1 // SPDX-License-Identifier: GPL-2.0-only 2 /* 3 * mm/truncate.c - code for taking down pages from address_spaces 4 * 5 * Copyright (C) 2002, Linus Torvalds 6 * 7 * 10Sep2002 Andrew Morton 8 * Initial version. 9 */ 10 11 #include <linux/kernel.h> 12 #include <linux/backing-dev.h> 13 #include <linux/dax.h> 14 #include <linux/gfp.h> 15 #include <linux/mm.h> 16 #include <linux/swap.h> 17 #include <linux/export.h> 18 #include <linux/pagemap.h> 19 #include <linux/highmem.h> 20 #include <linux/pagevec.h> 21 #include <linux/task_io_accounting_ops.h> 22 #include <linux/shmem_fs.h> 23 #include <linux/rmap.h> 24 #include "internal.h" 25 26 /* 27 * Regular page slots are stabilized by the page lock even without the tree 28 * itself locked. These unlocked entries need verification under the tree 29 * lock. 30 */ 31 static inline void __clear_shadow_entry(struct address_space *mapping, 32 pgoff_t index, void *entry) 33 { 34 XA_STATE(xas, &mapping->i_pages, index); 35 36 xas_set_update(&xas, workingset_update_node); 37 if (xas_load(&xas) != entry) 38 return; 39 xas_store(&xas, NULL); 40 } 41 42 static void clear_shadow_entry(struct address_space *mapping, pgoff_t index, 43 void *entry) 44 { 45 spin_lock(&mapping->host->i_lock); 46 xa_lock_irq(&mapping->i_pages); 47 __clear_shadow_entry(mapping, index, entry); 48 xa_unlock_irq(&mapping->i_pages); 49 if (mapping_shrinkable(mapping)) 50 inode_add_lru(mapping->host); 51 spin_unlock(&mapping->host->i_lock); 52 } 53 54 /* 55 * Unconditionally remove exceptional entries. Usually called from truncate 56 * path. Note that the folio_batch may be altered by this function by removing 57 * exceptional entries similar to what folio_batch_remove_exceptionals() does. 58 */ 59 static void truncate_folio_batch_exceptionals(struct address_space *mapping, 60 struct folio_batch *fbatch, pgoff_t *indices) 61 { 62 int i, j; 63 bool dax; 64 65 /* Handled by shmem itself */ 66 if (shmem_mapping(mapping)) 67 return; 68 69 for (j = 0; j < folio_batch_count(fbatch); j++) 70 if (xa_is_value(fbatch->folios[j])) 71 break; 72 73 if (j == folio_batch_count(fbatch)) 74 return; 75 76 dax = dax_mapping(mapping); 77 if (!dax) { 78 spin_lock(&mapping->host->i_lock); 79 xa_lock_irq(&mapping->i_pages); 80 } 81 82 for (i = j; i < folio_batch_count(fbatch); i++) { 83 struct folio *folio = fbatch->folios[i]; 84 pgoff_t index = indices[i]; 85 86 if (!xa_is_value(folio)) { 87 fbatch->folios[j++] = folio; 88 continue; 89 } 90 91 if (unlikely(dax)) { 92 dax_delete_mapping_entry(mapping, index); 93 continue; 94 } 95 96 __clear_shadow_entry(mapping, index, folio); 97 } 98 99 if (!dax) { 100 xa_unlock_irq(&mapping->i_pages); 101 if (mapping_shrinkable(mapping)) 102 inode_add_lru(mapping->host); 103 spin_unlock(&mapping->host->i_lock); 104 } 105 fbatch->nr = j; 106 } 107 108 /* 109 * Invalidate exceptional entry if easily possible. This handles exceptional 110 * entries for invalidate_inode_pages(). 111 */ 112 static int invalidate_exceptional_entry(struct address_space *mapping, 113 pgoff_t index, void *entry) 114 { 115 /* Handled by shmem itself, or for DAX we do nothing. */ 116 if (shmem_mapping(mapping) || dax_mapping(mapping)) 117 return 1; 118 clear_shadow_entry(mapping, index, entry); 119 return 1; 120 } 121 122 /* 123 * Invalidate exceptional entry if clean. This handles exceptional entries for 124 * invalidate_inode_pages2() so for DAX it evicts only clean entries. 