xref: /openbmc/linux/mm/truncate.c (revision 276e552e)
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  * mm/truncate.c - code for taking down pages from address_spaces
4  *
5  * Copyright (C) 2002, Linus Torvalds
6  *
7  * 10Sep2002	Andrew Morton
8  *		Initial version.
9  */
10 
11 #include <linux/kernel.h>
12 #include <linux/backing-dev.h>
13 #include <linux/dax.h>
14 #include <linux/gfp.h>
15 #include <linux/mm.h>
16 #include <linux/swap.h>
17 #include <linux/export.h>
18 #include <linux/pagemap.h>
19 #include <linux/highmem.h>
20 #include <linux/pagevec.h>
21 #include <linux/task_io_accounting_ops.h>
22 #include <linux/buffer_head.h>	/* grr. try_to_release_page,
23 				   do_invalidatepage */
24 #include <linux/shmem_fs.h>
25 #include <linux/cleancache.h>
26 #include <linux/rmap.h>
27 #include "internal.h"
28 
29 /*
30  * Regular page slots are stabilized by the page lock even without the tree
31  * itself locked.  These unlocked entries need verification under the tree
32  * lock.
33  */
34 static inline void __clear_shadow_entry(struct address_space *mapping,
35 				pgoff_t index, void *entry)
36 {
37 	XA_STATE(xas, &mapping->i_pages, index);
38 
39 	xas_set_update(&xas, workingset_update_node);
40 	if (xas_load(&xas) != entry)
41 		return;
42 	xas_store(&xas, NULL);
43 }
44 
45 static void clear_shadow_entry(struct address_space *mapping, pgoff_t index,
46 			       void *entry)
47 {
48 	xa_lock_irq(&mapping->i_pages);
49 	__clear_shadow_entry(mapping, index, entry);
50 	xa_unlock_irq(&mapping->i_pages);
51 }
52 
53 /*
54  * Unconditionally remove exceptional entries. Usually called from truncate
55  * path. Note that the pagevec may be altered by this function by removing
56  * exceptional entries similar to what pagevec_remove_exceptionals does.
57  */
58 static void truncate_exceptional_pvec_entries(struct address_space *mapping,
59 				struct pagevec *pvec, pgoff_t *indices)
60 {
61 	int i, j;
62 	bool dax;
63 
64 	/* Handled by shmem itself */
65 	if (shmem_mapping(mapping))
66 		return;
67 
68 	for (j = 0; j < pagevec_count(pvec); j++)
69 		if (xa_is_value(pvec->pages[j]))
70 			break;
71 
72 	if (j == pagevec_count(pvec))
73 		return;
74 
75 	dax = dax_mapping(mapping);
76 	if (!dax)
77 		xa_lock_irq(&mapping->i_pages);
78 
79 	for (i = j; i < pagevec_count(pvec); i++) {
80 		struct page *page = pvec->pages[i];
81 		pgoff_t index = indices[i];
82 
83 		if (!xa_is_value(page)) {
84 			pvec->pages[j++] = page;
85 			continue;
86 		}
87 
88 		if (unlikely(dax)) {
89 			dax_delete_mapping_entry(mapping, index);
90 			continue;
91 		}
92 
93 		__clear_shadow_entry(mapping, index, page);
94 	}
95 
96 	if (!dax)
97 		xa_unlock_irq(&mapping->i_pages);
98 	pvec->nr = j;
99 }
100 
101 /*
102  * Invalidate exceptional entry if easily possible. This handles exceptional
103  * entries for invalidate_inode_pages().
104  */
105 static int invalidate_exceptional_entry(struct address_space *mapping,
106 					pgoff_t index, void *entry)
107 {
108 	/* Handled by shmem itself, or for DAX we do nothing. */
109 	if (shmem_mapping(mapping) || dax_mapping(mapping))
110 		return 1;
111 	clear_shadow_entry(mapping, index, entry);
112 	return 1;
113 }
114 
115 /*
116  * Invalidate exceptional entry if clean. This handles exceptional entries for
117  * invalidate_inode_pages2() so for DAX it evicts only clean entries.
