1 // SPDX-License-Identifier: GPL-2.0-only 2 /* 3 * mm/truncate.c - code for taking down pages from address_spaces 4 * 5 * Copyright (C) 2002, Linus Torvalds 6 * 7 * 10Sep2002 Andrew Morton 8 * Initial version. 9 */ 10 11 #include <linux/kernel.h> 12 #include <linux/backing-dev.h> 13 #include <linux/dax.h> 14 #include <linux/gfp.h> 15 #include <linux/mm.h> 16 #include <linux/swap.h> 17 #include <linux/export.h> 18 #include <linux/pagemap.h> 19 #include <linux/highmem.h> 20 #include <linux/pagevec.h> 21 #include <linux/task_io_accounting_ops.h> 22 #include <linux/buffer_head.h> /* grr. try_to_release_page, 23 do_invalidatepage */ 24 #include <linux/shmem_fs.h> 25 #include <linux/rmap.h> 26 #include "internal.h" 27 28 /* 29 * Regular page slots are stabilized by the page lock even without the tree 30 * itself locked. These unlocked entries need verification under the tree 31 * lock. 32 */ 33 static inline void __clear_shadow_entry(struct address_space *mapping, 34 pgoff_t index, void *entry) 35 { 36 XA_STATE(xas, &mapping->i_pages, index); 37 38 xas_set_update(&xas, workingset_update_node); 39 if (xas_load(&xas) != entry) 40 return; 41 xas_store(&xas, NULL); 42 } 43 44 static void clear_shadow_entry(struct address_space *mapping, pgoff_t index, 45 void *entry) 46 { 47 spin_lock(&mapping->host->i_lock); 48 xa_lock_irq(&mapping->i_pages); 49 __clear_shadow_entry(mapping, index, entry); 50 xa_unlock_irq(&mapping->i_pages); 51 if (mapping_shrinkable(mapping)) 52 inode_add_lru(mapping->host); 53 spin_unlock(&mapping->host->i_lock); 54 } 55 56 /* 57 * Unconditionally remove exceptional entries. Usually called from truncate 58 * path. Note that the folio_batch may be altered by this function by removing 59 * exceptional entries similar to what folio_batch_remove_exceptionals() does. 60 */ 61 static void truncate_folio_batch_exceptionals(struct address_space *mapping, 62 struct folio_batch *fbatch, pgoff_t *indices) 63 { 64 int i, j; 65 bool dax; 66 67 /* Handled by shmem itself */ 68 if (shmem_mapping(mapping)) 69 return; 70 71 for (j = 0; j < folio_batch_count(fbatch); j++) 72 if (xa_is_value(fbatch->folios[j])) 73 break; 74 75 if (j == folio_batch_count(fbatch)) 76 return; 77 78 dax = dax_mapping(mapping); 79 if (!dax) { 80 spin_lock(&mapping->host->i_lock); 81 xa_lock_irq(&mapping->i_pages); 82 } 83 84 for (i = j; i < folio_batch_count(fbatch); i++) { 85 struct folio *folio = fbatch->folios[i]; 86 pgoff_t index = indices[i]; 87 88 if (!xa_is_value(folio)) { 89 fbatch->folios[j++] = folio; 90 continue; 91 } 92 93 if (unlikely(dax)) { 94 dax_delete_mapping_entry(mapping, index); 95 continue; 96 } 97 98 __clear_shadow_entry(mapping, index, folio); 99 } 100 101 if (!dax) { 102 xa_unlock_irq(&mapping->i_pages); 103 if (mapping_shrinkable(mapping)) 104 inode_add_lru(mapping->host); 105 spin_unlock(&mapping->host->i_lock); 106 } 107 fbatch->nr = j; 108 } 109 110 /* 111 * Invalidate exceptional entry if easily possible. This handles exceptional 112 * entries for invalidate_inode_pages(). 113 */ 114 static int invalidate_exceptional_entry(struct address_space *mapping, 115 pgoff_t index, void *entry) 116 { 117 /* Handled by shmem itself, or for DAX we do nothing. */ 118 if (shmem_mapping(mapping) || dax_mapping(mapping)) 119 return 1; 120 clear_shadow_entry(mapping, index, entry); 121 return 1; 122 } 123 124 /* 125 * Invalidate exceptional entry if clean. This handles exceptional entries for 126 * invalidate_inode_pages2() so for DAX it evicts only clean entries. 