xref: /openbmc/linux/mm/truncate.c (revision 2891f2d5)
1 /*
2  * mm/truncate.c - code for taking down pages from address_spaces
3  *
4  * Copyright (C) 2002, Linus Torvalds
5  *
6  * 10Sep2002	Andrew Morton
7  *		Initial version.
8  */
9 
10 #include <linux/kernel.h>
11 #include <linux/backing-dev.h>
12 #include <linux/dax.h>
13 #include <linux/gfp.h>
14 #include <linux/mm.h>
15 #include <linux/swap.h>
16 #include <linux/export.h>
17 #include <linux/pagemap.h>
18 #include <linux/highmem.h>
19 #include <linux/pagevec.h>
20 #include <linux/task_io_accounting_ops.h>
21 #include <linux/buffer_head.h>	/* grr. try_to_release_page,
22 				   do_invalidatepage */
23 #include <linux/shmem_fs.h>
24 #include <linux/cleancache.h>
25 #include <linux/rmap.h>
26 #include "internal.h"
27 
28 static void clear_shadow_entry(struct address_space *mapping, pgoff_t index,
29 			       void *entry)
30 {
31 	struct radix_tree_node *node;
32 	void **slot;
33 
34 	spin_lock_irq(&mapping->tree_lock);
35 	/*
36 	 * Regular page slots are stabilized by the page lock even
37 	 * without the tree itself locked.  These unlocked entries
38 	 * need verification under the tree lock.
39 	 */
40 	if (!__radix_tree_lookup(&mapping->page_tree, index, &node, &slot))
41 		goto unlock;
42 	if (*slot != entry)
43 		goto unlock;
44 	__radix_tree_replace(&mapping->page_tree, node, slot, NULL,
45 			     workingset_update_node, mapping);
46 	mapping->nrexceptional--;
47 unlock:
48 	spin_unlock_irq(&mapping->tree_lock);
49 }
50 
51 /*
52  * Unconditionally remove exceptional entry. Usually called from truncate path.
53  */
54 static void truncate_exceptional_entry(struct address_space *mapping,
55 				       pgoff_t index, void *entry)
56 {
57 	/* Handled by shmem itself */
58 	if (shmem_mapping(mapping))
59 		return;
60 
61 	if (dax_mapping(mapping)) {
62 		dax_delete_mapping_entry(mapping, index);
63 		return;
64 	}
65 	clear_shadow_entry(mapping, index, entry);
66 }
67 
68 /*
69  * Invalidate exceptional entry if easily possible. This handles exceptional
70  * entries for invalidate_inode_pages() so for DAX it evicts only unlocked and
71  * clean entries.
72  */
73 static int invalidate_exceptional_entry(struct address_space *mapping,
74 					pgoff_t index, void *entry)
75 {
76 	/* Handled by shmem itself */
77 	if (shmem_mapping(mapping))
78 		return 1;
79 	if (dax_mapping(mapping))
80 		return dax_invalidate_mapping_entry(mapping, index);
81 	clear_shadow_entry(mapping, index, entry);
82 	return 1;
83 }
84 
85 /*
86  * Invalidate exceptional entry if clean. This handles exceptional entries for
87  * invalidate_inode_pages2() so for DAX it evicts only clean entries.
88  */
89 static int invalidate_exceptional_entry2(struct address_space *mapping,
90 					 pgoff_t index, void *entry)
91 {
92 	/* Handled by shmem itself */
93 	if (shmem_mapping(mapping))
94 		return 1;
95 	if (dax_mapping(mapping))
96 		return dax_invalidate_mapping_entry_sync(mapping, index);
97 	clear_shadow_entry(mapping, index, entry);
98 	return 1;
99 }
100 
101 /**
102  * do_invalidatepage - invalidate part or all of a page
103  * @page: the page which is affected
104  * @offset: start of the range to invalidate
105  * @length: length of the range to invalidate
106  *
107  * do_invalidatepage() is called when all or part of the page has become
108  * invalidated by a truncate operation.
