1 // SPDX-License-Identifier: GPL-2.0-only 2 /* 3 * mm/truncate.c - code for taking down pages from address_spaces 4 * 5 * Copyright (C) 2002, Linus Torvalds 6 * 7 * 10Sep2002 Andrew Morton 8 * Initial version. 9 */ 10 11 #include <linux/kernel.h> 12 #include <linux/backing-dev.h> 13 #include <linux/dax.h> 14 #include <linux/gfp.h> 15 #include <linux/mm.h> 16 #include <linux/swap.h> 17 #include <linux/export.h> 18 #include <linux/pagemap.h> 19 #include <linux/highmem.h> 20 #include <linux/pagevec.h> 21 #include <linux/task_io_accounting_ops.h> 22 #include <linux/buffer_head.h> /* grr. try_to_release_page */ 23 #include <linux/shmem_fs.h> 24 #include <linux/rmap.h> 25 #include "internal.h" 26 27 /* 28 * Regular page slots are stabilized by the page lock even without the tree 29 * itself locked. These unlocked entries need verification under the tree 30 * lock. 31 */ 32 static inline void __clear_shadow_entry(struct address_space *mapping, 33 pgoff_t index, void *entry) 34 { 35 XA_STATE(xas, &mapping->i_pages, index); 36 37 xas_set_update(&xas, workingset_update_node); 38 if (xas_load(&xas) != entry) 39 return; 40 xas_store(&xas, NULL); 41 } 42 43 static void clear_shadow_entry(struct address_space *mapping, pgoff_t index, 44 void *entry) 45 { 46 spin_lock(&mapping->host->i_lock); 47 xa_lock_irq(&mapping->i_pages); 48 __clear_shadow_entry(mapping, index, entry); 49 xa_unlock_irq(&mapping->i_pages); 50 if (mapping_shrinkable(mapping)) 51 inode_add_lru(mapping->host); 52 spin_unlock(&mapping->host->i_lock); 53 } 54 55 /* 56 * Unconditionally remove exceptional entries. Usually called from truncate 57 * path. Note that the folio_batch may be altered by this function by removing 58 * exceptional entries similar to what folio_batch_remove_exceptionals() does. 59 */ 60 static void truncate_folio_batch_exceptionals(struct address_space *mapping, 61 struct folio_batch *fbatch, pgoff_t *indices) 62 { 63 int i, j; 64 bool dax; 65 66 /* Handled by shmem itself */ 67 if (shmem_mapping(mapping)) 68 return; 69 70 for (j = 0; j < folio_batch_count(fbatch); j++) 71 if (xa_is_value(fbatch->folios[j])) 72 break; 73 74 if (j == folio_batch_count(fbatch)) 75 return; 76 77 dax = dax_mapping(mapping); 78 if (!dax) { 79 spin_lock(&mapping->host->i_lock); 80 xa_lock_irq(&mapping->i_pages); 81 } 82 83 for (i = j; i < folio_batch_count(fbatch); i++) { 84 struct folio *folio = fbatch->folios[i]; 85 pgoff_t index = indices[i]; 86 87 if (!xa_is_value(folio)) { 88 fbatch->folios[j++] = folio; 89 continue; 90 } 91 92 if (unlikely(dax)) { 93 dax_delete_mapping_entry(mapping, index); 94 continue; 95 } 96 97 __clear_shadow_entry(mapping, index, folio); 98 } 99 100 if (!dax) { 101 xa_unlock_irq(&mapping->i_pages); 102 if (mapping_shrinkable(mapping)) 103 inode_add_lru(mapping->host); 104 spin_unlock(&mapping->host->i_lock); 105 } 106 fbatch->nr = j; 107 } 108 109 /* 110 * Invalidate exceptional entry if easily possible. This handles exceptional 111 * entries for invalidate_inode_pages(). 112 */ 113 static int invalidate_exceptional_entry(struct address_space *mapping, 114 pgoff_t index, void *entry) 115 { 116 /* Handled by shmem itself, or for DAX we do nothing. */ 117 if (shmem_mapping(mapping) || dax_mapping(mapping)) 118 return 1; 119 clear_shadow_entry(mapping, index, entry); 120 return 1; 121 } 122 123 /* 124 * Invalidate exceptional entry if clean. This handles exceptional entries for 125 * invalidate_inode_pages2() so for DAX it evicts only clean entries. 