 				ret = ret2;
447 			unlock_page(page);
448 		}
449 		pagevec_release(&pvec);
450 		cond_resched();
451 	}
452 	return ret;
453 }
454 EXPORT_SYMBOL_GPL(invalidate_inode_pages2_range);
455 
456 /**
457  * invalidate_inode_pages2 - remove all pages from an address_space
458  * @mapping: the address_space
459  *
460  * Any pages which are found to be mapped into pagetables are unmapped prior to
461  * invalidation.
462  *
463  * Returns -EIO if any pages could not be invalidated.
464  */
465 int invalidate_inode_pages2(struct address_space *mapping)
466 {
467 	return invalidate_inode_pages2_range(mapping, 0, -1);
468 }
469 EXPORT_SYMBOL_GPL(invalidate_inode_pages2);
470