xref: /openbmc/linux/mm/truncate.c (revision 221e8c12)
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  * mm/truncate.c - code for taking down pages from address_spaces
4  *
5  * Copyright (C) 2002, Linus Torvalds
6  *
7  * 10Sep2002	Andrew Morton
8  *		Initial version.
9  */
10 
11 #include <linux/kernel.h>
12 #include <linux/backing-dev.h>
13 #include <linux/dax.h>
14 #include <linux/gfp.h>
15 #include <linux/mm.h>
16 #include <linux/swap.h>
17 #include <linux/export.h>
18 #include <linux/pagemap.h>
19 #include <linux/highmem.h>
20 #include <linux/pagevec.h>
21 #include <linux/task_io_accounting_ops.h>
22 #include <linux/buffer_head.h>	/* grr. try_to_release_page,
23 				   do_invalidatepage */
24 #include <linux/shmem_fs.h>
25 #include <linux/cleancache.h>
26 #include <linux/rmap.h>
27 #include "internal.h"
28 
29 /*
30  * Regular page slots are stabilized by the page lock even without the tree
31  * itself locked.  These unlocked entries need verification under the tree
32  * lock.
33  */
34 static inline void __clear_shadow_entry(struct address_space *mapping,
35 				pgoff_t index, void *entry)
36 {
37 	XA_STATE(xas, &mapping->i_pages, index);
38 
39 	xas_set_update(&xas, workingset_update_node);
40 	if (xas_load(&xas) != entry)
41 		return;
42 	xas_store(&xas, NULL);
43 	mapping->nrexceptional--;
44 }
45 
46 static void clear_shadow_entry(struct address_space *mapping, pgoff_t index,
47 			       void *entry)
48 {
49 	xa_lock_irq(&mapping->i_pages);
50 	__clear_shadow_entry(mapping, index, entry);
51 	xa_unlock_irq(&mapping->i_pages);
52 }
53 
54 /*
55  * Unconditionally remove exceptional entries. Usually called from truncate
56  * path. Note that the pagevec may be altered by this function by removing
57  * exceptional entries similar to what pagevec_remove_exceptionals does.
58  */
59 static void truncate_exceptional_pvec_entries(struct address_space *mapping,
60 				struct pagevec *pvec, pgoff_t *indices)
61 {
62 	int i, j;
63 	bool dax;
64 
65 	/* Handled by shmem itself */
66 	if (shmem_mapping(mapping))
67 		return;
68 
69 	for (j = 0; j < pagevec_count(pvec); j++)
70 		if (xa_is_value(pvec->pages[j]))
71 			break;
72 
73 	if (j == pagevec_count(pvec))
74 		return;
75 
76 	dax = dax_mapping(mapping);
77 	if (!dax)
78 		xa_lock_irq(&mapping->i_pages);
79 
80 	for (i = j; i < pagevec_count(pvec); i++) {
81 		struct page *page = pvec->pages[i];
82 		pgoff_t index = indices[i];
83 
84 		if (!xa_is_value(page)) {
85 			pvec->pages[j++] = page;
86 			continue;
87 		}
88 
89 		if (unlikely(dax)) {
90 			dax_delete_mapping_entry(mapping, index);
91 			continue;
92 		}
93 
94 		__clear_shadow_entry(mapping, index, page);
95 	}
96 
97 	if (!dax)
98 		xa_unlock_irq(&mapping->i_pages);
99 	pvec->nr = j;
100 }
101 
102 /*
103  * Invalidate exceptional entry if easily possible. This handles exceptional
104  * entries for invalidate_inode_pages().
105  */
106 static int invalidate_exceptional_entry(struct address_space *mapping,
107 					pgoff_t index, void *entry)
108 {
109 	/* Handled by shmem itself, or for DAX we do nothing. */
110 	if (shmem_mapping(mapping) || dax_mapping(mapping))
111 		return 1;
112 	clear_shadow_entry(mapping, index, entry);
113 	return 1;
114 }
115 
116 /*
117  * Invalidate exceptional entry if clean. This handles exceptional entries for
118  * invalidate_inode_pages2() so for DAX it evicts only clean entries.