126 */ 127 static int invalidate_exceptional_entry2(struct address_space *mapping, 128 pgoff_t index, void *entry) 129 { 130 /* Handled by shmem itself */ 131 if (shmem_mapping(mapping)) 132 return 1; 133 if (dax_mapping(mapping)) 134 return dax_invalidate_mapping_entry_sync(mapping, index); 135 clear_shadow_entry(mapping, index, entry); 136 return 1; 137 } 138 139 /** 140 * folio_invalidate - Invalidate part or all of a folio. 141 * @folio: The folio which is affected. 142 * @offset: start of the range to invalidate 143 * @length: length of the range to invalidate 144 * 145 * folio_invalidate() is called when all or part of the folio has become 146 * invalidated by a truncate operation. 147 * 148 * folio_invalidate() does not have to release all buffers, but it must 149 * ensure that no dirty buffer is left outside @offset and that no I/O 150 * is underway against any of the blocks which are outside the truncation 151 * point. Because the caller is about to free (and possibly reuse) those 152 * blocks on-disk. 153 */ 154 void folio_invalidate(struct folio *folio, size_t offset, size_t length) 155 { 156 const struct address_space_operations *aops = folio->mapping->a_ops; 157 158 if (aops->invalidate_folio) 159 aops->invalidate_folio(folio, offset, length); 160 } 161 EXPORT_SYMBOL_GPL(folio_invalidate); 162 163 /* 164 * If truncate cannot remove the fs-private metadata from the page, the page 165 * becomes orphaned. It will be left on the LRU and may even be mapped into 166 * user pagetables if we're racing with filemap_fault(). 167 * 168 * We need to bail out if page->mapping is no longer equal to the original 169 * mapping. This happens a) when the VM reclaimed the page while we waited on 170 * its lock, b) when a concurrent invalidate_mapping_pages got there first and 171 * c) when tmpfs swizzles a page between a tmpfs inode and swapper_space. 172 */ 173 static void truncate_cleanup_folio(struct folio *folio) 174 { 175 if (folio_mapped(folio)) 176 unmap_mapping_folio(folio); 177 178 if (folio_has_private(folio)) 179 folio_invalidate(folio, 0, folio_size(folio)); 180 181 /* 182 * Some filesystems seem to re-dirty the page even after 183 * the VM has canceled the dirty bit (eg ext3 journaling). 184 * Hence dirty accounting check is placed after invalidation. 185 */ 186 folio_cancel_dirty(folio); 187 folio_clear_mappedtodisk(folio); 188 } 189 190 int truncate_inode_folio(struct address_space *mapping, struct folio *folio) 191 { 192 if (folio->mapping != mapping) 193 return -EIO; 194 195 truncate_cleanup_folio(folio); 196 filemap_remove_folio(folio); 197 return 0; 198 } 199 200 /* 201 * Handle partial folios. The folio may be entirely within the 202 * range if a split has raced with us. If not, we zero the part of the 203 * folio that's within the [start, end] range, and then split the folio if 204 * it's large. split_page_range() will discard pages which now lie beyond 205 * i_size, and we rely on the caller to discard pages which lie within a 206 * newly created hole. 207 * 208 * Returns false if splitting failed so the caller can avoid 209 * discarding the entire folio which is stubbornly unsplit. 210 */ 211 bool truncate_inode_partial_folio(struct folio *folio, loff_t start, loff_t end) 212 { 213 loff_t pos = folio_pos(folio); 214 unsigned int offset, length; 215 216 if (pos < start) 217 offset = start - pos; 218 else 219 offset = 0; 220 length = folio_size(folio); 221 if (pos + length <= (u64)end) 222 length = length - offset; 223 else 224 length = end + 1 - pos - offset; 225 226 folio_wait_writeback(folio); 227 if (length == folio_size(folio)) { 228 truncate_inode_folio(folio->mapping, folio); 229 return true; 230 } 231 232 /* 233 * We may be zeroing pages we're about to discard, but it avoids 234 * doing a complex calculation here, and then doing the zeroing 235 * anyway if the page split fails. 