127 */ 128 static int invalidate_exceptional_entry2(struct address_space *mapping, 129 pgoff_t index, void *entry) 130 { 131 /* Handled by shmem itself */ 132 if (shmem_mapping(mapping)) 133 return 1; 134 if (dax_mapping(mapping)) 135 return dax_invalidate_mapping_entry_sync(mapping, index); 136 clear_shadow_entry(mapping, index, entry); 137 return 1; 138 } 139 140 /** 141 * do_invalidatepage - invalidate part or all of a page 142 * @page: the page which is affected 143 * @offset: start of the range to invalidate 144 * @length: length of the range to invalidate 145 * 146 * do_invalidatepage() is called when all or part of the page has become 147 * invalidated by a truncate operation. 148 * 149 * do_invalidatepage() does not have to release all buffers, but it must 150 * ensure that no dirty buffer is left outside @offset and that no I/O 151 * is underway against any of the blocks which are outside the truncation 152 * point. Because the caller is about to free (and possibly reuse) those 153 * blocks on-disk. 154 */ 155 void do_invalidatepage(struct page *page, unsigned int offset, 156 unsigned int length) 157 { 158 void (*invalidatepage)(struct page *, unsigned int, unsigned int); 159 160 invalidatepage = page->mapping->a_ops->invalidatepage; 161 #ifdef CONFIG_BLOCK 162 if (!invalidatepage) 163 invalidatepage = block_invalidatepage; 164 #endif 165 if (invalidatepage) 166 (*invalidatepage)(page, offset, length); 167 } 168 169 /* 170 * If truncate cannot remove the fs-private metadata from the page, the page 171 * becomes orphaned. It will be left on the LRU and may even be mapped into 172 * user pagetables if we're racing with filemap_fault(). 173 * 174 * We need to bail out if page->mapping is no longer equal to the original 175 * mapping. This happens a) when the VM reclaimed the page while we waited on 176 * its lock, b) when a concurrent invalidate_mapping_pages got there first and 177 * c) when tmpfs swizzles a page between a tmpfs inode and swapper_space. 178 */ 179 static void truncate_cleanup_folio(struct folio *folio) 180 { 181 if (folio_mapped(folio)) 182 unmap_mapping_folio(folio); 183 184 if (folio_has_private(folio)) 185 do_invalidatepage(&folio->page, 0, folio_size(folio)); 186 187 /* 188 * Some filesystems seem to re-dirty the page even after 189 * the VM has canceled the dirty bit (eg ext3 journaling). 190 * Hence dirty accounting check is placed after invalidation. 191 */ 192 folio_cancel_dirty(folio); 193 folio_clear_mappedtodisk(folio); 194 } 195 196 /* 197 * This is for invalidate_mapping_pages(). That function can be called at 198 * any time, and is not supposed to throw away dirty pages. But pages can 199 * be marked dirty at any time too, so use remove_mapping which safely 200 * discards clean, unused pages. 201 * 202 * Returns non-zero if the page was successfully invalidated. 203 */ 204 static int 205 invalidate_complete_page(struct address_space *mapping, struct page *page) 206 { 207 208 if (page->mapping != mapping) 209 return 0; 210 211 if (page_has_private(page) && !try_to_release_page(page, 0)) 212 return 0; 213 214 return remove_mapping(mapping, page); 215 } 216 217 int truncate_inode_folio(struct address_space *mapping, struct folio *folio) 218 { 219 if (folio->mapping != mapping) 220 return -EIO; 221 222 truncate_cleanup_folio(folio); 223 filemap_remove_folio(folio); 224 return 0; 225 } 226 227 /* 228 * Handle partial folios. The folio may be entirely within the 229 * range if a split has raced with us. If not, we zero the part of the 230 * folio that's within the [start, end] range, and then split the folio if 231 * it's large. split_page_range() will discard pages which now lie beyond 232 * i_size, and we rely on the caller to discard pages which lie within a 233 * newly created hole. 234 * 235 * Returns false if splitting failed so the caller can avoid 236 * discarding the entire folio which is stubbornly unsplit. 