119  */
120 static int invalidate_exceptional_entry2(struct address_space *mapping,
121 					 pgoff_t index, void *entry)
122 {
123 	/* Handled by shmem itself */
124 	if (shmem_mapping(mapping))
125 		return 1;
126 	if (dax_mapping(mapping))
127 		return dax_invalidate_mapping_entry_sync(mapping, index);
128 	clear_shadow_entry(mapping, index, entry);
129 	return 1;
130 }
131 
132 /**
133  * do_invalidatepage - invalidate part or all of a page
134  * @page: the page which is affected
135  * @offset: start of the range to invalidate
136  * @length: length of the range to invalidate
137  *
138  * do_invalidatepage() is called when all or part of the page has become
139  * invalidated by a truncate operation.
140  *
141  * do_invalidatepage() does not have to release all buffers, but it must
142  * ensure that no dirty buffer is left outside @offset and that no I/O
143  * is underway against any of the blocks which are outside the truncation
144  * point.  Because the caller is about to free (and possibly reuse) those
145  * blocks on-disk.
146  */
147 void do_invalidatepage(struct page *page, unsigned int offset,
148 		       unsigned int length)
149 {
150 	void (*invalidatepage)(struct page *, unsigned int, unsigned int);
151 
152 	invalidatepage = page->mapping->a_ops->invalidatepage;
153 #ifdef CONFIG_BLOCK
154 	if (!invalidatepage)
155 		invalidatepage = block_invalidatepage;
156 #endif
157 	if (invalidatepage)
158 		(*invalidatepage)(page, offset, length);
159 }
160 
161 /*
162  * If truncate cannot remove the fs-private metadata from the page, the page
163  * becomes orphaned.  It will be left on the LRU and may even be mapped into
164  * user pagetables if we're racing with filemap_fault().
165  *
166  * We need to bail out if page->mapping is no longer equal to the original
167  * mapping.  This happens a) when the VM reclaimed the page while we waited on
168  * its lock, b) when a concurrent invalidate_mapping_pages got there first and
169  * c) when tmpfs swizzles a page between a tmpfs inode and swapper_space.
170  */
171 static void
172 truncate_cleanup_page(struct address_space *mapping, struct page *page)
173 {
174 	if (page_mapped(page)) {
175 		unsigned int nr = thp_nr_pages(page);
176 		unmap_mapping_pages(mapping, page->index, nr, false);
177 	}
178 
179 	if (page_has_private(page))
180 		do_invalidatepage(page, 0, thp_size(page));
181 
182 	/*
183 	 * Some filesystems seem to re-dirty the page even after
184 	 * the VM has canceled the dirty bit (eg ext3 journaling).
185 	 * Hence dirty accounting check is placed after invalidation.
186 	 */
187 	cancel_dirty_page(page);
188 	ClearPageMappedToDisk(page);
189 }
190 
191 /*
192  * This is for invalidate_mapping_pages().  That function can be called at
193  * any time, and is not supposed to throw away dirty pages.  But pages can
194  * be marked dirty at any time too, so use remove_mapping which safely
195  * discards clean, unused pages.
196  *
197  * Returns non-zero if the page was successfully invalidated.
198  */
199 static int
200 invalidate_complete_page(struct address_space *mapping, struct page *page)
201 {
202 	int ret;
203 
204 	if (page->mapping != mapping)
205 		return 0;
206 
207 	if (page_has_private(page) && !try_to_release_page(page, 0))
208 		return 0;
209 
210 	ret = remove_mapping(mapping, page);
211 
212 	return ret;
213 }
214 
215 int truncate_inode_page(struct address_space *mapping, struct page *page)
216 {
217 	VM_BUG_ON_PAGE(PageTail(page), page);
218 
219 	if (page->mapping != mapping)
220 		return -EIO;
221 
222 	truncate_cleanup_page(mapping, page);
223 	delete_from_page_cache(page);
224 	return 0;
225 }
226 
227 /*
228  * Used to get rid of pages on hardware memory corruption.