236 */ 237 folio_zero_range(folio, offset, length); 238 239 if (folio_has_private(folio)) 240 folio_invalidate(folio, offset, length); 241 if (!folio_test_large(folio)) 242 return true; 243 if (split_folio(folio) == 0) 244 return true; 245 if (folio_test_dirty(folio)) 246 return false; 247 truncate_inode_folio(folio->mapping, folio); 248 return true; 249 } 250 251 /* 252 * Used to get rid of pages on hardware memory corruption. 253 */ 254 int generic_error_remove_page(struct address_space *mapping, struct page *page) 255 { 256 VM_BUG_ON_PAGE(PageTail(page), page); 257 258 if (!mapping) 259 return -EINVAL; 260 /* 261 * Only punch for normal data pages for now. 262 * Handling other types like directories would need more auditing. 263 */ 264 if (!S_ISREG(mapping->host->i_mode)) 265 return -EIO; 266 return truncate_inode_folio(mapping, page_folio(page)); 267 } 268 EXPORT_SYMBOL(generic_error_remove_page); 269 270 static long mapping_evict_folio(struct address_space *mapping, 271 struct folio *folio) 272 { 273 if (folio_test_dirty(folio) || folio_test_writeback(folio)) 274 return 0; 275 /* The refcount will be elevated if any page in the folio is mapped */ 276 if (folio_ref_count(folio) > 277 folio_nr_pages(folio) + folio_has_private(folio) + 1) 278 return 0; 279 if (folio_has_private(folio) && !filemap_release_folio(folio, 0)) 280 return 0; 281 282 return remove_mapping(mapping, folio); 283 } 284 285 /** 286 * invalidate_inode_page() - Remove an unused page from the pagecache. 287 * @page: The page to remove. 288 * 289 * Safely invalidate one page from its pagecache mapping. 290 * It only drops clean, unused pages. 291 * 292 * Context: Page must be locked. 293 * Return: The number of pages successfully removed. 294 */ 295 long invalidate_inode_page(struct page *page) 296 { 297 struct folio *folio = page_folio(page); 298 struct address_space *mapping = folio_mapping(folio); 299 300 /* The page may have been truncated before it was locked */ 301 if (!mapping) 302 return 0; 303 return mapping_evict_folio(mapping, folio); 304 } 305 306 /** 307 * truncate_inode_pages_range - truncate range of pages specified by start & end byte offsets 308 * @mapping: mapping to truncate 309 * @lstart: offset from which to truncate 310 * @lend: offset to which to truncate (inclusive) 311 * 312 * Truncate the page cache, removing the pages that are between 313 * specified offsets (and zeroing out partial pages 314 * if lstart or lend + 1 is not page aligned). 315 * 316 * Truncate takes two passes - the first pass is nonblocking. It will not 317 * block on page locks and it will not block on writeback. The second pass 318 * will wait. This is to prevent as much IO as possible in the affected region. 319 * The first pass will remove most pages, so the search cost of the second pass 320 * is low. 321 * 322 * We pass down the cache-hot hint to the page freeing code. Even if the 323 * mapping is large, it is probably the case that the final pages are the most 324 * recently touched, and freeing happens in ascending file offset order. 325 * 326 * Note that since ->invalidate_folio() accepts range to invalidate 327 * truncate_inode_pages_range is able to handle cases where lend + 1 is not 328 * page aligned properly. 