1 // SPDX-License-Identifier: GPL-2.0-only 2 /* 3 * linux/mm/swapfile.c 4 * 5 * Copyright (C) 1991, 1992, 1993, 1994 Linus Torvalds 6 * Swap reorganised 29.12.95, Stephen Tweedie 7 */ 8 9 #include <linux/mm.h> 10 #include <linux/sched/mm.h> 11 #include <linux/sched/task.h> 12 #include <linux/hugetlb.h> 13 #include <linux/mman.h> 14 #include <linux/slab.h> 15 #include <linux/kernel_stat.h> 16 #include <linux/swap.h> 17 #include <linux/vmalloc.h> 18 #include <linux/pagemap.h> 19 #include <linux/namei.h> 20 #include <linux/shmem_fs.h> 21 #include <linux/blkdev.h> 22 #include <linux/random.h> 23 #include <linux/writeback.h> 24 #include <linux/proc_fs.h> 25 #include <linux/seq_file.h> 26 #include <linux/init.h> 27 #include <linux/ksm.h> 28 #include <linux/rmap.h> 29 #include <linux/security.h> 30 #include <linux/backing-dev.h> 31 #include <linux/mutex.h> 32 #include <linux/capability.h> 33 #include <linux/syscalls.h> 34 #include <linux/memcontrol.h> 35 #include <linux/poll.h> 36 #include <linux/oom.h> 37 #include <linux/frontswap.h> 38 #include <linux/swapfile.h> 39 #include <linux/export.h> 40 #include <linux/swap_slots.h> 41 #include <linux/sort.h> 42 43 #include <asm/tlbflush.h> 44 #include <linux/swapops.h> 45 #include <linux/swap_cgroup.h> 46 47 static bool swap_count_continued(struct swap_info_struct *, pgoff_t, 48 unsigned char); 49 static void free_swap_count_continuations(struct swap_info_struct *); 50 static sector_t map_swap_entry(swp_entry_t, struct block_device**); 51 52 DEFINE_SPINLOCK(swap_lock); 53 static unsigned int nr_swapfiles; 54 atomic_long_t nr_swap_pages; 55 /* 56 * Some modules use swappable objects and may try to swap them out under 57 * memory pressure (via the shrinker). Before doing so, they may wish to 58 * check to see if any swap space is available. 59 */ 60 EXPORT_SYMBOL_GPL(nr_swap_pages); 61 /* protected with swap_lock. reading in vm_swap_full() doesn't need lock */ 62 long total_swap_pages; 63 static int least_priority = -1; 64 65 static const char Bad_file[] = "Bad swap file entry "; 66 static const char Unused_file[] = "Unused swap file entry "; 67 static const char Bad_offset[] = "Bad swap offset entry "; 68 static const char Unused_offset[] = "Unused swap offset entry "; 69 70 /* 71 * all active swap_info_structs 72 * protected with swap_lock, and ordered by priority. 73 */ 74 PLIST_HEAD(swap_active_head); 75 76 /* 77 * all available (active, not full) swap_info_structs 78 * protected with swap_avail_lock, ordered by priority. 79 * This is used by get_swap_page() instead of swap_active_head 80 * because swap_active_head includes all swap_info_structs, 81 * but get_swap_page() doesn't need to look at full ones. 82 * This uses its own lock instead of swap_lock because when a 83 * swap_info_struct changes between not-full/full, it needs to 84 * add/remove itself to/from this list, but the swap_info_struct->lock 85 * is held and the locking order requires swap_lock to be taken 86 * before any swap_info_struct->lock. 87 */ 88 static struct plist_head *swap_avail_heads; 89 static DEFINE_SPINLOCK(swap_avail_lock); 90 91 struct swap_info_struct *swap_info[MAX_SWAPFILES]; 92 93 static DEFINE_MUTEX(swapon_mutex); 94 95 static DECLARE_WAIT_QUEUE_HEAD(proc_poll_wait); 96 /* Activity counter to indicate that a swapon or swapoff has occurred */ 97 static atomic_t proc_poll_event = ATOMIC_INIT(0); 98 99 atomic_t nr_rotate_swap = ATOMIC_INIT(0); 100 101 static struct swap_info_struct *swap_type_to_swap_info(int type) 102 { 103 if (type >= READ_ONCE(nr_swapfiles)) 104 return NULL; 105 106 smp_rmb(); /* Pairs with smp_wmb in alloc_swap_info. */ 107 return READ_ONCE(swap_info[type]); 108 } 109 110 static inline unsigned char swap_count(unsigned char ent) 111 { 112 return ent & ~SWAP_HAS_CACHE; /* may include COUNT_CONTINUED flag */ 113 } 114 115 /* Reclaim the swap entry anyway if possible */ 116 #define TTRS_ANYWAY 0x1 117 /* 118 * Reclaim the swap entry if there are no more mappings of the 119 * corresponding page 120 */ 121 #define TTRS_UNMAPPED 0x2 122 /* Reclaim the swap entry if swap is getting full*/ 123 #define TTRS_FULL 0x4 124 125 /* returns 1 if swap entry is freed */ 126 static int __try_to_reclaim_swap(struct swap_info_struct *si, 127 unsigned long offset, unsigned long flags) 128 { 129 swp_entry_t entry = swp_entry(si->type, offset); 130 struct page *page; 131 int ret = 0; 132 133 page = find_get_page(swap_address_space(entry), offset); 134 if (!page) 135 return 0; 136 /* 137 * When this function is called from scan_swap_map_slots() and it's 138 * called by vmscan.c at reclaiming pages. So, we hold a lock on a page, 139 * here. We have to use trylock for avoiding deadlock. This is a special 140 * case and you should use try_to_free_swap() with explicit lock_page() 141 * in usual operations. 142 */ 143 if (trylock_page(page)) { 144 if ((flags & TTRS_ANYWAY) || 145 ((flags & TTRS_UNMAPPED) && !page_mapped(page)) || 146 ((flags & TTRS_FULL) && mem_cgroup_swap_full(page))) 147 ret = try_to_free_swap(page); 148 unlock_page(page); 149 } 150 put_page(page); 151 return ret; 152 } 153 154 static inline struct swap_extent *first_se(struct swap_info_struct *sis) 155 { 156 struct rb_node *rb = rb_first(&sis->swap_extent_root); 157 return rb_entry(rb, struct swap_extent, rb_node); 158 } 159 160 static inline struct swap_extent *next_se(struct swap_extent *se) 161 { 162 struct rb_node *rb = rb_next(&se->rb_node); 163 return rb ? rb_entry(rb, struct swap_extent, rb_node) : NULL; 164 } 165 166 /* 167 * swapon tell device that all the old swap contents can be discarded, 168 * to allow the swap device to optimize its wear-levelling. 169 */ 170 static int discard_swap(struct swap_info_struct *si) 171 { 172 struct swap_extent *se; 173 sector_t start_block; 174 sector_t nr_blocks; 175 int err = 0; 176 177 /* Do not discard the swap header page! */ 178 se = first_se(si); 179 start_block = (se->start_block + 1) << (PAGE_SHIFT - 9); 180 nr_blocks = ((sector_t)se->nr_pages - 1) << (PAGE_SHIFT - 9); 181 if (nr_blocks) { 182 err = blkdev_issue_discard(si->bdev, start_block, 183 nr_blocks, GFP_KERNEL, 0); 184 if (err) 185 return err; 186 cond_resched(); 187 } 188 189 for (se = next_se(se); se; se = next_se(se)) { 190 start_block = se->start_block << (PAGE_SHIFT - 9); 191 nr_blocks = (sector_t)se->nr_pages << (PAGE_SHIFT - 9); 192 193 err = blkdev_issue_discard(si->bdev, start_block, 194 nr_blocks, GFP_KERNEL, 0); 195 if (err) 196 break; 197 198 cond_resched(); 199 } 200 return err; /* That will often be -EOPNOTSUPP */ 201 } 202 203 static struct swap_extent * 204 offset_to_swap_extent(struct swap_info_struct *sis, unsigned long offset) 205 { 206 struct swap_extent *se; 207 struct rb_node *rb; 208 209 rb = sis->swap_extent_root.rb_node; 210 while (rb) { 211 se = rb_entry(rb, struct swap_extent, rb_node); 212 if (offset < se->start_page) 213 rb = rb->rb_left; 214 else if (offset >= se->start_page + se->nr_pages) 215 rb = rb->rb_right; 216 else 217 return se; 218 } 219 /* It *must* be present */ 220 BUG(); 221 } 222 223 /* 224 * swap allocation tell device that a cluster of swap can now be discarded, 225 * to allow the swap device to optimize its wear-levelling. 226 */ 227 static void discard_swap_cluster(struct swap_info_struct *si, 228 pgoff_t start_page, pgoff_t nr_pages) 229 { 230 struct swap_extent *se = offset_to_swap_extent(si, start_page); 231 232 while (nr_pages) { 233 pgoff_t offset = start_page - se->start_page; 234 sector_t start_block = se->start_block + offset; 235 sector_t nr_blocks = se->nr_pages - offset; 236 237 if (nr_blocks > nr_pages) 238 nr_blocks = nr_pages; 239 start_page += nr_blocks; 240 nr_pages -= nr_blocks; 241 242 start_block <<= PAGE_SHIFT - 9; 243 nr_blocks <<= PAGE_SHIFT - 9; 244 if (blkdev_issue_discard(si->bdev, start_block, 245 nr_blocks, GFP_NOIO, 0)) 246 break; 247 248 se = next_se(se); 249 } 250 } 251 252 #ifdef CONFIG_THP_SWAP 253 #define SWAPFILE_CLUSTER HPAGE_PMD_NR 254 255 #define swap_entry_size(size) (size) 256 #else 257 #define SWAPFILE_CLUSTER 256 258 259 /* 260 * Define swap_entry_size() as constant to let compiler to optimize 261 * out some code if !CONFIG_THP_SWAP 262 */ 263 #define swap_entry_size(size) 1 264 #endif 265 #define LATENCY_LIMIT 256 266 267 static inline void cluster_set_flag(struct swap_cluster_info *info, 268 unsigned int flag) 269 { 270 info->flags = flag; 271 } 272 273 static inline unsigned int cluster_count(struct swap_cluster_info *info) 274 { 275 return info->data; 276 } 277 278 static inline void cluster_set_count(struct swap_cluster_info *info, 279 unsigned int c) 280 { 281 info->data = c; 282 } 283 284 static inline void cluster_set_count_flag(struct swap_cluster_info *info, 285 unsigned int c, unsigned int f) 286 { 287 info->flags = f; 288 info->data = c; 289 } 290 291 static inline unsigned int cluster_next(struct swap_cluster_info *info) 292 { 293 return info->data; 294 } 295 296 static inline void cluster_set_next(struct swap_cluster_info *info, 297 unsigned int n) 298 { 299 info->data = n; 300 } 301 302 static inline void cluster_set_next_flag(struct swap_cluster_info *info, 303 unsigned int n, unsigned int f) 304 { 305 info->flags = f; 306 info->data = n; 307 } 308 309 static inline bool cluster_is_free(struct swap_cluster_info *info) 310 { 311 return info->flags & CLUSTER_FLAG_FREE; 312 } 313 314 static inline bool cluster_is_null(struct swap_cluster_info *info) 315 { 316 return info->flags & CLUSTER_FLAG_NEXT_NULL; 317 } 318 319 static inline void cluster_set_null(struct swap_cluster_info *info) 320 { 321 info->flags = CLUSTER_FLAG_NEXT_NULL; 322 info->data = 0; 323 } 324 325 static inline bool cluster_is_huge(struct swap_cluster_info *info) 326 { 327 if (IS_ENABLED(CONFIG_THP_SWAP)) 328 return info->flags & CLUSTER_FLAG_HUGE; 329 return false; 330 } 331 332 static inline void cluster_clear_huge(struct swap_cluster_info *info) 333 { 334 info->flags &= ~CLUSTER_FLAG_HUGE; 335 } 336 337 static inline struct swap_cluster_info *lock_cluster(struct swap_info_struct *si, 338 unsigned long offset) 339 { 340 struct swap_cluster_info *ci; 341 342 ci = si->cluster_info; 343 if (ci) { 344 ci += offset / SWAPFILE_CLUSTER; 345 spin_lock(&ci->lock); 346 } 347 return ci; 348 } 349 350 static inline void unlock_cluster(struct swap_cluster_info *ci) 351 { 352 if (ci) 353 spin_unlock(&ci->lock); 354 } 355 356 /* 357 * Determine the locking method in use for this device. Return 358 * swap_cluster_info if SSD-style cluster-based locking is in place. 