1 // SPDX-License-Identifier: GPL-2.0-only 2 /* 3 * mm/truncate.c - code for taking down pages from address_spaces 4 * 5 * Copyright (C) 2002, Linus Torvalds 6 * 7 * 10Sep2002 Andrew Morton 8 * Initial version. 9 */ 10 11 #include <linux/kernel.h> 12 #include <linux/backing-dev.h> 13 #include <linux/dax.h> 14 #include <linux/gfp.h> 15 #include <linux/mm.h> 16 #include <linux/swap.h> 17 #include <linux/export.h> 18 #include <linux/pagemap.h> 19 #include <linux/highmem.h> 20 #include <linux/pagevec.h> 21 #include <linux/task_io_accounting_ops.h> 22 #include <linux/buffer_head.h> /* grr. try_to_release_page, 23 do_invalidatepage */ 24 #include <linux/shmem_fs.h> 25 #include <linux/cleancache.h> 26 #include <linux/rmap.h> 27 #include "internal.h" 28 29 /* 30 * Regular page slots are stabilized by the page lock even without the tree 31 * itself locked. These unlocked entries need verification under the tree 32 * lock. 33 */ 34 static inline void __clear_shadow_entry(struct address_space *mapping, 35 pgoff_t index, void *entry) 36 { 37 XA_STATE(xas, &mapping->i_pages, index); 38 39 xas_set_update(&xas, workingset_update_node); 40 if (xas_load(&xas) != entry) 41 return; 42 xas_store(&xas, NULL); 43 } 44 45 static void clear_shadow_entry(struct address_space *mapping, pgoff_t index, 46 void *entry) 47 { 48 spin_lock(&mapping->host->i_lock); 49 xa_lock_irq(&mapping->i_pages); 50 __clear_shadow_entry(mapping, index, entry); 51 xa_unlock_irq(&mapping->i_pages); 52 if (mapping_shrinkable(mapping)) 53 inode_add_lru(mapping->host); 54 spin_unlock(&mapping->host->i_lock); 55 } 56 57 /* 58 * Unconditionally remove exceptional entries. Usually called from truncate 59 * path. Note that the pagevec may be altered by this function by removing 60 * exceptional entries similar to what pagevec_remove_exceptionals does. 61 */ 62 static void truncate_exceptional_pvec_entries(struct address_space *mapping, 63 struct pagevec *pvec, pgoff_t *indices) 64 { 65 int i, j; 66 bool dax; 67 68 /* Handled by shmem itself */ 69 if (shmem_mapping(mapping)) 70 return; 71 72 for (j = 0; j < pagevec_count(pvec); j++) 73 if (xa_is_value(pvec->pages[j])) 74 break; 75 76 if (j == pagevec_count(pvec)) 77 return; 78 79 dax = dax_mapping(mapping); 80 if (!dax) { 81 spin_lock(&mapping->host->i_lock); 82 xa_lock_irq(&mapping->i_pages); 83 } 84 85 for (i = j; i < pagevec_count(pvec); i++) { 86 struct page *page = pvec->pages[i]; 87 pgoff_t index = indices[i]; 88 89 if (!xa_is_value(page)) { 90 pvec->pages[j++] = page; 91 continue; 92 } 93 94 if (unlikely(dax)) { 95 dax_delete_mapping_entry(mapping, index); 96 continue; 97 } 98 99 __clear_shadow_entry(mapping, index, page); 100 } 101 102 if (!dax) { 103 xa_unlock_irq(&mapping->i_pages); 104 if (mapping_shrinkable(mapping)) 105 inode_add_lru(mapping->host); 106 spin_unlock(&mapping->host->i_lock); 107 } 108 pvec->nr = j; 109 } 110 111 /* 112 * Invalidate exceptional entry if easily possible. This handles exceptional 113 * entries for invalidate_inode_pages(). 114 */ 115 static int invalidate_exceptional_entry(struct address_space *mapping, 116 pgoff_t index, void *entry) 117 { 118 /* Handled by shmem itself, or for DAX we do nothing. */ 119 if (shmem_mapping(mapping) || dax_mapping(mapping)) 120 return 1; 121 clear_shadow_entry(mapping, index, entry); 122 return 1; 123 } 124 125 /* 126 * Invalidate exceptional entry if clean. This handles exceptional entries for 127 * invalidate_inode_pages2() so for DAX it evicts only clean entries. 