125 */ 126 static int invalidate_exceptional_entry2(struct address_space *mapping, 127 pgoff_t index, void *entry) 128 { 129 /* Handled by shmem itself */ 130 if (shmem_mapping(mapping)) 131 return 1; 132 if (dax_mapping(mapping)) 133 return dax_invalidate_mapping_entry_sync(mapping, index); 134 clear_shadow_entry(mapping, index, entry); 135 return 1; 136 } 137 138 /** 139 * folio_invalidate - Invalidate part or all of a folio. 140 * @folio: The folio which is affected. 141 * @offset: start of the range to invalidate 142 * @length: length of the range to invalidate 143 * 144 * folio_invalidate() is called when all or part of the folio has become 145 * invalidated by a truncate operation. 146 * 147 * folio_invalidate() does not have to release all buffers, but it must 148 * ensure that no dirty buffer is left outside @offset and that no I/O 149 * is underway against any of the blocks which are outside the truncation 150 * point. Because the caller is about to free (and possibly reuse) those 151 * blocks on-disk. 152 */ 153 void folio_invalidate(struct folio *folio, size_t offset, size_t length) 154 { 155 const struct address_space_operations *aops = folio->mapping->a_ops; 156 157 if (aops->invalidate_folio) 158 aops->invalidate_folio(folio, offset, length); 159 } 160 EXPORT_SYMBOL_GPL(folio_invalidate); 161 162 /* 163 * If truncate cannot remove the fs-private metadata from the page, the page 164 * becomes orphaned. It will be left on the LRU and may even be mapped into 165 * user pagetables if we're racing with filemap_fault(). 166 * 167 * We need to bail out if page->mapping is no longer equal to the original 168 * mapping. This happens a) when the VM reclaimed the page while we waited on 169 * its lock, b) when a concurrent invalidate_mapping_pages got there first and 170 * c) when tmpfs swizzles a page between a tmpfs inode and swapper_space. 171 */ 172 static void truncate_cleanup_folio(struct folio *folio) 173 { 174 if (folio_mapped(folio)) 175 unmap_mapping_folio(folio); 176 177 if (folio_needs_release(folio)) 178 folio_invalidate(folio, 0, folio_size(folio)); 179 180 /* 181 * Some filesystems seem to re-dirty the page even after 182 * the VM has canceled the dirty bit (eg ext3 journaling). 183 * Hence dirty accounting check is placed after invalidation. 184 */ 185 folio_cancel_dirty(folio); 186 folio_clear_mappedtodisk(folio); 187 } 188 189 int truncate_inode_folio(struct address_space *mapping, struct folio *folio) 190 { 191 if (folio->mapping != mapping) 192 return -EIO; 193 194 truncate_cleanup_folio(folio); 195 filemap_remove_folio(folio); 196 return 0; 197 } 198 199 /* 200 * Handle partial folios. The folio may be entirely within the 201 * range if a split has raced with us. If not, we zero the part of the 202 * folio that's within the [start, end] range, and then split the folio if 203 * it's large. split_page_range() will discard pages which now lie beyond 204 * i_size, and we rely on the caller to discard pages which lie within a 205 * newly created hole. 206 * 207 * Returns false if splitting failed so the caller can avoid 208 * discarding the entire folio which is stubbornly unsplit. 209 */ 210 bool truncate_inode_partial_folio(struct folio *folio, loff_t start, loff_t end) 211 { 212 loff_t pos = folio_pos(folio); 213 unsigned int offset, length; 214 215 if (pos < start) 216 offset = start - pos; 217 else 218 offset = 0; 219 length = folio_size(folio); 220 if (pos + length <= (u64)end) 221 length = length - offset; 222 else 223 length = end + 1 - pos - offset; 224 225 folio_wait_writeback(folio); 226 if (length == folio_size(folio)) { 227 truncate_inode_folio(folio->mapping, folio); 228 return true; 229 } 230 231 /* 232 * We may be zeroing pages we're about to discard, but it avoids 233 * doing a complex calculation here, and then doing the zeroing 234 * anyway if the page split fails. 