xref: /openbmc/linux/mm/truncate.c (revision 0ea33321)
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  * mm/truncate.c - code for taking down pages from address_spaces
4  *
5  * Copyright (C) 2002, Linus Torvalds
6  *
7  * 10Sep2002	Andrew Morton
8  *		Initial version.
9  */
10 
11 #include <linux/kernel.h>
12 #include <linux/backing-dev.h>
13 #include <linux/dax.h>
14 #include <linux/gfp.h>
15 #include <linux/mm.h>
16 #include <linux/swap.h>
17 #include <linux/export.h>
18 #include <linux/pagemap.h>
19 #include <linux/highmem.h>
20 #include <linux/pagevec.h>
21 #include <linux/task_io_accounting_ops.h>
22 #include <linux/buffer_head.h>	/* grr. try_to_release_page,
23 				   do_invalidatepage */
24 #include <linux/shmem_fs.h>
25 #include <linux/cleancache.h>
26 #include <linux/rmap.h>
27 #include "internal.h"
28 
29 /*
30  * Regular page slots are stabilized by the page lock even without the tree
31  * itself locked.  These unlocked entries need verification under the tree
32  * lock.
33  */
34 static inline void __clear_shadow_entry(struct address_space *mapping,
35 				pgoff_t index, void *entry)
36 {
37 	XA_STATE(xas, &mapping->i_pages, index);
38 
39 	xas_set_update(&xas, workingset_update_node);
40 	if (xas_load(&xas) != entry)
41 		return;
42 	xas_store(&xas, NULL);
43 	mapping->nrexceptional--;
44 }
45 
46 static void clear_shadow_entry(struct address_space *mapping, pgoff_t index,
47 			       void *entry)
48 {
49 	xa_lock_irq(&mapping->i_pages);
50 	__clear_shadow_entry(mapping, index, entry);
51 	xa_unlock_irq(&mapping->i_pages);
52 }
53 
54 /*
55  * Unconditionally remove exceptional entries. Usually called from truncate
56  * path. Note that the pagevec may be altered by this function by removing
57  * exceptional entries similar to what pagevec_remove_exceptionals does.
58  */
59 static void truncate_exceptional_pvec_entries(struct address_space *mapping,
60 				struct pagevec *pvec, pgoff_t *indices,
61 				pgoff_t end)
62 {
63 	int i, j;
64 	bool dax, lock;
65 
66 	/* Handled by shmem itself */
67 	if (shmem_mapping(mapping))
68 		return;
69 
70 	for (j = 0; j < pagevec_count(pvec); j++)
71 		if (xa_is_value(pvec->pages[j]))
72 			break;
73 
74 	if (j == pagevec_count(pvec))
75 		return;
76 
77 	dax = dax_mapping(mapping);
78 	lock = !dax && indices[j] < end;
79 	if (lock)
80 		xa_lock_irq(&mapping->i_pages);
81 
82 	for (i = j; i < pagevec_count(pvec); i++) {
83 		struct page *page = pvec->pages[i];
84 		pgoff_t index = indices[i];
85 
86 		if (!xa_is_value(page)) {
87 			pvec->pages[j++] = page;
88 			continue;
89 		}
90 
91 		if (index >= end)
92 			continue;
93 
94 		if (unlikely(dax)) {
95 			dax_delete_mapping_entry(mapping, index);
96 			continue;
97 		}
98 
99 		__clear_shadow_entry(mapping, index, page);
100 	}
101 
102 	if (lock)
103 		xa_unlock_irq(&mapping->i_pages);
104 	pvec->nr = j;
105 }
106 
107 /*
108  * Invalidate exceptional entry if easily possible. This handles exceptional
109  * entries for invalidate_inode_pages().
110  */
111 static int invalidate_exceptional_entry(struct address_space *mapping,
112 					pgoff_t index, void *entry)
113 {
114 	/* Handled by shmem itself, or for DAX we do nothing. */
115 	if (shmem_mapping(mapping) || dax_mapping(mapping))
116 		return 1;
117 	clear_shadow_entry(mapping, index, entry);
118 	return 1;
119 }
120 
121 /*
122  * Invalidate exceptional entry if clean. This handles exceptional entries for
123  * invalidate_inode_pages2() so for DAX it evicts only clean entries.