128 */ 129 static int invalidate_exceptional_entry2(struct address_space *mapping, 130 pgoff_t index, void *entry) 131 { 132 /* Handled by shmem itself */ 133 if (shmem_mapping(mapping)) 134 return 1; 135 if (dax_mapping(mapping)) 136 return dax_invalidate_mapping_entry_sync(mapping, index); 137 clear_shadow_entry(mapping, index, entry); 138 return 1; 139 } 140 141 /** 142 * do_invalidatepage - invalidate part or all of a page 143 * @page: the page which is affected 144 * @offset: start of the range to invalidate 145 * @length: length of the range to invalidate 146 * 147 * do_invalidatepage() is called when all or part of the page has become 148 * invalidated by a truncate operation. 149 * 150 * do_invalidatepage() does not have to release all buffers, but it must 151 * ensure that no dirty buffer is left outside @offset and that no I/O 152 * is underway against any of the blocks which are outside the truncation 153 * point. Because the caller is about to free (and possibly reuse) those 154 * blocks on-disk. 155 */ 156 void do_invalidatepage(struct page *page, unsigned int offset, 157 unsigned int length) 158 { 159 void (*invalidatepage)(struct page *, unsigned int, unsigned int); 160 161 invalidatepage = page->mapping->a_ops->invalidatepage; 162 #ifdef CONFIG_BLOCK 163 if (!invalidatepage) 164 invalidatepage = block_invalidatepage; 165 #endif 166 if (invalidatepage) 167 (*invalidatepage)(page, offset, length); 168 } 169 170 /* 171 * If truncate cannot remove the fs-private metadata from the page, the page 172 * becomes orphaned. It will be left on the LRU and may even be mapped into 173 * user pagetables if we're racing with filemap_fault(). 174 * 175 * We need to bail out if page->mapping is no longer equal to the original 176 * mapping. This happens a) when the VM reclaimed the page while we waited on 177 * its lock, b) when a concurrent invalidate_mapping_pages got there first and 178 * c) when tmpfs swizzles a page between a tmpfs inode and swapper_space. 179 */ 180 static void truncate_cleanup_page(struct page *page) 181 { 182 if (page_mapped(page)) 183 unmap_mapping_page(page); 184 185 if (page_has_private(page)) 186 do_invalidatepage(page, 0, thp_size(page)); 187 188 /* 189 * Some filesystems seem to re-dirty the page even after 190 * the VM has canceled the dirty bit (eg ext3 journaling). 191 * Hence dirty accounting check is placed after invalidation. 192 */ 193 cancel_dirty_page(page); 194 ClearPageMappedToDisk(page); 195 } 196 197 /* 198 * This is for invalidate_mapping_pages(). That function can be called at 199 * any time, and is not supposed to throw away dirty pages. But pages can 200 * be marked dirty at any time too, so use remove_mapping which safely 201 * discards clean, unused pages. 202 * 203 * Returns non-zero if the page was successfully invalidated. 204 */ 205 static int 206 invalidate_complete_page(struct address_space *mapping, struct page *page) 207 { 208 int ret; 209 210 if (page->mapping != mapping) 211 return 0; 212 213 if (page_has_private(page) && !try_to_release_page(page, 0)) 214 return 0; 215 216 ret = remove_mapping(mapping, page); 217 218 return ret; 219 } 220 221 int truncate_inode_page(struct address_space *mapping, struct page *page) 222 { 223 VM_BUG_ON_PAGE(PageTail(page), page); 224 225 if (page->mapping != mapping) 226 return -EIO; 227 228 truncate_cleanup_page(page); 229 delete_from_page_cache(page); 230 return 0; 231 } 232 233 /* 234 * Used to get rid of pages on hardware memory corruption. 