235 */ 236 folio_zero_range(folio, offset, length); 237 238 if (folio_needs_release(folio)) 239 folio_invalidate(folio, offset, length); 240 if (!folio_test_large(folio)) 241 return true; 242 if (split_folio(folio) == 0) 243 return true; 244 if (folio_test_dirty(folio)) 245 return false; 246 truncate_inode_folio(folio->mapping, folio); 247 return true; 248 } 249 250 /* 251 * Used to get rid of pages on hardware memory corruption. 252 */ 253 int generic_error_remove_page(struct address_space *mapping, struct page *page) 254 { 255 VM_BUG_ON_PAGE(PageTail(page), page); 256 257 if (!mapping) 258 return -EINVAL; 259 /* 260 * Only punch for normal data pages for now. 261 * Handling other types like directories would need more auditing. 262 */ 263 if (!S_ISREG(mapping->host->i_mode)) 264 return -EIO; 265 return truncate_inode_folio(mapping, page_folio(page)); 266 } 267 EXPORT_SYMBOL(generic_error_remove_page); 268 269 static long mapping_evict_folio(struct address_space *mapping, 270 struct folio *folio) 271 { 272 if (folio_test_dirty(folio) || folio_test_writeback(folio)) 273 return 0; 274 /* The refcount will be elevated if any page in the folio is mapped */ 275 if (folio_ref_count(folio) > 276 folio_nr_pages(folio) + folio_has_private(folio) + 1) 277 return 0; 278 if (!filemap_release_folio(folio, 0)) 279 return 0; 280 281 return remove_mapping(mapping, folio); 282 } 283 284 /** 285 * invalidate_inode_page() - Remove an unused page from the pagecache. 286 * @page: The page to remove. 287 * 288 * Safely invalidate one page from its pagecache mapping. 289 * It only drops clean, unused pages. 290 * 291 * Context: Page must be locked. 292 * Return: The number of pages successfully removed. 293 */ 294 long invalidate_inode_page(struct page *page) 295 { 296 struct folio *folio = page_folio(page); 297 struct address_space *mapping = folio_mapping(folio); 298 299 /* The page may have been truncated before it was locked */ 300 if (!mapping) 301 return 0; 302 return mapping_evict_folio(mapping, folio); 303 } 304 305 /** 306 * truncate_inode_pages_range - truncate range of pages specified by start & end byte offsets 307 * @mapping: mapping to truncate 308 * @lstart: offset from which to truncate 309 * @lend: offset to which to truncate (inclusive) 310 * 311 * Truncate the page cache, removing the pages that are between 312 * specified offsets (and zeroing out partial pages 313 * if lstart or lend + 1 is not page aligned). 314 * 315 * Truncate takes two passes - the first pass is nonblocking. It will not 316 * block on page locks and it will not block on writeback. The second pass 317 * will wait. This is to prevent as much IO as possible in the affected region. 318 * The first pass will remove most pages, so the search cost of the second pass 319 * is low. 320 * 321 * We pass down the cache-hot hint to the page freeing code. Even if the 322 * mapping is large, it is probably the case that the final pages are the most 323 * recently touched, and freeing happens in ascending file offset order. 324 * 325 * Note that since ->invalidate_folio() accepts range to invalidate 326 * truncate_inode_pages_range is able to handle cases where lend + 1 is not 327 * page aligned properly. 