124  */
125 static int invalidate_exceptional_entry2(struct address_space *mapping,
126 					 pgoff_t index, void *entry)
127 {
128 	/* Handled by shmem itself */
129 	if (shmem_mapping(mapping))
130 		return 1;
131 	if (dax_mapping(mapping))
132 		return dax_invalidate_mapping_entry_sync(mapping, index);
133 	clear_shadow_entry(mapping, index, entry);
134 	return 1;
135 }
136 
137 /**
138  * do_invalidatepage - invalidate part or all of a page
139  * @page: the page which is affected
140  * @offset: start of the range to invalidate
141  * @length: length of the range to invalidate
142  *
143  * do_invalidatepage() is called when all or part of the page has become
144  * invalidated by a truncate operation.
145  *
146  * do_invalidatepage() does not have to release all buffers, but it must
147  * ensure that no dirty buffer is left outside @offset and that no I/O
148  * is underway against any of the blocks which are outside the truncation
149  * point.  Because the caller is about to free (and possibly reuse) those
150  * blocks on-disk.
151  */
152 void do_invalidatepage(struct page *page, unsigned int offset,
153 		       unsigned int length)
154 {
155 	void (*invalidatepage)(struct page *, unsigned int, unsigned int);
156 
157 	invalidatepage = page->mapping->a_ops->invalidatepage;
158 #ifdef CONFIG_BLOCK
159 	if (!invalidatepage)
160 		invalidatepage = block_invalidatepage;
161 #endif
162 	if (invalidatepage)
163 		(*invalidatepage)(page, offset, length);
164 }
165 
166 /*
167  * If truncate cannot remove the fs-private metadata from the page, the page
168  * becomes orphaned.  It will be left on the LRU and may even be mapped into
169  * user pagetables if we're racing with filemap_fault().
170  *
171  * We need to bail out if page->mapping is no longer equal to the original
172  * mapping.  This happens a) when the VM reclaimed the page while we waited on
173  * its lock, b) when a concurrent invalidate_mapping_pages got there first and
174  * c) when tmpfs swizzles a page between a tmpfs inode and swapper_space.
175  */
176 static void
177 truncate_cleanup_page(struct address_space *mapping, struct page *page)
178 {
179 	if (page_mapped(page)) {
180 		unsigned int nr = thp_nr_pages(page);
181 		unmap_mapping_pages(mapping, page->index, nr, false);
182 	}
183 
184 	if (page_has_private(page))
185 		do_invalidatepage(page, 0, thp_size(page));
186 
187 	/*
188 	 * Some filesystems seem to re-dirty the page even after
189 	 * the VM has canceled the dirty bit (eg ext3 journaling).
190 	 * Hence dirty accounting check is placed after invalidation.
191 	 */
192 	cancel_dirty_page(page);
193 	ClearPageMappedToDisk(page);
194 }
195 
196 /*
197  * This is for invalidate_mapping_pages().  That function can be called at
198  * any time, and is not supposed to throw away dirty pages.  But pages can
199  * be marked dirty at any time too, so use remove_mapping which safely
200  * discards clean, unused pages.
201  *
202  * Returns non-zero if the page was successfully invalidated.
203  */
204 static int
205 invalidate_complete_page(struct address_space *mapping, struct page *page)
206 {
207 	int ret;
208 
209 	if (page->mapping != mapping)
210 		return 0;
211 
212 	if (page_has_private(page) && !try_to_release_page(page, 0))
213 		return 0;
214 
215 	ret = remove_mapping(mapping, page);
216 
217 	return ret;
218 }
219 
220 int truncate_inode_page(struct address_space *mapping, struct page *page)
221 {
222 	VM_BUG_ON_PAGE(PageTail(page), page);
223 
224 	if (page->mapping != mapping)
225 		return -EIO;
226 
227 	truncate_cleanup_page(mapping, page);
228 	delete_from_page_cache(page);
229 	return 0;
230 }
231 
232 /*
233  * Used to get rid of pages on hardware memory corruption.
234  */
235 int generic_error_remove_page(struct address_space *mapping, struct page *page)
236 {
237 	if (!mapping)
238 		return -EINVAL;
239 	/*
240 	 * Only punch for normal data pages for now.
241 	 * Handling other types like directories would need more auditing.
242 	 */
243 	if (!S_ISREG(mapping->host->i_mode))
244 		return -EIO;
245 	return truncate_inode_page(mapping, page);
246 }
247 EXPORT_SYMBOL(generic_error_remove_page);
248 
249 /*
250  * Safely invalidate one page from its pagecache mapping.
251  * It only drops clean, unused pages. The page must be locked.
252  *
253  * Returns 1 if the page is successfully invalidated, otherwise 0.