235 */ 236 int generic_error_remove_page(struct address_space *mapping, struct page *page) 237 { 238 if (!mapping) 239 return -EINVAL; 240 /* 241 * Only punch for normal data pages for now. 242 * Handling other types like directories would need more auditing. 243 */ 244 if (!S_ISREG(mapping->host->i_mode)) 245 return -EIO; 246 return truncate_inode_page(mapping, page); 247 } 248 EXPORT_SYMBOL(generic_error_remove_page); 249 250 /* 251 * Safely invalidate one page from its pagecache mapping. 252 * It only drops clean, unused pages. The page must be locked. 253 * 254 * Returns 1 if the page is successfully invalidated, otherwise 0. 255 */ 256 int invalidate_inode_page(struct page *page) 257 { 258 struct address_space *mapping = page_mapping(page); 259 if (!mapping) 260 return 0; 261 if (PageDirty(page) || PageWriteback(page)) 262 return 0; 263 if (page_mapped(page)) 264 return 0; 265 return invalidate_complete_page(mapping, page); 266 } 267 268 /** 269 * truncate_inode_pages_range - truncate range of pages specified by start & end byte offsets 270 * @mapping: mapping to truncate 271 * @lstart: offset from which to truncate 272 * @lend: offset to which to truncate (inclusive) 273 * 274 * Truncate the page cache, removing the pages that are between 275 * specified offsets (and zeroing out partial pages 276 * if lstart or lend + 1 is not page aligned). 277 * 278 * Truncate takes two passes - the first pass is nonblocking. It will not 279 * block on page locks and it will not block on writeback. The second pass 280 * will wait. This is to prevent as much IO as possible in the affected region. 281 * The first pass will remove most pages, so the search cost of the second pass 282 * is low. 283 * 284 * We pass down the cache-hot hint to the page freeing code. Even if the 285 * mapping is large, it is probably the case that the final pages are the most 286 * recently touched, and freeing happens in ascending file offset order. 287 * 288 * Note that since ->invalidatepage() accepts range to invalidate 289 * truncate_inode_pages_range is able to handle cases where lend + 1 is not 290 * page aligned properly. 291 */ 292 void truncate_inode_pages_range(struct address_space *mapping, 293 loff_t lstart, loff_t lend) 294 { 295 pgoff_t start; /* inclusive */ 296 pgoff_t end; /* exclusive */ 297 unsigned int partial_start; /* inclusive */ 298 unsigned int partial_end; /* exclusive */ 299 struct pagevec pvec; 300 pgoff_t indices[PAGEVEC_SIZE]; 301 pgoff_t index; 302 int i; 303 304 if (mapping_empty(mapping)) 305 goto out; 306 307 /* Offsets within partial pages */ 308 partial_start = lstart & (PAGE_SIZE - 1); 309 partial_end = (lend + 1) & (PAGE_SIZE - 1); 310 311 /* 312 * 'start' and 'end' always covers the range of pages to be fully 313 * truncated. Partial pages are covered with 'partial_start' at the 314 * start of the range and 'partial_end' at the end of the range. 315 * Note that 'end' is exclusive while 'lend' is inclusive. 316 */ 317 start = (lstart + PAGE_SIZE - 1) >> PAGE_SHIFT; 318 if (lend == -1) 319 /* 320 * lend == -1 indicates end-of-file so we have to set 'end' 321 * to the highest possible pgoff_t and since the type is 322 * unsigned we're using -1. 