118  */
119 static int invalidate_exceptional_entry2(struct address_space *mapping,
120 					 pgoff_t index, void *entry)
121 {
122 	/* Handled by shmem itself */
123 	if (shmem_mapping(mapping))
124 		return 1;
125 	if (dax_mapping(mapping))
126 		return dax_invalidate_mapping_entry_sync(mapping, index);
127 	clear_shadow_entry(mapping, index, entry);
128 	return 1;
129 }
130 
131 /**
132  * do_invalidatepage - invalidate part or all of a page
133  * @page: the page which is affected
134  * @offset: start of the range to invalidate
135  * @length: length of the range to invalidate
136  *
137  * do_invalidatepage() is called when all or part of the page has become
138  * invalidated by a truncate operation.
139  *
140  * do_invalidatepage() does not have to release all buffers, but it must
141  * ensure that no dirty buffer is left outside @offset and that no I/O
142  * is underway against any of the blocks which are outside the truncation
143  * point.  Because the caller is about to free (and possibly reuse) those
144  * blocks on-disk.
145  */
146 void do_invalidatepage(struct page *page, unsigned int offset,
147 		       unsigned int length)
148 {
149 	void (*invalidatepage)(struct page *, unsigned int, unsigned int);
150 
151 	invalidatepage = page->mapping->a_ops->invalidatepage;
152 #ifdef CONFIG_BLOCK
153 	if (!invalidatepage)
154 		invalidatepage = block_invalidatepage;
155 #endif
156 	if (invalidatepage)
157 		(*invalidatepage)(page, offset, length);
158 }
159 
160 /*
161  * If truncate cannot remove the fs-private metadata from the page, the page
162  * becomes orphaned.  It will be left on the LRU and may even be mapped into
163  * user pagetables if we're racing with filemap_fault().
164  *
165  * We need to bail out if page->mapping is no longer equal to the original
166  * mapping.  This happens a) when the VM reclaimed the page while we waited on
167  * its lock, b) when a concurrent invalidate_mapping_pages got there first and
168  * c) when tmpfs swizzles a page between a tmpfs inode and swapper_space.
169  */
170 static void
171 truncate_cleanup_page(struct address_space *mapping, struct page *page)
172 {
173 	if (page_mapped(page)) {
174 		unsigned int nr = thp_nr_pages(page);
175 		unmap_mapping_pages(mapping, page->index, nr, false);
176 	}
177 
178 	if (page_has_private(page))
179 		do_invalidatepage(page, 0, thp_size(page));
180 
181 	/*
182 	 * Some filesystems seem to re-dirty the page even after
183 	 * the VM has canceled the dirty bit (eg ext3 journaling).
184 	 * Hence dirty accounting check is placed after invalidation.
185 	 */
186 	cancel_dirty_page(page);
187 	ClearPageMappedToDisk(page);
188 }
189 
190 /*
191  * This is for invalidate_mapping_pages().  That function can be called at
192  * any time, and is not supposed to throw away dirty pages.  But pages can
193  * be marked dirty at any time too, so use remove_mapping which safely
194  * discards clean, unused pages.
195  *
196  * Returns non-zero if the page was successfully invalidated.
197  */
198 static int
199 invalidate_complete_page(struct address_space *mapping, struct page *page)
200 {
201 	int ret;
202 
203 	if (page->mapping != mapping)
204 		return 0;
205 
206 	if (page_has_private(page) && !try_to_release_page(page, 0))
207 		return 0;
208 
209 	ret = remove_mapping(mapping, page);
210 
211 	return ret;
212 }
213 
214 int truncate_inode_page(struct address_space *mapping, struct page *page)
215 {
216 	VM_BUG_ON_PAGE(PageTail(page), page);
217 
218 	if (page->mapping != mapping)
219 		return -EIO;
220 
221 	truncate_cleanup_page(mapping, page);
222 	delete_from_page_cache(page);
223 	return 0;
224 }
225 
226 /*
227  * Used to get rid of pages on hardware memory corruption.