254  */
255 int invalidate_inode_page(struct page *page)
256 {
257 	struct address_space *mapping = page_mapping(page);
258 	if (!mapping)
259 		return 0;
260 	if (PageDirty(page) || PageWriteback(page))
261 		return 0;
262 	if (page_mapped(page))
263 		return 0;
264 	return invalidate_complete_page(mapping, page);
265 }
266 
267 /**
268  * truncate_inode_pages_range - truncate range of pages specified by start & end byte offsets
269  * @mapping: mapping to truncate
270  * @lstart: offset from which to truncate
271  * @lend: offset to which to truncate (inclusive)
272  *
273  * Truncate the page cache, removing the pages that are between
274  * specified offsets (and zeroing out partial pages
275  * if lstart or lend + 1 is not page aligned).
276  *
277  * Truncate takes two passes - the first pass is nonblocking.  It will not
278  * block on page locks and it will not block on writeback.  The second pass
279  * will wait.  This is to prevent as much IO as possible in the affected region.
280  * The first pass will remove most pages, so the search cost of the second pass
281  * is low.
282  *
283  * We pass down the cache-hot hint to the page freeing code.  Even if the
284  * mapping is large, it is probably the case that the final pages are the most
285  * recently touched, and freeing happens in ascending file offset order.
286  *
287  * Note that since ->invalidatepage() accepts range to invalidate
288  * truncate_inode_pages_range is able to handle cases where lend + 1 is not
289  * page aligned properly.
290  */
291 void truncate_inode_pages_range(struct address_space *mapping,
292 				loff_t lstart, loff_t lend)
293 {
294 	pgoff_t		start;		/* inclusive */
295 	pgoff_t		end;		/* exclusive */
296 	unsigned int	partial_start;	/* inclusive */
297 	unsigned int	partial_end;	/* exclusive */
298 	struct pagevec	pvec;
299 	pgoff_t		indices[PAGEVEC_SIZE];
300 	pgoff_t		index;
301 	int		i;
302 
303 	if (mapping->nrpages == 0 && mapping->nrexceptional == 0)
304 		goto out;
305 
306 	/* Offsets within partial pages */
307 	partial_start = lstart & (PAGE_SIZE - 1);
308 	partial_end = (lend + 1) & (PAGE_SIZE - 1);
309 
310 	/*
311 	 * 'start' and 'end' always covers the range of pages to be fully
312 	 * truncated. Partial pages are covered with 'partial_start' at the
313 	 * start of the range and 'partial_end' at the end of the range.
314 	 * Note that 'end' is exclusive while 'lend' is inclusive.
315 	 */
316 	start = (lstart + PAGE_SIZE - 1) >> PAGE_SHIFT;
317 	if (lend == -1)
318 		/*
319 		 * lend == -1 indicates end-of-file so we have to set 'end'
320 		 * to the highest possible pgoff_t and since the type is
321 		 * unsigned we're using -1.
322 		 */
323 		end = -1;
324 	else
325 		end = (lend + 1) >> PAGE_SHIFT;
326 
327 	pagevec_init(&pvec);
328 	index = start;
329 	while (index < end && pagevec_lookup_entries(&pvec, mapping, index,
330 			min(end - index, (pgoff_t)PAGEVEC_SIZE),
331 			indices)) {
332 		/*
333 		 * Pagevec array has exceptional entries and we may also fail
334 		 * to lock some pages. So we store pages that can be deleted
335 		 * in a new pagevec.