229  */
230 int generic_error_remove_page(struct address_space *mapping, struct page *page)
231 {
232 	if (!mapping)
233 		return -EINVAL;
234 	/*
235 	 * Only punch for normal data pages for now.
236 	 * Handling other types like directories would need more auditing.
237 	 */
238 	if (!S_ISREG(mapping->host->i_mode))
239 		return -EIO;
240 	return truncate_inode_page(mapping, page);
241 }
242 EXPORT_SYMBOL(generic_error_remove_page);
243 
244 /*
245  * Safely invalidate one page from its pagecache mapping.
246  * It only drops clean, unused pages. The page must be locked.
247  *
248  * Returns 1 if the page is successfully invalidated, otherwise 0.
249  */
250 int invalidate_inode_page(struct page *page)
251 {
252 	struct address_space *mapping = page_mapping(page);
253 	if (!mapping)
254 		return 0;
255 	if (PageDirty(page) || PageWriteback(page))
256 		return 0;
257 	if (page_mapped(page))
258 		return 0;
259 	return invalidate_complete_page(mapping, page);
260 }
261 
262 /**
263  * truncate_inode_pages_range - truncate range of pages specified by start & end byte offsets
264  * @mapping: mapping to truncate
265  * @lstart: offset from which to truncate
266  * @lend: offset to which to truncate (inclusive)
267  *
268  * Truncate the page cache, removing the pages that are between
269  * specified offsets (and zeroing out partial pages
270  * if lstart or lend + 1 is not page aligned).
271  *
272  * Truncate takes two passes - the first pass is nonblocking.  It will not
273  * block on page locks and it will not block on writeback.  The second pass
274  * will wait.  This is to prevent as much IO as possible in the affected region.
275  * The first pass will remove most pages, so the search cost of the second pass
276  * is low.
277  *
278  * We pass down the cache-hot hint to the page freeing code.  Even if the
279  * mapping is large, it is probably the case that the final pages are the most
280  * recently touched, and freeing happens in ascending file offset order.
281  *
282  * Note that since ->invalidatepage() accepts range to invalidate
283  * truncate_inode_pages_range is able to handle cases where lend + 1 is not
284  * page aligned properly.
285  */
286 void truncate_inode_pages_range(struct address_space *mapping,
287 				loff_t lstart, loff_t lend)
288 {
289 	pgoff_t		start;		/* inclusive */
290 	pgoff_t		end;		/* exclusive */
291 	unsigned int	partial_start;	/* inclusive */
292 	unsigned int	partial_end;	/* exclusive */
293 	struct pagevec	pvec;
294 	pgoff_t		indices[PAGEVEC_SIZE];
295 	pgoff_t		index;
296 	int		i;
297 
298 	if (mapping->nrpages == 0 && mapping->nrexceptional == 0)
299 		goto out;
300 
301 	/* Offsets within partial pages */
302 	partial_start = lstart & (PAGE_SIZE - 1);
303 	partial_end = (lend + 1) & (PAGE_SIZE - 1);
304 
305 	/*
306 	 * 'start' and 'end' always covers the range of pages to be fully
307 	 * truncated. Partial pages are covered with 'partial_start' at the
308 	 * start of the range and 'partial_end' at the end of the range.
309 	 * Note that 'end' is exclusive while 'lend' is inclusive.
310 	 */
311 	start = (lstart + PAGE_SIZE - 1) >> PAGE_SHIFT;
312 	if (lend == -1)
313 		/*
314 		 * lend == -1 indicates end-of-file so we have to set 'end'
315 		 * to the highest possible pgoff_t and since the type is
316 		 * unsigned we're using -1.