359 */ 360 static inline struct swap_cluster_info *lock_cluster_or_swap_info( 361 struct swap_info_struct *si, unsigned long offset) 362 { 363 struct swap_cluster_info *ci; 364 365 /* Try to use fine-grained SSD-style locking if available: */ 366 ci = lock_cluster(si, offset); 367 /* Otherwise, fall back to traditional, coarse locking: */ 368 if (!ci) 369 spin_lock(&si->lock); 370 371 return ci; 372 } 373 374 static inline void unlock_cluster_or_swap_info(struct swap_info_struct *si, 375 struct swap_cluster_info *ci) 376 { 377 if (ci) 378 unlock_cluster(ci); 379 else 380 spin_unlock(&si->lock); 381 } 382 383 static inline bool cluster_list_empty(struct swap_cluster_list *list) 384 { 385 return cluster_is_null(&list->head); 386 } 387 388 static inline unsigned int cluster_list_first(struct swap_cluster_list *list) 389 { 390 return cluster_next(&list->head); 391 } 392 393 static void cluster_list_init(struct swap_cluster_list *list) 394 { 395 cluster_set_null(&list->head); 396 cluster_set_null(&list->tail); 397 } 398 399 static void cluster_list_add_tail(struct swap_cluster_list *list, 400 struct swap_cluster_info *ci, 401 unsigned int idx) 402 { 403 if (cluster_list_empty(list)) { 404 cluster_set_next_flag(&list->head, idx, 0); 405 cluster_set_next_flag(&list->tail, idx, 0); 406 } else { 407 struct swap_cluster_info *ci_tail; 408 unsigned int tail = cluster_next(&list->tail); 409 410 /* 411 * Nested cluster lock, but both cluster locks are 412 * only acquired when we held swap_info_struct->lock 413 */ 414 ci_tail = ci + tail; 415 spin_lock_nested(&ci_tail->lock, SINGLE_DEPTH_NESTING); 416 cluster_set_next(ci_tail, idx); 417 spin_unlock(&ci_tail->lock); 418 cluster_set_next_flag(&list->tail, idx, 0); 419 } 420 } 421 422 static unsigned int cluster_list_del_first(struct swap_cluster_list *list, 423 struct swap_cluster_info *ci) 424 { 425 unsigned int idx; 426 427 idx = cluster_next(&list->head); 428 if (cluster_next(&list->tail) == idx) { 429 cluster_set_null(&list->head); 430 cluster_set_null(&list->tail); 431 } else 432 cluster_set_next_flag(&list->head, 433 cluster_next(&ci[idx]), 0); 434 435 return idx; 436 } 437 438 /* Add a cluster to discard list and schedule it to do discard */ 439 static void swap_cluster_schedule_discard(struct swap_info_struct *si, 440 unsigned int idx) 441 { 442 /* 443 * If scan_swap_map() can't find a free cluster, it will check 444 * si->swap_map directly. To make sure the discarding cluster isn't 445 * taken by scan_swap_map(), mark the swap entries bad (occupied). It 446 * will be cleared after discard 447 */ 448 memset(si->swap_map + idx * SWAPFILE_CLUSTER, 449 SWAP_MAP_BAD, SWAPFILE_CLUSTER); 450 451 cluster_list_add_tail(&si->discard_clusters, si->cluster_info, idx); 452 453 schedule_work(&si->discard_work); 454 } 455 456 static void __free_cluster(struct swap_info_struct *si, unsigned long idx) 457 { 458 struct swap_cluster_info *ci = si->cluster_info; 459 460 cluster_set_flag(ci + idx, CLUSTER_FLAG_FREE); 461 cluster_list_add_tail(&si->free_clusters, ci, idx); 462 } 463 464 /* 465 * Doing discard actually. After a cluster discard is finished, the cluster 466 * will be added to free cluster list. caller should hold si->lock. 467 */ 468 static void swap_do_scheduled_discard(struct swap_info_struct *si) 469 { 470 struct swap_cluster_info *info, *ci; 471 unsigned int idx; 472 473 info = si->cluster_info; 474 475 while (!cluster_list_empty(&si->discard_clusters)) { 476 idx = cluster_list_del_first(&si->discard_clusters, info); 477 spin_unlock(&si->lock); 478 479 discard_swap_cluster(si, idx * SWAPFILE_CLUSTER, 480 SWAPFILE_CLUSTER); 481 482 spin_lock(&si->lock); 483 ci = lock_cluster(si, idx * SWAPFILE_CLUSTER); 484 __free_cluster(si, idx); 485 memset(si->swap_map + idx * SWAPFILE_CLUSTER, 486 0, SWAPFILE_CLUSTER); 487 unlock_cluster(ci); 488 } 489 } 490 491 static void swap_discard_work(struct work_struct *work) 492 { 493 struct swap_info_struct *si; 494 495 si = container_of(work, struct swap_info_struct, discard_work); 496 497 spin_lock(&si->lock); 498 swap_do_scheduled_discard(si); 499 spin_unlock(&si->lock); 500 } 501 502 static void alloc_cluster(struct swap_info_struct *si, unsigned long idx) 503 { 504 struct swap_cluster_info *ci = si->cluster_info; 505 506 VM_BUG_ON(cluster_list_first(&si->free_clusters) != idx); 507 cluster_list_del_first(&si->free_clusters, ci); 508 cluster_set_count_flag(ci + idx, 0, 0); 509 } 510 511 static void free_cluster(struct swap_info_struct *si, unsigned long idx) 512 { 513 struct swap_cluster_info *ci = si->cluster_info + idx; 514 515 VM_BUG_ON(cluster_count(ci) != 0); 516 /* 517 * If the swap is discardable, prepare discard the cluster 518 * instead of free it immediately. The cluster will be freed 519 * after discard. 520 */ 521 if ((si->flags & (SWP_WRITEOK | SWP_PAGE_DISCARD)) == 522 (SWP_WRITEOK | SWP_PAGE_DISCARD)) { 523 swap_cluster_schedule_discard(si, idx); 524 return; 525 } 526 527 __free_cluster(si, idx); 528 } 529 530 /* 531 * The cluster corresponding to page_nr will be used. The cluster will be 532 * removed from free cluster list and its usage counter will be increased. 533 */ 534 static void inc_cluster_info_page(struct swap_info_struct *p, 535 struct swap_cluster_info *cluster_info, unsigned long page_nr) 536 { 537 unsigned long idx = page_nr / SWAPFILE_CLUSTER; 538 539 if (!cluster_info) 540 return; 541 if (cluster_is_free(&cluster_info[idx])) 542 alloc_cluster(p, idx); 543 544 VM_BUG_ON(cluster_count(&cluster_info[idx]) >= SWAPFILE_CLUSTER); 545 cluster_set_count(&cluster_info[idx], 546 cluster_count(&cluster_info[idx]) + 1); 547 } 548 549 /* 550 * The cluster corresponding to page_nr decreases one usage. If the usage 551 * counter becomes 0, which means no page in the cluster is in using, we can 552 * optionally discard the cluster and add it to free cluster list. 553 */ 554 static void dec_cluster_info_page(struct swap_info_struct *p, 555 struct swap_cluster_info *cluster_info, unsigned long page_nr) 556 { 557 unsigned long idx = page_nr / SWAPFILE_CLUSTER; 558 559 if (!cluster_info) 560 return; 561 562 VM_BUG_ON(cluster_count(&cluster_info[idx]) == 0); 563 cluster_set_count(&cluster_info[idx], 564 cluster_count(&cluster_info[idx]) - 1); 565 566 if (cluster_count(&cluster_info[idx]) == 0) 567 free_cluster(p, idx); 568 } 569 570 /* 571 * It's possible scan_swap_map() uses a free cluster in the middle of free 572 * cluster list. Avoiding such abuse to avoid list corruption. 573 */ 574 static bool 575 scan_swap_map_ssd_cluster_conflict(struct swap_info_struct *si, 576 unsigned long offset) 577 { 578 struct percpu_cluster *percpu_cluster; 579 bool conflict; 580 581 offset /= SWAPFILE_CLUSTER; 582 conflict = !cluster_list_empty(&si->free_clusters) && 583 offset != cluster_list_first(&si->free_clusters) && 584 cluster_is_free(&si->cluster_info[offset]); 585 586 if (!conflict) 587 return false; 588 589 percpu_cluster = this_cpu_ptr(si->percpu_cluster); 590 cluster_set_null(&percpu_cluster->index); 591 return true; 592 } 593 594 /* 595 * Try to get a swap entry from current cpu's swap entry pool (a cluster). This 596 * might involve allocating a new cluster for current CPU too. 597 */ 598 static bool scan_swap_map_try_ssd_cluster(struct swap_info_struct *si, 599 unsigned long *offset, unsigned long *scan_base) 600 { 601 struct percpu_cluster *cluster; 602 struct swap_cluster_info *ci; 603 unsigned long tmp, max; 604 605 new_cluster: 606 cluster = this_cpu_ptr(si->percpu_cluster); 607 if (cluster_is_null(&cluster->index)) { 608 if (!cluster_list_empty(&si->free_clusters)) { 609 cluster->index = si->free_clusters.head; 610 cluster->next = cluster_next(&cluster->index) * 611 SWAPFILE_CLUSTER; 612 } else if (!cluster_list_empty(&si->discard_clusters)) { 613 /* 614 * we don't have free cluster but have some clusters in 615 * discarding, do discard now and reclaim them, then 616 * reread cluster_next_cpu since we dropped si->lock 617 */ 618 swap_do_scheduled_discard(si); 619 *scan_base = this_cpu_read(*si->cluster_next_cpu); 620 *offset = *scan_base; 621 goto new_cluster; 622 } else 623 return false; 624 } 625 626 /* 627 * Other CPUs can use our cluster if they can't find a free cluster, 628 * check if there is still free entry in the cluster 629 */ 630 tmp = cluster->next; 631 max = min_t(unsigned long, si->max, 632 (cluster_next(&cluster->index) + 1) * SWAPFILE_CLUSTER); 633 if (tmp < max) { 634 ci = lock_cluster(si, tmp); 635 while (tmp < max) { 636 if (!si->swap_map[tmp]) 637 break; 638 tmp++; 639 } 640 unlock_cluster(ci); 641 } 642 if (tmp >= max) { 643 cluster_set_null(&cluster->index); 644 goto new_cluster; 645 } 646 cluster->next = tmp + 1; 647 *offset = tmp; 648 *scan_base = tmp; 649 return true; 650 } 651 652 static void __del_from_avail_list(struct swap_info_struct *p) 653 { 654 int nid; 655 656 for_each_node(nid) 657 plist_del(&p->avail_lists[nid], &swap_avail_heads[nid]); 658 } 659 660 static void del_from_avail_list(struct swap_info_struct *p) 661 { 662 spin_lock(&swap_avail_lock); 663 __del_from_avail_list(p); 664 spin_unlock(&swap_avail_lock); 665 } 666 667 static void swap_range_alloc(struct swap_info_struct *si, unsigned long offset, 668 unsigned int nr_entries) 669 { 670 unsigned int end = offset + nr_entries - 1; 671 672 if (offset == si->lowest_bit) 673 si->lowest_bit += nr_entries; 674 if (end == si->highest_bit) 675 WRITE_ONCE(si->highest_bit, si->highest_bit - nr_entries); 676 si->inuse_pages += nr_entries; 677 if (si->inuse_pages == si->pages) { 678 si->lowest_bit = si->max; 679 si->highest_bit = 0; 680 del_from_avail_list(si); 681 } 682 } 683 684 static void add_to_avail_list(struct swap_info_struct *p) 685 { 686 int nid; 687 688 spin_lock(&swap_avail_lock); 689 for_each_node(nid) { 690 WARN_ON(!plist_node_empty(&p->avail_lists[nid])); 691 plist_add(&p->avail_lists[nid], &swap_avail_heads[nid]); 692 } 693 spin_unlock(&swap_avail_lock); 694 } 695 696 static void swap_range_free(struct swap_info_struct *si, unsigned long offset, 697 unsigned int nr_entries) 698 { 699 unsigned long begin = offset; 700 unsigned long end = offset + nr_entries - 1; 701 void (*swap_slot_free_notify)(struct block_device *, unsigned long); 702 703 if (offset < si->lowest_bit) 704 si->lowest_bit = offset; 705 if (end > si->highest_bit) { 706 bool was_full = !si->highest_bit; 707 708 WRITE_ONCE(si->highest_bit, end); 709 if (was_full && (si->flags & SWP_WRITEOK)) 710 add_to_avail_list(si); 711 } 712 atomic_long_add(nr_entries, &nr_swap_pages); 713 si->inuse_pages -= nr_entries; 714 if (si->flags & SWP_BLKDEV) 715 swap_slot_free_notify = 716 si->bdev->bd_disk->fops->swap_slot_free_notify; 717 else 718 swap_slot_free_notify = NULL; 719 while (offset <= end) { 720 arch_swap_invalidate_page(si->type, offset); 721 frontswap_invalidate_page(si->type, offset); 722 if (swap_slot_free_notify) 723 swap_slot_free_notify(si->bdev, offset); 724 offset++; 725 } 726 clear_shadow_from_swap_cache(si->type, begin, end); 727 } 728 729 static void set_cluster_next(struct swap_info_struct *si, unsigned long next) 730 { 731 unsigned long prev; 732 733 if (!(si->flags & SWP_SOLIDSTATE)) { 734 si->cluster_next = next; 735 return; 736 } 737 738 prev = this_cpu_read(*si->cluster_next_cpu); 739 /* 740 * Cross the swap address space size aligned trunk, choose 741 * another trunk randomly to avoid lock contention on swap 742 * address space if possible. 743 */ 744 if ((prev >> SWAP_ADDRESS_SPACE_SHIFT) != 745 (next >> SWAP_ADDRESS_SPACE_SHIFT)) { 746 /* No free swap slots available */ 747 if (si->highest_bit <= si->lowest_bit) 748 return; 749 next = si->lowest_bit + 750 prandom_u32_max(si->highest_bit - si->lowest_bit + 1); 751 next = ALIGN_DOWN(next, SWAP_ADDRESS_SPACE_PAGES); 752 next = max_t(unsigned int, next, si->lowest_bit); 753 } 754 this_cpu_write(*si->cluster_next_cpu, next); 755 } 756 757 static int scan_swap_map_slots(struct swap_info_struct *si, 758 unsigned char usage, int nr, 759 swp_entry_t slots[]) 760 { 761 struct swap_cluster_info *ci; 762 unsigned long offset; 763 unsigned long scan_base; 764 unsigned long last_in_cluster = 0; 765 int latency_ration = LATENCY_LIMIT; 766 int n_ret = 0; 767 bool scanned_many = false; 768 769 /* 770 * We try to cluster swap pages by allocating them sequentially 771 * in swap. Once we've allocated SWAPFILE_CLUSTER pages this 772 * way, however, we resort to first-free allocation, starting 773 * a new cluster. This prevents us from scattering swap pages 774 * all over the entire swap partition, so that we reduce 775 * overall disk seek times between swap pages. -- sct 776 * But we do now try to find an empty cluster. -Andrea 777 * And we let swap pages go all over an SSD partition. Hugh 778 */ 779 780 si->flags += SWP_SCANNING; 781 /* 782 * Use percpu scan base for SSD to reduce lock contention on 783 * cluster and swap cache. For HDD, sequential access is more 784 * important. 785 */ 786 if (si->flags & SWP_SOLIDSTATE) 787 scan_base = this_cpu_read(*si->cluster_next_cpu); 788 else 789 scan_base = si->cluster_next; 790 offset = scan_base; 791 792 /* SSD algorithm */ 793 if (si->cluster_info) { 794 if (!scan_swap_map_try_ssd_cluster(si, &offset, &scan_base)) 795 goto scan; 796 } else if (unlikely(!si->cluster_nr--)) { 797 if (si->pages - si->inuse_pages < SWAPFILE_CLUSTER) { 798 si->cluster_nr = SWAPFILE_CLUSTER - 1; 799 goto checks; 800 } 801 802 spin_unlock(&si->lock); 803 804 /* 805 * If seek is expensive, start searching for new cluster from 806 * start of partition, to minimize the span of allocated swap. 807 * If seek is cheap, that is the SWP_SOLIDSTATE si->cluster_info 808 * case, just handled by scan_swap_map_try_ssd_cluster() above. 809 */ 810 scan_base = offset = si->lowest_bit; 811 last_in_cluster = offset + SWAPFILE_CLUSTER - 1; 812 813 /* Locate the first empty (unaligned) cluster */ 814 for (; last_in_cluster <= si->highest_bit; offset++) { 815 if (si->swap_map[offset]) 816 last_in_cluster = offset + SWAPFILE_CLUSTER; 817 else if (offset == last_in_cluster) { 818 spin_lock(&si->lock); 819 offset -= SWAPFILE_CLUSTER - 1; 820 si->cluster_next = offset; 821 si->cluster_nr = SWAPFILE_CLUSTER - 1; 822 goto checks; 823 } 824 if (unlikely(--latency_ration < 0)) { 825 cond_resched(); 826 latency_ration = LATENCY_LIMIT; 827 } 828 } 829 830 offset = scan_base; 831 spin_lock(&si->lock); 832 si->cluster_nr = SWAPFILE_CLUSTER - 1; 833 } 834 835 checks: 836 if (si->cluster_info) { 837 while (scan_swap_map_ssd_cluster_conflict(si, offset)) { 838 /* take a break if we already got some slots */ 839 if (n_ret) 840 goto done; 841 if (!scan_swap_map_try_ssd_cluster(si, &offset, 842 &scan_base)) 843 goto scan; 844 } 845 } 846 if (!(si->flags & SWP_WRITEOK)) 847 goto no_page; 848 if (!si->highest_bit) 849 goto no_page; 850 if (offset > si->highest_bit) 851 scan_base = offset = si->lowest_bit; 852 853 ci = lock_cluster(si, offset); 854 /* reuse swap entry of cache-only swap if not busy. */ 855 if (vm_swap_full() && si->swap_map[offset] == SWAP_HAS_CACHE) { 856 int swap_was_freed; 857 unlock_cluster(ci); 858 spin_unlock(&si->lock); 859 swap_was_freed = __try_to_reclaim_swap(si, offset, TTRS_ANYWAY); 860 spin_lock(&si->lock); 861 /* entry was freed successfully, try to use this again */ 862 if (swap_was_freed) 863 goto checks; 864 goto scan; /* check next one */ 865 } 866 867 if (si->swap_map[offset]) { 868 unlock_cluster(ci); 869 if (!n_ret) 870 goto scan; 871 else 872 goto done; 873 } 874 WRITE_ONCE(si->swap_map[offset], usage); 875 inc_cluster_info_page(si, si->cluster_info, offset); 876 unlock_cluster(ci); 877 878 swap_range_alloc(si, offset, 1); 879 slots[n_ret++] = swp_entry(si->type, offset); 880 881 /* got enough slots or reach max slots? */ 882 if ((n_ret == nr) || (offset >= si->highest_bit)) 883 goto done; 884 885 /* search for next available slot */ 886 887 /* time to take a break? */ 888 if (unlikely(--latency_ration < 0)) { 889 if (n_ret) 890 goto done; 891 spin_unlock(&si->lock); 892 cond_resched(); 893 spin_lock(&si->lock); 894 latency_ration = LATENCY_LIMIT; 895 } 896 897 /* try to get more slots in cluster */ 898 if (si->cluster_info) { 899 if (scan_swap_map_try_ssd_cluster(si, &offset, &scan_base)) 900 goto checks; 901 } else if (si->cluster_nr && !si->swap_map[++offset]) { 902 /* non-ssd case, still more slots in cluster? */ 903 --si->cluster_nr; 904 goto checks; 905 } 906 907 /* 908 * Even if there's no free clusters available (fragmented), 909 * try to scan a little more quickly with lock held unless we 910 * have scanned too many slots already. 911 */ 912 if (!scanned_many) { 913 unsigned long scan_limit; 914 915 if (offset < scan_base) 916 scan_limit = scan_base; 917 else 918 scan_limit = si->highest_bit; 919 for (; offset <= scan_limit && --latency_ration > 0; 920 offset++) { 921 if (!si->swap_map[offset]) 922 goto checks; 923 } 924 } 925 926 done: 927 set_cluster_next(si, offset + 1); 928 si->flags -= SWP_SCANNING; 929 return n_ret; 930 931 scan: 932 spin_unlock(&si->lock); 933 while (++offset <= READ_ONCE(si->highest_bit)) { 934 if (data_race(!si->swap_map[offset])) { 935 spin_lock(&si->lock); 936 goto checks; 937 } 938 if (vm_swap_full() && 939 READ_ONCE(si->swap_map[offset]) == SWAP_HAS_CACHE) { 940 spin_lock(&si->lock); 941 goto checks; 942 } 943 if (unlikely(--latency_ration < 0)) { 944 cond_resched(); 945 latency_ration = LATENCY_LIMIT; 946 scanned_many = true; 947 } 948 } 949 offset = si->lowest_bit; 950 while (offset < scan_base) { 951 if (data_race(!si->swap_map[offset])) { 952 spin_lock(&si->lock); 953 goto checks; 954 } 955 if (vm_swap_full() && 956 READ_ONCE(si->swap_map[offset]) == SWAP_HAS_CACHE) { 957 spin_lock(&si->lock); 958 goto checks; 959 } 960 if (unlikely(--latency_ration < 0)) { 961 cond_resched(); 962 latency_ration = LATENCY_LIMIT; 963 scanned_many = true; 964 } 965 offset++; 966 } 967 spin_lock(&si->lock); 968 969 no_page: 970 si->flags -= SWP_SCANNING; 971 return n_ret; 972 } 973 974 static int swap_alloc_cluster(struct swap_info_struct *si, swp_entry_t *slot) 975 { 976 unsigned long idx; 977 struct swap_cluster_info *ci; 978 unsigned long offset, i; 979 unsigned char *map; 980 981 /* 982 * Should not even be attempting cluster allocations when huge 983 * page swap is disabled. Warn and fail the allocation. 