323 */ 324 end = -1; 325 else 326 end = (lend + 1) >> PAGE_SHIFT; 327 328 pagevec_init(&pvec); 329 index = start; 330 while (index < end && find_lock_entries(mapping, index, end - 1, 331 &pvec, indices)) { 332 index = indices[pagevec_count(&pvec) - 1] + 1; 333 truncate_exceptional_pvec_entries(mapping, &pvec, indices); 334 for (i = 0; i < pagevec_count(&pvec); i++) 335 truncate_cleanup_page(pvec.pages[i]); 336 delete_from_page_cache_batch(mapping, &pvec); 337 for (i = 0; i < pagevec_count(&pvec); i++) 338 unlock_page(pvec.pages[i]); 339 pagevec_release(&pvec); 340 cond_resched(); 341 } 342 343 if (partial_start) { 344 struct page *page = find_lock_page(mapping, start - 1); 345 if (page) { 346 unsigned int top = PAGE_SIZE; 347 if (start > end) { 348 /* Truncation within a single page */ 349 top = partial_end; 350 partial_end = 0; 351 } 352 wait_on_page_writeback(page); 353 zero_user_segment(page, partial_start, top); 354 cleancache_invalidate_page(mapping, page); 355 if (page_has_private(page)) 356 do_invalidatepage(page, partial_start, 357 top - partial_start); 358 unlock_page(page); 359 put_page(page); 360 } 361 } 362 if (partial_end) { 363 struct page *page = find_lock_page(mapping, end); 364 if (page) { 365 wait_on_page_writeback(page); 366 zero_user_segment(page, 0, partial_end); 367 cleancache_invalidate_page(mapping, page); 368 if (page_has_private(page)) 369 do_invalidatepage(page, 0, 370 partial_end); 371 unlock_page(page); 372 put_page(page); 373 } 374 } 375 /* 376 * If the truncation happened within a single page no pages 377 * will be released, just zeroed, so we can bail out now. 378 */ 379 if (start >= end) 380 goto out; 381 382 index = start; 383 for ( ; ; ) { 384 cond_resched(); 385 if (!find_get_entries(mapping, index, end - 1, &pvec, 386 indices)) { 387 /* If all gone from start onwards, we're done */ 388 if (index == start) 389 break; 390 /* Otherwise restart to make sure all gone */ 391 index = start; 392 continue; 393 } 394 395 for (i = 0; i < pagevec_count(&pvec); i++) { 396 struct page *page = pvec.pages[i]; 397 398 /* We rely upon deletion not changing page->index */ 399 index = indices[i]; 400 401 if (xa_is_value(page)) 402 continue; 403 404 lock_page(page); 405 WARN_ON(page_to_index(page) != index); 406 wait_on_page_writeback(page); 407 truncate_inode_page(mapping, page); 408 unlock_page(page); 409 } 410 truncate_exceptional_pvec_entries(mapping, &pvec, indices); 411 pagevec_release(&pvec); 412 index++; 413 } 414 415 out: 416 cleancache_invalidate_inode(mapping); 417 } 418 EXPORT_SYMBOL(truncate_inode_pages_range); 419 420 /** 421 * truncate_inode_pages - truncate *all* the pages from an offset 422 * @mapping: mapping to truncate 423 * @lstart: offset from which to truncate 424 * 425 * Called under (and serialised by) inode->i_rwsem and 426 * mapping->invalidate_lock. 427 * 428 * Note: When this function returns, there can be a page in the process of 429 * deletion (inside __delete_from_page_cache()) in the specified range. Thus 430 * mapping->nrpages can be non-zero when this function returns even after 431 * truncation of the whole mapping. 432 */ 433 void truncate_inode_pages(struct address_space *mapping, loff_t lstart) 434 { 435 truncate_inode_pages_range(mapping, lstart, (loff_t)-1); 436 } 437 EXPORT_SYMBOL(truncate_inode_pages); 438 439 /** 440 * truncate_inode_pages_final - truncate *all* pages before inode dies 441 * @mapping: mapping to truncate 442 * 443 * Called under (and serialized by) inode->i_rwsem. 444 * 445 * Filesystems have to use this in the .evict_inode path to inform the 446 * VM that this is the final truncate and the inode is going away. 447 */ 448 void truncate_inode_pages_final(struct address_space *mapping) 449 { 450 /* 451 * Page reclaim can not participate in regular inode lifetime 452 * management (can't call iput()) and thus can race with the 453 * inode teardown. Tell it when the address space is exiting, 454 * so that it does not install eviction information after the 455 * final truncate has begun. 