336 		 */
337 		struct pagevec locked_pvec;
338 
339 		pagevec_init(&locked_pvec);
340 		for (i = 0; i < pagevec_count(&pvec); i++) {
341 			struct page *page = pvec.pages[i];
342 
343 			/* We rely upon deletion not changing page->index */
344 			index = indices[i];
345 			if (index >= end)
346 				break;
347 
348 			if (xa_is_value(page))
349 				continue;
350 
351 			if (!trylock_page(page))
352 				continue;
353 			WARN_ON(page_to_index(page) != index);
354 			if (PageWriteback(page)) {
355 				unlock_page(page);
356 				continue;
357 			}
358 			if (page->mapping != mapping) {
359 				unlock_page(page);
360 				continue;
361 			}
362 			pagevec_add(&locked_pvec, page);
363 		}
364 		for (i = 0; i < pagevec_count(&locked_pvec); i++)
365 			truncate_cleanup_page(mapping, locked_pvec.pages[i]);
366 		delete_from_page_cache_batch(mapping, &locked_pvec);
367 		for (i = 0; i < pagevec_count(&locked_pvec); i++)
368 			unlock_page(locked_pvec.pages[i]);
369 		truncate_exceptional_pvec_entries(mapping, &pvec, indices, end);
370 		pagevec_release(&pvec);
371 		cond_resched();
372 		index++;
373 	}
374 	if (partial_start) {
375 		struct page *page = find_lock_page(mapping, start - 1);
376 		if (page) {
377 			unsigned int top = PAGE_SIZE;
378 			if (start > end) {
379 				/* Truncation within a single page */
380 				top = partial_end;
381 				partial_end = 0;
382 			}
383 			wait_on_page_writeback(page);
384 			zero_user_segment(page, partial_start, top);
385 			cleancache_invalidate_page(mapping, page);
386 			if (page_has_private(page))
387 				do_invalidatepage(page, partial_start,
388 						  top - partial_start);
389 			unlock_page(page);
390 			put_page(page);
391 		}
392 	}
393 	if (partial_end) {
394 		struct page *page = find_lock_page(mapping, end);
395 		if (page) {
396 			wait_on_page_writeback(page);
397 			zero_user_segment(page, 0, partial_end);
398 			cleancache_invalidate_page(mapping, page);
399 			if (page_has_private(page))
400 				do_invalidatepage(page, 0,
401 						  partial_end);
402 			unlock_page(page);
403 			put_page(page);
404 		}
405 	}
406 	/*
407 	 * If the truncation happened within a single page no pages
408 	 * will be released, just zeroed, so we can bail out now.
409 	 */
410 	if (start >= end)
411 		goto out;
412 
413 	index = start;
414 	for ( ; ; ) {
415 		cond_resched();
416 		if (!pagevec_lookup_entries(&pvec, mapping, index,
417 			min(end - index, (pgoff_t)PAGEVEC_SIZE), indices)) {
418 			/* If all gone from start onwards, we're done */
419 			if (index == start)
420 				break;
421 			/* Otherwise restart to make sure all gone */
422 			index = start;
423 			continue;
424 		}
425 		if (index == start && indices[0] >= end) {
426 			/* All gone out of hole to be punched, we're done */
427 			pagevec_remove_exceptionals(&pvec);
428 			pagevec_release(&pvec);
429 			break;
430 		}
431 
432 		for (i = 0; i < pagevec_count(&pvec); i++) {
433 			struct page *page = pvec.pages[i];
434 
435 			/* We rely upon deletion not changing page->index */
436 			index = indices[i];
437 			if (index >= end) {
438 				/* Restart punch to make sure all gone */
439 				index = start - 1;
440 				break;
441 			}
442 
443 			if (xa_is_value(page))
444 				continue;
445 
446 			lock_page(page);
447 			WARN_ON(page_to_index(page) != index);
448 			wait_on_page_writeback(page);
449 			truncate_inode_page(mapping, page);
450 			unlock_page(page);
451 		}
452 		truncate_exceptional_pvec_entries(mapping, &pvec, indices, end);
453 		pagevec_release(&pvec);
454 		index++;
455 	}
456 
457 out:
458 	cleancache_invalidate_inode(mapping);
459 }
460 EXPORT_SYMBOL(truncate_inode_pages_range);
461 
462 /**
463  * truncate_inode_pages - truncate *all* the pages from an offset
464  * @mapping: mapping to truncate
465  * @lstart: offset from which to truncate
466  *
467  * Called under (and serialised by) inode->i_mutex.
468  *
469  * Note: When this function returns, there can be a page in the process of
470  * deletion (inside __delete_from_page_cache()) in the specified range.  Thus
471  * mapping->nrpages can be non-zero when this function returns even after
472  * truncation of the whole mapping.
473  */
474 void truncate_inode_pages(struct address_space *mapping, loff_t lstart)
475 {
476 	truncate_inode_pages_range(mapping, lstart, (loff_t)-1);
477 }
478 EXPORT_SYMBOL(truncate_inode_pages);
479 
480 /**
481  * truncate_inode_pages_final - truncate *all* pages before inode dies
482  * @mapping: mapping to truncate
483  *
484  * Called under (and serialized by) inode->i_mutex.
485  *
486  * Filesystems have to use this in the .evict_inode path to inform the
487  * VM that this is the final truncate and the inode is going away.