984 */ 985 if (!IS_ENABLED(CONFIG_THP_SWAP)) { 986 VM_WARN_ON_ONCE(1); 987 return 0; 988 } 989 990 if (cluster_list_empty(&si->free_clusters)) 991 return 0; 992 993 idx = cluster_list_first(&si->free_clusters); 994 offset = idx * SWAPFILE_CLUSTER; 995 ci = lock_cluster(si, offset); 996 alloc_cluster(si, idx); 997 cluster_set_count_flag(ci, SWAPFILE_CLUSTER, CLUSTER_FLAG_HUGE); 998 999 map = si->swap_map + offset; 1000 for (i = 0; i < SWAPFILE_CLUSTER; i++) 1001 map[i] = SWAP_HAS_CACHE; 1002 unlock_cluster(ci); 1003 swap_range_alloc(si, offset, SWAPFILE_CLUSTER); 1004 *slot = swp_entry(si->type, offset); 1005 1006 return 1; 1007 } 1008 1009 static void swap_free_cluster(struct swap_info_struct *si, unsigned long idx) 1010 { 1011 unsigned long offset = idx * SWAPFILE_CLUSTER; 1012 struct swap_cluster_info *ci; 1013 1014 ci = lock_cluster(si, offset); 1015 memset(si->swap_map + offset, 0, SWAPFILE_CLUSTER); 1016 cluster_set_count_flag(ci, 0, 0); 1017 free_cluster(si, idx); 1018 unlock_cluster(ci); 1019 swap_range_free(si, offset, SWAPFILE_CLUSTER); 1020 } 1021 1022 static unsigned long scan_swap_map(struct swap_info_struct *si, 1023 unsigned char usage) 1024 { 1025 swp_entry_t entry; 1026 int n_ret; 1027 1028 n_ret = scan_swap_map_slots(si, usage, 1, &entry); 1029 1030 if (n_ret) 1031 return swp_offset(entry); 1032 else 1033 return 0; 1034 1035 } 1036 1037 int get_swap_pages(int n_goal, swp_entry_t swp_entries[], int entry_size) 1038 { 1039 unsigned long size = swap_entry_size(entry_size); 1040 struct swap_info_struct *si, *next; 1041 long avail_pgs; 1042 int n_ret = 0; 1043 int node; 1044 1045 /* Only single cluster request supported */ 1046 WARN_ON_ONCE(n_goal > 1 && size == SWAPFILE_CLUSTER); 1047 1048 avail_pgs = atomic_long_read(&nr_swap_pages) / size; 1049 if (avail_pgs <= 0) 1050 goto noswap; 1051 1052 n_goal = min3((long)n_goal, (long)SWAP_BATCH, avail_pgs); 1053 1054 atomic_long_sub(n_goal * size, &nr_swap_pages); 1055 1056 spin_lock(&swap_avail_lock); 1057 1058 start_over: 1059 node = numa_node_id(); 1060 plist_for_each_entry_safe(si, next, &swap_avail_heads[node], avail_lists[node]) { 1061 /* requeue si to after same-priority siblings */ 1062 plist_requeue(&si->avail_lists[node], &swap_avail_heads[node]); 1063 spin_unlock(&swap_avail_lock); 1064 spin_lock(&si->lock); 1065 if (!si->highest_bit || !(si->flags & SWP_WRITEOK)) { 1066 spin_lock(&swap_avail_lock); 1067 if (plist_node_empty(&si->avail_lists[node])) { 1068 spin_unlock(&si->lock); 1069 goto nextsi; 1070 } 1071 WARN(!si->highest_bit, 1072 "swap_info %d in list but !highest_bit\n", 1073 si->type); 1074 WARN(!(si->flags & SWP_WRITEOK), 1075 "swap_info %d in list but !SWP_WRITEOK\n", 1076 si->type); 1077 __del_from_avail_list(si); 1078 spin_unlock(&si->lock); 1079 goto nextsi; 1080 } 1081 if (size == SWAPFILE_CLUSTER) { 1082 if (si->flags & SWP_BLKDEV) 1083 n_ret = swap_alloc_cluster(si, swp_entries); 1084 } else 1085 n_ret = scan_swap_map_slots(si, SWAP_HAS_CACHE, 1086 n_goal, swp_entries); 1087 spin_unlock(&si->lock); 1088 if (n_ret || size == SWAPFILE_CLUSTER) 1089 goto check_out; 1090 pr_debug("scan_swap_map of si %d failed to find offset\n", 1091 si->type); 1092 1093 spin_lock(&swap_avail_lock); 1094 nextsi: 1095 /* 1096 * if we got here, it's likely that si was almost full before, 1097 * and since scan_swap_map() can drop the si->lock, multiple 1098 * callers probably all tried to get a page from the same si 1099 * and it filled up before we could get one; or, the si filled 1100 * up between us dropping swap_avail_lock and taking si->lock. 1101 * Since we dropped the swap_avail_lock, the swap_avail_head 1102 * list may have been modified; so if next is still in the 1103 * swap_avail_head list then try it, otherwise start over 1104 * if we have not gotten any slots. 1105 */ 1106 if (plist_node_empty(&next->avail_lists[node])) 1107 goto start_over; 1108 } 1109 1110 spin_unlock(&swap_avail_lock); 1111 1112 check_out: 1113 if (n_ret < n_goal) 1114 atomic_long_add((long)(n_goal - n_ret) * size, 1115 &nr_swap_pages); 1116 noswap: 1117 return n_ret; 1118 } 1119 1120 /* The only caller of this function is now suspend routine */ 1121 swp_entry_t get_swap_page_of_type(int type) 1122 { 1123 struct swap_info_struct *si = swap_type_to_swap_info(type); 1124 pgoff_t offset; 1125 1126 if (!si) 1127 goto fail; 1128 1129 spin_lock(&si->lock); 1130 if (si->flags & SWP_WRITEOK) { 1131 atomic_long_dec(&nr_swap_pages); 1132 /* This is called for allocating swap entry, not cache */ 1133 offset = scan_swap_map(si, 1); 1134 if (offset) { 1135 spin_unlock(&si->lock); 1136 return swp_entry(type, offset); 1137 } 1138 atomic_long_inc(&nr_swap_pages); 1139 } 1140 spin_unlock(&si->lock); 1141 fail: 1142 return (swp_entry_t) {0}; 1143 } 1144 1145 static struct swap_info_struct *__swap_info_get(swp_entry_t entry) 1146 { 1147 struct swap_info_struct *p; 1148 unsigned long offset; 1149 1150 if (!entry.val) 1151 goto out; 1152 p = swp_swap_info(entry); 1153 if (!p) 1154 goto bad_nofile; 1155 if (data_race(!(p->flags & SWP_USED))) 1156 goto bad_device; 1157 offset = swp_offset(entry); 1158 if (offset >= p->max) 1159 goto bad_offset; 1160 return p; 1161 1162 bad_offset: 1163 pr_err("swap_info_get: %s%08lx\n", Bad_offset, entry.val); 1164 goto out; 1165 bad_device: 1166 pr_err("swap_info_get: %s%08lx\n", Unused_file, entry.val); 1167 goto out; 1168 bad_nofile: 1169 pr_err("swap_info_get: %s%08lx\n", Bad_file, entry.val); 1170 out: 1171 return NULL; 1172 } 1173 1174 static struct swap_info_struct *_swap_info_get(swp_entry_t entry) 1175 { 1176 struct swap_info_struct *p; 1177 1178 p = __swap_info_get(entry); 1179 if (!p) 1180 goto out; 1181 if (data_race(!p->swap_map[swp_offset(entry)])) 1182 goto bad_free; 1183 return p; 1184 1185 bad_free: 1186 pr_err("swap_info_get: %s%08lx\n", Unused_offset, entry.val); 1187 out: 1188 return NULL; 1189 } 1190 1191 static struct swap_info_struct *swap_info_get(swp_entry_t entry) 1192 { 1193 struct swap_info_struct *p; 1194 1195 p = _swap_info_get(entry); 1196 if (p) 1197 spin_lock(&p->lock); 1198 return p; 1199 } 1200 1201 static struct swap_info_struct *swap_info_get_cont(swp_entry_t entry, 1202 struct swap_info_struct *q) 1203 { 1204 struct swap_info_struct *p; 1205 1206 p = _swap_info_get(entry); 1207 1208 if (p != q) { 1209 if (q != NULL) 1210 spin_unlock(&q->lock); 1211 if (p != NULL) 1212 spin_lock(&p->lock); 1213 } 1214 return p; 1215 } 1216 1217 static unsigned char __swap_entry_free_locked(struct swap_info_struct *p, 1218 unsigned long offset, 1219 unsigned char usage) 1220 { 1221 unsigned char count; 1222 unsigned char has_cache; 1223 1224 count = p->swap_map[offset]; 1225 1226 has_cache = count & SWAP_HAS_CACHE; 1227 count &= ~SWAP_HAS_CACHE; 1228 1229 if (usage == SWAP_HAS_CACHE) { 1230 VM_BUG_ON(!has_cache); 1231 has_cache = 0; 1232 } else if (count == SWAP_MAP_SHMEM) { 1233 /* 1234 * Or we could insist on shmem.c using a special 1235 * swap_shmem_free() and free_shmem_swap_and_cache()... 1236 */ 1237 count = 0; 1238 } else if ((count & ~COUNT_CONTINUED) <= SWAP_MAP_MAX) { 1239 if (count == COUNT_CONTINUED) { 1240 if (swap_count_continued(p, offset, count)) 1241 count = SWAP_MAP_MAX | COUNT_CONTINUED; 1242 else 1243 count = SWAP_MAP_MAX; 1244 } else 1245 count--; 1246 } 1247 1248 usage = count | has_cache; 1249 if (usage) 1250 WRITE_ONCE(p->swap_map[offset], usage); 1251 else 1252 WRITE_ONCE(p->swap_map[offset], SWAP_HAS_CACHE); 1253 1254 return usage; 1255 } 1256 1257 /* 1258 * Check whether swap entry is valid in the swap device. If so, 1259 * return pointer to swap_info_struct, and keep the swap entry valid 1260 * via preventing the swap device from being swapoff, until 1261 * put_swap_device() is called. Otherwise return NULL. 1262 * 1263 * The entirety of the RCU read critical section must come before the 1264 * return from or after the call to synchronize_rcu() in 1265 * enable_swap_info() or swapoff(). So if "si->flags & SWP_VALID" is 1266 * true, the si->map, si->cluster_info, etc. must be valid in the 1267 * critical section. 1268 * 1269 * Notice that swapoff or swapoff+swapon can still happen before the 1270 * rcu_read_lock() in get_swap_device() or after the rcu_read_unlock() 1271 * in put_swap_device() if there isn't any other way to prevent 1272 * swapoff, such as page lock, page table lock, etc. The caller must 1273 * be prepared for that. For example, the following situation is 1274 * possible. 1275 * 1276 * CPU1 CPU2 1277 * do_swap_page() 1278 * ... swapoff+swapon 1279 * __read_swap_cache_async() 1280 * swapcache_prepare() 1281 * __swap_duplicate() 1282 * // check swap_map 1283 * // verify PTE not changed 1284 * 1285 * In __swap_duplicate(), the swap_map need to be checked before 1286 * changing partly because the specified swap entry may be for another 1287 * swap device which has been swapoff. And in do_swap_page(), after 1288 * the page is read from the swap device, the PTE is verified not 1289 * changed with the page table locked to check whether the swap device 1290 * has been swapoff or swapoff+swapon. 