237 */ 238 bool truncate_inode_partial_folio(struct folio *folio, loff_t start, loff_t end) 239 { 240 loff_t pos = folio_pos(folio); 241 unsigned int offset, length; 242 243 if (pos < start) 244 offset = start - pos; 245 else 246 offset = 0; 247 length = folio_size(folio); 248 if (pos + length <= (u64)end) 249 length = length - offset; 250 else 251 length = end + 1 - pos - offset; 252 253 folio_wait_writeback(folio); 254 if (length == folio_size(folio)) { 255 truncate_inode_folio(folio->mapping, folio); 256 return true; 257 } 258 259 /* 260 * We may be zeroing pages we're about to discard, but it avoids 261 * doing a complex calculation here, and then doing the zeroing 262 * anyway if the page split fails. 263 */ 264 folio_zero_range(folio, offset, length); 265 266 if (folio_has_private(folio)) 267 do_invalidatepage(&folio->page, offset, length); 268 if (!folio_test_large(folio)) 269 return true; 270 if (split_huge_page(&folio->page) == 0) 271 return true; 272 if (folio_test_dirty(folio)) 273 return false; 274 truncate_inode_folio(folio->mapping, folio); 275 return true; 276 } 277 278 /* 279 * Used to get rid of pages on hardware memory corruption. 280 */ 281 int generic_error_remove_page(struct address_space *mapping, struct page *page) 282 { 283 VM_BUG_ON_PAGE(PageTail(page), page); 284 285 if (!mapping) 286 return -EINVAL; 287 /* 288 * Only punch for normal data pages for now. 289 * Handling other types like directories would need more auditing. 290 */ 291 if (!S_ISREG(mapping->host->i_mode)) 292 return -EIO; 293 return truncate_inode_folio(mapping, page_folio(page)); 294 } 295 EXPORT_SYMBOL(generic_error_remove_page); 296 297 /* 298 * Safely invalidate one page from its pagecache mapping. 299 * It only drops clean, unused pages. The page must be locked. 300 * 301 * Returns 1 if the page is successfully invalidated, otherwise 0. 302 */ 303 int invalidate_inode_page(struct page *page) 304 { 305 struct address_space *mapping = page_mapping(page); 306 if (!mapping) 307 return 0; 308 if (PageDirty(page) || PageWriteback(page)) 309 return 0; 310 if (page_mapped(page)) 311 return 0; 312 return invalidate_complete_page(mapping, page); 313 } 314 315 /** 316 * truncate_inode_pages_range - truncate range of pages specified by start & end byte offsets 317 * @mapping: mapping to truncate 318 * @lstart: offset from which to truncate 319 * @lend: offset to which to truncate (inclusive) 320 * 321 * Truncate the page cache, removing the pages that are between 322 * specified offsets (and zeroing out partial pages 323 * if lstart or lend + 1 is not page aligned). 324 * 325 * Truncate takes two passes - the first pass is nonblocking. It will not 326 * block on page locks and it will not block on writeback. The second pass 327 * will wait. This is to prevent as much IO as possible in the affected region. 328 * The first pass will remove most pages, so the search cost of the second pass 329 * is low. 330 * 331 * We pass down the cache-hot hint to the page freeing code. Even if the 332 * mapping is large, it is probably the case that the final pages are the most 333 * recently touched, and freeing happens in ascending file offset order. 334 * 335 * Note that since ->invalidatepage() accepts range to invalidate 336 * truncate_inode_pages_range is able to handle cases where lend + 1 is not 337 * page aligned properly. 