317 		 */
318 		end = -1;
319 	else
320 		end = (lend + 1) >> PAGE_SHIFT;
321 
322 	pagevec_init(&pvec);
323 	index = start;
324 	while (index < end && find_lock_entries(mapping, index, end - 1,
325 			&pvec, indices)) {
326 		index = indices[pagevec_count(&pvec) - 1] + 1;
327 		truncate_exceptional_pvec_entries(mapping, &pvec, indices);
328 		for (i = 0; i < pagevec_count(&pvec); i++)
329 			truncate_cleanup_page(mapping, pvec.pages[i]);
330 		delete_from_page_cache_batch(mapping, &pvec);
331 		for (i = 0; i < pagevec_count(&pvec); i++)
332 			unlock_page(pvec.pages[i]);
333 		pagevec_release(&pvec);
334 		cond_resched();
335 	}
336 
337 	if (partial_start) {
338 		struct page *page = find_lock_page(mapping, start - 1);
339 		if (page) {
340 			unsigned int top = PAGE_SIZE;
341 			if (start > end) {
342 				/* Truncation within a single page */
343 				top = partial_end;
344 				partial_end = 0;
345 			}
346 			wait_on_page_writeback(page);
347 			zero_user_segment(page, partial_start, top);
348 			cleancache_invalidate_page(mapping, page);
349 			if (page_has_private(page))
350 				do_invalidatepage(page, partial_start,
351 						  top - partial_start);
352 			unlock_page(page);
353 			put_page(page);
354 		}
355 	}
356 	if (partial_end) {
357 		struct page *page = find_lock_page(mapping, end);
358 		if (page) {
359 			wait_on_page_writeback(page);
360 			zero_user_segment(page, 0, partial_end);
361 			cleancache_invalidate_page(mapping, page);
362 			if (page_has_private(page))
363 				do_invalidatepage(page, 0,
364 						  partial_end);
365 			unlock_page(page);
366 			put_page(page);
367 		}
368 	}
369 	/*
370 	 * If the truncation happened within a single page no pages
371 	 * will be released, just zeroed, so we can bail out now.
372 	 */
373 	if (start >= end)
374 		goto out;
375 
376 	index = start;
377 	for ( ; ; ) {
378 		cond_resched();
379 		if (!find_get_entries(mapping, index, end - 1, &pvec,
380 				indices)) {
381 			/* If all gone from start onwards, we're done */
382 			if (index == start)
383 				break;
384 			/* Otherwise restart to make sure all gone */
385 			index = start;
386 			continue;
387 		}
388 
389 		for (i = 0; i < pagevec_count(&pvec); i++) {
390 			struct page *page = pvec.pages[i];
391 
392 			/* We rely upon deletion not changing page->index */
393 			index = indices[i];
394 
395 			if (xa_is_value(page))
396 				continue;
397 
398 			lock_page(page);
399 			WARN_ON(page_to_index(page) != index);
400 			wait_on_page_writeback(page);
401 			truncate_inode_page(mapping, page);
402 			unlock_page(page);
403 		}
404 		truncate_exceptional_pvec_entries(mapping, &pvec, indices);
405 		pagevec_release(&pvec);
406 		index++;
407 	}
408 
409 out:
410 	cleancache_invalidate_inode(mapping);
411 }
412 EXPORT_SYMBOL(truncate_inode_pages_range);
413 
414 /**
415  * truncate_inode_pages - truncate *all* the pages from an offset
416  * @mapping: mapping to truncate
417  * @lstart: offset from which to truncate
418  *
419  * Called under (and serialised by) inode->i_mutex.
420  *
421  * Note: When this function returns, there can be a page in the process of
422  * deletion (inside __delete_from_page_cache()) in the specified range.  Thus
423  * mapping->nrpages can be non-zero when this function returns even after
424  * truncation of the whole mapping.
425  */
426 void truncate_inode_pages(struct address_space *mapping, loff_t lstart)
427 {
428 	truncate_inode_pages_range(mapping, lstart, (loff_t)-1);
429 }
430 EXPORT_SYMBOL(truncate_inode_pages);
431 
432 /**
433  * truncate_inode_pages_final - truncate *all* pages before inode dies
434  * @mapping: mapping to truncate
435  *
436  * Called under (and serialized by) inode->i_mutex.
437  *
438  * Filesystems have to use this in the .evict_inode path to inform the
439  * VM that this is the final truncate and the inode is going away.
440  */
441 void truncate_inode_pages_final(struct address_space *mapping)
442 {
443 	unsigned long nrexceptional;
444 	unsigned long nrpages;
445 
446 	/*
447 	 * Page reclaim can not participate in regular inode lifetime
448 	 * management (can't call iput()) and thus can race with the
449 	 * inode teardown.  Tell it when the address space is exiting,
450 	 * so that it does not install eviction information after the
451 	 * final truncate has begun.