488  */
489 void truncate_inode_pages_final(struct address_space *mapping)
490 {
491 	unsigned long nrexceptional;
492 	unsigned long nrpages;
493 
494 	/*
495 	 * Page reclaim can not participate in regular inode lifetime
496 	 * management (can't call iput()) and thus can race with the
497 	 * inode teardown.  Tell it when the address space is exiting,
498 	 * so that it does not install eviction information after the
499 	 * final truncate has begun.
500 	 */
501 	mapping_set_exiting(mapping);
502 
503 	/*
504 	 * When reclaim installs eviction entries, it increases
505 	 * nrexceptional first, then decreases nrpages.  Make sure we see
506 	 * this in the right order or we might miss an entry.
507 	 */
508 	nrpages = mapping->nrpages;
509 	smp_rmb();
510 	nrexceptional = mapping->nrexceptional;
511 
512 	if (nrpages || nrexceptional) {
513 		/*
514 		 * As truncation uses a lockless tree lookup, cycle
515 		 * the tree lock to make sure any ongoing tree
516 		 * modification that does not see AS_EXITING is
517 		 * completed before starting the final truncate.
518 		 */
519 		xa_lock_irq(&mapping->i_pages);
520 		xa_unlock_irq(&mapping->i_pages);
521 	}
522 
523 	/*
524 	 * Cleancache needs notification even if there are no pages or shadow
525 	 * entries.
526 	 */
527 	truncate_inode_pages(mapping, 0);
528 }
529 EXPORT_SYMBOL(truncate_inode_pages_final);
530 
531 static unsigned long __invalidate_mapping_pages(struct address_space *mapping,
532 		pgoff_t start, pgoff_t end, unsigned long *nr_pagevec)
533 {
534 	pgoff_t indices[PAGEVEC_SIZE];
535 	struct pagevec pvec;
536 	pgoff_t index = start;
537 	unsigned long ret;
538 	unsigned long count = 0;
539 	int i;
540 
541 	pagevec_init(&pvec);
542 	while (index <= end && pagevec_lookup_entries(&pvec, mapping, index,
543 			min(end - index, (pgoff_t)PAGEVEC_SIZE - 1) + 1,
544 			indices)) {
545 		for (i = 0; i < pagevec_count(&pvec); i++) {
546 			struct page *page = pvec.pages[i];
547 
548 			/* We rely upon deletion not changing page->index */
549 			index = indices[i];
550 			if (index > end)
551 				break;
552 
553 			if (xa_is_value(page)) {
554 				invalidate_exceptional_entry(mapping, index,
555 							     page);
556 				continue;
557 			}
558 
559 			if (!trylock_page(page))
560 				continue;
561 
562 			WARN_ON(page_to_index(page) != index);
563 
564 			/* Middle of THP: skip */
565 			if (PageTransTail(page)) {
566 				unlock_page(page);
567 				continue;
568 			} else if (PageTransHuge(page)) {
569 				index += HPAGE_PMD_NR - 1;
570 				i += HPAGE_PMD_NR - 1;
571 				/*
572 				 * 'end' is in the middle of THP. Don't
573 				 * invalidate the page as the part outside of
574 				 * 'end' could be still useful.
575 				 */
576 				if (index > end) {
577 					unlock_page(page);
578 					continue;
579 				}
580 
581 				/* Take a pin outside pagevec */
582 				get_page(page);
583 
584 				/*
585 				 * Drop extra pins before trying to invalidate
586 				 * the huge page.
587 				 */
588 				pagevec_remove_exceptionals(&pvec);
589 				pagevec_release(&pvec);
590 			}
591 
592 			ret = invalidate_inode_page(page);
593 			unlock_page(page);
594 			/*
595 			 * Invalidation is a hint that the page is no longer
596 			 * of interest and try to speed up its reclaim.
597 			 */
598 			if (!ret) {
599 				deactivate_file_page(page);
600 				/* It is likely on the pagevec of a remote CPU */
601 				if (nr_pagevec)
602 					(*nr_pagevec)++;
603 			}
604 
605 			if (PageTransHuge(page))
606 				put_page(page);
607 			count += ret;
608 		}
609 		pagevec_remove_exceptionals(&pvec);
610 		pagevec_release(&pvec);
611 		cond_resched();
612 		index++;
613 	}
614 	return count;
615 }
616 
617 /**
618  * invalidate_mapping_pages - Invalidate all the unlocked pages of one inode
619  * @mapping: the address_space which holds the pages to invalidate
620  * @start: the offset 'from' which to invalidate
621  * @end: the offset 'to' which to invalidate (inclusive)
622  *
623  * This function only removes the unlocked pages, if you want to
624  * remove all the pages of one inode, you must call truncate_inode_pages.