228  */
229 int generic_error_remove_page(struct address_space *mapping, struct page *page)
230 {
231 	if (!mapping)
232 		return -EINVAL;
233 	/*
234 	 * Only punch for normal data pages for now.
235 	 * Handling other types like directories would need more auditing.
236 	 */
237 	if (!S_ISREG(mapping->host->i_mode))
238 		return -EIO;
239 	return truncate_inode_page(mapping, page);
240 }
241 EXPORT_SYMBOL(generic_error_remove_page);
242 
243 /*
244  * Safely invalidate one page from its pagecache mapping.
245  * It only drops clean, unused pages. The page must be locked.
246  *
247  * Returns 1 if the page is successfully invalidated, otherwise 0.
248  */
249 int invalidate_inode_page(struct page *page)
250 {
251 	struct address_space *mapping = page_mapping(page);
252 	if (!mapping)
253 		return 0;
254 	if (PageDirty(page) || PageWriteback(page))
255 		return 0;
256 	if (page_mapped(page))
257 		return 0;
258 	return invalidate_complete_page(mapping, page);
259 }
260 
261 /**
262  * truncate_inode_pages_range - truncate range of pages specified by start & end byte offsets
263  * @mapping: mapping to truncate
264  * @lstart: offset from which to truncate
265  * @lend: offset to which to truncate (inclusive)
266  *
267  * Truncate the page cache, removing the pages that are between
268  * specified offsets (and zeroing out partial pages
269  * if lstart or lend + 1 is not page aligned).
270  *
271  * Truncate takes two passes - the first pass is nonblocking.  It will not
272  * block on page locks and it will not block on writeback.  The second pass
273  * will wait.  This is to prevent as much IO as possible in the affected region.
274  * The first pass will remove most pages, so the search cost of the second pass
275  * is low.
276  *
277  * We pass down the cache-hot hint to the page freeing code.  Even if the
278  * mapping is large, it is probably the case that the final pages are the most
279  * recently touched, and freeing happens in ascending file offset order.
280  *
281  * Note that since ->invalidatepage() accepts range to invalidate
282  * truncate_inode_pages_range is able to handle cases where lend + 1 is not
283  * page aligned properly.
284  */
285 void truncate_inode_pages_range(struct address_space *mapping,
286 				loff_t lstart, loff_t lend)
287 {
288 	pgoff_t		start;		/* inclusive */
289 	pgoff_t		end;		/* exclusive */
290 	unsigned int	partial_start;	/* inclusive */
291 	unsigned int	partial_end;	/* exclusive */
292 	struct pagevec	pvec;
293 	pgoff_t		indices[PAGEVEC_SIZE];
294 	pgoff_t		index;
295 	int		i;
296 
297 	if (mapping_empty(mapping))
298 		goto out;
299 
300 	/* Offsets within partial pages */
301 	partial_start = lstart & (PAGE_SIZE - 1);
302 	partial_end = (lend + 1) & (PAGE_SIZE - 1);
303 
304 	/*
305 	 * 'start' and 'end' always covers the range of pages to be fully
306 	 * truncated. Partial pages are covered with 'partial_start' at the
307 	 * start of the range and 'partial_end' at the end of the range.
308 	 * Note that 'end' is exclusive while 'lend' is inclusive.
309 	 */
310 	start = (lstart + PAGE_SIZE - 1) >> PAGE_SHIFT;
311 	if (lend == -1)
312 		/*
313 		 * lend == -1 indicates end-of-file so we have to set 'end'
314 		 * to the highest possible pgoff_t and since the type is
315 		 * unsigned we're using -1.