109  *
110  * do_invalidatepage() does not have to release all buffers, but it must
111  * ensure that no dirty buffer is left outside @offset and that no I/O
112  * is underway against any of the blocks which are outside the truncation
113  * point.  Because the caller is about to free (and possibly reuse) those
114  * blocks on-disk.
115  */
116 void do_invalidatepage(struct page *page, unsigned int offset,
117 		       unsigned int length)
118 {
119 	void (*invalidatepage)(struct page *, unsigned int, unsigned int);
120 
121 	invalidatepage = page->mapping->a_ops->invalidatepage;
122 #ifdef CONFIG_BLOCK
123 	if (!invalidatepage)
124 		invalidatepage = block_invalidatepage;
125 #endif
126 	if (invalidatepage)
127 		(*invalidatepage)(page, offset, length);
128 }
129 
130 /*
131  * If truncate cannot remove the fs-private metadata from the page, the page
132  * becomes orphaned.  It will be left on the LRU and may even be mapped into
133  * user pagetables if we're racing with filemap_fault().
134  *
135  * We need to bale out if page->mapping is no longer equal to the original
136  * mapping.  This happens a) when the VM reclaimed the page while we waited on
137  * its lock, b) when a concurrent invalidate_mapping_pages got there first and
138  * c) when tmpfs swizzles a page between a tmpfs inode and swapper_space.
139  */
140 static int
141 truncate_complete_page(struct address_space *mapping, struct page *page)
142 {
143 	if (page->mapping != mapping)
144 		return -EIO;
145 
146 	if (page_has_private(page))
147 		do_invalidatepage(page, 0, PAGE_SIZE);
148 
149 	/*
150 	 * Some filesystems seem to re-dirty the page even after
151 	 * the VM has canceled the dirty bit (eg ext3 journaling).
152 	 * Hence dirty accounting check is placed after invalidation.
153 	 */
154 	cancel_dirty_page(page);
155 	ClearPageMappedToDisk(page);
156 	delete_from_page_cache(page);
157 	return 0;
158 }
159 
160 /*
161  * This is for invalidate_mapping_pages().  That function can be called at
162  * any time, and is not supposed to throw away dirty pages.  But pages can
163  * be marked dirty at any time too, so use remove_mapping which safely
164  * discards clean, unused pages.
165  *
166  * Returns non-zero if the page was successfully invalidated.
167  */
168 static int
169 invalidate_complete_page(struct address_space *mapping, struct page *page)
170 {
171 	int ret;
172 
173 	if (page->mapping != mapping)
174 		return 0;
175 
176 	if (page_has_private(page) && !try_to_release_page(page, 0))
177 		return 0;
178 
179 	ret = remove_mapping(mapping, page);
180 
181 	return ret;
182 }
183 
184 int truncate_inode_page(struct address_space *mapping, struct page *page)
185 {
186 	loff_t holelen;
187 	VM_BUG_ON_PAGE(PageTail(page), page);
188 
189 	holelen = PageTransHuge(page) ? HPAGE_PMD_SIZE : PAGE_SIZE;
190 	if (page_mapped(page)) {
191 		unmap_mapping_range(mapping,
192 				   (loff_t)page->index << PAGE_SHIFT,
193 				   holelen, 0);
194 	}
195 	return truncate_complete_page(mapping, page);
196 }
197 
198 /*
199  * Used to get rid of pages on hardware memory corruption.
200  */
201 int generic_error_remove_page(struct address_space *mapping, struct page *page)
202 {
203 	if (!mapping)
204 		return -EINVAL;
205 	/*
206 	 * Only punch for normal data pages for now.
207 	 * Handling other types like directories would need more auditing.
208 	 */
209 	if (!S_ISREG(mapping->host->i_mode))
210 		return -EIO;
211 	return truncate_inode_page(mapping, page);
212 }
213 EXPORT_SYMBOL(generic_error_remove_page);
214 
215 /*
216  * Safely invalidate one page from its pagecache mapping.
217  * It only drops clean, unused pages. The page must be locked.
218  *
219  * Returns 1 if the page is successfully invalidated, otherwise 0.