328 */ 329 void truncate_inode_pages_range(struct address_space *mapping, 330 loff_t lstart, loff_t lend) 331 { 332 pgoff_t start; /* inclusive */ 333 pgoff_t end; /* exclusive */ 334 struct folio_batch fbatch; 335 pgoff_t indices[PAGEVEC_SIZE]; 336 pgoff_t index; 337 int i; 338 struct folio *folio; 339 bool same_folio; 340 341 if (mapping_empty(mapping)) 342 return; 343 344 /* 345 * 'start' and 'end' always covers the range of pages to be fully 346 * truncated. Partial pages are covered with 'partial_start' at the 347 * start of the range and 'partial_end' at the end of the range. 348 * Note that 'end' is exclusive while 'lend' is inclusive. 349 */ 350 start = (lstart + PAGE_SIZE - 1) >> PAGE_SHIFT; 351 if (lend == -1) 352 /* 353 * lend == -1 indicates end-of-file so we have to set 'end' 354 * to the highest possible pgoff_t and since the type is 355 * unsigned we're using -1. 356 */ 357 end = -1; 358 else 359 end = (lend + 1) >> PAGE_SHIFT; 360 361 folio_batch_init(&fbatch); 362 index = start; 363 while (index < end && find_lock_entries(mapping, &index, end - 1, 364 &fbatch, indices)) { 365 truncate_folio_batch_exceptionals(mapping, &fbatch, indices); 366 for (i = 0; i < folio_batch_count(&fbatch); i++) 367 truncate_cleanup_folio(fbatch.folios[i]); 368 delete_from_page_cache_batch(mapping, &fbatch); 369 for (i = 0; i < folio_batch_count(&fbatch); i++) 370 folio_unlock(fbatch.folios[i]); 371 folio_batch_release(&fbatch); 372 cond_resched(); 373 } 374 375 same_folio = (lstart >> PAGE_SHIFT) == (lend >> PAGE_SHIFT); 376 folio = __filemap_get_folio(mapping, lstart >> PAGE_SHIFT, FGP_LOCK, 0); 377 if (!IS_ERR(folio)) { 378 same_folio = lend < folio_pos(folio) + folio_size(folio); 379 if (!truncate_inode_partial_folio(folio, lstart, lend)) { 380 start = folio_next_index(folio); 381 if (same_folio) 382 end = folio->index; 383 } 384 folio_unlock(folio); 385 folio_put(folio); 386 folio = NULL; 387 } 388 389 if (!same_folio) { 390 folio = __filemap_get_folio(mapping, lend >> PAGE_SHIFT, 391 FGP_LOCK, 0); 392 if (!IS_ERR(folio)) { 393 if (!truncate_inode_partial_folio(folio, lstart, lend)) 394 end = folio->index; 395 folio_unlock(folio); 396 folio_put(folio); 397 } 398 } 399 400 index = start; 401 while (index < end) { 402 cond_resched(); 403 if (!find_get_entries(mapping, &index, end - 1, &fbatch, 404 indices)) { 405 /* If all gone from start onwards, we're done */ 406 if (index == start) 407 break; 408 /* Otherwise restart to make sure all gone */ 409 index = start; 410 continue; 411 } 412 413 for (i = 0; i < folio_batch_count(&fbatch); i++) { 414 struct folio *folio = fbatch.folios[i]; 415 416 /* We rely upon deletion not changing page->index */ 417 418 if (xa_is_value(folio)) 419 continue; 420 421 folio_lock(folio); 422 VM_BUG_ON_FOLIO(!folio_contains(folio, indices[i]), folio); 423 folio_wait_writeback(folio); 424 truncate_inode_folio(mapping, folio); 425 folio_unlock(folio); 426 } 427 truncate_folio_batch_exceptionals(mapping, &fbatch, indices); 428 folio_batch_release(&fbatch); 429 } 430 } 431 EXPORT_SYMBOL(truncate_inode_pages_range); 432 433 /** 434 * truncate_inode_pages - truncate *all* the pages from an offset 435 * @mapping: mapping to truncate 436 * @lstart: offset from which to truncate 437 * 438 * Called under (and serialised by) inode->i_rwsem and 439 * mapping->invalidate_lock. 440 * 441 * Note: When this function returns, there can be a page in the process of 442 * deletion (inside __filemap_remove_folio()) in the specified range. Thus 443 * mapping->nrpages can be non-zero when this function returns even after 444 * truncation of the whole mapping. 