452 	 */
453 	mapping_set_exiting(mapping);
454 
455 	/*
456 	 * When reclaim installs eviction entries, it increases
457 	 * nrexceptional first, then decreases nrpages.  Make sure we see
458 	 * this in the right order or we might miss an entry.
459 	 */
460 	nrpages = mapping->nrpages;
461 	smp_rmb();
462 	nrexceptional = mapping->nrexceptional;
463 
464 	if (nrpages || nrexceptional) {
465 		/*
466 		 * As truncation uses a lockless tree lookup, cycle
467 		 * the tree lock to make sure any ongoing tree
468 		 * modification that does not see AS_EXITING is
469 		 * completed before starting the final truncate.
470 		 */
471 		xa_lock_irq(&mapping->i_pages);
472 		xa_unlock_irq(&mapping->i_pages);
473 	}
474 
475 	/*
476 	 * Cleancache needs notification even if there are no pages or shadow
477 	 * entries.
478 	 */
479 	truncate_inode_pages(mapping, 0);
480 }
481 EXPORT_SYMBOL(truncate_inode_pages_final);
482 
483 static unsigned long __invalidate_mapping_pages(struct address_space *mapping,
484 		pgoff_t start, pgoff_t end, unsigned long *nr_pagevec)
485 {
486 	pgoff_t indices[PAGEVEC_SIZE];
487 	struct pagevec pvec;
488 	pgoff_t index = start;
489 	unsigned long ret;
490 	unsigned long count = 0;
491 	int i;
492 
493 	pagevec_init(&pvec);
494 	while (find_lock_entries(mapping, index, end, &pvec, indices)) {
495 		for (i = 0; i < pagevec_count(&pvec); i++) {
496 			struct page *page = pvec.pages[i];
497 
498 			/* We rely upon deletion not changing page->index */
499 			index = indices[i];
500 
501 			if (xa_is_value(page)) {
502 				invalidate_exceptional_entry(mapping, index,
503 							     page);
504 				continue;
505 			}
506 			index += thp_nr_pages(page) - 1;
507 
508 			ret = invalidate_inode_page(page);
509 			unlock_page(page);
510 			/*
511 			 * Invalidation is a hint that the page is no longer
512 			 * of interest and try to speed up its reclaim.
513 			 */
514 			if (!ret) {
515 				deactivate_file_page(page);
516 				/* It is likely on the pagevec of a remote CPU */
517 				if (nr_pagevec)
518 					(*nr_pagevec)++;
519 			}
520 			count += ret;
521 		}
522 		pagevec_remove_exceptionals(&pvec);
523 		pagevec_release(&pvec);
524 		cond_resched();
525 		index++;
526 	}
527 	return count;
528 }
529 
530 /**
531  * invalidate_mapping_pages - Invalidate all the unlocked pages of one inode
532  * @mapping: the address_space which holds the pages to invalidate
533  * @start: the offset 'from' which to invalidate
534  * @end: the offset 'to' which to invalidate (inclusive)
535  *
536  * This function only removes the unlocked pages, if you want to
537  * remove all the pages of one inode, you must call truncate_inode_pages.
538  *
539  * invalidate_mapping_pages() will not block on IO activity. It will not
540  * invalidate pages which are dirty, locked, under writeback or mapped into
541  * pagetables.
542  *
543  * Return: the number of the pages that were invalidated
544  */
545 unsigned long invalidate_mapping_pages(struct address_space *mapping,
546 		pgoff_t start, pgoff_t end)
547 {
548 	return __invalidate_mapping_pages(mapping, start, end, NULL);
549 }
550 EXPORT_SYMBOL(invalidate_mapping_pages);
551 
552 /**
553  * invalidate_mapping_pagevec - Invalidate all the unlocked pages of one inode
554  * @mapping: the address_space which holds the pages to invalidate
555  * @start: the offset 'from' which to invalidate
556  * @end: the offset 'to' which to invalidate (inclusive)
557  * @nr_pagevec: invalidate failed page number for caller
558  *
559  * This helper is similar to invalidate_mapping_pages(), except that it accounts
560  * for pages that are likely on a pagevec and counts them in @nr_pagevec, which
561  * will be used by the caller.