456 */ 457 mapping_set_exiting(mapping); 458 459 if (!mapping_empty(mapping)) { 460 /* 461 * As truncation uses a lockless tree lookup, cycle 462 * the tree lock to make sure any ongoing tree 463 * modification that does not see AS_EXITING is 464 * completed before starting the final truncate. 465 */ 466 xa_lock_irq(&mapping->i_pages); 467 xa_unlock_irq(&mapping->i_pages); 468 } 469 470 /* 471 * Cleancache needs notification even if there are no pages or shadow 472 * entries. 473 */ 474 truncate_inode_pages(mapping, 0); 475 } 476 EXPORT_SYMBOL(truncate_inode_pages_final); 477 478 static unsigned long __invalidate_mapping_pages(struct address_space *mapping, 479 pgoff_t start, pgoff_t end, unsigned long *nr_pagevec) 480 { 481 pgoff_t indices[PAGEVEC_SIZE]; 482 struct pagevec pvec; 483 pgoff_t index = start; 484 unsigned long ret; 485 unsigned long count = 0; 486 int i; 487 488 pagevec_init(&pvec); 489 while (find_lock_entries(mapping, index, end, &pvec, indices)) { 490 for (i = 0; i < pagevec_count(&pvec); i++) { 491 struct page *page = pvec.pages[i]; 492 493 /* We rely upon deletion not changing page->index */ 494 index = indices[i]; 495 496 if (xa_is_value(page)) { 497 count += invalidate_exceptional_entry(mapping, 498 index, 499 page); 500 continue; 501 } 502 index += thp_nr_pages(page) - 1; 503 504 ret = invalidate_inode_page(page); 505 unlock_page(page); 506 /* 507 * Invalidation is a hint that the page is no longer 508 * of interest and try to speed up its reclaim. 509 */ 510 if (!ret) { 511 deactivate_file_page(page); 512 /* It is likely on the pagevec of a remote CPU */ 513 if (nr_pagevec) 514 (*nr_pagevec)++; 515 } 516 count += ret; 517 } 518 pagevec_remove_exceptionals(&pvec); 519 pagevec_release(&pvec); 520 cond_resched(); 521 index++; 522 } 523 return count; 524 } 525 526 /** 527 * invalidate_mapping_pages - Invalidate all clean, unlocked cache of one inode 528 * @mapping: the address_space which holds the cache to invalidate 529 * @start: the offset 'from' which to invalidate 530 * @end: the offset 'to' which to invalidate (inclusive) 531 * 532 * This function removes pages that are clean, unmapped and unlocked, 533 * as well as shadow entries. It will not block on IO activity. 534 * 535 * If you want to remove all the pages of one inode, regardless of 536 * their use and writeback state, use truncate_inode_pages(). 537 * 538 * Return: the number of the cache entries that were invalidated 539 */ 540 unsigned long invalidate_mapping_pages(struct address_space *mapping, 541 pgoff_t start, pgoff_t end) 542 { 543 return __invalidate_mapping_pages(mapping, start, end, NULL); 544 } 545 EXPORT_SYMBOL(invalidate_mapping_pages); 546 547 /** 548 * invalidate_mapping_pagevec - Invalidate all the unlocked pages of one inode 549 * @mapping: the address_space which holds the pages to invalidate 550 * @start: the offset 'from' which to invalidate 551 * @end: the offset 'to' which to invalidate (inclusive) 552 * @nr_pagevec: invalidate failed page number for caller 553 * 554 * This helper is similar to invalidate_mapping_pages(), except that it accounts 555 * for pages that are likely on a pagevec and counts them in @nr_pagevec, which 556 * will be used by the caller. 