220  */
221 int invalidate_inode_page(struct page *page)
222 {
223 	struct address_space *mapping = page_mapping(page);
224 	if (!mapping)
225 		return 0;
226 	if (PageDirty(page) || PageWriteback(page))
227 		return 0;
228 	if (page_mapped(page))
229 		return 0;
230 	return invalidate_complete_page(mapping, page);
231 }
232 
233 /**
234  * truncate_inode_pages_range - truncate range of pages specified by start & end byte offsets
235  * @mapping: mapping to truncate
236  * @lstart: offset from which to truncate
237  * @lend: offset to which to truncate (inclusive)
238  *
239  * Truncate the page cache, removing the pages that are between
240  * specified offsets (and zeroing out partial pages
241  * if lstart or lend + 1 is not page aligned).
242  *
243  * Truncate takes two passes - the first pass is nonblocking.  It will not
244  * block on page locks and it will not block on writeback.  The second pass
245  * will wait.  This is to prevent as much IO as possible in the affected region.
246  * The first pass will remove most pages, so the search cost of the second pass
247  * is low.
248  *
249  * We pass down the cache-hot hint to the page freeing code.  Even if the
250  * mapping is large, it is probably the case that the final pages are the most
251  * recently touched, and freeing happens in ascending file offset order.
252  *
253  * Note that since ->invalidatepage() accepts range to invalidate
254  * truncate_inode_pages_range is able to handle cases where lend + 1 is not
255  * page aligned properly.
256  */
257 void truncate_inode_pages_range(struct address_space *mapping,
258 				loff_t lstart, loff_t lend)
259 {
260 	pgoff_t		start;		/* inclusive */
261 	pgoff_t		end;		/* exclusive */
262 	unsigned int	partial_start;	/* inclusive */
263 	unsigned int	partial_end;	/* exclusive */
264 	struct pagevec	pvec;
265 	pgoff_t		indices[PAGEVEC_SIZE];
266 	pgoff_t		index;
267 	int		i;
268 
269 	cleancache_invalidate_inode(mapping);
270 	if (mapping->nrpages == 0 && mapping->nrexceptional == 0)
271 		return;
272 
273 	/* Offsets within partial pages */
274 	partial_start = lstart & (PAGE_SIZE - 1);
275 	partial_end = (lend + 1) & (PAGE_SIZE - 1);
276 
277 	/*
278 	 * 'start' and 'end' always covers the range of pages to be fully
279 	 * truncated. Partial pages are covered with 'partial_start' at the
280 	 * start of the range and 'partial_end' at the end of the range.
281 	 * Note that 'end' is exclusive while 'lend' is inclusive.
282 	 */
283 	start = (lstart + PAGE_SIZE - 1) >> PAGE_SHIFT;
284 	if (lend == -1)
285 		/*
286 		 * lend == -1 indicates end-of-file so we have to set 'end'
287 		 * to the highest possible pgoff_t and since the type is
288 		 * unsigned we're using -1.