562  */
563 void invalidate_mapping_pagevec(struct address_space *mapping,
564 		pgoff_t start, pgoff_t end, unsigned long *nr_pagevec)
565 {
566 	__invalidate_mapping_pages(mapping, start, end, nr_pagevec);
567 }
568 
569 /*
570  * This is like invalidate_complete_page(), except it ignores the page's
571  * refcount.  We do this because invalidate_inode_pages2() needs stronger
572  * invalidation guarantees, and cannot afford to leave pages behind because
573  * shrink_page_list() has a temp ref on them, or because they're transiently
574  * sitting in the lru_cache_add() pagevecs.
575  */
576 static int
577 invalidate_complete_page2(struct address_space *mapping, struct page *page)
578 {
579 	unsigned long flags;
580 
581 	if (page->mapping != mapping)
582 		return 0;
583 
584 	if (page_has_private(page) && !try_to_release_page(page, GFP_KERNEL))
585 		return 0;
586 
587 	xa_lock_irqsave(&mapping->i_pages, flags);
588 	if (PageDirty(page))
589 		goto failed;
590 
591 	BUG_ON(page_has_private(page));
592 	__delete_from_page_cache(page, NULL);
593 	xa_unlock_irqrestore(&mapping->i_pages, flags);
594 
595 	if (mapping->a_ops->freepage)
596 		mapping->a_ops->freepage(page);
597 
598 	put_page(page);	/* pagecache ref */
599 	return 1;
600 failed:
601 	xa_unlock_irqrestore(&mapping->i_pages, flags);
602 	return 0;
603 }
604 
605 static int do_launder_page(struct address_space *mapping, struct page *page)
606 {
607 	if (!PageDirty(page))
608 		return 0;
609 	if (page->mapping != mapping || mapping->a_ops->launder_page == NULL)
610 		return 0;
611 	return mapping->a_ops->launder_page(page);
612 }
613 
614 /**
615  * invalidate_inode_pages2_range - remove range of pages from an address_space
616  * @mapping: the address_space
617  * @start: the page offset 'from' which to invalidate
618  * @end: the page offset 'to' which to invalidate (inclusive)
619  *
620  * Any pages which are found to be mapped into pagetables are unmapped prior to
621  * invalidation.
622  *
623  * Return: -EBUSY if any pages could not be invalidated.
624  */
625 int invalidate_inode_pages2_range(struct address_space *mapping,
626 				  pgoff_t start, pgoff_t end)
627 {
628 	pgoff_t indices[PAGEVEC_SIZE];
629 	struct pagevec pvec;
630 	pgoff_t index;
631 	int i;
632 	int ret = 0;
633 	int ret2 = 0;
634 	int did_range_unmap = 0;
635 
636 	if (mapping->nrpages == 0 && mapping->nrexceptional == 0)
637 		goto out;
638 
639 	pagevec_init(&pvec);
640 	index = start;
641 	while (find_get_entries(mapping, index, end, &pvec, indices)) {
642 		for (i = 0; i < pagevec_count(&pvec); i++) {
643 			struct page *page = pvec.pages[i];
644 
645 			/* We rely upon deletion not changing page->index */
646 			index = indices[i];
647 
648 			if (xa_is_value(page)) {
649 				if (!invalidate_exceptional_entry2(mapping,
650 								   index, page))
651 					ret = -EBUSY;
652 				continue;
653 			}
654 
655 			lock_page(page);
656 			WARN_ON(page_to_index(page) != index);
657 			if (page->mapping != mapping) {
658 				unlock_page(page);
659 				continue;
660 			}
661 			wait_on_page_writeback(page);
662 			if (page_mapped(page)) {
663 				if (!did_range_unmap) {
664 					/*
665 					 * Zap the rest of the file in one hit.