338 */ 339 void truncate_inode_pages_range(struct address_space *mapping, 340 loff_t lstart, loff_t lend) 341 { 342 pgoff_t start; /* inclusive */ 343 pgoff_t end; /* exclusive */ 344 struct folio_batch fbatch; 345 pgoff_t indices[PAGEVEC_SIZE]; 346 pgoff_t index; 347 int i; 348 struct folio *folio; 349 bool same_folio; 350 351 if (mapping_empty(mapping)) 352 return; 353 354 /* 355 * 'start' and 'end' always covers the range of pages to be fully 356 * truncated. Partial pages are covered with 'partial_start' at the 357 * start of the range and 'partial_end' at the end of the range. 358 * Note that 'end' is exclusive while 'lend' is inclusive. 359 */ 360 start = (lstart + PAGE_SIZE - 1) >> PAGE_SHIFT; 361 if (lend == -1) 362 /* 363 * lend == -1 indicates end-of-file so we have to set 'end' 364 * to the highest possible pgoff_t and since the type is 365 * unsigned we're using -1. 366 */ 367 end = -1; 368 else 369 end = (lend + 1) >> PAGE_SHIFT; 370 371 folio_batch_init(&fbatch); 372 index = start; 373 while (index < end && find_lock_entries(mapping, index, end - 1, 374 &fbatch, indices)) { 375 index = indices[folio_batch_count(&fbatch) - 1] + 1; 376 truncate_folio_batch_exceptionals(mapping, &fbatch, indices); 377 for (i = 0; i < folio_batch_count(&fbatch); i++) 378 truncate_cleanup_folio(fbatch.folios[i]); 379 delete_from_page_cache_batch(mapping, &fbatch); 380 for (i = 0; i < folio_batch_count(&fbatch); i++) 381 folio_unlock(fbatch.folios[i]); 382 folio_batch_release(&fbatch); 383 cond_resched(); 384 } 385 386 same_folio = (lstart >> PAGE_SHIFT) == (lend >> PAGE_SHIFT); 387 folio = __filemap_get_folio(mapping, lstart >> PAGE_SHIFT, FGP_LOCK, 0); 388 if (folio) { 389 same_folio = lend < folio_pos(folio) + folio_size(folio); 390 if (!truncate_inode_partial_folio(folio, lstart, lend)) { 391 start = folio->index + folio_nr_pages(folio); 392 if (same_folio) 393 end = folio->index; 394 } 395 folio_unlock(folio); 396 folio_put(folio); 397 folio = NULL; 398 } 399 400 if (!same_folio) 401 folio = __filemap_get_folio(mapping, lend >> PAGE_SHIFT, 402 FGP_LOCK, 0); 403 if (folio) { 404 if (!truncate_inode_partial_folio(folio, lstart, lend)) 405 end = folio->index; 406 folio_unlock(folio); 407 folio_put(folio); 408 } 409 410 index = start; 411 while (index < end) { 412 cond_resched(); 413 if (!find_get_entries(mapping, index, end - 1, &fbatch, 414 indices)) { 415 /* If all gone from start onwards, we're done */ 416 if (index == start) 417 break; 418 /* Otherwise restart to make sure all gone */ 419 index = start; 420 continue; 421 } 422 423 for (i = 0; i < folio_batch_count(&fbatch); i++) { 424 struct folio *folio = fbatch.folios[i]; 425 426 /* We rely upon deletion not changing page->index */ 427 index = indices[i]; 428 429 if (xa_is_value(folio)) 430 continue; 431 432 folio_lock(folio); 433 VM_BUG_ON_FOLIO(!folio_contains(folio, index), folio); 434 folio_wait_writeback(folio); 435 truncate_inode_folio(mapping, folio); 436 folio_unlock(folio); 437 index = folio_index(folio) + folio_nr_pages(folio) - 1; 438 } 439 truncate_folio_batch_exceptionals(mapping, &fbatch, indices); 440 folio_batch_release(&fbatch); 441 index++; 442 } 443 } 444 EXPORT_SYMBOL(truncate_inode_pages_range); 445 446 /** 447 * truncate_inode_pages - truncate *all* the pages from an offset 448 * @mapping: mapping to truncate 449 * @lstart: offset from which to truncate 450 * 451 * Called under (and serialised by) inode->i_rwsem and 452 * mapping->invalidate_lock. 453 * 454 * Note: When this function returns, there can be a page in the process of 455 * deletion (inside __delete_from_page_cache()) in the specified range. Thus 456 * mapping->nrpages can be non-zero when this function returns even after 457 * truncation of the whole mapping. 