316 		 */
317 		end = -1;
318 	else
319 		end = (lend + 1) >> PAGE_SHIFT;
320 
321 	pagevec_init(&pvec);
322 	index = start;
323 	while (index < end && find_lock_entries(mapping, index, end - 1,
324 			&pvec, indices)) {
325 		index = indices[pagevec_count(&pvec) - 1] + 1;
326 		truncate_exceptional_pvec_entries(mapping, &pvec, indices);
327 		for (i = 0; i < pagevec_count(&pvec); i++)
328 			truncate_cleanup_page(mapping, pvec.pages[i]);
329 		delete_from_page_cache_batch(mapping, &pvec);
330 		for (i = 0; i < pagevec_count(&pvec); i++)
331 			unlock_page(pvec.pages[i]);
332 		pagevec_release(&pvec);
333 		cond_resched();
334 	}
335 
336 	if (partial_start) {
337 		struct page *page = find_lock_page(mapping, start - 1);
338 		if (page) {
339 			unsigned int top = PAGE_SIZE;
340 			if (start > end) {
341 				/* Truncation within a single page */
342 				top = partial_end;
343 				partial_end = 0;
344 			}
345 			wait_on_page_writeback(page);
346 			zero_user_segment(page, partial_start, top);
347 			cleancache_invalidate_page(mapping, page);
348 			if (page_has_private(page))
349 				do_invalidatepage(page, partial_start,
350 						  top - partial_start);
351 			unlock_page(page);
352 			put_page(page);
353 		}
354 	}
355 	if (partial_end) {
356 		struct page *page = find_lock_page(mapping, end);
357 		if (page) {
358 			wait_on_page_writeback(page);
359 			zero_user_segment(page, 0, partial_end);
360 			cleancache_invalidate_page(mapping, page);
361 			if (page_has_private(page))
362 				do_invalidatepage(page, 0,
363 						  partial_end);
364 			unlock_page(page);
365 			put_page(page);
366 		}
367 	}
368 	/*
369 	 * If the truncation happened within a single page no pages
370 	 * will be released, just zeroed, so we can bail out now.
371 	 */
372 	if (start >= end)
373 		goto out;
374 
375 	index = start;
376 	for ( ; ; ) {
377 		cond_resched();
378 		if (!find_get_entries(mapping, index, end - 1, &pvec,
379 				indices)) {
380 			/* If all gone from start onwards, we're done */
381 			if (index == start)
382 				break;
383 			/* Otherwise restart to make sure all gone */
384 			index = start;
385 			continue;
386 		}
387 
388 		for (i = 0; i < pagevec_count(&pvec); i++) {
389 			struct page *page = pvec.pages[i];
390 
391 			/* We rely upon deletion not changing page->index */
392 			index = indices[i];
393 
394 			if (xa_is_value(page))
395 				continue;
396 
397 			lock_page(page);
398 			WARN_ON(page_to_index(page) != index);
399 			wait_on_page_writeback(page);
400 			truncate_inode_page(mapping, page);
401 			unlock_page(page);
402 		}
403 		truncate_exceptional_pvec_entries(mapping, &pvec, indices);
404 		pagevec_release(&pvec);
405 		index++;
406 	}
407 
408 out:
409 	cleancache_invalidate_inode(mapping);
410 }
411 EXPORT_SYMBOL(truncate_inode_pages_range);
412 
413 /**
414  * truncate_inode_pages - truncate *all* the pages from an offset
415  * @mapping: mapping to truncate
416  * @lstart: offset from which to truncate
417  *
418  * Called under (and serialised by) inode->i_mutex.
419  *
420  * Note: When this function returns, there can be a page in the process of
421  * deletion (inside __delete_from_page_cache()) in the specified range.  Thus
422  * mapping->nrpages can be non-zero when this function returns even after
423  * truncation of the whole mapping.
424  */
425 void truncate_inode_pages(struct address_space *mapping, loff_t lstart)
426 {
427 	truncate_inode_pages_range(mapping, lstart, (loff_t)-1);
428 }
429 EXPORT_SYMBOL(truncate_inode_pages);
430 
431 /**
432  * truncate_inode_pages_final - truncate *all* pages before inode dies
433  * @mapping: mapping to truncate
434  *
435  * Called under (and serialized by) inode->i_mutex.
436  *
437  * Filesystems have to use this in the .evict_inode path to inform the
438  * VM that this is the final truncate and the inode is going away.