666 					 */
667 					unmap_mapping_pages(mapping, index,
668 						(1 + end - index), false);
669 					did_range_unmap = 1;
670 				} else {
671 					/*
672 					 * Just zap this page
673 					 */
674 					unmap_mapping_pages(mapping, index,
675 								1, false);
676 				}
677 			}
678 			BUG_ON(page_mapped(page));
679 			ret2 = do_launder_page(mapping, page);
680 			if (ret2 == 0) {
681 				if (!invalidate_complete_page2(mapping, page))
682 					ret2 = -EBUSY;
683 			}
684 			if (ret2 < 0)
685 				ret = ret2;
686 			unlock_page(page);
687 		}
688 		pagevec_remove_exceptionals(&pvec);
689 		pagevec_release(&pvec);
690 		cond_resched();
691 		index++;
692 	}
693 	/*
694 	 * For DAX we invalidate page tables after invalidating page cache.  We
695 	 * could invalidate page tables while invalidating each entry however
696 	 * that would be expensive. And doing range unmapping before doesn't
697 	 * work as we have no cheap way to find whether page cache entry didn't
698 	 * get remapped later.
699 	 */
700 	if (dax_mapping(mapping)) {
701 		unmap_mapping_pages(mapping, start, end - start + 1, false);
702 	}
703 out:
704 	cleancache_invalidate_inode(mapping);
705 	return ret;
706 }
707 EXPORT_SYMBOL_GPL(invalidate_inode_pages2_range);
708 
709 /**
710  * invalidate_inode_pages2 - remove all pages from an address_space
711  * @mapping: the address_space
712  *
713  * Any pages which are found to be mapped into pagetables are unmapped prior to
714  * invalidation.
715  *
716  * Return: -EBUSY if any pages could not be invalidated.
717  */
718 int invalidate_inode_pages2(struct address_space *mapping)
719 {
720 	return invalidate_inode_pages2_range(mapping, 0, -1);
721 }
722 EXPORT_SYMBOL_GPL(invalidate_inode_pages2);
723 
724 /**
725  * truncate_pagecache - unmap and remove pagecache that has been truncated
726  * @inode: inode
727  * @newsize: new file size
728  *
729  * inode's new i_size must already be written before truncate_pagecache
730  * is called.
731  *
732  * This function should typically be called before the filesystem
733  * releases resources associated with the freed range (eg. deallocates
734  * blocks). This way, pagecache will always stay logically coherent
735  * with on-disk format, and the filesystem would not have to deal with
736  * situations such as writepage being called for a page that has already
737  * had its underlying blocks deallocated.
738  */
739 void truncate_pagecache(struct inode *inode, loff_t newsize)
740 {
741 	struct address_space *mapping = inode->i_mapping;
742 	loff_t holebegin = round_up(newsize, PAGE_SIZE);
743 
744 	/*
745 	 * unmap_mapping_range is called twice, first simply for
746 	 * efficiency so that truncate_inode_pages does fewer
747 	 * single-page unmaps.  However after this first call, and
748 	 * before truncate_inode_pages finishes, it is possible for
749 	 * private pages to be COWed, which remain after
750 	 * truncate_inode_pages finishes, hence the second
751 	 * unmap_mapping_range call must be made for correctness.
752 	 */
753 	unmap_mapping_range(mapping, holebegin, 0, 1);
754 	truncate_inode_pages(mapping, newsize);
755 	unmap_mapping_range(mapping, holebegin, 0, 1);
756 }
757 EXPORT_SYMBOL(truncate_pagecache);
758 
759 /**
760  * truncate_setsize - update inode and pagecache for a new file size
761  * @inode: inode
762  * @newsize: new file size
763  *
764  * truncate_setsize updates i_size and performs pagecache truncation (if
765  * necessary) to @newsize. It will be typically be called from the filesystem's
766  * setattr function when ATTR_SIZE is passed in.
767  *
768  * Must be called with a lock serializing truncates and writes (generally
769  * i_mutex but e.g. xfs uses a different lock) and before all filesystem
770  * specific block truncation has been performed.