557 */ 558 void invalidate_mapping_pagevec(struct address_space *mapping, 559 pgoff_t start, pgoff_t end, unsigned long *nr_pagevec) 560 { 561 __invalidate_mapping_pages(mapping, start, end, nr_pagevec); 562 } 563 564 /* 565 * This is like invalidate_complete_page(), except it ignores the page's 566 * refcount. We do this because invalidate_inode_pages2() needs stronger 567 * invalidation guarantees, and cannot afford to leave pages behind because 568 * shrink_page_list() has a temp ref on them, or because they're transiently 569 * sitting in the lru_cache_add() pagevecs. 570 */ 571 static int 572 invalidate_complete_page2(struct address_space *mapping, struct page *page) 573 { 574 if (page->mapping != mapping) 575 return 0; 576 577 if (page_has_private(page) && !try_to_release_page(page, GFP_KERNEL)) 578 return 0; 579 580 spin_lock(&mapping->host->i_lock); 581 xa_lock_irq(&mapping->i_pages); 582 if (PageDirty(page)) 583 goto failed; 584 585 BUG_ON(page_has_private(page)); 586 __delete_from_page_cache(page, NULL); 587 xa_unlock_irq(&mapping->i_pages); 588 if (mapping_shrinkable(mapping)) 589 inode_add_lru(mapping->host); 590 spin_unlock(&mapping->host->i_lock); 591 592 if (mapping->a_ops->freepage) 593 mapping->a_ops->freepage(page); 594 595 put_page(page); /* pagecache ref */ 596 return 1; 597 failed: 598 xa_unlock_irq(&mapping->i_pages); 599 spin_unlock(&mapping->host->i_lock); 600 return 0; 601 } 602 603 static int do_launder_page(struct address_space *mapping, struct page *page) 604 { 605 if (!PageDirty(page)) 606 return 0; 607 if (page->mapping != mapping || mapping->a_ops->launder_page == NULL) 608 return 0; 609 return mapping->a_ops->launder_page(page); 610 } 611 612 /** 613 * invalidate_inode_pages2_range - remove range of pages from an address_space 614 * @mapping: the address_space 615 * @start: the page offset 'from' which to invalidate 616 * @end: the page offset 'to' which to invalidate (inclusive) 617 * 618 * Any pages which are found to be mapped into pagetables are unmapped prior to 619 * invalidation. 620 * 621 * Return: -EBUSY if any pages could not be invalidated. 622 */ 623 int invalidate_inode_pages2_range(struct address_space *mapping, 624 pgoff_t start, pgoff_t end) 625 { 626 pgoff_t indices[PAGEVEC_SIZE]; 627 struct pagevec pvec; 628 pgoff_t index; 629 int i; 630 int ret = 0; 631 int ret2 = 0; 632 int did_range_unmap = 0; 633 634 if (mapping_empty(mapping)) 635 goto out; 636 637 pagevec_init(&pvec); 638 index = start; 639 while (find_get_entries(mapping, index, end, &pvec, indices)) { 640 for (i = 0; i < pagevec_count(&pvec); i++) { 641 struct page *page = pvec.pages[i]; 642 643 /* We rely upon deletion not changing page->index */ 644 index = indices[i]; 645 646 if (xa_is_value(page)) { 647 if (!invalidate_exceptional_entry2(mapping, 648 index, page)) 649 ret = -EBUSY; 650 continue; 651 } 652 653 if (!did_range_unmap && page_mapped(page)) { 654 /* 655 * If page is mapped, before taking its lock, 656 * zap the rest of the file in one hit. 657 */ 658 unmap_mapping_pages(mapping, index, 659 (1 + end - index), false); 660 did_range_unmap = 1; 661 } 662 663 lock_page(page); 664 WARN_ON(page_to_index(page) != index); 665 if (page->mapping != mapping) { 666 unlock_page(page); 667 continue; 668 } 669 wait_on_page_writeback(page); 670 671 if (page_mapped(page)) 672 unmap_mapping_page(page); 673 BUG_ON(page_mapped(page)); 674 675 ret2 = do_launder_page(mapping, page); 676 if (ret2 == 0) { 677 if (!invalidate_complete_page2(mapping, page)) 678 ret2 = -EBUSY; 679 } 680 if (ret2 < 0) 681 ret = ret2; 682 unlock_page(page); 683 } 684 pagevec_remove_exceptionals(&pvec); 685 pagevec_release(&pvec); 686 cond_resched(); 687 index++; 688 } 689 /* 690 * For DAX we invalidate page tables after invalidating page cache. We 691 * could invalidate page tables while invalidating each entry however 692 * that would be expensive. And doing range unmapping before doesn't 693 * work as we have no cheap way to find whether page cache entry didn't 694 * get remapped later. 