289 		 */
290 		end = -1;
291 	else
292 		end = (lend + 1) >> PAGE_SHIFT;
293 
294 	pagevec_init(&pvec, 0);
295 	index = start;
296 	while (index < end && pagevec_lookup_entries(&pvec, mapping, index,
297 			min(end - index, (pgoff_t)PAGEVEC_SIZE),
298 			indices)) {
299 		for (i = 0; i < pagevec_count(&pvec); i++) {
300 			struct page *page = pvec.pages[i];
301 
302 			/* We rely upon deletion not changing page->index */
303 			index = indices[i];
304 			if (index >= end)
305 				break;
306 
307 			if (radix_tree_exceptional_entry(page)) {
308 				truncate_exceptional_entry(mapping, index,
309 							   page);
310 				continue;
311 			}
312 
313 			if (!trylock_page(page))
314 				continue;
315 			WARN_ON(page_to_index(page) != index);
316 			if (PageWriteback(page)) {
317 				unlock_page(page);
318 				continue;
319 			}
320 			truncate_inode_page(mapping, page);
321 			unlock_page(page);
322 		}
323 		pagevec_remove_exceptionals(&pvec);
324 		pagevec_release(&pvec);
325 		cond_resched();
326 		index++;
327 	}
328 
329 	if (partial_start) {
330 		struct page *page = find_lock_page(mapping, start - 1);
331 		if (page) {
332 			unsigned int top = PAGE_SIZE;
333 			if (start > end) {
334 				/* Truncation within a single page */
335 				top = partial_end;
336 				partial_end = 0;
337 			}
338 			wait_on_page_writeback(page);
339 			zero_user_segment(page, partial_start, top);
340 			cleancache_invalidate_page(mapping, page);
341 			if (page_has_private(page))
342 				do_invalidatepage(page, partial_start,
343 						  top - partial_start);
344 			unlock_page(page);
345 			put_page(page);
346 		}
347 	}
348 	if (partial_end) {
349 		struct page *page = find_lock_page(mapping, end);
350 		if (page) {
351 			wait_on_page_writeback(page);
352 			zero_user_segment(page, 0, partial_end);
353 			cleancache_invalidate_page(mapping, page);
354 			if (page_has_private(page))
355 				do_invalidatepage(page, 0,
356 						  partial_end);
357 			unlock_page(page);
358 			put_page(page);
359 		}
360 	}
361 	/*
362 	 * If the truncation happened within a single page no pages
363 	 * will be released, just zeroed, so we can bail out now.
364 	 */
365 	if (start >= end)
366 		return;
367 
368 	index = start;
369 	for ( ; ; ) {
370 		cond_resched();
371 		if (!pagevec_lookup_entries(&pvec, mapping, index,
372 			min(end - index, (pgoff_t)PAGEVEC_SIZE), indices)) {
373 			/* If all gone from start onwards, we're done */
374 			if (index == start)
375 				break;
376 			/* Otherwise restart to make sure all gone */
377 			index = start;
378 			continue;
379 		}
380 		if (index == start && indices[0] >= end) {
381 			/* All gone out of hole to be punched, we're done */
382 			pagevec_remove_exceptionals(&pvec);
383 			pagevec_release(&pvec);
384 			break;
385 		}
386 		for (i = 0; i < pagevec_count(&pvec); i++) {
387 			struct page *page = pvec.pages[i];
388 
389 			/* We rely upon deletion not changing page->index */
390 			index = indices[i];
391 			if (index >= end) {
392 				/* Restart punch to make sure all gone */
393 				index = start - 1;
394 				break;
395 			}
396 
397 			if (radix_tree_exceptional_entry(page)) {
398 				truncate_exceptional_entry(mapping, index,
399 							   page);
400 				continue;
401 			}
402 
403 			lock_page(page);
404 			WARN_ON(page_to_index(page) != index);
405 			wait_on_page_writeback(page);
406 			truncate_inode_page(mapping, page);
407 			unlock_page(page);
408 		}
409 		pagevec_remove_exceptionals(&pvec);
410 		pagevec_release(&pvec);
411 		index++;
412 	}
413 	cleancache_invalidate_inode(mapping);
414 }
415 EXPORT_SYMBOL(truncate_inode_pages_range);
416 
417 /**
418  * truncate_inode_pages - truncate *all* the pages from an offset
419  * @mapping: mapping to truncate
420  * @lstart: offset from which to truncate
421  *
422  * Called under (and serialised by) inode->i_mutex.
423  *
424  * Note: When this function returns, there can be a page in the process of
425  * deletion (inside __delete_from_page_cache()) in the specified range.  Thus
426  * mapping->nrpages can be non-zero when this function returns even after
427  * truncation of the whole mapping.
428  */
429 void truncate_inode_pages(struct address_space *mapping, loff_t lstart)
430 {
431 	truncate_inode_pages_range(mapping, lstart, (loff_t)-1);
432 }
433 EXPORT_SYMBOL(truncate_inode_pages);
434 
435 /**
436  * truncate_inode_pages_final - truncate *all* pages before inode dies
437  * @mapping: mapping to truncate
438  *
439  * Called under (and serialized by) inode->i_mutex.