771  */
772 void truncate_setsize(struct inode *inode, loff_t newsize)
773 {
774 	loff_t oldsize = inode->i_size;
775 
776 	i_size_write(inode, newsize);
777 	if (newsize > oldsize)
778 		pagecache_isize_extended(inode, oldsize, newsize);
779 	truncate_pagecache(inode, newsize);
780 }
781 EXPORT_SYMBOL(truncate_setsize);
782 
783 /**
784  * pagecache_isize_extended - update pagecache after extension of i_size
785  * @inode:	inode for which i_size was extended
786  * @from:	original inode size
787  * @to:		new inode size
788  *
789  * Handle extension of inode size either caused by extending truncate or by
790  * write starting after current i_size. We mark the page straddling current
791  * i_size RO so that page_mkwrite() is called on the nearest write access to
792  * the page.  This way filesystem can be sure that page_mkwrite() is called on
793  * the page before user writes to the page via mmap after the i_size has been
794  * changed.
795  *
796  * The function must be called after i_size is updated so that page fault
797  * coming after we unlock the page will already see the new i_size.
798  * The function must be called while we still hold i_mutex - this not only
799  * makes sure i_size is stable but also that userspace cannot observe new
800  * i_size value before we are prepared to store mmap writes at new inode size.
801  */
802 void pagecache_isize_extended(struct inode *inode, loff_t from, loff_t to)
803 {
804 	int bsize = i_blocksize(inode);
805 	loff_t rounded_from;
806 	struct page *page;
807 	pgoff_t index;
808 
809 	WARN_ON(to > inode->i_size);
810 
811 	if (from >= to || bsize == PAGE_SIZE)
812 		return;
813 	/* Page straddling @from will not have any hole block created? */
814 	rounded_from = round_up(from, bsize);
815 	if (to <= rounded_from || !(rounded_from & (PAGE_SIZE - 1)))
816 		return;
817 
818 	index = from >> PAGE_SHIFT;
819 	page = find_lock_page(inode->i_mapping, index);
820 	/* Page not cached? Nothing to do */
821 	if (!page)
822 		return;
823 	/*
824 	 * See clear_page_dirty_for_io() for details why set_page_dirty()
825 	 * is needed.
826 	 */
827 	if (page_mkclean(page))
828 		set_page_dirty(page);
829 	unlock_page(page);
830 	put_page(page);
831 }
832 EXPORT_SYMBOL(pagecache_isize_extended);
833 
834 /**
835  * truncate_pagecache_range - unmap and remove pagecache that is hole-punched
836  * @inode: inode
837  * @lstart: offset of beginning of hole
838  * @lend: offset of last byte of hole
839  *
840  * This function should typically be called before the filesystem
841  * releases resources associated with the freed range (eg. deallocates
842  * blocks). This way, pagecache will always stay logically coherent
843  * with on-disk format, and the filesystem would not have to deal with
844  * situations such as writepage being called for a page that has already
845  * had its underlying blocks deallocated.
846  */
847 void truncate_pagecache_range(struct inode *inode, loff_t lstart, loff_t lend)
848 {
849 	struct address_space *mapping = inode->i_mapping;
850 	loff_t unmap_start = round_up(lstart, PAGE_SIZE);
851 	loff_t unmap_end = round_down(1 + lend, PAGE_SIZE) - 1;
852 	/*
853 	 * This rounding is currently just for example: unmap_mapping_range
854 	 * expands its hole outwards, whereas we want it to contract the hole
855 	 * inwards.  However, existing callers of truncate_pagecache_range are
856 	 * doing their own page rounding first.  Note that unmap_mapping_range
857 	 * allows holelen 0 for all, and we allow lend -1 for end of file.
858 	 */
859 
860 	/*
861 	 * Unlike in truncate_pagecache, unmap_mapping_range is called only
862 	 * once (before truncating pagecache), and without "even_cows" flag:
863 	 * hole-punching should not remove private COWed pages from the hole.
864 	 */
865 	if ((u64)unmap_end > (u64)unmap_start)
866 		unmap_mapping_range(mapping, unmap_start,
867 				    1 + unmap_end - unmap_start, 0);
868 	truncate_inode_pages_range(mapping, lstart, lend);
869 }
870 EXPORT_SYMBOL(truncate_pagecache_range);
871