329 */ 330 void truncate_inode_pages_range(struct address_space *mapping, 331 loff_t lstart, loff_t lend) 332 { 333 pgoff_t start; /* inclusive */ 334 pgoff_t end; /* exclusive */ 335 struct folio_batch fbatch; 336 pgoff_t indices[PAGEVEC_SIZE]; 337 pgoff_t index; 338 int i; 339 struct folio *folio; 340 bool same_folio; 341 342 if (mapping_empty(mapping)) 343 return; 344 345 /* 346 * 'start' and 'end' always covers the range of pages to be fully 347 * truncated. Partial pages are covered with 'partial_start' at the 348 * start of the range and 'partial_end' at the end of the range. 349 * Note that 'end' is exclusive while 'lend' is inclusive. 350 */ 351 start = (lstart + PAGE_SIZE - 1) >> PAGE_SHIFT; 352 if (lend == -1) 353 /* 354 * lend == -1 indicates end-of-file so we have to set 'end' 355 * to the highest possible pgoff_t and since the type is 356 * unsigned we're using -1. 357 */ 358 end = -1; 359 else 360 end = (lend + 1) >> PAGE_SHIFT; 361 362 folio_batch_init(&fbatch); 363 index = start; 364 while (index < end && find_lock_entries(mapping, &index, end - 1, 365 &fbatch, indices)) { 366 truncate_folio_batch_exceptionals(mapping, &fbatch, indices); 367 for (i = 0; i < folio_batch_count(&fbatch); i++) 368 truncate_cleanup_folio(fbatch.folios[i]); 369 delete_from_page_cache_batch(mapping, &fbatch); 370 for (i = 0; i < folio_batch_count(&fbatch); i++) 371 folio_unlock(fbatch.folios[i]); 372 folio_batch_release(&fbatch); 373 cond_resched(); 374 } 375 376 same_folio = (lstart >> PAGE_SHIFT) == (lend >> PAGE_SHIFT); 377 folio = __filemap_get_folio(mapping, lstart >> PAGE_SHIFT, FGP_LOCK, 0); 378 if (!IS_ERR(folio)) { 379 same_folio = lend < folio_pos(folio) + folio_size(folio); 380 if (!truncate_inode_partial_folio(folio, lstart, lend)) { 381 start = folio->index + folio_nr_pages(folio); 382 if (same_folio) 383 end = folio->index; 384 } 385 folio_unlock(folio); 386 folio_put(folio); 387 folio = NULL; 388 } 389 390 if (!same_folio) { 391 folio = __filemap_get_folio(mapping, lend >> PAGE_SHIFT, 392 FGP_LOCK, 0); 393 if (!IS_ERR(folio)) { 394 if (!truncate_inode_partial_folio(folio, lstart, lend)) 395 end = folio->index; 396 folio_unlock(folio); 397 folio_put(folio); 398 } 399 } 400 401 index = start; 402 while (index < end) { 403 cond_resched(); 404 if (!find_get_entries(mapping, &index, end - 1, &fbatch, 405 indices)) { 406 /* If all gone from start onwards, we're done */ 407 if (index == start) 408 break; 409 /* Otherwise restart to make sure all gone */ 410 index = start; 411 continue; 412 } 413 414 for (i = 0; i < folio_batch_count(&fbatch); i++) { 415 struct folio *folio = fbatch.folios[i]; 416 417 /* We rely upon deletion not changing page->index */ 418 419 if (xa_is_value(folio)) 420 continue; 421 422 folio_lock(folio); 423 VM_BUG_ON_FOLIO(!folio_contains(folio, indices[i]), folio); 424 folio_wait_writeback(folio); 425 truncate_inode_folio(mapping, folio); 426 folio_unlock(folio); 427 } 428 truncate_folio_batch_exceptionals(mapping, &fbatch, indices); 429 folio_batch_release(&fbatch); 430 } 431 } 432 EXPORT_SYMBOL(truncate_inode_pages_range); 433 434 /** 435 * truncate_inode_pages - truncate *all* the pages from an offset 436 * @mapping: mapping to truncate 437 * @lstart: offset from which to truncate 438 * 439 * Called under (and serialised by) inode->i_rwsem and 440 * mapping->invalidate_lock. 441 * 442 * Note: When this function returns, there can be a page in the process of 443 * deletion (inside __filemap_remove_folio()) in the specified range. Thus 444 * mapping->nrpages can be non-zero when this function returns even after 445 * truncation of the whole mapping. 