440  *
441  * Filesystems have to use this in the .evict_inode path to inform the
442  * VM that this is the final truncate and the inode is going away.
443  */
444 void truncate_inode_pages_final(struct address_space *mapping)
445 {
446 	unsigned long nrexceptional;
447 	unsigned long nrpages;
448 
449 	/*
450 	 * Page reclaim can not participate in regular inode lifetime
451 	 * management (can't call iput()) and thus can race with the
452 	 * inode teardown.  Tell it when the address space is exiting,
453 	 * so that it does not install eviction information after the
454 	 * final truncate has begun.
455 	 */
456 	mapping_set_exiting(mapping);
457 
458 	/*
459 	 * When reclaim installs eviction entries, it increases
460 	 * nrexceptional first, then decreases nrpages.  Make sure we see
461 	 * this in the right order or we might miss an entry.
462 	 */
463 	nrpages = mapping->nrpages;
464 	smp_rmb();
465 	nrexceptional = mapping->nrexceptional;
466 
467 	if (nrpages || nrexceptional) {
468 		/*
469 		 * As truncation uses a lockless tree lookup, cycle
470 		 * the tree lock to make sure any ongoing tree
471 		 * modification that does not see AS_EXITING is
472 		 * completed before starting the final truncate.
473 		 */
474 		spin_lock_irq(&mapping->tree_lock);
475 		spin_unlock_irq(&mapping->tree_lock);
476 
477 		truncate_inode_pages(mapping, 0);
478 	}
479 }
480 EXPORT_SYMBOL(truncate_inode_pages_final);
481 
482 /**
483  * invalidate_mapping_pages - Invalidate all the unlocked pages of one inode
484  * @mapping: the address_space which holds the pages to invalidate
485  * @start: the offset 'from' which to invalidate
486  * @end: the offset 'to' which to invalidate (inclusive)
487  *
488  * This function only removes the unlocked pages, if you want to
489  * remove all the pages of one inode, you must call truncate_inode_pages.
490  *
491  * invalidate_mapping_pages() will not block on IO activity. It will not
492  * invalidate pages which are dirty, locked, under writeback or mapped into
493  * pagetables.
494  */
495 unsigned long invalidate_mapping_pages(struct address_space *mapping,
496 		pgoff_t start, pgoff_t end)
497 {
498 	pgoff_t indices[PAGEVEC_SIZE];
499 	struct pagevec pvec;
500 	pgoff_t index = start;
501 	unsigned long ret;
502 	unsigned long count = 0;
503 	int i;
504 
505 	pagevec_init(&pvec, 0);
506 	while (index <= end && pagevec_lookup_entries(&pvec, mapping, index,
507 			min(end - index, (pgoff_t)PAGEVEC_SIZE - 1) + 1,
508 			indices)) {
509 		for (i = 0; i < pagevec_count(&pvec); i++) {
510 			struct page *page = pvec.pages[i];
511 
512 			/* We rely upon deletion not changing page->index */
513 			index = indices[i];
514 			if (index > end)
515 				break;
516 
517 			if (radix_tree_exceptional_entry(page)) {
518 				invalidate_exceptional_entry(mapping, index,
519 							     page);
520 				continue;
521 			}
522 
523 			if (!trylock_page(page))
524 				continue;
525 
526 			WARN_ON(page_to_index(page) != index);
527 
528 			/* Middle of THP: skip */
529 			if (PageTransTail(page)) {
530 				unlock_page(page);
531 				continue;
532 			} else if (PageTransHuge(page)) {
533 				index += HPAGE_PMD_NR - 1;
534 				i += HPAGE_PMD_NR - 1;
535 				/* 'end' is in the middle of THP */
536 				if (index ==  round_down(end, HPAGE_PMD_NR))
537 					continue;
538 			}
539 
540 			ret = invalidate_inode_page(page);
541 			unlock_page(page);
542 			/*
543 			 * Invalidation is a hint that the page is no longer
544 			 * of interest and try to speed up its reclaim.