458 */ 459 void truncate_inode_pages(struct address_space *mapping, loff_t lstart) 460 { 461 truncate_inode_pages_range(mapping, lstart, (loff_t)-1); 462 } 463 EXPORT_SYMBOL(truncate_inode_pages); 464 465 /** 466 * truncate_inode_pages_final - truncate *all* pages before inode dies 467 * @mapping: mapping to truncate 468 * 469 * Called under (and serialized by) inode->i_rwsem. 470 * 471 * Filesystems have to use this in the .evict_inode path to inform the 472 * VM that this is the final truncate and the inode is going away. 473 */ 474 void truncate_inode_pages_final(struct address_space *mapping) 475 { 476 /* 477 * Page reclaim can not participate in regular inode lifetime 478 * management (can't call iput()) and thus can race with the 479 * inode teardown. Tell it when the address space is exiting, 480 * so that it does not install eviction information after the 481 * final truncate has begun. 482 */ 483 mapping_set_exiting(mapping); 484 485 if (!mapping_empty(mapping)) { 486 /* 487 * As truncation uses a lockless tree lookup, cycle 488 * the tree lock to make sure any ongoing tree 489 * modification that does not see AS_EXITING is 490 * completed before starting the final truncate. 491 */ 492 xa_lock_irq(&mapping->i_pages); 493 xa_unlock_irq(&mapping->i_pages); 494 } 495 496 truncate_inode_pages(mapping, 0); 497 } 498 EXPORT_SYMBOL(truncate_inode_pages_final); 499 500 static unsigned long __invalidate_mapping_pages(struct address_space *mapping, 501 pgoff_t start, pgoff_t end, unsigned long *nr_pagevec) 502 { 503 pgoff_t indices[PAGEVEC_SIZE]; 504 struct folio_batch fbatch; 505 pgoff_t index = start; 506 unsigned long ret; 507 unsigned long count = 0; 508 int i; 509 510 folio_batch_init(&fbatch); 511 while (find_lock_entries(mapping, index, end, &fbatch, indices)) { 512 for (i = 0; i < folio_batch_count(&fbatch); i++) { 513 struct page *page = &fbatch.folios[i]->page; 514 515 /* We rely upon deletion not changing page->index */ 516 index = indices[i]; 517 518 if (xa_is_value(page)) { 519 count += invalidate_exceptional_entry(mapping, 520 index, 521 page); 522 continue; 523 } 524 index += thp_nr_pages(page) - 1; 525 526 ret = invalidate_inode_page(page); 527 unlock_page(page); 528 /* 529 * Invalidation is a hint that the page is no longer 530 * of interest and try to speed up its reclaim. 531 */ 532 if (!ret) { 533 deactivate_file_page(page); 534 /* It is likely on the pagevec of a remote CPU */ 535 if (nr_pagevec) 536 (*nr_pagevec)++; 537 } 538 count += ret; 539 } 540 folio_batch_remove_exceptionals(&fbatch); 541 folio_batch_release(&fbatch); 542 cond_resched(); 543 index++; 544 } 545 return count; 546 } 547 548 /** 549 * invalidate_mapping_pages - Invalidate all clean, unlocked cache of one inode 550 * @mapping: the address_space which holds the cache to invalidate 551 * @start: the offset 'from' which to invalidate 552 * @end: the offset 'to' which to invalidate (inclusive) 553 * 554 * This function removes pages that are clean, unmapped and unlocked, 555 * as well as shadow entries. It will not block on IO activity. 556 * 557 * If you want to remove all the pages of one inode, regardless of 558 * their use and writeback state, use truncate_inode_pages(). 559 * 560 * Return: the number of the cache entries that were invalidated 561 */ 562 unsigned long invalidate_mapping_pages(struct address_space *mapping, 563 pgoff_t start, pgoff_t end) 564 { 565 return __invalidate_mapping_pages(mapping, start, end, NULL); 566 } 567 EXPORT_SYMBOL(invalidate_mapping_pages); 568 569 /** 570 * invalidate_mapping_pagevec - Invalidate all the unlocked pages of one inode 571 * @mapping: the address_space which holds the pages to invalidate 572 * @start: the offset 'from' which to invalidate 573 * @end: the offset 'to' which to invalidate (inclusive) 574 * @nr_pagevec: invalidate failed page number for caller 575 * 576 * This helper is similar to invalidate_mapping_pages(), except that it accounts 577 * for pages that are likely on a pagevec and counts them in @nr_pagevec, which 578 * will be used by the caller. 