439  */
440 void truncate_inode_pages_final(struct address_space *mapping)
441 {
442 	/*
443 	 * Page reclaim can not participate in regular inode lifetime
444 	 * management (can't call iput()) and thus can race with the
445 	 * inode teardown.  Tell it when the address space is exiting,
446 	 * so that it does not install eviction information after the
447 	 * final truncate has begun.
448 	 */
449 	mapping_set_exiting(mapping);
450 
451 	if (!mapping_empty(mapping)) {
452 		/*
453 		 * As truncation uses a lockless tree lookup, cycle
454 		 * the tree lock to make sure any ongoing tree
455 		 * modification that does not see AS_EXITING is
456 		 * completed before starting the final truncate.
457 		 */
458 		xa_lock_irq(&mapping->i_pages);
459 		xa_unlock_irq(&mapping->i_pages);
460 	}
461 
462 	/*
463 	 * Cleancache needs notification even if there are no pages or shadow
464 	 * entries.
465 	 */
466 	truncate_inode_pages(mapping, 0);
467 }
468 EXPORT_SYMBOL(truncate_inode_pages_final);
469 
470 static unsigned long __invalidate_mapping_pages(struct address_space *mapping,
471 		pgoff_t start, pgoff_t end, unsigned long *nr_pagevec)
472 {
473 	pgoff_t indices[PAGEVEC_SIZE];
474 	struct pagevec pvec;
475 	pgoff_t index = start;
476 	unsigned long ret;
477 	unsigned long count = 0;
478 	int i;
479 
480 	pagevec_init(&pvec);
481 	while (find_lock_entries(mapping, index, end, &pvec, indices)) {
482 		for (i = 0; i < pagevec_count(&pvec); i++) {
483 			struct page *page = pvec.pages[i];
484 
485 			/* We rely upon deletion not changing page->index */
486 			index = indices[i];
487 
488 			if (xa_is_value(page)) {
489 				invalidate_exceptional_entry(mapping, index,
490 							     page);
491 				continue;
492 			}
493 			index += thp_nr_pages(page) - 1;
494 
495 			ret = invalidate_inode_page(page);
496 			unlock_page(page);
497 			/*
498 			 * Invalidation is a hint that the page is no longer
499 			 * of interest and try to speed up its reclaim.
500 			 */
501 			if (!ret) {
502 				deactivate_file_page(page);
503 				/* It is likely on the pagevec of a remote CPU */
504 				if (nr_pagevec)
505 					(*nr_pagevec)++;
506 			}
507 			count += ret;
508 		}
509 		pagevec_remove_exceptionals(&pvec);
510 		pagevec_release(&pvec);
511 		cond_resched();
512 		index++;
513 	}
514 	return count;
515 }
516 
517 /**
518  * invalidate_mapping_pages - Invalidate all the unlocked pages of one inode
519  * @mapping: the address_space which holds the pages to invalidate
520  * @start: the offset 'from' which to invalidate
521  * @end: the offset 'to' which to invalidate (inclusive)
522  *
523  * This function only removes the unlocked pages, if you want to
524  * remove all the pages of one inode, you must call truncate_inode_pages.
525  *
526  * invalidate_mapping_pages() will not block on IO activity. It will not
527  * invalidate pages which are dirty, locked, under writeback or mapped into
528  * pagetables.
529  *
530  * Return: the number of the pages that were invalidated
531  */
532 unsigned long invalidate_mapping_pages(struct address_space *mapping,
533 		pgoff_t start, pgoff_t end)
534 {
535 	return __invalidate_mapping_pages(mapping, start, end, NULL);
536 }
537 EXPORT_SYMBOL(invalidate_mapping_pages);
538 
539 /**
540  * invalidate_mapping_pagevec - Invalidate all the unlocked pages of one inode
541  * @mapping: the address_space which holds the pages to invalidate
542  * @start: the offset 'from' which to invalidate
543  * @end: the offset 'to' which to invalidate (inclusive)
544  * @nr_pagevec: invalidate failed page number for caller
545  *
546  * This helper is similar to invalidate_mapping_pages(), except that it accounts
547  * for pages that are likely on a pagevec and counts them in @nr_pagevec, which
548  * will be used by the caller.