545 			 */
546 			if (!ret)
547 				deactivate_file_page(page);
548 			count += ret;
549 		}
550 		pagevec_remove_exceptionals(&pvec);
551 		pagevec_release(&pvec);
552 		cond_resched();
553 		index++;
554 	}
555 	return count;
556 }
557 EXPORT_SYMBOL(invalidate_mapping_pages);
558 
559 /*
560  * This is like invalidate_complete_page(), except it ignores the page's
561  * refcount.  We do this because invalidate_inode_pages2() needs stronger
562  * invalidation guarantees, and cannot afford to leave pages behind because
563  * shrink_page_list() has a temp ref on them, or because they're transiently
564  * sitting in the lru_cache_add() pagevecs.
565  */
566 static int
567 invalidate_complete_page2(struct address_space *mapping, struct page *page)
568 {
569 	unsigned long flags;
570 
571 	if (page->mapping != mapping)
572 		return 0;
573 
574 	if (page_has_private(page) && !try_to_release_page(page, GFP_KERNEL))
575 		return 0;
576 
577 	spin_lock_irqsave(&mapping->tree_lock, flags);
578 	if (PageDirty(page))
579 		goto failed;
580 
581 	BUG_ON(page_has_private(page));
582 	__delete_from_page_cache(page, NULL);
583 	spin_unlock_irqrestore(&mapping->tree_lock, flags);
584 
585 	if (mapping->a_ops->freepage)
586 		mapping->a_ops->freepage(page);
587 
588 	put_page(page);	/* pagecache ref */
589 	return 1;
590 failed:
591 	spin_unlock_irqrestore(&mapping->tree_lock, flags);
592 	return 0;
593 }
594 
595 static int do_launder_page(struct address_space *mapping, struct page *page)
596 {
597 	if (!PageDirty(page))
598 		return 0;
599 	if (page->mapping != mapping || mapping->a_ops->launder_page == NULL)
600 		return 0;
601 	return mapping->a_ops->launder_page(page);
602 }
603 
604 /**
605  * invalidate_inode_pages2_range - remove range of pages from an address_space
606  * @mapping: the address_space
607  * @start: the page offset 'from' which to invalidate
608  * @end: the page offset 'to' which to invalidate (inclusive)
609  *
610  * Any pages which are found to be mapped into pagetables are unmapped prior to
611  * invalidation.
612  *
613  * Returns -EBUSY if any pages could not be invalidated.
614  */
615 int invalidate_inode_pages2_range(struct address_space *mapping,
616 				  pgoff_t start, pgoff_t end)
617 {
618 	pgoff_t indices[PAGEVEC_SIZE];
619 	struct pagevec pvec;
620 	pgoff_t index;
621 	int i;
622 	int ret = 0;
623 	int ret2 = 0;
624 	int did_range_unmap = 0;
625 
626 	cleancache_invalidate_inode(mapping);
627 	pagevec_init(&pvec, 0);
628 	index = start;
629 	while (index <= end && pagevec_lookup_entries(&pvec, mapping, index,
630 			min(end - index, (pgoff_t)PAGEVEC_SIZE - 1) + 1,
631 			indices)) {
632 		for (i = 0; i < pagevec_count(&pvec); i++) {
633 			struct page *page = pvec.pages[i];
634 
635 			/* We rely upon deletion not changing page->index */
636 			index = indices[i];
637 			if (index > end)
638 				break;
639 
640 			if (radix_tree_exceptional_entry(page)) {
641 				if (!invalidate_exceptional_entry2(mapping,
642 								   index, page))
643 					ret = -EBUSY;
644 				continue;
645 			}
646 
647 			lock_page(page);
648 			WARN_ON(page_to_index(page) != index);
649 			if (page->mapping != mapping) {
650 				unlock_page(page);
651 				continue;
652 			}
653 			wait_on_page_writeback(page);
654 			if (page_mapped(page)) {
655 				if (!did_range_unmap) {
656 					/*
657 					 * Zap the rest of the file in one hit.