579 */ 580 void invalidate_mapping_pagevec(struct address_space *mapping, 581 pgoff_t start, pgoff_t end, unsigned long *nr_pagevec) 582 { 583 __invalidate_mapping_pages(mapping, start, end, nr_pagevec); 584 } 585 586 /* 587 * This is like invalidate_complete_page(), except it ignores the page's 588 * refcount. We do this because invalidate_inode_pages2() needs stronger 589 * invalidation guarantees, and cannot afford to leave pages behind because 590 * shrink_page_list() has a temp ref on them, or because they're transiently 591 * sitting in the lru_cache_add() pagevecs. 592 */ 593 static int invalidate_complete_folio2(struct address_space *mapping, 594 struct folio *folio) 595 { 596 if (folio->mapping != mapping) 597 return 0; 598 599 if (folio_has_private(folio) && 600 !filemap_release_folio(folio, GFP_KERNEL)) 601 return 0; 602 603 spin_lock(&mapping->host->i_lock); 604 xa_lock_irq(&mapping->i_pages); 605 if (folio_test_dirty(folio)) 606 goto failed; 607 608 BUG_ON(folio_has_private(folio)); 609 __filemap_remove_folio(folio, NULL); 610 xa_unlock_irq(&mapping->i_pages); 611 if (mapping_shrinkable(mapping)) 612 inode_add_lru(mapping->host); 613 spin_unlock(&mapping->host->i_lock); 614 615 filemap_free_folio(mapping, folio); 616 return 1; 617 failed: 618 xa_unlock_irq(&mapping->i_pages); 619 spin_unlock(&mapping->host->i_lock); 620 return 0; 621 } 622 623 static int do_launder_folio(struct address_space *mapping, struct folio *folio) 624 { 625 if (!folio_test_dirty(folio)) 626 return 0; 627 if (folio->mapping != mapping || mapping->a_ops->launder_page == NULL) 628 return 0; 629 return mapping->a_ops->launder_page(&folio->page); 630 } 631 632 /** 633 * invalidate_inode_pages2_range - remove range of pages from an address_space 634 * @mapping: the address_space 635 * @start: the page offset 'from' which to invalidate 636 * @end: the page offset 'to' which to invalidate (inclusive) 637 * 638 * Any pages which are found to be mapped into pagetables are unmapped prior to 639 * invalidation. 640 * 641 * Return: -EBUSY if any pages could not be invalidated. 642 */ 643 int invalidate_inode_pages2_range(struct address_space *mapping, 644 pgoff_t start, pgoff_t end) 645 { 646 pgoff_t indices[PAGEVEC_SIZE]; 647 struct folio_batch fbatch; 648 pgoff_t index; 649 int i; 650 int ret = 0; 651 int ret2 = 0; 652 int did_range_unmap = 0; 653 654 if (mapping_empty(mapping)) 655 return 0; 656 657 folio_batch_init(&fbatch); 658 index = start; 659 while (find_get_entries(mapping, index, end, &fbatch, indices)) { 660 for (i = 0; i < folio_batch_count(&fbatch); i++) { 661 struct folio *folio = fbatch.folios[i]; 662 663 /* We rely upon deletion not changing folio->index */ 664 index = indices[i]; 665 666 if (xa_is_value(folio)) { 667 if (!invalidate_exceptional_entry2(mapping, 668 index, folio)) 669 ret = -EBUSY; 670 continue; 671 } 672 673 if (!did_range_unmap && folio_mapped(folio)) { 674 /* 675 * If folio is mapped, before taking its lock, 676 * zap the rest of the file in one hit. 677 */ 678 unmap_mapping_pages(mapping, index, 679 (1 + end - index), false); 680 did_range_unmap = 1; 681 } 682 683 folio_lock(folio); 684 VM_BUG_ON_FOLIO(!folio_contains(folio, index), folio); 685 if (folio->mapping != mapping) { 686 folio_unlock(folio); 687 continue; 688 } 689 folio_wait_writeback(folio); 690 691 if (folio_mapped(folio)) 692 