625  *
626  * invalidate_mapping_pages() will not block on IO activity. It will not
627  * invalidate pages which are dirty, locked, under writeback or mapped into
628  * pagetables.
629  *
630  * Return: the number of the pages that were invalidated
631  */
632 unsigned long invalidate_mapping_pages(struct address_space *mapping,
633 		pgoff_t start, pgoff_t end)
634 {
635 	return __invalidate_mapping_pages(mapping, start, end, NULL);
636 }
637 EXPORT_SYMBOL(invalidate_mapping_pages);
638 
639 /**
640  * invalidate_mapping_pagevec - Invalidate all the unlocked pages of one inode
641  * @mapping: the address_space which holds the pages to invalidate
642  * @start: the offset 'from' which to invalidate
643  * @end: the offset 'to' which to invalidate (inclusive)
644  * @nr_pagevec: invalidate failed page number for caller
645  *
646  * This helper is similar to invalidate_mapping_pages(), except that it accounts
647  * for pages that are likely on a pagevec and counts them in @nr_pagevec, which
648  * will be used by the caller.
649  */
650 void invalidate_mapping_pagevec(struct address_space *mapping,
651 		pgoff_t start, pgoff_t end, unsigned long *nr_pagevec)
652 {
653 	__invalidate_mapping_pages(mapping, start, end, nr_pagevec);
654 }
655 
656 /*
657  * This is like invalidate_complete_page(), except it ignores the page's
658  * refcount.  We do this because invalidate_inode_pages2() needs stronger
659  * invalidation guarantees, and cannot afford to leave pages behind because
660  * shrink_page_list() has a temp ref on them, or because they're transiently
661  * sitting in the lru_cache_add() pagevecs.
662  */
663 static int
664 invalidate_complete_page2(struct address_space *mapping, struct page *page)
665 {
666 	unsigned long flags;
667 
668 	if (page->mapping != mapping)
669 		return 0;
670 
671 	if (page_has_private(page) && !try_to_release_page(page, GFP_KERNEL))
672 		return 0;
673 
674 	xa_lock_irqsave(&mapping->i_pages, flags);
675 	if (PageDirty(page))
676 		goto failed;
677 
678 	BUG_ON(page_has_private(page));
679 	__delete_from_page_cache(page, NULL);
680 	xa_unlock_irqrestore(&mapping->i_pages, flags);
681 
682 	if (mapping->a_ops->freepage)
683 		mapping->a_ops->freepage(page);
684 
685 	put_page(page);	/* pagecache ref */
686 	return 1;
687 failed:
688 	xa_unlock_irqrestore(&mapping->i_pages, flags);
689 	return 0;
690 }
691 
692 static int do_launder_page(struct address_space *mapping, struct page *page)
693 {
694 	if (!PageDirty(page))
695 		return 0;
696 	if (page->mapping != mapping || mapping->a_ops->launder_page == NULL)
697 		return 0;
698 	return mapping->a_ops->launder_page(page);
699 }
700 
701 /**
702  * invalidate_inode_pages2_range - remove range of pages from an address_space
703  * @mapping: the address_space
704  * @start: the page offset 'from' which to invalidate
705  * @end: the page offset 'to' which to invalidate (inclusive)
706  *
707  * Any pages which are found to be mapped into pagetables are unmapped prior to
708  * invalidation.
709  *
710  * Return: -EBUSY if any pages could not be invalidated.
711  */
712 int invalidate_inode_pages2_range(struct address_space *mapping,
713 				  pgoff_t start, pgoff_t end)
714 {
715 	pgoff_t indices[PAGEVEC_SIZE];
716 	struct pagevec pvec;
717 	pgoff_t index;
718 	int i;
719 	int ret = 0;
720 	int ret2 = 0;
721 	int did_range_unmap = 0;
722 
723 	if (mapping->nrpages == 0 && mapping->nrexceptional == 0)
724 		goto out;
725 
726 	pagevec_init(&pvec);
727 	index = start;
728 	while (index <= end && pagevec_lookup_entries(&pvec, mapping, index,
729 			min(end - index, (pgoff_t)PAGEVEC_SIZE - 1) + 1,
730 			indices)) {
731 		for (i = 0; i < pagevec_count(&pvec); i++) {
732 			struct page *page = pvec.pages[i];
733 
734 			/* We rely upon deletion not changing page->index */
735 			index = indices[i];
736 			if (index > end)
737 				break;
738 
739 			if (xa_is_value(page)) {
740 				if (!invalidate_exceptional_entry2(mapping,
741 								   index, page))
742 					ret = -EBUSY;
743 				continue;
744 			}
745 
746 			lock_page(page);
747 			WARN_ON(page_to_index(page) != index);
748 			if (page->mapping != mapping) {
749 				unlock_page(page);
750 				continue;
751 			}
752 			wait_on_page_writeback(page);
753 			if (page_mapped(page)) {
754 				if (!did_range_unmap) {
755 					/*
756 					 * Zap the rest of the file in one hit.