695 */ 696 if (dax_mapping(mapping)) { 697 unmap_mapping_pages(mapping, start, end - start + 1, false); 698 } 699 out: 700 cleancache_invalidate_inode(mapping); 701 return ret; 702 } 703 EXPORT_SYMBOL_GPL(invalidate_inode_pages2_range); 704 705 /** 706 * invalidate_inode_pages2 - remove all pages from an address_space 707 * @mapping: the address_space 708 * 709 * Any pages which are found to be mapped into pagetables are unmapped prior to 710 * invalidation. 711 * 712 * Return: -EBUSY if any pages could not be invalidated. 713 */ 714 int invalidate_inode_pages2(struct address_space *mapping) 715 { 716 return invalidate_inode_pages2_range(mapping, 0, -1); 717 } 718 EXPORT_SYMBOL_GPL(invalidate_inode_pages2); 719 720 /** 721 * truncate_pagecache - unmap and remove pagecache that has been truncated 722 * @inode: inode 723 * @newsize: new file size 724 * 725 * inode's new i_size must already be written before truncate_pagecache 726 * is called. 727 * 728 * This function should typically be called before the filesystem 729 * releases resources associated with the freed range (eg. deallocates 730 * blocks). This way, pagecache will always stay logically coherent 731 * with on-disk format, and the filesystem would not have to deal with 732 * situations such as writepage being called for a page that has already 733 * had its underlying blocks deallocated. 734 */ 735 void truncate_pagecache(struct inode *inode, loff_t newsize) 736 { 737 struct address_space *mapping = inode->i_mapping; 738 loff_t holebegin = round_up(newsize, PAGE_SIZE); 739 740 /* 741 * unmap_mapping_range is called twice, first simply for 742 * efficiency so that truncate_inode_pages does fewer 743 * single-page unmaps. However after this first call, and 744 * before truncate_inode_pages finishes, it is possible for 745 * private pages to be COWed, which remain after 746 * truncate_inode_pages finishes, hence the second 747 * unmap_mapping_range call must be made for correctness. 748 */ 749 unmap_mapping_range(mapping, holebegin, 0, 1); 750 truncate_inode_pages(mapping, newsize); 751 unmap_mapping_range(mapping, holebegin, 0, 1); 752 } 753 EXPORT_SYMBOL(truncate_pagecache); 754 755 /** 756 * truncate_setsize - update inode and pagecache for a new file size 757 * @inode: inode 758 * @newsize: new file size 759 * 760 * truncate_setsize updates i_size and performs pagecache truncation (if 761 * necessary) to @newsize. It will be typically be called from the filesystem's 762 * setattr function when ATTR_SIZE is passed in. 763 * 764 * Must be called with a lock serializing truncates and writes (generally 765 * i_rwsem but e.g. xfs uses a different lock) and before all filesystem 766 * specific block truncation has been performed. 