unmap_mapping_folio(folio); 693 BUG_ON(folio_mapped(folio)); 694 695 ret2 = do_launder_folio(mapping, folio); 696 if (ret2 == 0) { 697 if (!invalidate_complete_folio2(mapping, folio)) 698 ret2 = -EBUSY; 699 } 700 if (ret2 < 0) 701 ret = ret2; 702 folio_unlock(folio); 703 } 704 folio_batch_remove_exceptionals(&fbatch); 705 folio_batch_release(&fbatch); 706 cond_resched(); 707 index++; 708 } 709 /* 710 * For DAX we invalidate page tables after invalidating page cache. We 711 * could invalidate page tables while invalidating each entry however 712 * that would be expensive. And doing range unmapping before doesn't 713 * work as we have no cheap way to find whether page cache entry didn't 714 * get remapped later. 715 */ 716 if (dax_mapping(mapping)) { 717 unmap_mapping_pages(mapping, start, end - start + 1, false); 718 } 719 return ret; 720 } 721 EXPORT_SYMBOL_GPL(invalidate_inode_pages2_range); 722 723 /** 724 * invalidate_inode_pages2 - remove all pages from an address_space 725 * @mapping: the address_space 726 * 727 * Any pages which are found to be mapped into pagetables are unmapped prior to 728 * invalidation. 729 * 730 * Return: -EBUSY if any pages could not be invalidated. 731 */ 732 int invalidate_inode_pages2(struct address_space *mapping) 733 { 734 return invalidate_inode_pages2_range(mapping, 0, -1); 735 } 736 EXPORT_SYMBOL_GPL(invalidate_inode_pages2); 737 738 /** 739 * truncate_pagecache - unmap and remove pagecache that has been truncated 740 * @inode: inode 741 * @newsize: new file size 742 * 743 * inode's new i_size must already be written before truncate_pagecache 744 * is called. 745 * 746 * This function should typically be called before the filesystem 747 * releases resources associated with the freed range (eg. deallocates 748 * blocks). This way, pagecache will always stay logically coherent 749 * with on-disk format, and the filesystem would not have to deal with 750 * situations such as writepage being called for a page that has already 751 * had its underlying blocks deallocated. 752 */ 753 void truncate_pagecache(struct inode *inode, loff_t newsize) 754 { 755 struct address_space *mapping = inode->i_mapping; 756 loff_t holebegin = round_up(newsize, PAGE_SIZE); 757 758 /* 759 * unmap_mapping_range is called twice, first simply for 760 * efficiency so that truncate_inode_pages does fewer 761 * single-page unmaps. However after this first call, and 762 * before truncate_inode_pages finishes, it is possible for 763 * private pages to be COWed, which remain after 764 * truncate_inode_pages finishes, hence the second 765 * unmap_mapping_range call must be made for correctness. 766 */ 767 unmap_mapping_range(mapping, holebegin, 0, 1); 768 truncate_inode_pages(mapping, newsize); 769 unmap_mapping_range(mapping, holebegin, 0, 1); 770 } 771 EXPORT_SYMBOL(truncate_pagecache); 772 773 /** 774 * truncate_setsize - update inode and pagecache for a new file size 775 * @inode: inode 776 * @newsize: new file size 777 * 778 * truncate_setsize updates i_size and performs pagecache truncation (if 779 * necessary) to @newsize. It will be typically be called from the filesystem's 780 * setattr function when ATTR_SIZE is passed in. 781 * 782 * Must be called with a lock serializing truncates and writes (generally 783 * i_rwsem but e.g. xfs uses a different lock) and before all filesystem 784 * specific block truncation has been performed. 