757 					 */
758 					unmap_mapping_pages(mapping, index,
759 						(1 + end - index), false);
760 					did_range_unmap = 1;
761 				} else {
762 					/*
763 					 * Just zap this page
764 					 */
765 					unmap_mapping_pages(mapping, index,
766 								1, false);
767 				}
768 			}
769 			BUG_ON(page_mapped(page));
770 			ret2 = do_launder_page(mapping, page);
771 			if (ret2 == 0) {
772 				if (!invalidate_complete_page2(mapping, page))
773 					ret2 = -EBUSY;
774 			}
775 			if (ret2 < 0)
776 				ret = ret2;
777 			unlock_page(page);
778 		}
779 		pagevec_remove_exceptionals(&pvec);
780 		pagevec_release(&pvec);
781 		cond_resched();
782 		index++;
783 	}
784 	/*
785 	 * For DAX we invalidate page tables after invalidating page cache.  We
786 	 * could invalidate page tables while invalidating each entry however
787 	 * that would be expensive. And doing range unmapping before doesn't
788 	 * work as we have no cheap way to find whether page cache entry didn't
789 	 * get remapped later.
790 	 */
791 	if (dax_mapping(mapping)) {
792 		unmap_mapping_pages(mapping, start, end - start + 1, false);
793 	}
794 out:
795 	cleancache_invalidate_inode(mapping);
796 	return ret;
797 }
798 EXPORT_SYMBOL_GPL(invalidate_inode_pages2_range);
799 
800 /**
801  * invalidate_inode_pages2 - remove all pages from an address_space
802  * @mapping: the address_space
803  *
804  * Any pages which are found to be mapped into pagetables are unmapped prior to
805  * invalidation.
806  *
807  * Return: -EBUSY if any pages could not be invalidated.
808  */
809 int invalidate_inode_pages2(struct address_space *mapping)
810 {
811 	return invalidate_inode_pages2_range(mapping, 0, -1);
812 }
813 EXPORT_SYMBOL_GPL(invalidate_inode_pages2);
814 
815 /**
816  * truncate_pagecache - unmap and remove pagecache that has been truncated
817  * @inode: inode
818  * @newsize: new file size
819  *
820  * inode's new i_size must already be written before truncate_pagecache
821  * is called.
822  *
823  * This function should typically be called before the filesystem
824  * releases resources associated with the freed range (eg. deallocates
825  * blocks). This way, pagecache will always stay logically coherent
826  * with on-disk format, and the filesystem would not have to deal with
827  * situations such as writepage being called for a page that has already
828  * had its underlying blocks deallocated.
829  */
830 void truncate_pagecache(struct inode *inode, loff_t newsize)
831 {
832 	struct address_space *mapping = inode->i_mapping;
833 	loff_t holebegin = round_up(newsize, PAGE_SIZE);
834 
835 	/*
836 	 * unmap_mapping_range is called twice, first simply for
837 	 * efficiency so that truncate_inode_pages does fewer
838 	 * single-page unmaps.  However after this first call, and
839 	 * before truncate_inode_pages finishes, it is possible for
840 	 * private pages to be COWed, which remain after
841 	 * truncate_inode_pages finishes, hence the second
842 	 * unmap_mapping_range call must be made for correctness.
843 	 */
844 	unmap_mapping_range(mapping, holebegin, 0, 1);
845 	truncate_inode_pages(mapping, newsize);
846 	unmap_mapping_range(mapping, holebegin, 0, 1);
847 }
848 EXPORT_SYMBOL(truncate_pagecache);
849 
850 /**
851  * truncate_setsize - update inode and pagecache for a new file size
852  * @inode: inode
853  * @newsize: new file size
854  *
855  * truncate_setsize updates i_size and performs pagecache truncation (if
856  * necessary) to @newsize. It will be typically be called from the filesystem's
857  * setattr function when ATTR_SIZE is passed in.