1291 */ 1292 struct swap_info_struct *get_swap_device(swp_entry_t entry) 1293 { 1294 struct swap_info_struct *si; 1295 unsigned long offset; 1296 1297 if (!entry.val) 1298 goto out; 1299 si = swp_swap_info(entry); 1300 if (!si) 1301 goto bad_nofile; 1302 1303 rcu_read_lock(); 1304 if (data_race(!(si->flags & SWP_VALID))) 1305 goto unlock_out; 1306 offset = swp_offset(entry); 1307 if (offset >= si->max) 1308 goto unlock_out; 1309 1310 return si; 1311 bad_nofile: 1312 pr_err("%s: %s%08lx\n", __func__, Bad_file, entry.val); 1313 out: 1314 return NULL; 1315 unlock_out: 1316 rcu_read_unlock(); 1317 return NULL; 1318 } 1319 1320 static unsigned char __swap_entry_free(struct swap_info_struct *p, 1321 swp_entry_t entry) 1322 { 1323 struct swap_cluster_info *ci; 1324 unsigned long offset = swp_offset(entry); 1325 unsigned char usage; 1326 1327 ci = lock_cluster_or_swap_info(p, offset); 1328 usage = __swap_entry_free_locked(p, offset, 1); 1329 unlock_cluster_or_swap_info(p, ci); 1330 if (!usage) 1331 free_swap_slot(entry); 1332 1333 return usage; 1334 } 1335 1336 static void swap_entry_free(struct swap_info_struct *p, swp_entry_t entry) 1337 { 1338 struct swap_cluster_info *ci; 1339 unsigned long offset = swp_offset(entry); 1340 unsigned char count; 1341 1342 ci = lock_cluster(p, offset); 1343 count = p->swap_map[offset]; 1344 VM_BUG_ON(count != SWAP_HAS_CACHE); 1345 p->swap_map[offset] = 0; 1346 dec_cluster_info_page(p, p->cluster_info, offset); 1347 unlock_cluster(ci); 1348 1349 mem_cgroup_uncharge_swap(entry, 1); 1350 swap_range_free(p, offset, 1); 1351 } 1352 1353 /* 1354 * Caller has made sure that the swap device corresponding to entry 1355 * is still around or has not been recycled. 1356 */ 1357 void swap_free(swp_entry_t entry) 1358 { 1359 struct swap_info_struct *p; 1360 1361 p = _swap_info_get(entry); 1362 if (p) 1363 __swap_entry_free(p, entry); 1364 } 1365 1366 /* 1367 * Called after dropping swapcache to decrease refcnt to swap entries. 1368 */ 1369 void put_swap_page(struct page *page, swp_entry_t entry) 1370 { 1371 unsigned long offset = swp_offset(entry); 1372 unsigned long idx = offset / SWAPFILE_CLUSTER; 1373 struct swap_cluster_info *ci; 1374 struct swap_info_struct *si; 1375 unsigned char *map; 1376 unsigned int i, free_entries = 0; 1377 unsigned char val; 1378 int size = swap_entry_size(thp_nr_pages(page)); 1379 1380 si = _swap_info_get(entry); 1381 if (!si) 1382 return; 1383 1384 ci = lock_cluster_or_swap_info(si, offset); 1385 if (size == SWAPFILE_CLUSTER) { 1386 VM_BUG_ON(!cluster_is_huge(ci)); 1387 map = si->swap_map + offset; 1388 for (i = 0; i < SWAPFILE_CLUSTER; i++) { 1389 val = map[i]; 1390 VM_BUG_ON(!(val & SWAP_HAS_CACHE)); 1391 if (val == SWAP_HAS_CACHE) 1392 free_entries++; 1393 } 1394 cluster_clear_huge(ci); 1395 if (free_entries == SWAPFILE_CLUSTER) { 1396 unlock_cluster_or_swap_info(si, ci); 1397 spin_lock(&si->lock); 1398 mem_cgroup_uncharge_swap(entry, SWAPFILE_CLUSTER); 1399 swap_free_cluster(si, idx); 1400 spin_unlock(&si->lock); 1401 return; 1402 } 1403 } 1404 for (i = 0; i < size; i++, entry.val++) { 1405 if (!__swap_entry_free_locked(si, offset + i, SWAP_HAS_CACHE)) { 1406 unlock_cluster_or_swap_info(si, ci); 1407 free_swap_slot(entry); 1408 if (i == size - 1) 1409 return; 1410 lock_cluster_or_swap_info(si, offset); 1411 } 1412 } 1413 unlock_cluster_or_swap_info(si, ci); 1414 } 1415 1416 #ifdef CONFIG_THP_SWAP 1417 int split_swap_cluster(swp_entry_t entry) 1418 { 1419 struct swap_info_struct *si; 1420 struct swap_cluster_info *ci; 1421 unsigned long offset = swp_offset(entry); 1422 1423 si = _swap_info_get(entry); 1424 if (!si) 1425 return -EBUSY; 1426 ci = lock_cluster(si, offset); 1427 cluster_clear_huge(ci); 1428 unlock_cluster(ci); 1429 return 0; 1430 } 1431 #endif 1432 1433 static int swp_entry_cmp(const void *ent1, const void *ent2) 1434 { 1435 const swp_entry_t *e1 = ent1, *e2 = ent2; 1436 1437 return (int)swp_type(*e1) - (int)swp_type(*e2); 1438 } 1439 1440 void swapcache_free_entries(swp_entry_t *entries, int n) 1441 { 1442 struct swap_info_struct *p, *prev; 1443 int i; 1444 1445 if (n <= 0) 1446 return; 1447 1448 prev = NULL; 1449 p = NULL; 1450 1451 /* 1452 * Sort swap entries by swap device, so each lock is only taken once. 1453 * nr_swapfiles isn't absolutely correct, but the overhead of sort() is 1454 * so low that it isn't necessary to optimize further. 1455 */ 1456 if (nr_swapfiles > 1) 1457 sort(entries, n, sizeof(entries[0]), swp_entry_cmp, NULL); 1458 for (i = 0; i < n; ++i) { 1459 p = swap_info_get_cont(entries[i], prev); 1460 if (p) 1461 swap_entry_free(p, entries[i]); 1462 prev = p; 1463 } 1464 if (p) 1465 spin_unlock(&p->lock); 1466 } 1467 1468 /* 1469 * How many references to page are currently swapped out? 1470 * This does not give an exact answer when swap count is continued, 1471 * but does include the high COUNT_CONTINUED flag to allow for that. 1472 */ 1473 int page_swapcount(struct page *page) 1474 { 1475 int count = 0; 1476 struct swap_info_struct *p; 1477 struct swap_cluster_info *ci; 1478 swp_entry_t entry; 1479 unsigned long offset; 1480 1481 entry.val = page_private(page); 1482 p = _swap_info_get(entry); 1483 if (p) { 1484 offset = swp_offset(entry); 1485 ci = lock_cluster_or_swap_info(p, offset); 1486 count = swap_count(p->swap_map[offset]); 1487 unlock_cluster_or_swap_info(p, ci); 1488 } 1489 return count; 1490 } 1491 1492 int __swap_count(swp_entry_t entry) 1493 { 1494 struct swap_info_struct *si; 1495 pgoff_t offset = swp_offset(entry); 1496 int count = 0; 1497 1498 si = get_swap_device(entry); 1499 if (si) { 1500 count = swap_count(si->swap_map[offset]); 1501 put_swap_device(si); 1502 } 1503 return count; 1504 } 1505 1506 static int swap_swapcount(struct swap_info_struct *si, swp_entry_t entry) 1507 { 1508 int count = 0; 1509 pgoff_t offset = swp_offset(entry); 1510 struct swap_cluster_info *ci; 1511 1512 ci = lock_cluster_or_swap_info(si, offset); 1513 count = swap_count(si->swap_map[offset]); 1514 unlock_cluster_or_swap_info(si, ci); 1515 return count; 1516 } 1517 1518 /* 1519 * How many references to @entry are currently swapped out? 1520 * This does not give an exact answer when swap count is continued, 1521 * but does include the high COUNT_CONTINUED flag to allow for that. 1522 */ 1523 int __swp_swapcount(swp_entry_t entry) 1524 { 1525 int count = 0; 1526 struct swap_info_struct *si; 1527 1528 si = get_swap_device(entry); 1529 if (si) { 1530 count = swap_swapcount(si, entry); 1531 put_swap_device(si); 1532 } 1533 return count; 1534 } 1535 1536 /* 1537 * How many references to @entry are currently swapped out? 1538 * This considers COUNT_CONTINUED so it returns exact answer. 1539 */ 1540 int swp_swapcount(swp_entry_t entry) 1541 { 1542 int count, tmp_count, n; 1543 struct swap_info_struct *p; 1544 struct swap_cluster_info *ci; 1545 struct page *page; 1546 pgoff_t offset; 1547 unsigned char *map; 1548 1549 p = _swap_info_get(entry); 1550 if (!p) 1551 return 0; 1552 1553 offset = swp_offset(entry); 1554 1555 ci = lock_cluster_or_swap_info(p, offset); 1556 1557 count = swap_count(p->swap_map[offset]); 1558 if (!(count & COUNT_CONTINUED)) 1559 goto out; 1560 1561 count &= ~COUNT_CONTINUED; 1562 n = SWAP_MAP_MAX + 1; 1563 1564 page = vmalloc_to_page(p->swap_map + offset); 1565 offset &= ~PAGE_MASK; 1566 VM_BUG_ON(page_private(page) != SWP_CONTINUED); 1567 1568 do { 1569 page = list_next_entry(page, lru); 1570 map = kmap_atomic(page); 1571 tmp_count = map[offset]; 1572 kunmap_atomic(map); 1573 1574 count += (tmp_count & ~COUNT_CONTINUED) * n; 1575 n *= (SWAP_CONT_MAX + 1); 1576 } while (tmp_count & COUNT_CONTINUED); 1577 out: 1578 unlock_cluster_or_swap_info(p, ci); 1579 return count; 1580 } 1581 1582 static bool swap_page_trans_huge_swapped(struct swap_info_struct *si, 1583 swp_entry_t entry) 1584 { 1585 struct swap_cluster_info *ci; 1586 unsigned char *map = si->swap_map; 1587 unsigned long roffset = swp_offset(entry); 1588 unsigned long offset = round_down(roffset, SWAPFILE_CLUSTER); 1589 int i; 1590 bool ret = false; 1591 1592 ci = lock_cluster_or_swap_info(si, offset); 1593 if (!ci || !cluster_is_huge(ci)) { 1594 if (swap_count(map[roffset])) 1595 ret = true; 1596 goto unlock_out; 1597 } 1598 for (i = 0; i < SWAPFILE_CLUSTER; i++) { 1599 if (swap_count(map[offset + i])) { 1600 ret = true; 1601 break; 1602 } 1603 } 1604 unlock_out: 1605 unlock_cluster_or_swap_info(si, ci); 1606 return ret; 1607 } 1608 1609 static bool page_swapped(struct page *page) 1610 { 1611 swp_entry_t entry; 1612 struct swap_info_struct *si; 1613 1614 if (!IS_ENABLED(CONFIG_THP_SWAP) || likely(!PageTransCompound(page))) 1615 return page_swapcount(page) != 0; 1616 1617 page = compound_head(page); 1618 entry.val = page_private(page); 1619 si = _swap_info_get(entry); 1620 if (si) 1621 return swap_page_trans_huge_swapped(si, entry); 1622 return false; 1623 } 1624 1625 static int page_trans_huge_map_swapcount(struct page *page, int *total_mapcount, 1626 int *total_swapcount) 1627 { 1628 int i, map_swapcount, _total_mapcount, _total_swapcount; 1629 unsigned long offset = 0; 1630 struct swap_info_struct *si; 1631 struct swap_cluster_info *ci = NULL; 1632 unsigned char *map = NULL; 1633 