658 					 */
659 					unmap_mapping_range(mapping,
660 					   (loff_t)index << PAGE_SHIFT,
661 					   (loff_t)(1 + end - index)
662 							 << PAGE_SHIFT,
663 							 0);
664 					did_range_unmap = 1;
665 				} else {
666 					/*
667 					 * Just zap this page
668 					 */
669 					unmap_mapping_range(mapping,
670 					   (loff_t)index << PAGE_SHIFT,
671 					   PAGE_SIZE, 0);
672 				}
673 			}
674 			BUG_ON(page_mapped(page));
675 			ret2 = do_launder_page(mapping, page);
676 			if (ret2 == 0) {
677 				if (!invalidate_complete_page2(mapping, page))
678 					ret2 = -EBUSY;
679 			}
680 			if (ret2 < 0)
681 				ret = ret2;
682 			unlock_page(page);
683 		}
684 		pagevec_remove_exceptionals(&pvec);
685 		pagevec_release(&pvec);
686 		cond_resched();
687 		index++;
688 	}
689 	cleancache_invalidate_inode(mapping);
690 	return ret;
691 }
692 EXPORT_SYMBOL_GPL(invalidate_inode_pages2_range);
693 
694 /**
695  * invalidate_inode_pages2 - remove all pages from an address_space
696  * @mapping: the address_space
697  *
698  * Any pages which are found to be mapped into pagetables are unmapped prior to
699  * invalidation.
700  *
701  * Returns -EBUSY if any pages could not be invalidated.
702  */
703 int invalidate_inode_pages2(struct address_space *mapping)
704 {
705 	return invalidate_inode_pages2_range(mapping, 0, -1);
706 }
707 EXPORT_SYMBOL_GPL(invalidate_inode_pages2);
708 
709 /**
710  * truncate_pagecache - unmap and remove pagecache that has been truncated
711  * @inode: inode
712  * @newsize: new file size
713  *
714  * inode's new i_size must already be written before truncate_pagecache
715  * is called.
716  *
717  * This function should typically be called before the filesystem
718  * releases resources associated with the freed range (eg. deallocates
719  * blocks). This way, pagecache will always stay logically coherent
720  * with on-disk format, and the filesystem would not have to deal with
721  * situations such as writepage being called for a page that has already
722  * had its underlying blocks deallocated.
723  */
724 void truncate_pagecache(struct inode *inode, loff_t newsize)
725 {
726 	struct address_space *mapping = inode->i_mapping;
727 	loff_t holebegin = round_up(newsize, PAGE_SIZE);
728 
729 	/*
730 	 * unmap_mapping_range is called twice, first simply for
731 	 * efficiency so that truncate_inode_pages does fewer
732 	 * single-page unmaps.  However after this first call, and
733 	 * before truncate_inode_pages finishes, it is possible for
734 	 * private pages to be COWed, which remain after
735 	 * truncate_inode_pages finishes, hence the second
736 	 * unmap_mapping_range call must be made for correctness.
737 	 */
738 	unmap_mapping_range(mapping, holebegin, 0, 1);
739 	truncate_inode_pages(mapping, newsize);
740 	unmap_mapping_range(mapping, holebegin, 0, 1);
741 }
742 EXPORT_SYMBOL(truncate_pagecache);
743 
744 /**
745  * truncate_setsize - update inode and pagecache for a new file size
746  * @inode: inode
747  * @newsize: new file size
748  *
749  * truncate_setsize updates i_size and performs pagecache truncation (if
750  * necessary) to @newsize. It will be typically be called from the filesystem's
751  * setattr function when ATTR_SIZE is passed in.
752  *
753  * Must be called with a lock serializing truncates and writes (generally
754  * i_mutex but e.g. xfs uses a different lock) and before all filesystem
755  * specific block truncation has been performed.