446 */ 447 void truncate_inode_pages(struct address_space *mapping, loff_t lstart) 448 { 449 truncate_inode_pages_range(mapping, lstart, (loff_t)-1); 450 } 451 EXPORT_SYMBOL(truncate_inode_pages); 452 453 /** 454 * truncate_inode_pages_final - truncate *all* pages before inode dies 455 * @mapping: mapping to truncate 456 * 457 * Called under (and serialized by) inode->i_rwsem. 458 * 459 * Filesystems have to use this in the .evict_inode path to inform the 460 * VM that this is the final truncate and the inode is going away. 461 */ 462 void truncate_inode_pages_final(struct address_space *mapping) 463 { 464 /* 465 * Page reclaim can not participate in regular inode lifetime 466 * management (can't call iput()) and thus can race with the 467 * inode teardown. Tell it when the address space is exiting, 468 * so that it does not install eviction information after the 469 * final truncate has begun. 470 */ 471 mapping_set_exiting(mapping); 472 473 if (!mapping_empty(mapping)) { 474 /* 475 * As truncation uses a lockless tree lookup, cycle 476 * the tree lock to make sure any ongoing tree 477 * modification that does not see AS_EXITING is 478 * completed before starting the final truncate. 479 */ 480 xa_lock_irq(&mapping->i_pages); 481 xa_unlock_irq(&mapping->i_pages); 482 } 483 484 truncate_inode_pages(mapping, 0); 485 } 486 EXPORT_SYMBOL(truncate_inode_pages_final); 487 488 /** 489 * invalidate_mapping_pagevec - Invalidate all the unlocked pages of one inode 490 * @mapping: the address_space which holds the pages to invalidate 491 * @start: the offset 'from' which to invalidate 492 * @end: the offset 'to' which to invalidate (inclusive) 493 * @nr_pagevec: invalidate failed page number for caller 494 * 495 * This helper is similar to invalidate_mapping_pages(), except that it accounts 496 * for pages that are likely on a pagevec and counts them in @nr_pagevec, which 497 * will be used by the caller. 498 */ 499 unsigned long invalidate_mapping_pagevec(struct address_space *mapping, 500 pgoff_t start, pgoff_t end, unsigned long *nr_pagevec) 501 { 502 pgoff_t indices[PAGEVEC_SIZE]; 503 struct folio_batch fbatch; 504 pgoff_t index = start; 505 unsigned long ret; 506 unsigned long count = 0; 507 int i; 508 509 folio_batch_init(&fbatch); 510 while (find_lock_entries(mapping, &index, end, &fbatch, indices)) { 511 for (i = 0; i < folio_batch_count(&fbatch); i++) { 512 struct folio *folio = fbatch.folios[i]; 513 514 /* We rely upon deletion not changing folio->index */ 515 516 if (xa_is_value(folio)) { 517 count += invalidate_exceptional_entry(mapping, 518 indices[i], folio); 519 continue; 520 } 521 522 ret = mapping_evict_folio(mapping, folio); 523 folio_unlock(folio); 524 /* 525 * Invalidation is a hint that the folio is no longer 526 * of interest and try to speed up its reclaim. 527 */ 528 if (!ret) { 529 deactivate_file_folio(folio); 530 /* It is likely on the pagevec of a remote CPU */ 531 if (nr_pagevec) 532 (*nr_pagevec)++; 533 } 534 count += ret; 535 } 536 folio_batch_remove_exceptionals(&fbatch); 537 folio_batch_release(&fbatch); 538 cond_resched(); 539 } 540 return count; 541 } 542 543 /** 544 * invalidate_mapping_pages - Invalidate all clean, unlocked cache of one inode 545 * @mapping: the address_space which holds the cache to invalidate 546 * @start: the offset 'from' which to invalidate 547 * @end: the offset 'to' which to invalidate (inclusive) 548 * 549 * This function removes pages that are clean, unmapped and unlocked, 550 * as well as shadow entries. It will not block on IO activity. 551 * 552 * If you want to remove all the pages of one inode, regardless of 553 * their use and writeback state, use truncate_inode_pages(). 