445 */ 446 void truncate_inode_pages(struct address_space *mapping, loff_t lstart) 447 { 448 truncate_inode_pages_range(mapping, lstart, (loff_t)-1); 449 } 450 EXPORT_SYMBOL(truncate_inode_pages); 451 452 /** 453 * truncate_inode_pages_final - truncate *all* pages before inode dies 454 * @mapping: mapping to truncate 455 * 456 * Called under (and serialized by) inode->i_rwsem. 457 * 458 * Filesystems have to use this in the .evict_inode path to inform the 459 * VM that this is the final truncate and the inode is going away. 460 */ 461 void truncate_inode_pages_final(struct address_space *mapping) 462 { 463 /* 464 * Page reclaim can not participate in regular inode lifetime 465 * management (can't call iput()) and thus can race with the 466 * inode teardown. Tell it when the address space is exiting, 467 * so that it does not install eviction information after the 468 * final truncate has begun. 469 */ 470 mapping_set_exiting(mapping); 471 472 if (!mapping_empty(mapping)) { 473 /* 474 * As truncation uses a lockless tree lookup, cycle 475 * the tree lock to make sure any ongoing tree 476 * modification that does not see AS_EXITING is 477 * completed before starting the final truncate. 478 */ 479 xa_lock_irq(&mapping->i_pages); 480 xa_unlock_irq(&mapping->i_pages); 481 } 482 483 truncate_inode_pages(mapping, 0); 484 } 485 EXPORT_SYMBOL(truncate_inode_pages_final); 486 487 /** 488 * mapping_try_invalidate - Invalidate all the evictable folios of one inode 489 * @mapping: the address_space which holds the folios to invalidate 490 * @start: the offset 'from' which to invalidate 491 * @end: the offset 'to' which to invalidate (inclusive) 492 * @nr_failed: How many folio invalidations failed 493 * 494 * This function is similar to invalidate_mapping_pages(), except that it 495 * returns the number of folios which could not be evicted in @nr_failed. 496 */ 497 unsigned long mapping_try_invalidate(struct address_space *mapping, 498 pgoff_t start, pgoff_t end, unsigned long *nr_failed) 499 { 500 pgoff_t indices[PAGEVEC_SIZE]; 501 struct folio_batch fbatch; 502 pgoff_t index = start; 503 unsigned long ret; 504 unsigned long count = 0; 505 int i; 506 507 folio_batch_init(&fbatch); 508 while (find_lock_entries(mapping, &index, end, &fbatch, indices)) { 509 for (i = 0; i < folio_batch_count(&fbatch); i++) { 510 struct folio *folio = fbatch.folios[i]; 511 512 /* We rely upon deletion not changing folio->index */ 513 514 if (xa_is_value(folio)) { 515 count += invalidate_exceptional_entry(mapping, 516 indices[i], folio); 517 continue; 518 } 519 520 ret = mapping_evict_folio(mapping, folio); 521 folio_unlock(folio); 522 /* 523 * Invalidation is a hint that the folio is no longer 524 * of interest and try to speed up its reclaim. 525 */ 526 if (!ret) { 527 deactivate_file_folio(folio); 528 /* Likely in the lru cache of a remote CPU */ 529 if (nr_failed) 530 (*nr_failed)++; 531 } 532 count += ret; 533 } 534 folio_batch_remove_exceptionals(&fbatch); 535 folio_batch_release(&fbatch); 536 cond_resched(); 537 } 538 return count; 539 } 540 541 /** 542 * invalidate_mapping_pages - Invalidate all clean, unlocked cache of one inode 543 * @mapping: the address_space which holds the cache to invalidate 544 * @start: the offset 'from' which to invalidate 545 * @end: the offset 'to' which to invalidate (inclusive) 546 * 547 * This function removes pages that are clean, unmapped and unlocked, 548 * as well as shadow entries. It will not block on IO activity. 549 * 550 * If you want to remove all the pages of one inode, regardless of 551 * their use and writeback state, use truncate_inode_pages(). 