767 */ 768 void truncate_setsize(struct inode *inode, loff_t newsize) 769 { 770 loff_t oldsize = inode->i_size; 771 772 i_size_write(inode, newsize); 773 if (newsize > oldsize) 774 pagecache_isize_extended(inode, oldsize, newsize); 775 truncate_pagecache(inode, newsize); 776 } 777 EXPORT_SYMBOL(truncate_setsize); 778 779 /** 780 * pagecache_isize_extended - update pagecache after extension of i_size 781 * @inode: inode for which i_size was extended 782 * @from: original inode size 783 * @to: new inode size 784 * 785 * Handle extension of inode size either caused by extending truncate or by 786 * write starting after current i_size. We mark the page straddling current 787 * i_size RO so that page_mkwrite() is called on the nearest write access to 788 * the page. This way filesystem can be sure that page_mkwrite() is called on 789 * the page before user writes to the page via mmap after the i_size has been 790 * changed. 791 * 792 * The function must be called after i_size is updated so that page fault 793 * coming after we unlock the page will already see the new i_size. 794 * The function must be called while we still hold i_rwsem - this not only 795 * makes sure i_size is stable but also that userspace cannot observe new 796 * i_size value before we are prepared to store mmap writes at new inode size. 797 */ 798 void pagecache_isize_extended(struct inode *inode, loff_t from, loff_t to) 799 { 800 int bsize = i_blocksize(inode); 801 loff_t rounded_from; 802 struct page *page; 803 pgoff_t index; 804 805 WARN_ON(to > inode->i_size); 806 807 if (from >= to || bsize == PAGE_SIZE) 808 return; 809 /* Page straddling @from will not have any hole block created? */ 810 rounded_from = round_up(from, bsize); 811 if (to <= rounded_from || !(rounded_from & (PAGE_SIZE - 1))) 812 return; 813 814 index = from >> PAGE_SHIFT; 815 page = find_lock_page(inode->i_mapping, index); 816 /* Page not cached? Nothing to do */ 817 if (!page) 818 return; 819 /* 820 * See clear_page_dirty_for_io() for details why set_page_dirty() 821 * is needed. 822 */ 823 if (page_mkclean(page)) 824 set_page_dirty(page); 825 unlock_page(page); 826 put_page(page); 827 } 828 EXPORT_SYMBOL(pagecache_isize_extended); 829 830 /** 831 * truncate_pagecache_range - unmap and remove pagecache that is hole-punched 832 * @inode: inode 833 * @lstart: offset of beginning of hole 834 * @lend: offset of last byte of hole 835 * 836 * This function should typically be called before the filesystem 837 * releases resources associated with the freed range (eg. deallocates 838 * blocks). This way, pagecache will always stay logically coherent 839 * with on-disk format, and the filesystem would not have to deal with 840 * situations such as writepage being called for a page that has already 841 * had its underlying blocks deallocated. 842 */ 843 void truncate_pagecache_range(struct inode *inode, loff_t lstart, loff_t lend) 844 { 845 struct address_space *mapping = inode->i_mapping; 846 loff_t unmap_start = round_up(lstart, PAGE_SIZE); 847 loff_t unmap_end = round_down(1 + lend, PAGE_SIZE) - 1; 848 /* 849 * This rounding is currently just for example: unmap_mapping_range 850 * expands its hole outwards, whereas we want it to contract the hole 851 * inwards. However, existing callers of truncate_pagecache_range are 852 * doing their own page rounding first. Note that unmap_mapping_range 853 * allows holelen 0 for all, and we allow lend -1 for end of file. 854 */ 855 856 /* 857 * Unlike in truncate_pagecache, unmap_mapping_range is called only 858 * once (before truncating pagecache), and without "even_cows" flag: 859 * hole-punching should not remove private COWed pages from the hole. 860 */ 861 if ((u64)unmap_end > (u64)unmap_start) 862 unmap_mapping_range(mapping, unmap_start, 863 1 + unmap_end - unmap_start, 0); 864 truncate_inode_pages_range(mapping, lstart, lend); 865 } 866 EXPORT_SYMBOL(truncate_pagecache_range); 867