554 * 555 * Return: the number of the cache entries that were invalidated 556 */ 557 unsigned long invalidate_mapping_pages(struct address_space *mapping, 558 pgoff_t start, pgoff_t end) 559 { 560 return invalidate_mapping_pagevec(mapping, start, end, NULL); 561 } 562 EXPORT_SYMBOL(invalidate_mapping_pages); 563 564 /* 565 * This is like invalidate_inode_page(), except it ignores the page's 566 * refcount. We do this because invalidate_inode_pages2() needs stronger 567 * invalidation guarantees, and cannot afford to leave pages behind because 568 * shrink_page_list() has a temp ref on them, or because they're transiently 569 * sitting in the folio_add_lru() pagevecs. 570 */ 571 static int invalidate_complete_folio2(struct address_space *mapping, 572 struct folio *folio) 573 { 574 if (folio->mapping != mapping) 575 return 0; 576 577 if (folio_has_private(folio) && 578 !filemap_release_folio(folio, GFP_KERNEL)) 579 return 0; 580 581 spin_lock(&mapping->host->i_lock); 582 xa_lock_irq(&mapping->i_pages); 583 if (folio_test_dirty(folio)) 584 goto failed; 585 586 BUG_ON(folio_has_private(folio)); 587 __filemap_remove_folio(folio, NULL); 588 xa_unlock_irq(&mapping->i_pages); 589 if (mapping_shrinkable(mapping)) 590 inode_add_lru(mapping->host); 591 spin_unlock(&mapping->host->i_lock); 592 593 filemap_free_folio(mapping, folio); 594 return 1; 595 failed: 596 xa_unlock_irq(&mapping->i_pages); 597 spin_unlock(&mapping->host->i_lock); 598 return 0; 599 } 600 601 static int folio_launder(struct address_space *mapping, struct folio *folio) 602 { 603 if (!folio_test_dirty(folio)) 604 return 0; 605 if (folio->mapping != mapping || mapping->a_ops->launder_folio == NULL) 606 return 0; 607 return mapping->a_ops->launder_folio(folio); 608 } 609 610 /** 611 * invalidate_inode_pages2_range - remove range of pages from an address_space 612 * @mapping: the address_space 613 * @start: the page offset 'from' which to invalidate 614 * @end: the page offset 'to' which to invalidate (inclusive) 615 * 616 * Any pages which are found to be mapped into pagetables are unmapped prior to 617 * invalidation. 618 * 619 * Return: -EBUSY if any pages could not be invalidated. 620 */ 621 int invalidate_inode_pages2_range(struct address_space *mapping, 622 pgoff_t start, pgoff_t end) 623 { 624 pgoff_t indices[PAGEVEC_SIZE]; 625 struct folio_batch fbatch; 626 pgoff_t index; 627 int i; 628 int ret = 0; 629 int ret2 = 0; 630 int did_range_unmap = 0; 631 632 if (mapping_empty(mapping)) 633 return 0; 634 635 folio_batch_init(&fbatch); 636 index = start; 637 while (find_get_entries(mapping, &index, end, &fbatch, indices)) { 638 for (i = 0; i < folio_batch_count(&fbatch); i++) { 639 struct folio *folio = fbatch.folios[i]; 640 641 /* We rely upon deletion not changing folio->index */ 642 643 if (xa_is_value(folio)) { 644 if (!invalidate_exceptional_entry2(mapping, 645 indices[i], folio)) 646 ret = -EBUSY; 647 continue; 648 } 649 650 if (!did_range_unmap && folio_mapped(folio)) { 651 /* 652 * If folio is mapped, before taking its lock, 653 * zap the rest of the file in one hit. 654 */ 655 unmap_mapping_pages(mapping, indices[i], 656 (1 + end - indices[i]), false); 657 did_range_unmap = 1; 658 } 659 660 folio_lock(folio); 661 VM_BUG_ON_FOLIO(!folio_contains(folio, indices[i]), folio); 662 if (folio->mapping != mapping) { 663 folio_unlock(folio); 664 continue; 665 } 666 folio_wait_writeback(folio); 667 668 if (folio_mapped(folio)) 669 unmap_mapping_folio(folio); 670 BUG_ON(folio_mapped(folio)); 671 672 ret2 = folio_launder(mapping, folio); 673 if (ret2 == 0) { 674 if (!invalidate_complete_folio2(mapping, folio)) 675 ret2 = -EBUSY; 676 } 677 if (ret2 < 0) 678 ret = ret2; 679 folio_unlock(folio); 680 } 681 folio_batch_remove_exceptionals(&fbatch); 682 folio_batch_release(&fbatch); 683 cond_resched(); 684 } 685 /* 686 * For DAX we invalidate page tables after invalidating page cache. We 687 * could invalidate page tables while invalidating each entry however 688 * that would be expensive. And doing range unmapping before doesn't 689 * work as we have no cheap way to find whether page cache entry didn't 690 * get remapped later. 691 */ 692 if (dax_mapping(mapping)) { 693 unmap_mapping_pages(mapping, start, end - start + 1, false); 694 } 695 return ret; 696 } 697 EXPORT_SYMBOL_GPL(invalidate_inode_pages2_range); 698 699 /** 700 * invalidate_inode_pages2 - remove all pages from an address_space 701 * @mapping: the address_space 702 * 703 * Any pages which are found to be mapped into pagetables are unmapped prior to 704 * invalidation. 705 * 706 * Return: -EBUSY if any pages could not be invalidated. 707 */ 708 int invalidate_inode_pages2(struct address_space *mapping) 709 { 710 return invalidate_inode_pages2_range(mapping, 0, -1); 711 } 712 EXPORT_SYMBOL_GPL(invalidate_inode_pages2); 713 714 /** 715 * truncate_pagecache - unmap and remove pagecache that has been truncated 716 * @inode: inode 717 * @newsize: new file size 718 * 719 * inode's new i_size must already be written before truncate_pagecache 720 * is called. 721 * 722 * This function should typically be called before the filesystem 723 * releases resources associated with the freed range (eg. deallocates 724 * blocks). This way, pagecache will always stay logically coherent 725 * with on-disk format, and the filesystem would not have to deal with 726 * situations such as writepage being called for a page that has already 727 * had its underlying blocks deallocated. 728 */ 729 void truncate_pagecache(struct inode *inode, loff_t newsize) 730 { 731 struct address_space *mapping = inode->i_mapping; 732 loff_t holebegin = round_up(newsize, PAGE_SIZE); 733 734 /* 735 * unmap_mapping_range is called twice, first simply for 736 * efficiency so that truncate_inode_pages does fewer 737 * single-page unmaps. However after this first call, and 738 * before truncate_inode_pages finishes, it is possible for 739 * private pages to be COWed, which remain after 740 * truncate_inode_pages finishes, hence the second 741 * unmap_mapping_range call must be made for correctness. 742 */ 743 unmap_mapping_range(mapping, holebegin, 0, 1); 744 truncate_inode_pages(mapping, newsize); 745 unmap_mapping_range(mapping, holebegin, 0, 1); 746 } 747 EXPORT_SYMBOL(truncate_pagecache); 748 749 /** 750 * truncate_setsize - update inode and pagecache for a new file size 751 * @inode: inode 752 * @newsize: new file size 753 * 754 * truncate_setsize updates i_size and performs pagecache truncation (if 755 * necessary) to @newsize. It will be typically be called from the filesystem's 756 * setattr function when ATTR_SIZE is passed in. 757 * 758 * Must be called with a lock serializing truncates and writes (generally 759 * i_rwsem but e.g. xfs uses a different lock) and before all filesystem 760 * specific block truncation has been performed. 