858  *
859  * Must be called with a lock serializing truncates and writes (generally
860  * i_mutex but e.g. xfs uses a different lock) and before all filesystem
861  * specific block truncation has been performed.
862  */
863 void truncate_setsize(struct inode *inode, loff_t newsize)
864 {
865 	loff_t oldsize = inode->i_size;
866 
867 	i_size_write(inode, newsize);
868 	if (newsize > oldsize)
869 		pagecache_isize_extended(inode, oldsize, newsize);
870 	truncate_pagecache(inode, newsize);
871 }
872 EXPORT_SYMBOL(truncate_setsize);
873 
874 /**
875  * pagecache_isize_extended - update pagecache after extension of i_size
876  * @inode:	inode for which i_size was extended
877  * @from:	original inode size
878  * @to:		new inode size
879  *
880  * Handle extension of inode size either caused by extending truncate or by
881  * write starting after current i_size. We mark the page straddling current
882  * i_size RO so that page_mkwrite() is called on the nearest write access to
883  * the page.  This way filesystem can be sure that page_mkwrite() is called on
884  * the page before user writes to the page via mmap after the i_size has been
885  * changed.
886  *
887  * The function must be called after i_size is updated so that page fault
888  * coming after we unlock the page will already see the new i_size.
889  * The function must be called while we still hold i_mutex - this not only
890  * makes sure i_size is stable but also that userspace cannot observe new
891  * i_size value before we are prepared to store mmap writes at new inode size.
892  */
893 void pagecache_isize_extended(struct inode *inode, loff_t from, loff_t to)
894 {
895 	int bsize = i_blocksize(inode);
896 	loff_t rounded_from;
897 	struct page *page;
898 	pgoff_t index;
899 
900 	WARN_ON(to > inode->i_size);
901 
902 	if (from >= to || bsize == PAGE_SIZE)
903 		return;
904 	/* Page straddling @from will not have any hole block created? */
905 	rounded_from = round_up(from, bsize);
906 	if (to <= rounded_from || !(rounded_from & (PAGE_SIZE - 1)))
907 		return;
908 
909 	index = from >> PAGE_SHIFT;
910 	page = find_lock_page(inode->i_mapping, index);
911 	/* Page not cached? Nothing to do */
912 	if (!page)
913 		return;
914 	/*
915 	 * See clear_page_dirty_for_io() for details why set_page_dirty()
916 	 * is needed.
917 	 */
918 	if (page_mkclean(page))
919 		set_page_dirty(page);
920 	unlock_page(page);
921 	put_page(page);
922 }
923 EXPORT_SYMBOL(pagecache_isize_extended);
924 
925 /**
926  * truncate_pagecache_range - unmap and remove pagecache that is hole-punched
927  * @inode: inode
928  * @lstart: offset of beginning of hole
929  * @lend: offset of last byte of hole
930  *
931  * This function should typically be called before the filesystem
932  * releases resources associated with the freed range (eg. deallocates
933  * blocks). This way, pagecache will always stay logically coherent
934  * with on-disk format, and the filesystem would not have to deal with
935  * situations such as writepage being called for a page that has already
936  * had its underlying blocks deallocated.
937  */
938 void truncate_pagecache_range(struct inode *inode, loff_t lstart, loff_t lend)
939 {
940 	struct address_space *mapping = inode->i_mapping;
941 	loff_t unmap_start = round_up(lstart, PAGE_SIZE);
942 	loff_t unmap_end = round_down(1 + lend, PAGE_SIZE) - 1;
943 	/*
944 	 * This rounding is currently just for example: unmap_mapping_range
945 	 * expands its hole outwards, whereas we want it to contract the hole
946 	 * inwards.  However, existing callers of truncate_pagecache_range are
947 	 * doing their own page rounding first.  Note that unmap_mapping_range
948 	 * allows holelen 0 for all, and we allow lend -1 for end of file.
949 	 */
950 
951 	/*
952 	 * Unlike in truncate_pagecache, unmap_mapping_range is called only
953 	 * once (before truncating pagecache), and without "even_cows" flag:
954 	 * hole-punching should not remove private COWed pages from the hole.
955 	 */
956 	if ((u64)unmap_end > (u64)unmap_start)
957 		unmap_mapping_range(mapping, unmap_start,
958 				    1 + unmap_end - unmap_start, 0);
959 	truncate_inode_pages_range(mapping, lstart, lend);
960 }
961 EXPORT_SYMBOL(truncate_pagecache_range);
962