785 */ 786 void truncate_setsize(struct inode *inode, loff_t newsize) 787 { 788 loff_t oldsize = inode->i_size; 789 790 i_size_write(inode, newsize); 791 if (newsize > oldsize) 792 pagecache_isize_extended(inode, oldsize, newsize); 793 truncate_pagecache(inode, newsize); 794 } 795 EXPORT_SYMBOL(truncate_setsize); 796 797 /** 798 * pagecache_isize_extended - update pagecache after extension of i_size 799 * @inode: inode for which i_size was extended 800 * @from: original inode size 801 * @to: new inode size 802 * 803 * Handle extension of inode size either caused by extending truncate or by 804 * write starting after current i_size. We mark the page straddling current 805 * i_size RO so that page_mkwrite() is called on the nearest write access to 806 * the page. This way filesystem can be sure that page_mkwrite() is called on 807 * the page before user writes to the page via mmap after the i_size has been 808 * changed. 809 * 810 * The function must be called after i_size is updated so that page fault 811 * coming after we unlock the page will already see the new i_size. 812 * The function must be called while we still hold i_rwsem - this not only 813 * makes sure i_size is stable but also that userspace cannot observe new 814 * i_size value before we are prepared to store mmap writes at new inode size. 815 */ 816 void pagecache_isize_extended(struct inode *inode, loff_t from, loff_t to) 817 { 818 int bsize = i_blocksize(inode); 819 loff_t rounded_from; 820 struct page *page; 821 pgoff_t index; 822 823 WARN_ON(to > inode->i_size); 824 825 if (from >= to || bsize == PAGE_SIZE) 826 return; 827 /* Page straddling @from will not have any hole block created? */ 828 rounded_from = round_up(from, bsize); 829 if (to <= rounded_from || !(rounded_from & (PAGE_SIZE - 1))) 830 return; 831 832 index = from >> PAGE_SHIFT; 833 page = find_lock_page(inode->i_mapping, index); 834 /* Page not cached? Nothing to do */ 835 if (!page) 836 return; 837 /* 838 * See clear_page_dirty_for_io() for details why set_page_dirty() 839 * is needed. 840 */ 841 if (page_mkclean(page)) 842 set_page_dirty(page); 843 unlock_page(page); 844 put_page(page); 845 } 846 EXPORT_SYMBOL(pagecache_isize_extended); 847 848 /** 849 * truncate_pagecache_range - unmap and remove pagecache that is hole-punched 850 * @inode: inode 851 * @lstart: offset of beginning of hole 852 * @lend: offset of last byte of hole 853 * 854 * This function should typically be called before the filesystem 855 * releases resources associated with the freed range (eg. deallocates 856 * blocks). This way, pagecache will always stay logically coherent 857 * with on-disk format, and the filesystem would not have to deal with 858 * situations such as writepage being called for a page that has already 859 * had its underlying blocks deallocated. 860 */ 861 void truncate_pagecache_range(struct inode *inode, loff_t lstart, loff_t lend) 862 { 863 struct address_space *mapping = inode->i_mapping; 864 loff_t unmap_start = round_up(lstart, PAGE_SIZE); 865 loff_t unmap_end = round_down(1 + lend, PAGE_SIZE) - 1; 866 /* 867 * This rounding is currently just for example: unmap_mapping_range 868 * expands its hole outwards, whereas we want it to contract the hole 869 * inwards. However, existing callers of truncate_pagecache_range are 870 * doing their own page rounding first. Note that unmap_mapping_range 871 * allows holelen 0 for all, and we allow lend -1 for end of file. 872 */ 873 874 /* 875 * Unlike in truncate_pagecache, unmap_mapping_range is called only 876 * once (before truncating pagecache), and without "even_cows" flag: 877 * hole-punching should not remove private COWed pages from the hole. 878 */ 879 if ((u64)unmap_end > (u64)unmap_start) 880 unmap_mapping_range(mapping, unmap_start, 881 1 + unmap_end - unmap_start, 0); 882 truncate_inode_pages_range(mapping, lstart, lend); 883 } 884 EXPORT_SYMBOL(truncate_pagecache_range); 885