761 */ 762 void truncate_setsize(struct inode *inode, loff_t newsize) 763 { 764 loff_t oldsize = inode->i_size; 765 766 i_size_write(inode, newsize); 767 if (newsize > oldsize) 768 pagecache_isize_extended(inode, oldsize, newsize); 769 truncate_pagecache(inode, newsize); 770 } 771 EXPORT_SYMBOL(truncate_setsize); 772 773 /** 774 * pagecache_isize_extended - update pagecache after extension of i_size 775 * @inode: inode for which i_size was extended 776 * @from: original inode size 777 * @to: new inode size 778 * 779 * Handle extension of inode size either caused by extending truncate or by 780 * write starting after current i_size. We mark the page straddling current 781 * i_size RO so that page_mkwrite() is called on the nearest write access to 782 * the page. This way filesystem can be sure that page_mkwrite() is called on 783 * the page before user writes to the page via mmap after the i_size has been 784 * changed. 785 * 786 * The function must be called after i_size is updated so that page fault 787 * coming after we unlock the page will already see the new i_size. 788 * The function must be called while we still hold i_rwsem - this not only 789 * makes sure i_size is stable but also that userspace cannot observe new 790 * i_size value before we are prepared to store mmap writes at new inode size. 791 */ 792 void pagecache_isize_extended(struct inode *inode, loff_t from, loff_t to) 793 { 794 int bsize = i_blocksize(inode); 795 loff_t rounded_from; 796 struct page *page; 797 pgoff_t index; 798 799 WARN_ON(to > inode->i_size); 800 801 if (from >= to || bsize == PAGE_SIZE) 802 return; 803 /* Page straddling @from will not have any hole block created? */ 804 rounded_from = round_up(from, bsize); 805 if (to <= rounded_from || !(rounded_from & (PAGE_SIZE - 1))) 806 return; 807 808 index = from >> PAGE_SHIFT; 809 page = find_lock_page(inode->i_mapping, index); 810 /* Page not cached? Nothing to do */ 811 if (!page) 812 return; 813 /* 814 * See clear_page_dirty_for_io() for details why set_page_dirty() 815 * is needed. 816 */ 817 if (page_mkclean(page)) 818 set_page_dirty(page); 819 unlock_page(page); 820 put_page(page); 821 } 822 EXPORT_SYMBOL(pagecache_isize_extended); 823 824 /** 825 * truncate_pagecache_range - unmap and remove pagecache that is hole-punched 826 * @inode: inode 827 * @lstart: offset of beginning of hole 828 * @lend: offset of last byte of hole 829 * 830 * This function should typically be called before the filesystem 831 * releases resources associated with the freed range (eg. deallocates 832 * blocks). This way, pagecache will always stay logically coherent 833 * with on-disk format, and the filesystem would not have to deal with 834 * situations such as writepage being called for a page that has already 835 * had its underlying blocks deallocated. 836 */ 837 void truncate_pagecache_range(struct inode *inode, loff_t lstart, loff_t lend) 838 { 839 struct address_space *mapping = inode->i_mapping; 840 loff_t unmap_start = round_up(lstart, PAGE_SIZE); 841 loff_t unmap_end = round_down(1 + lend, PAGE_SIZE) - 1; 842 /* 843 * This rounding is currently just for example: unmap_mapping_range 844 * expands its hole outwards, whereas we want it to contract the hole 845 * inwards. However, existing callers of truncate_pagecache_range are 846 * doing their own page rounding first. Note that unmap_mapping_range 847 * allows holelen 0 for all, and we allow lend -1 for end of file. 848 */ 849 850 /* 851 * Unlike in truncate_pagecache, unmap_mapping_range is called only 852 * once (before truncating pagecache), and without "even_cows" flag: 853 * hole-punching should not remove private COWed pages from the hole. 854 */ 855 if ((u64)unmap_end > (u64)unmap_start) 856 unmap_mapping_range(mapping, unmap_start, 857 1 + unmap_end - unmap_start, 0); 858 truncate_inode_pages_range(mapping, lstart, lend); 859 } 860 EXPORT_SYMBOL(truncate_pagecache_range); 861