756  */
757 void truncate_setsize(struct inode *inode, loff_t newsize)
758 {
759 	loff_t oldsize = inode->i_size;
760 
761 	i_size_write(inode, newsize);
762 	if (newsize > oldsize)
763 		pagecache_isize_extended(inode, oldsize, newsize);
764 	truncate_pagecache(inode, newsize);
765 }
766 EXPORT_SYMBOL(truncate_setsize);
767 
768 /**
769  * pagecache_isize_extended - update pagecache after extension of i_size
770  * @inode:	inode for which i_size was extended
771  * @from:	original inode size
772  * @to:		new inode size
773  *
774  * Handle extension of inode size either caused by extending truncate or by
775  * write starting after current i_size. We mark the page straddling current
776  * i_size RO so that page_mkwrite() is called on the nearest write access to
777  * the page.  This way filesystem can be sure that page_mkwrite() is called on
778  * the page before user writes to the page via mmap after the i_size has been
779  * changed.
780  *
781  * The function must be called after i_size is updated so that page fault
782  * coming after we unlock the page will already see the new i_size.
783  * The function must be called while we still hold i_mutex - this not only
784  * makes sure i_size is stable but also that userspace cannot observe new
785  * i_size value before we are prepared to store mmap writes at new inode size.
786  */
787 void pagecache_isize_extended(struct inode *inode, loff_t from, loff_t to)
788 {
789 	int bsize = i_blocksize(inode);
790 	loff_t rounded_from;
791 	struct page *page;
792 	pgoff_t index;
793 
794 	WARN_ON(to > inode->i_size);
795 
796 	if (from >= to || bsize == PAGE_SIZE)
797 		return;
798 	/* Page straddling @from will not have any hole block created? */
799 	rounded_from = round_up(from, bsize);
800 	if (to <= rounded_from || !(rounded_from & (PAGE_SIZE - 1)))
801 		return;
802 
803 	index = from >> PAGE_SHIFT;
804 	page = find_lock_page(inode->i_mapping, index);
805 	/* Page not cached? Nothing to do */
806 	if (!page)
807 		return;
808 	/*
809 	 * See clear_page_dirty_for_io() for details why set_page_dirty()
810 	 * is needed.
811 	 */
812 	if (page_mkclean(page))
813 		set_page_dirty(page);
814 	unlock_page(page);
815 	put_page(page);
816 }
817 EXPORT_SYMBOL(pagecache_isize_extended);
818 
819 /**
820  * truncate_pagecache_range - unmap and remove pagecache that is hole-punched
821  * @inode: inode
822  * @lstart: offset of beginning of hole
823  * @lend: offset of last byte of hole
824  *
825  * This function should typically be called before the filesystem
826  * releases resources associated with the freed range (eg. deallocates
827  * blocks). This way, pagecache will always stay logically coherent
828  * with on-disk format, and the filesystem would not have to deal with
829  * situations such as writepage being called for a page that has already
830  * had its underlying blocks deallocated.
831  */
832 void truncate_pagecache_range(struct inode *inode, loff_t lstart, loff_t lend)
833 {
834 	struct address_space *mapping = inode->i_mapping;
835 	loff_t unmap_start = round_up(lstart, PAGE_SIZE);
836 	loff_t unmap_end = round_down(1 + lend, PAGE_SIZE) - 1;
837 	/*
838 	 * This rounding is currently just for example: unmap_mapping_range
839 	 * expands its hole outwards, whereas we want it to contract the hole
840 	 * inwards.  However, existing callers of truncate_pagecache_range are
841 	 * doing their own page rounding first.  Note that unmap_mapping_range
842 	 * allows holelen 0 for all, and we allow lend -1 for end of file.
843 	 */
844 
845 	/*
846 	 * Unlike in truncate_pagecache, unmap_mapping_range is called only
847 	 * once (before truncating pagecache), and without "even_cows" flag:
848 	 * hole-punching should not remove private COWed pages from the hole.
849 	 */
850 	if ((u64)unmap_end > (u64)unmap_start)
851 		unmap_mapping_range(mapping, unmap_start,
852 				    1 + unmap_end - unmap_start, 0);
853 	truncate_inode_pages_range(mapping, lstart, lend);
854 }
855 EXPORT_SYMBOL(truncate_pagecache_range);
856