552 * 553 * Return: The number of indices that had their contents invalidated 554 */ 555 unsigned long invalidate_mapping_pages(struct address_space *mapping, 556 pgoff_t start, pgoff_t end) 557 { 558 return mapping_try_invalidate(mapping, start, end, NULL); 559 } 560 EXPORT_SYMBOL(invalidate_mapping_pages); 561 562 /* 563 * This is like invalidate_inode_page(), except it ignores the page's 564 * refcount. We do this because invalidate_inode_pages2() needs stronger 565 * invalidation guarantees, and cannot afford to leave pages behind because 566 * shrink_page_list() has a temp ref on them, or because they're transiently 567 * sitting in the folio_add_lru() caches. 568 */ 569 static int invalidate_complete_folio2(struct address_space *mapping, 570 struct folio *folio) 571 { 572 if (folio->mapping != mapping) 573 return 0; 574 575 if (!filemap_release_folio(folio, GFP_KERNEL)) 576 return 0; 577 578 spin_lock(&mapping->host->i_lock); 579 xa_lock_irq(&mapping->i_pages); 580 if (folio_test_dirty(folio)) 581 goto failed; 582 583 BUG_ON(folio_has_private(folio)); 584 __filemap_remove_folio(folio, NULL); 585 xa_unlock_irq(&mapping->i_pages); 586 if (mapping_shrinkable(mapping)) 587 inode_add_lru(mapping->host); 588 spin_unlock(&mapping->host->i_lock); 589 590 filemap_free_folio(mapping, folio); 591 return 1; 592 failed: 593 xa_unlock_irq(&mapping->i_pages); 594 spin_unlock(&mapping->host->i_lock); 595 return 0; 596 } 597 598 static int folio_launder(struct address_space *mapping, struct folio *folio) 599 { 600 if (!folio_test_dirty(folio)) 601 return 0; 602 if (folio->mapping != mapping || mapping->a_ops->launder_folio == NULL) 603 return 0; 604 return mapping->a_ops->launder_folio(folio); 605 } 606 607 /** 608 * invalidate_inode_pages2_range - remove range of pages from an address_space 609 * @mapping: the address_space 610 * @start: the page offset 'from' which to invalidate 611 * @end: the page offset 'to' which to invalidate (inclusive) 612 * 613 * Any pages which are found to be mapped into pagetables are unmapped prior to 614 * invalidation. 615 * 616 * Return: -EBUSY if any pages could not be invalidated. 617 */ 618 int invalidate_inode_pages2_range(struct address_space *mapping, 619 pgoff_t start, pgoff_t end) 620 { 621 pgoff_t indices[PAGEVEC_SIZE]; 622 struct folio_batch fbatch; 623 pgoff_t index; 624 int i; 625 int ret = 0; 626 int ret2 = 0; 627 int did_range_unmap = 0; 628 629 if (mapping_empty(mapping)) 630 return 0; 631 632 folio_batch_init(&fbatch); 633 index = start; 634 while (find_get_entries(mapping, &index, end, &fbatch, indices)) { 635 for (i = 0; i < folio_batch_count(&fbatch); i++) { 636 struct folio *folio = fbatch.folios[i]; 637 638 /* We rely upon deletion not changing folio->index */ 639 640 if (xa_is_value(folio)) { 641 if (!invalidate_exceptional_entry2(mapping, 642 indices[i], folio)) 643 ret = -EBUSY; 644 continue; 645 } 646 647 if (!did_range_unmap && folio_mapped(folio)) { 648 /* 649 * If folio is mapped, before taking its lock, 650 * zap the rest of the file in one hit. 651 */ 652 unmap_mapping_pages(mapping, indices[i], 653 (1 + end - indices[i]), false); 654 did_range_unmap = 1; 655 } 656 657 folio_lock(folio); 658 if (unlikely(folio->mapping != mapping)) { 659 folio_unlock(folio); 660 continue; 661 } 662 VM_BUG_ON_FOLIO(!folio_contains(folio, indices[i]), folio); 663 folio_wait_writeback(folio); 664 665 if (folio_mapped(folio)) 666 unmap_mapping_folio(folio); 667 BUG_ON(folio_mapped(folio)); 668 669 ret2 = folio_launder(mapping, folio); 670 if (ret2 == 0) { 671 if (!invalidate_complete_folio2(mapping, folio)) 672 ret2 = -EBUSY; 673 } 674 if (ret2 < 0) 675 ret = ret2; 676 folio_unlock(folio); 677 } 678 folio_batch_remove_exceptionals(&fbatch); 679 folio_batch_release(&fbatch); 680 cond_resched(); 681 } 682 /* 683 * For DAX we invalidate page tables after invalidating page cache. We 684 * could invalidate page tables while invalidating each entry however 685 * that would be expensive. And doing range unmapping before doesn't 686 * work as we have no cheap way to find whether page cache entry didn't 687 * get remapped later. 