int mapcount, swapcount = 0; 1634 1635 /* hugetlbfs shouldn't call it */ 1636 VM_BUG_ON_PAGE(PageHuge(page), page); 1637 1638 if (!IS_ENABLED(CONFIG_THP_SWAP) || likely(!PageTransCompound(page))) { 1639 mapcount = page_trans_huge_mapcount(page, total_mapcount); 1640 if (PageSwapCache(page)) 1641 swapcount = page_swapcount(page); 1642 if (total_swapcount) 1643 *total_swapcount = swapcount; 1644 return mapcount + swapcount; 1645 } 1646 1647 page = compound_head(page); 1648 1649 _total_mapcount = _total_swapcount = map_swapcount = 0; 1650 if (PageSwapCache(page)) { 1651 swp_entry_t entry; 1652 1653 entry.val = page_private(page); 1654 si = _swap_info_get(entry); 1655 if (si) { 1656 map = si->swap_map; 1657 offset = swp_offset(entry); 1658 } 1659 } 1660 if (map) 1661 ci = lock_cluster(si, offset); 1662 for (i = 0; i < HPAGE_PMD_NR; i++) { 1663 mapcount = atomic_read(&page[i]._mapcount) + 1; 1664 _total_mapcount += mapcount; 1665 if (map) { 1666 swapcount = swap_count(map[offset + i]); 1667 _total_swapcount += swapcount; 1668 } 1669 map_swapcount = max(map_swapcount, mapcount + swapcount); 1670 } 1671 unlock_cluster(ci); 1672 if (PageDoubleMap(page)) { 1673 map_swapcount -= 1; 1674 _total_mapcount -= HPAGE_PMD_NR; 1675 } 1676 mapcount = compound_mapcount(page); 1677 map_swapcount += mapcount; 1678 _total_mapcount += mapcount; 1679 if (total_mapcount) 1680 *total_mapcount = _total_mapcount; 1681 if (total_swapcount) 1682 *total_swapcount = _total_swapcount; 1683 1684 return map_swapcount; 1685 } 1686 1687 /* 1688 * We can write to an anon page without COW if there are no other references 1689 * to it. And as a side-effect, free up its swap: because the old content 1690 * on disk will never be read, and seeking back there to write new content 1691 * later would only waste time away from clustering. 1692 * 1693 * NOTE: total_map_swapcount should not be relied upon by the caller if 1694 * reuse_swap_page() returns false, but it may be always overwritten 1695 * (see the other implementation for CONFIG_SWAP=n). 1696 */ 1697 bool reuse_swap_page(struct page *page, int *total_map_swapcount) 1698 { 1699 int count, total_mapcount, total_swapcount; 1700 1701 VM_BUG_ON_PAGE(!PageLocked(page), page); 1702 if (unlikely(PageKsm(page))) 1703 return false; 1704 count = page_trans_huge_map_swapcount(page, &total_mapcount, 1705 &total_swapcount); 1706 if (total_map_swapcount) 1707 *total_map_swapcount = total_mapcount + total_swapcount; 1708 if (count == 1 && PageSwapCache(page) && 1709 (likely(!PageTransCompound(page)) || 1710 /* The remaining swap count will be freed soon */ 1711 total_swapcount == page_swapcount(page))) { 1712 if (!PageWriteback(page)) { 1713 page = compound_head(page); 1714 delete_from_swap_cache(page); 1715 SetPageDirty(page); 1716 } else { 1717 swp_entry_t entry; 1718 struct swap_info_struct *p; 1719 1720 entry.val = page_private(page); 1721 p = swap_info_get(entry); 1722 if (p->flags & SWP_STABLE_WRITES) { 1723 spin_unlock(&p->lock); 1724 return false; 1725 } 1726 spin_unlock(&p->lock); 1727 } 1728 } 1729 1730 return count <= 1; 1731 } 1732 1733 /* 1734 * If swap is getting full, or if there are no more mappings of this page, 1735 * then try_to_free_swap is called to free its swap space. 1736 */ 1737 int try_to_free_swap(struct page *page) 1738 { 1739 VM_BUG_ON_PAGE(!PageLocked(page), page); 1740 1741 if (!PageSwapCache(page)) 1742 return 0; 1743 if (PageWriteback(page)) 1744 return 0; 1745 if (page_swapped(page)) 1746 return 0; 1747 1748 /* 1749 * Once hibernation has begun to create its image of memory, 1750 * there's a danger that one of the calls to try_to_free_swap() 1751 * - most probably a call from __try_to_reclaim_swap() while 1752 * hibernation is allocating its own swap pages for the image, 1753 * but conceivably even a call from memory reclaim - will free 1754 * the swap from a page which has already been recorded in the 1755 * image as a clean swapcache page, and then reuse its swap for 1756 * another page of the image. On waking from hibernation, the 1757 * original page might be freed under memory pressure, then 1758 * later read back in from swap, now with the wrong data. 1759 * 1760 * Hibernation suspends storage while it is writing the image 1761 * to disk so check that here. 1762 */ 1763 if (pm_suspended_storage()) 1764 return 0; 1765 1766 page = compound_head(page); 1767 delete_from_swap_cache(page); 1768 SetPageDirty(page); 1769 return 1; 1770 } 1771 1772 /* 1773 * Free the swap entry like above, but also try to 1774 * free the page cache entry if it is the last user. 1775 */ 1776 int free_swap_and_cache(swp_entry_t entry) 1777 { 1778 struct swap_info_struct *p; 1779 unsigned char count; 1780 1781 if (non_swap_entry(entry)) 1782 return 1; 1783 1784 p = _swap_info_get(entry); 1785 if (p) { 1786 count = __swap_entry_free(p, entry); 1787 if (count == SWAP_HAS_CACHE && 1788 !swap_page_trans_huge_swapped(p, entry)) 1789 __try_to_reclaim_swap(p, swp_offset(entry), 1790 TTRS_UNMAPPED | TTRS_FULL); 1791 } 1792 return p != NULL; 1793 } 1794 1795 #ifdef CONFIG_HIBERNATION 1796 /* 1797 * Find the swap type that corresponds to given device (if any). 1798 * 1799 * @offset - number of the PAGE_SIZE-sized block of the device, starting 1800 * from 0, in which the swap header is expected to be located. 1801 * 1802 * This is needed for the suspend to disk (aka swsusp). 1803 */ 1804 int swap_type_of(dev_t device, sector_t offset) 1805 { 1806 int type; 1807 1808 if (!device) 1809 return -1; 1810 1811 spin_lock(&swap_lock); 1812 for (type = 0; type < nr_swapfiles; type++) { 1813 struct swap_info_struct *sis = swap_info[type]; 1814 1815 if (!(sis->flags & SWP_WRITEOK)) 1816 continue; 1817 1818 if (device == sis->bdev->bd_dev) { 1819 struct swap_extent *se = first_se(sis); 1820 1821 if (se->start_block == offset) { 1822 spin_unlock(&swap_lock); 1823 return type; 1824 } 1825 } 1826 } 1827 spin_unlock(&swap_lock); 1828 return -ENODEV; 1829 } 1830 1831 int find_first_swap(dev_t *device) 1832 { 1833 int type; 1834 1835 spin_lock(&swap_lock); 1836 for (type = 0; type < nr_swapfiles; type++) { 1837 struct swap_info_struct *sis = swap_info[type]; 1838 1839 if (!(sis->flags & SWP_WRITEOK)) 1840 continue; 1841 *device = sis->bdev->bd_dev; 1842 spin_unlock(&swap_lock); 1843 return type; 1844 } 1845 spin_unlock(&swap_lock); 1846 return -ENODEV; 1847 } 1848 1849 /* 1850 * Get the (PAGE_SIZE) block corresponding to given offset on the swapdev 1851 * corresponding to given index in swap_info (swap type). 1852 */ 1853 sector_t swapdev_block(int type, pgoff_t offset) 1854 { 1855 struct block_device *bdev; 1856 struct swap_info_struct *si = swap_type_to_swap_info(type); 1857 1858 if (!si || !(si->flags & SWP_WRITEOK)) 1859 return 0; 1860 return map_swap_entry(swp_entry(type, offset), &bdev); 1861 } 1862 1863 /* 1864 * Return either the total number of swap pages of given type, or the number 1865 * of free pages of that type (depending on @free) 1866 * 1867 * This is needed for software suspend 1868 */ 1869 unsigned int count_swap_pages(int type, int free) 1870 { 1871 unsigned int n = 0; 1872 1873 spin_lock(&swap_lock); 1874 if ((unsigned int)type < nr_swapfiles) { 1875 struct swap_info_struct *sis = swap_info[type]; 1876 1877 spin_lock(&sis->lock); 1878 if (sis->flags & SWP_WRITEOK) { 1879 n = sis->pages; 1880 if (free) 1881 n -= sis->inuse_pages; 1882 } 1883 spin_unlock(&sis->lock); 1884 } 1885 spin_unlock(&swap_lock); 1886 return n; 1887 } 1888 #endif /* CONFIG_HIBERNATION */ 1889 1890 static inline int pte_same_as_swp(pte_t pte, pte_t swp_pte) 1891 { 1892 return pte_same(pte_swp_clear_soft_dirty(pte), swp_pte); 1893 } 1894 1895 /* 1896 * No need to decide whether this PTE shares the swap entry with others, 1897 * just let do_wp_page work it out if a write is requested later - to 1898 * force COW, vm_page_prot omits write permission from any private vma. 1899 */ 1900 static int unuse_pte(struct vm_area_struct *vma, pmd_t *pmd, 1901 unsigned long addr, swp_entry_t entry, struct page *page) 1902 { 1903 struct page *swapcache; 1904 spinlock_t *ptl; 1905 pte_t *pte; 1906 int ret = 1; 1907 1908 swapcache = page; 1909 page = ksm_might_need_to_copy(page, vma, addr); 1910 if (unlikely(!page)) 1911 return -ENOMEM; 1912 1913 pte = pte_offset_map_lock(vma->vm_mm, pmd, addr, &ptl); 1914 if (unlikely(!pte_same_as_swp(*pte, swp_entry_to_pte(entry)))) { 1915 ret = 0; 1916 goto out; 1917 } 1918 1919 dec_mm_counter(vma->vm_mm, MM_SWAPENTS); 1920 inc_mm_counter(vma->vm_mm, MM_ANONPAGES); 1921 get_page(page); 1922 set_pte_at(vma->vm_mm, addr, pte, 1923 pte_mkold(mk_pte(page, vma->vm_page_prot))); 1924 if (page == swapcache) { 1925 page_add_anon_rmap(page, vma, addr, false); 1926 } else { /* ksm created a completely new copy */ 1927 page_add_new_anon_rmap(page, vma, addr, false); 1928 lru_cache_add_inactive_or_unevictable(page, vma); 1929 } 1930 swap_free(entry); 1931 out: 1932 pte_unmap_unlock(pte, ptl); 1933 if (page != swapcache) { 1934 unlock_page(page); 1935 put_page(page); 1936 } 1937 return ret; 1938 } 1939 1940 static int unuse_pte_range(struct vm_area_struct *vma, pmd_t *pmd, 1941 unsigned long addr, unsigned long end, 1942 unsigned int type, bool frontswap, 1943 unsigned long *fs_pages_to_unuse) 1944 { 1945 struct page *page; 1946 swp_entry_t entry; 1947 pte_t *pte; 1948 struct swap_info_struct *si; 1949 unsigned long offset; 1950 int ret = 0; 1951 volatile unsigned char *swap_map; 1952 1953 si = swap_info[type]; 1954 pte = pte_offset_map(pmd, addr); 1955 do { 1956 struct vm_fault vmf; 1957 1958 if (!is_swap_pte(*pte)) 1959 continue; 1960 1961 entry = pte_to_swp_entry(*pte); 1962 if (swp_type(entry) != type) 1963 continue; 1964 1965 offset = swp_offset(entry); 1966 if (frontswap && !frontswap_test(si, offset)) 1967 continue; 1968 1969 pte_unmap(pte); 1970 swap_map = &si->swap_map[offset]; 1971 page = lookup_swap_cache(entry, vma, addr); 1972 if (!page) { 1973 vmf.vma = vma; 1974 vmf.address = addr; 1975 vmf.pmd = pmd; 1976 page = swapin_readahead(entry, GFP_HIGHUSER_MOVABLE, 1977 &vmf); 1978 } 1979 if (!page) { 1980 if (*swap_map == 0 || *swap_map == SWAP_MAP_BAD) 1981 goto try_next; 1982 return -ENOMEM; 1983 } 1984 1985 lock_page(page); 1986 wait_on_page_writeback(page); 1987 ret = unuse_pte(vma, pmd, addr, entry, page); 1988 if (ret < 0) { 1989 unlock_page(page); 1990 put_page(page); 1991 goto out; 1992 } 1993 1994 try_to_free_swap(page); 1995 unlock_page(page); 1996 put_page(page); 1997 1998 if (*fs_pages_to_unuse && !