549  */
550 void invalidate_mapping_pagevec(struct address_space *mapping,
551 		pgoff_t start, pgoff_t end, unsigned long *nr_pagevec)
552 {
553 	__invalidate_mapping_pages(mapping, start, end, nr_pagevec);
554 }
555 
556 /*
557  * This is like invalidate_complete_page(), except it ignores the page's
558  * refcount.  We do this because invalidate_inode_pages2() needs stronger
559  * invalidation guarantees, and cannot afford to leave pages behind because
560  * shrink_page_list() has a temp ref on them, or because they're transiently
561  * sitting in the lru_cache_add() pagevecs.
562  */
563 static int
564 invalidate_complete_page2(struct address_space *mapping, struct page *page)
565 {
566 	unsigned long flags;
567 
568 	if (page->mapping != mapping)
569 		return 0;
570 
571 	if (page_has_private(page) && !try_to_release_page(page, GFP_KERNEL))
572 		return 0;
573 
574 	xa_lock_irqsave(&mapping->i_pages, flags);
575 	if (PageDirty(page))
576 		goto failed;
577 
578 	BUG_ON(page_has_private(page));
579 	__delete_from_page_cache(page, NULL);
580 	xa_unlock_irqrestore(&mapping->i_pages, flags);
581 
582 	if (mapping->a_ops->freepage)
583 		mapping->a_ops->freepage(page);
584 
585 	put_page(page);	/* pagecache ref */
586 	return 1;
587 failed:
588 	xa_unlock_irqrestore(&mapping->i_pages, flags);
589 	return 0;
590 }
591 
592 static int do_launder_page(struct address_space *mapping, struct page *page)
593 {
594 	if (!PageDirty(page))
595 		return 0;
596 	if (page->mapping != mapping || mapping->a_ops->launder_page == NULL)
597 		return 0;
598 	return mapping->a_ops->launder_page(page);
599 }
600 
601 /**
602  * invalidate_inode_pages2_range - remove range of pages from an address_space
603  * @mapping: the address_space
604  * @start: the page offset 'from' which to invalidate
605  * @end: the page offset 'to' which to invalidate (inclusive)
606  *
607  * Any pages which are found to be mapped into pagetables are unmapped prior to
608  * invalidation.
609  *
610  * Return: -EBUSY if any pages could not be invalidated.
611  */
612 int invalidate_inode_pages2_range(struct address_space *mapping,
613 				  pgoff_t start, pgoff_t end)
614 {
615 	pgoff_t indices[PAGEVEC_SIZE];
616 	struct pagevec pvec;
617 	pgoff_t index;
618 	int i;
619 	int ret = 0;
620 	int ret2 = 0;
621 	int did_range_unmap = 0;
622 
623 	if (mapping_empty(mapping))
624 		goto out;
625 
626 	pagevec_init(&pvec);
627 	index = start;
628 	while (find_get_entries(mapping, index, end, &pvec, indices)) {
629 		for (i = 0; i < pagevec_count(&pvec); i++) {
630 			struct page *page = pvec.pages[i];
631 
632 			/* We rely upon deletion not changing page->index */
633 			index = indices[i];
634 
635 			if (xa_is_value(page)) {
636 				if (!invalidate_exceptional_entry2(mapping,
637 								   index, page))
638 					ret = -EBUSY;
639 				continue;
640 			}
641 
642 			lock_page(page);
643 			WARN_ON(page_to_index(page) != index);
644 			if (page->mapping != mapping) {
645 				unlock_page(page);
646 				continue;
647 			}
648 			wait_on_page_writeback(page);
649 			if (page_mapped(page)) {
650 				if (!did_range_unmap) {
651 					/*
652 					 * Zap the rest of the file in one hit.