688 */ 689 if (dax_mapping(mapping)) { 690 unmap_mapping_pages(mapping, start, end - start + 1, false); 691 } 692 return ret; 693 } 694 EXPORT_SYMBOL_GPL(invalidate_inode_pages2_range); 695 696 /** 697 * invalidate_inode_pages2 - remove all pages from an address_space 698 * @mapping: the address_space 699 * 700 * Any pages which are found to be mapped into pagetables are unmapped prior to 701 * invalidation. 702 * 703 * Return: -EBUSY if any pages could not be invalidated. 704 */ 705 int invalidate_inode_pages2(struct address_space *mapping) 706 { 707 return invalidate_inode_pages2_range(mapping, 0, -1); 708 } 709 EXPORT_SYMBOL_GPL(invalidate_inode_pages2); 710 711 /** 712 * truncate_pagecache - unmap and remove pagecache that has been truncated 713 * @inode: inode 714 * @newsize: new file size 715 * 716 * inode's new i_size must already be written before truncate_pagecache 717 * is called. 718 * 719 * This function should typically be called before the filesystem 720 * releases resources associated with the freed range (eg. deallocates 721 * blocks). This way, pagecache will always stay logically coherent 722 * with on-disk format, and the filesystem would not have to deal with 723 * situations such as writepage being called for a page that has already 724 * had its underlying blocks deallocated. 725 */ 726 void truncate_pagecache(struct inode *inode, loff_t newsize) 727 { 728 struct address_space *mapping = inode->i_mapping; 729 loff_t holebegin = round_up(newsize, PAGE_SIZE); 730 731 /* 732 * unmap_mapping_range is called twice, first simply for 733 * efficiency so that truncate_inode_pages does fewer 734 * single-page unmaps. However after this first call, and 735 * before truncate_inode_pages finishes, it is possible for 736 * private pages to be COWed, which remain after 737 * truncate_inode_pages finishes, hence the second 738 * unmap_mapping_range call must be made for correctness. 739 */ 740 unmap_mapping_range(mapping, holebegin, 0, 1); 741 truncate_inode_pages(mapping, newsize); 742 unmap_mapping_range(mapping, holebegin, 0, 1); 743 } 744 EXPORT_SYMBOL(truncate_pagecache); 745 746 /** 747 * truncate_setsize - update inode and pagecache for a new file size 748 * @inode: inode 749 * @newsize: new file size 750 * 751 * truncate_setsize updates i_size and performs pagecache truncation (if 752 * necessary) to @newsize. It will be typically be called from the filesystem's 753 * setattr function when ATTR_SIZE is passed in. 754 * 755 * Must be called with a lock serializing truncates and writes (generally 756 * i_rwsem but e.g. xfs uses a different lock) and before all filesystem 757 * specific block truncation has been performed. 