--(*fs_pages_to_unuse)) { 1999 ret = FRONTSWAP_PAGES_UNUSED; 2000 goto out; 2001 } 2002 try_next: 2003 pte = pte_offset_map(pmd, addr); 2004 } while (pte++, addr += PAGE_SIZE, addr != end); 2005 pte_unmap(pte - 1); 2006 2007 ret = 0; 2008 out: 2009 return ret; 2010 } 2011 2012 static inline int unuse_pmd_range(struct vm_area_struct *vma, pud_t *pud, 2013 unsigned long addr, unsigned long end, 2014 unsigned int type, bool frontswap, 2015 unsigned long *fs_pages_to_unuse) 2016 { 2017 pmd_t *pmd; 2018 unsigned long next; 2019 int ret; 2020 2021 pmd = pmd_offset(pud, addr); 2022 do { 2023 cond_resched(); 2024 next = pmd_addr_end(addr, end); 2025 if (pmd_none_or_trans_huge_or_clear_bad(pmd)) 2026 continue; 2027 ret = unuse_pte_range(vma, pmd, addr, next, type, 2028 frontswap, fs_pages_to_unuse); 2029 if (ret) 2030 return ret; 2031 } while (pmd++, addr = next, addr != end); 2032 return 0; 2033 } 2034 2035 static inline int unuse_pud_range(struct vm_area_struct *vma, p4d_t *p4d, 2036 unsigned long addr, unsigned long end, 2037 unsigned int type, bool frontswap, 2038 unsigned long *fs_pages_to_unuse) 2039 { 2040 pud_t *pud; 2041 unsigned long next; 2042 int ret; 2043 2044 pud = pud_offset(p4d, addr); 2045 do { 2046 next = pud_addr_end(addr, end); 2047 if (pud_none_or_clear_bad(pud)) 2048 continue; 2049 ret = unuse_pmd_range(vma, pud, addr, next, type, 2050 frontswap, fs_pages_to_unuse); 2051 if (ret) 2052 return ret; 2053 } while (pud++, addr = next, addr != end); 2054 return 0; 2055 } 2056 2057 static inline int unuse_p4d_range(struct vm_area_struct *vma, pgd_t *pgd, 2058 unsigned long addr, unsigned long end, 2059 unsigned int type, bool frontswap, 2060 unsigned long *fs_pages_to_unuse) 2061 { 2062 p4d_t *p4d; 2063 unsigned long next; 2064 int ret; 2065 2066 p4d = p4d_offset(pgd, addr); 2067 do { 2068 next = p4d_addr_end(addr, end); 2069 if (p4d_none_or_clear_bad(p4d)) 2070 continue; 2071 ret = unuse_pud_range(vma, p4d, addr, next, type, 2072 frontswap, fs_pages_to_unuse); 2073 if (ret) 2074 return ret; 2075 } while (p4d++, addr = next, addr != end); 2076 return 0; 2077 } 2078 2079 static int unuse_vma(struct vm_area_struct *vma, unsigned int type, 2080 bool frontswap, unsigned long *fs_pages_to_unuse) 2081 { 2082 pgd_t *pgd; 2083 unsigned long addr, end, next; 2084 int ret; 2085 2086 addr = vma->vm_start; 2087 end = vma->vm_end; 2088 2089 pgd = pgd_offset(vma->vm_mm, addr); 2090 do { 2091 next = pgd_addr_end(addr, end); 2092 if (pgd_none_or_clear_bad(pgd)) 2093 continue; 2094 ret = unuse_p4d_range(vma, pgd, addr, next, type, 2095 frontswap, fs_pages_to_unuse); 2096 if (ret) 2097 return ret; 2098 } while (pgd++, addr = next, addr != end); 2099 return 0; 2100 } 2101 2102 static int unuse_mm(struct mm_struct *mm, unsigned int type, 2103 bool frontswap, unsigned long *fs_pages_to_unuse) 2104 { 2105 struct vm_area_struct *vma; 2106 int ret = 0; 2107 2108 mmap_read_lock(mm); 2109 for (vma = mm->mmap; vma; vma = vma->vm_next) { 2110 if (vma->anon_vma) { 2111 ret = unuse_vma(vma, type, frontswap, 2112 fs_pages_to_unuse); 2113 if (ret) 2114 break; 2115 } 2116 cond_resched(); 2117 } 2118 mmap_read_unlock(mm); 2119 return ret; 2120 } 2121 2122 /* 2123 * Scan swap_map (or frontswap_map if frontswap parameter is true) 2124 * from current position to next entry still in use. Return 0 2125 * if there are no inuse entries after prev till end of the map. 2126 */ 2127 static unsigned int find_next_to_unuse(struct swap_info_struct *si, 2128 unsigned int prev, bool frontswap) 2129 { 2130 unsigned int i; 2131 unsigned char count; 2132 2133 /* 2134 * No need for swap_lock here: we're just looking 2135 * for whether an entry is in use, not modifying it; false 2136 * hits are okay, and sys_swapoff() has already prevented new 2137 * allocations from this area (while holding swap_lock). 2138 */ 2139 for (i = prev + 1; i < si->max; i++) { 2140 count = READ_ONCE(si->swap_map[i]); 2141 if (count && swap_count(count) != SWAP_MAP_BAD) 2142 if (!frontswap || frontswap_test(si, i)) 2143 break; 2144 if ((i % LATENCY_LIMIT) == 0) 2145 cond_resched(); 2146 } 2147 2148 if (i == si->max) 2149 i = 0; 2150 2151 return i; 2152 } 2153 2154 /* 2155 * If the boolean frontswap is true, only unuse pages_to_unuse pages; 2156 * pages_to_unuse==0 means all pages; ignored if frontswap is false 2157 */ 2158 int try_to_unuse(unsigned int type, bool frontswap, 2159 unsigned long pages_to_unuse) 2160 { 2161 struct mm_struct *prev_mm; 2162 struct mm_struct *mm; 2163 struct list_head *p; 2164 int retval = 0; 2165 struct swap_info_struct *si = swap_info[type]; 2166 struct page *page; 2167 swp_entry_t entry; 2168 unsigned int i; 2169 2170 if (!READ_ONCE(si->inuse_pages)) 2171 return 0; 2172 2173 if (!frontswap) 2174 pages_to_unuse = 0; 2175 2176 retry: 2177 retval = shmem_unuse(type, frontswap, &pages_to_unuse); 2178 if (retval) 2179 goto out; 2180 2181 prev_mm = &init_mm; 2182 mmget(prev_mm); 2183 2184 spin_lock(&mmlist_lock); 2185 p = &init_mm.mmlist; 2186 while (READ_ONCE(si->inuse_pages) && 2187 !signal_pending(current) && 2188 (p = p->next) != &init_mm.mmlist) { 2189 2190 mm = list_entry(p, struct mm_struct, mmlist); 2191 if (!mmget_not_zero(mm)) 2192 continue; 2193 spin_unlock(&mmlist_lock); 2194 mmput(prev_mm); 2195 prev_mm = mm; 2196 retval = unuse_mm(mm, type, frontswap, &pages_to_unuse); 2197 2198 if (retval) { 2199 mmput(prev_mm); 2200 goto out; 2201 } 2202 2203 /* 2204 * Make sure that we aren't completely killing 2205 * interactive performance. 2206 */ 2207 cond_resched(); 2208 spin_lock(&mmlist_lock); 2209 } 2210 spin_unlock(&mmlist_lock); 2211 2212 mmput(prev_mm); 2213 2214 i = 0; 2215 while (READ_ONCE(si->inuse_pages) && 2216 !signal_pending(current) && 2217 (i = find_next_to_unuse(si, i, frontswap)) != 0) { 2218 2219 entry = swp_entry(type, i); 2220 page = find_get_page(swap_address_space(entry), i); 2221 if (!page) 2222 continue; 2223 2224 /* 2225 * It is conceivable that a racing task removed this page from 2226 * swap cache just before we acquired the page lock. The page 2227 * might even be back in swap cache on another swap area. But 2228 * that is okay, try_to_free_swap() only removes stale pages. 2229 */ 2230 lock_page(page); 2231 wait_on_page_writeback(page); 2232 try_to_free_swap(page); 2233 unlock_page(page); 2234 put_page(page); 2235 2236 /* 2237 * For frontswap, we just need to unuse pages_to_unuse, if 2238 * it was specified. Need not check frontswap again here as 2239 * we already zeroed out pages_to_unuse if not frontswap. 2240 */ 2241 if (pages_to_unuse && --pages_to_unuse == 0) 2242 goto out; 2243 } 2244 2245 /* 2246 * Lets check again to see if there are still swap entries in the map. 2247 * If yes, we would need to do retry the unuse logic again. 2248 * Under global memory pressure, swap entries can be reinserted back 2249 * into process space after the mmlist loop above passes over them. 2250 * 2251 * Limit the number of retries? No: when mmget_not_zero() above fails, 2252 * that mm is likely to be freeing swap from exit_mmap(), which proceeds 2253 * at its own independent pace; and even shmem_writepage() could have 2254 * been preempted after get_swap_page(), temporarily hiding that swap. 2255 * It's easy and robust (though cpu-intensive) just to keep retrying. 2256 */ 2257 if (READ_ONCE(si->inuse_pages)) { 2258 if (!signal_pending(current)) 2259 goto retry; 2260 retval = -EINTR; 2261 } 2262 out: 2263 return (retval == FRONTSWAP_PAGES_UNUSED) ? 0 : retval; 2264 } 2265 2266 /* 2267 * After a successful try_to_unuse, if no swap is now in use, we know 2268 * we can empty the mmlist. swap_lock must be held on entry and exit. 2269 * Note that mmlist_lock nests inside swap_lock, and an mm must be 2270 * added to the mmlist just after page_duplicate - before would be racy. 2271 */ 2272 static void drain_mmlist(void) 2273 { 2274 struct list_head *p, *next; 2275 unsigned int type; 2276 2277 for (type = 0; type < nr_swapfiles; type++) 2278 if (swap_info[type]->inuse_pages) 2279 return; 2280 spin_lock(&mmlist_lock); 2281 list_for_each_safe(p, next, &init_mm.mmlist) 2282 list_del_init(p); 2283 spin_unlock(&mmlist_lock); 2284 } 2285 2286 /* 2287 * Use this swapdev's extent info to locate the (PAGE_SIZE) block which 2288 * corresponds to page offset for the specified swap entry. 