653 					 */
654 					unmap_mapping_pages(mapping, index,
655 						(1 + end - index), false);
656 					did_range_unmap = 1;
657 				} else {
658 					/*
659 					 * Just zap this page
660 					 */
661 					unmap_mapping_pages(mapping, index,
662 								1, false);
663 				}
664 			}
665 			BUG_ON(page_mapped(page));
666 			ret2 = do_launder_page(mapping, page);
667 			if (ret2 == 0) {
668 				if (!invalidate_complete_page2(mapping, page))
669 					ret2 = -EBUSY;
670 			}
671 			if (ret2 < 0)
672 				ret = ret2;
673 			unlock_page(page);
674 		}
675 		pagevec_remove_exceptionals(&pvec);
676 		pagevec_release(&pvec);
677 		cond_resched();
678 		index++;
679 	}
680 	/*
681 	 * For DAX we invalidate page tables after invalidating page cache.  We
682 	 * could invalidate page tables while invalidating each entry however
683 	 * that would be expensive. And doing range unmapping before doesn't
684 	 * work as we have no cheap way to find whether page cache entry didn't
685 	 * get remapped later.
686 	 */
687 	if (dax_mapping(mapping)) {
688 		unmap_mapping_pages(mapping, start, end - start + 1, false);
689 	}
690 out:
691 	cleancache_invalidate_inode(mapping);
692 	return ret;
693 }
694 EXPORT_SYMBOL_GPL(invalidate_inode_pages2_range);
695 
696 /**
697  * invalidate_inode_pages2 - remove all pages from an address_space
698  * @mapping: the address_space
699  *
700  * Any pages which are found to be mapped into pagetables are unmapped prior to
701  * invalidation.
702  *
703  * Return: -EBUSY if any pages could not be invalidated.
704  */
705 int invalidate_inode_pages2(struct address_space *mapping)
706 {
707 	return invalidate_inode_pages2_range(mapping, 0, -1);
708 }
709 EXPORT_SYMBOL_GPL(invalidate_inode_pages2);
710 
711 /**
712  * truncate_pagecache - unmap and remove pagecache that has been truncated
713  * @inode: inode
714  * @newsize: new file size
715  *
716  * inode's new i_size must already be written before truncate_pagecache
717  * is called.
718  *
719  * This function should typically be called before the filesystem
720  * releases resources associated with the freed range (eg. deallocates
721  * blocks). This way, pagecache will always stay logically coherent
722  * with on-disk format, and the filesystem would not have to deal with
723  * situations such as writepage being called for a page that has already
724  * had its underlying blocks deallocated.
725  */
726 void truncate_pagecache(struct inode *inode, loff_t newsize)
727 {
728 	struct address_space *mapping = inode->i_mapping;
729 	loff_t holebegin = round_up(newsize, PAGE_SIZE);
730 
731 	/*
732 	 * unmap_mapping_range is called twice, first simply for
733 	 * efficiency so that truncate_inode_pages does fewer
734 	 * single-page unmaps.  However after this first call, and
735 	 * before truncate_inode_pages finishes, it is possible for
736 	 * private pages to be COWed, which remain after
737 	 * truncate_inode_pages finishes, hence the second
738 	 * unmap_mapping_range call must be made for correctness.
739 	 */
740 	unmap_mapping_range(mapping, holebegin, 0, 1);
741 	truncate_inode_pages(mapping, newsize);
742 	unmap_mapping_range(mapping, holebegin, 0, 1);
743 }
744 EXPORT_SYMBOL(truncate_pagecache);
745 
746 /**
747  * truncate_setsize - update inode and pagecache for a new file size
748  * @inode: inode
749  * @newsize: new file size
750  *
751  * truncate_setsize updates i_size and performs pagecache truncation (if
752  * necessary) to @newsize. It will be typically be called from the filesystem's
753  * setattr function when ATTR_SIZE is passed in.
754  *
755  * Must be called with a lock serializing truncates and writes (generally
756  * i_mutex but e.g. xfs uses a different lock) and before all filesystem
757  * specific block truncation has been performed.