758 */ 759 void truncate_setsize(struct inode *inode, loff_t newsize) 760 { 761 loff_t oldsize = inode->i_size; 762 763 i_size_write(inode, newsize); 764 if (newsize > oldsize) 765 pagecache_isize_extended(inode, oldsize, newsize); 766 truncate_pagecache(inode, newsize); 767 } 768 EXPORT_SYMBOL(truncate_setsize); 769 770 /** 771 * pagecache_isize_extended - update pagecache after extension of i_size 772 * @inode: inode for which i_size was extended 773 * @from: original inode size 774 * @to: new inode size 775 * 776 * Handle extension of inode size either caused by extending truncate or by 777 * write starting after current i_size. We mark the page straddling current 778 * i_size RO so that page_mkwrite() is called on the nearest write access to 779 * the page. This way filesystem can be sure that page_mkwrite() is called on 780 * the page before user writes to the page via mmap after the i_size has been 781 * changed. 782 * 783 * The function must be called after i_size is updated so that page fault 784 * coming after we unlock the page will already see the new i_size. 785 * The function must be called while we still hold i_rwsem - this not only 786 * makes sure i_size is stable but also that userspace cannot observe new 787 * i_size value before we are prepared to store mmap writes at new inode size. 788 */ 789 void pagecache_isize_extended(struct inode *inode, loff_t from, loff_t to) 790 { 791 int bsize = i_blocksize(inode); 792 loff_t rounded_from; 793 struct page *page; 794 pgoff_t index; 795 796 WARN_ON(to > inode->i_size); 797 798 if (from >= to || bsize == PAGE_SIZE) 799 return; 800 /* Page straddling @from will not have any hole block created? */ 801 rounded_from = round_up(from, bsize); 802 if (to <= rounded_from || !(rounded_from & (PAGE_SIZE - 1))) 803 return; 804 805 index = from >> PAGE_SHIFT; 806 page = find_lock_page(inode->i_mapping, index); 807 /* Page not cached? Nothing to do */ 808 if (!page) 809 return; 810 /* 811 * See clear_page_dirty_for_io() for details why set_page_dirty() 812 * is needed. 813 */ 814 if (page_mkclean(page)) 815 set_page_dirty(page); 816 unlock_page(page); 817 put_page(page); 818 } 819 EXPORT_SYMBOL(pagecache_isize_extended); 820 821 /** 822 * truncate_pagecache_range - unmap and remove pagecache that is hole-punched 823 * @inode: inode 824 * @lstart: offset of beginning of hole 825 * @lend: offset of last byte of hole 826 * 827 * This function should typically be called before the filesystem 828 * releases resources associated with the freed range (eg. deallocates 829 * blocks). This way, pagecache will always stay logically coherent 830 * with on-disk format, and the filesystem would not have to deal with 831 * situations such as writepage being called for a page that has already 832 * had its underlying blocks deallocated. 833 */ 834 void truncate_pagecache_range(struct inode *inode, loff_t lstart, loff_t lend) 835 { 836 struct address_space *mapping = inode->i_mapping; 837 loff_t unmap_start = round_up(lstart, PAGE_SIZE); 838 loff_t unmap_end = round_down(1 + lend, PAGE_SIZE) - 1; 839 /* 840 * This rounding is currently just for example: unmap_mapping_range 841 * expands its hole outwards, whereas we want it to contract the hole 842 * inwards. However, existing callers of truncate_pagecache_range are 843 * doing their own page rounding first. Note that unmap_mapping_range 844 * allows holelen 0 for all, and we allow lend -1 for end of file. 845 */ 846 847 /* 848 * Unlike in truncate_pagecache, unmap_mapping_range is called only 849 * once (before truncating pagecache), and without "even_cows" flag: 850 * hole-punching should not remove private COWed pages from the hole. 851 */ 852 if ((u64)unmap_end > (u64)unmap_start) 853 unmap_mapping_range(mapping, unmap_start, 854 1 + unmap_end - unmap_start, 0); 855 truncate_inode_pages_range(mapping, lstart, lend); 856 } 857 EXPORT_SYMBOL(truncate_pagecache_range); 858