758  */
759 void truncate_setsize(struct inode *inode, loff_t newsize)
760 {
761 	loff_t oldsize = inode->i_size;
762 
763 	i_size_write(inode, newsize);
764 	if (newsize > oldsize)
765 		pagecache_isize_extended(inode, oldsize, newsize);
766 	truncate_pagecache(inode, newsize);
767 }
768 EXPORT_SYMBOL(truncate_setsize);
769 
770 /**
771  * pagecache_isize_extended - update pagecache after extension of i_size
772  * @inode:	inode for which i_size was extended
773  * @from:	original inode size
774  * @to:		new inode size
775  *
776  * Handle extension of inode size either caused by extending truncate or by
777  * write starting after current i_size. We mark the page straddling current
778  * i_size RO so that page_mkwrite() is called on the nearest write access to
779  * the page.  This way filesystem can be sure that page_mkwrite() is called on
780  * the page before user writes to the page via mmap after the i_size has been
781  * changed.
782  *
783  * The function must be called after i_size is updated so that page fault
784  * coming after we unlock the page will already see the new i_size.
785  * The function must be called while we still hold i_mutex - this not only
786  * makes sure i_size is stable but also that userspace cannot observe new
787  * i_size value before we are prepared to store mmap writes at new inode size.
788  */
789 void pagecache_isize_extended(struct inode *inode, loff_t from, loff_t to)
790 {
791 	int bsize = i_blocksize(inode);
792 	loff_t rounded_from;
793 	struct page *page;
794 	pgoff_t index;
795 
796 	WARN_ON(to > inode->i_size);
797 
798 	if (from >= to || bsize == PAGE_SIZE)
799 		return;
800 	/* Page straddling @from will not have any hole block created? */
801 	rounded_from = round_up(from, bsize);
802 	if (to <= rounded_from || !(rounded_from & (PAGE_SIZE - 1)))
803 		return;
804 
805 	index = from >> PAGE_SHIFT;
806 	page = find_lock_page(inode->i_mapping, index);
807 	/* Page not cached? Nothing to do */
808 	if (!page)
809 		return;
810 	/*
811 	 * See clear_page_dirty_for_io() for details why set_page_dirty()
812 	 * is needed.
813 	 */
814 	if (page_mkclean(page))
815 		set_page_dirty(page);
816 	unlock_page(page);
817 	put_page(page);
818 }
819 EXPORT_SYMBOL(pagecache_isize_extended);
820 
821 /**
822  * truncate_pagecache_range - unmap and remove pagecache that is hole-punched
823  * @inode: inode
824  * @lstart: offset of beginning of hole
825  * @lend: offset of last byte of hole
826  *
827  * This function should typically be called before the filesystem
828  * releases resources associated with the freed range (eg. deallocates
829  * blocks). This way, pagecache will always stay logically coherent
830  * with on-disk format, and the filesystem would not have to deal with
831  * situations such as writepage being called for a page that has already
832  * had its underlying blocks deallocated.
833  */
834 void truncate_pagecache_range(struct inode *inode, loff_t lstart, loff_t lend)
835 {
836 	struct address_space *mapping = inode->i_mapping;
837 	loff_t unmap_start = round_up(lstart, PAGE_SIZE);
838 	loff_t unmap_end = round_down(1 + lend, PAGE_SIZE) - 1;
839 	/*
840 	 * This rounding is currently just for example: unmap_mapping_range
841 	 * expands its hole outwards, whereas we want it to contract the hole
842 	 * inwards.  However, existing callers of truncate_pagecache_range are
843 	 * doing their own page rounding first.  Note that unmap_mapping_range
844 	 * allows holelen 0 for all, and we allow lend -1 for end of file.
845 	 */
846 
847 	/*
848 	 * Unlike in truncate_pagecache, unmap_mapping_range is called only
849 	 * once (before truncating pagecache), and without "even_cows" flag:
850 	 * hole-punching should not remove private COWed pages from the hole.
851 	 */
852 	if ((u64)unmap_end > (u64)unmap_start)
853 		unmap_mapping_range(mapping, unmap_start,
854 				    1 + unmap_end - unmap_start, 0);
855 	truncate_inode_pages_range(mapping, lstart, lend);
856 }
857 EXPORT_SYMBOL(truncate_pagecache_range);
858