2289 * Note that the type of this function is sector_t, but it returns page offset 2290 * into the bdev, not sector offset. 2291 */ 2292 static sector_t map_swap_entry(swp_entry_t entry, struct block_device **bdev) 2293 { 2294 struct swap_info_struct *sis; 2295 struct swap_extent *se; 2296 pgoff_t offset; 2297 2298 sis = swp_swap_info(entry); 2299 *bdev = sis->bdev; 2300 2301 offset = swp_offset(entry); 2302 se = offset_to_swap_extent(sis, offset); 2303 return se->start_block + (offset - se->start_page); 2304 } 2305 2306 /* 2307 * Returns the page offset into bdev for the specified page's swap entry. 2308 */ 2309 sector_t map_swap_page(struct page *page, struct block_device **bdev) 2310 { 2311 swp_entry_t entry; 2312 entry.val = page_private(page); 2313 return map_swap_entry(entry, bdev); 2314 } 2315 2316 /* 2317 * Free all of a swapdev's extent information 2318 */ 2319 static void destroy_swap_extents(struct swap_info_struct *sis) 2320 { 2321 while (!RB_EMPTY_ROOT(&sis->swap_extent_root)) { 2322 struct rb_node *rb = sis->swap_extent_root.rb_node; 2323 struct swap_extent *se = rb_entry(rb, struct swap_extent, rb_node); 2324 2325 rb_erase(rb, &sis->swap_extent_root); 2326 kfree(se); 2327 } 2328 2329 if (sis->flags & SWP_ACTIVATED) { 2330 struct file *swap_file = sis->swap_file; 2331 struct address_space *mapping = swap_file->f_mapping; 2332 2333 sis->flags &= ~SWP_ACTIVATED; 2334 if (mapping->a_ops->swap_deactivate) 2335 mapping->a_ops->swap_deactivate(swap_file); 2336 } 2337 } 2338 2339 /* 2340 * Add a block range (and the corresponding page range) into this swapdev's 2341 * extent tree. 2342 * 2343 * This function rather assumes that it is called in ascending page order. 2344 */ 2345 int 2346 add_swap_extent(struct swap_info_struct *sis, unsigned long start_page, 2347 unsigned long nr_pages, sector_t start_block) 2348 { 2349 struct rb_node **link = &sis->swap_extent_root.rb_node, *parent = NULL; 2350 struct swap_extent *se; 2351 struct swap_extent *new_se; 2352 2353 /* 2354 * place the new node at the right most since the 2355 * function is called in ascending page order. 2356 */ 2357 while (*link) { 2358 parent = *link; 2359 link = &parent->rb_right; 2360 } 2361 2362 if (parent) { 2363 se = rb_entry(parent, struct swap_extent, rb_node); 2364 BUG_ON(se->start_page + se->nr_pages != start_page); 2365 if (se->start_block + se->nr_pages == start_block) { 2366 /* Merge it */ 2367 se->nr_pages += nr_pages; 2368 return 0; 2369 } 2370 } 2371 2372 /* No merge, insert a new extent. */ 2373 new_se = kmalloc(sizeof(*se), GFP_KERNEL); 2374 if (new_se == NULL) 2375 return -ENOMEM; 2376 new_se->start_page = start_page; 2377 new_se->nr_pages = nr_pages; 2378 new_se->start_block = start_block; 2379 2380 rb_link_node(&new_se->rb_node, parent, link); 2381 rb_insert_color(&new_se->rb_node, &sis->swap_extent_root); 2382 return 1; 2383 } 2384 EXPORT_SYMBOL_GPL(add_swap_extent); 2385 2386 /* 2387 * A `swap extent' is a simple thing which maps a contiguous range of pages 2388 * onto a contiguous range of disk blocks. An ordered list of swap extents 2389 * is built at swapon time and is then used at swap_writepage/swap_readpage 2390 * time for locating where on disk a page belongs. 2391 * 2392 * If the swapfile is an S_ISBLK block device, a single extent is installed. 2393 * This is done so that the main operating code can treat S_ISBLK and S_ISREG 2394 * swap files identically. 2395 * 2396 * Whether the swapdev is an S_ISREG file or an S_ISBLK blockdev, the swap 2397 * extent list operates in PAGE_SIZE disk blocks. Both S_ISREG and S_ISBLK 2398 * swapfiles are handled *identically* after swapon time. 2399 * 2400 * For S_ISREG swapfiles, setup_swap_extents() will walk all the file's blocks 2401 * and will parse them into an ordered extent list, in PAGE_SIZE chunks. If 2402 * some stray blocks are found which do not fall within the PAGE_SIZE alignment 2403 * requirements, they are simply tossed out - we will never use those blocks 2404 * for swapping. 2405 * 2406 * For all swap devices we set S_SWAPFILE across the life of the swapon. This 2407 * prevents users from writing to the swap device, which will corrupt memory. 2408 * 2409 * The amount of disk space which a single swap extent represents varies. 2410 * Typically it is in the 1-4 megabyte range. So we can have hundreds of 2411 * extents in the list. To avoid much list walking, we cache the previous 2412 * search location in `curr_swap_extent', and start new searches from there. 2413 * This is extremely effective. The average number of iterations in 2414 * map_swap_page() has been measured at about 0.3 per page. - akpm. 2415 */ 2416 static int setup_swap_extents(struct swap_info_struct *sis, sector_t *span) 2417 { 2418 struct file *swap_file = sis->swap_file; 2419 struct address_space *mapping = swap_file->f_mapping; 2420 struct inode *inode = mapping->host; 2421 int ret; 2422 2423 if (S_ISBLK(inode->i_mode)) { 2424 ret = add_swap_extent(sis, 0, sis->max, 0); 2425 *span = sis->pages; 2426 return ret; 2427 } 2428 2429 if (mapping->a_ops->swap_activate) { 2430 ret = mapping->a_ops->swap_activate(sis, swap_file, span); 2431 if (ret >= 0) 2432 sis->flags |= SWP_ACTIVATED; 2433 if (!ret) { 2434 sis->flags |= SWP_FS_OPS; 2435 ret = add_swap_extent(sis, 0, sis->max, 0); 2436 *span = sis->pages; 2437 } 2438 return ret; 2439 } 2440 2441 return generic_swapfile_activate(sis, swap_file, span); 2442 } 2443 2444 static int swap_node(struct swap_info_struct *p) 2445 { 2446 struct block_device *bdev; 2447 2448 if (p->bdev) 2449 bdev = p->bdev; 2450 else 2451 bdev = p->swap_file->f_inode->i_sb->s_bdev; 2452 2453 return bdev ? bdev->bd_disk->node_id : NUMA_NO_NODE; 2454 } 2455 2456 static void setup_swap_info(struct swap_info_struct *p, int prio, 2457 unsigned char *swap_map, 2458 struct swap_cluster_info *cluster_info) 2459 { 2460 int i; 2461 2462 if (prio >= 0) 2463 p->prio = prio; 2464 else 2465 p->prio = --least_priority; 2466 /* 2467 * the plist prio is negated because plist ordering is 2468 * low-to-high, while swap ordering is high-to-low 2469 */ 2470 p->list.prio = -p->prio; 2471 for_each_node(i) { 2472 if (p->prio >= 0) 2473 p->avail_lists[i].prio = -p->prio; 2474 else { 2475 if (swap_node(p) == i) 2476 p->avail_lists[i].prio = 1; 2477 else 2478 p->avail_lists[i].prio = -p->prio; 2479 } 2480 } 2481 p->swap_map = swap_map; 2482 p->cluster_info = cluster_info; 2483 } 2484 2485 static void _enable_swap_info(struct swap_info_struct *p) 2486 { 2487 p->flags |= SWP_WRITEOK | SWP_VALID; 2488 atomic_long_add(p->pages, &nr_swap_pages); 2489 total_swap_pages += p->pages; 2490 2491 assert_spin_locked(&swap_lock); 2492 /* 2493 * both lists are plists, and thus priority ordered. 2494 * swap_active_head needs to be priority ordered for swapoff(), 2495 * which on removal of any swap_info_struct with an auto-assigned 2496 * (i.e. negative) priority increments the auto-assigned priority 2497 * of any lower-priority swap_info_structs. 2498 * swap_avail_head needs to be priority ordered for get_swap_page(), 2499 * which allocates swap pages from the highest available priority 2500 * swap_info_struct. 2501 */ 2502 plist_add(&p->list, &swap_active_head); 2503 add_to_avail_list(p); 2504 } 2505 2506 static void enable_swap_info(struct swap_info_struct *p, int prio, 2507 unsigned char *swap_map, 2508 struct swap_cluster_info *cluster_info, 2509 unsigned long *frontswap_map) 2510 { 2511 frontswap_init(p->type, frontswap_map); 2512 spin_lock(&swap_lock); 2513 spin_lock(&p->lock); 2514 setup_swap_info(p, prio, swap_map, cluster_info); 2515 spin_unlock(&p->lock); 2516 spin_unlock(&swap_lock); 2517 /* 2518 * Guarantee swap_map, cluster_info, etc. fields are valid 2519 * between get/put_swap_device() if SWP_VALID bit is set 2520 */ 2521 synchronize_rcu(); 2522 spin_lock(&swap_lock); 2523 spin_lock(&p->lock); 2524 _enable_swap_info(p); 2525 spin_unlock(&p->lock); 2526 spin_unlock(&swap_lock); 2527 } 2528 2529 static void reinsert_swap_info(struct swap_info_struct *p) 2530 { 2531 spin_lock(&swap_lock); 2532 spin_lock(&p->lock); 2533 setup_swap_info(p, p->prio, p->swap_map, p->cluster_info); 2534 _enable_swap_info(p); 2535 spin_unlock(&p->lock); 2536 spin_unlock(&swap_lock); 2537 } 2538 2539 bool has_usable_swap(void) 2540 { 2541 bool ret = true; 2542 2543 spin_lock(&swap_lock); 2544 if (plist_head_empty(&swap_active_head)) 2545 ret = false; 2546 spin_unlock(&swap_lock); 2547 return ret; 2548 } 2549 2550 SYSCALL_DEFINE1(swapoff, const char __user *, specialfile) 2551 { 2552 struct swap_info_struct *p = NULL; 2553 unsigned char *swap_map; 2554 struct swap_cluster_info *cluster_info; 2555 unsigned long *frontswap_map; 2556 struct file *swap_file, *victim; 2557 struct address_space *mapping; 2558 struct inode *inode; 2559 struct filename *pathname; 2560 int err, found = 0; 2561 unsigned int old_block_size; 2562 2563 if (!capable(CAP_SYS_ADMIN)) 2564 return -EPERM; 2565 2566 BUG_ON(!current->mm); 2567 2568 pathname = getname(specialfile); 2569 if (IS_ERR(pathname)) 2570 return PTR_ERR(pathname); 2571 2572 victim = file_open_name(pathname, O_RDWR|O_LARGEFILE, 0); 2573 err = PTR_ERR(victim); 2574 if (IS_ERR(victim)) 2575 goto out; 2576 2577 mapping = victim->f_mapping; 2578 spin_lock(&swap_lock); 2579 plist_for_each_entry(p, &swap_active_head, list) { 2580 if (p->flags & SWP_WRITEOK) { 2581 if (p->swap_file->f_mapping == mapping) { 2582 found = 1; 2583 break; 2584 } 2585 } 2586 } 2587 if (!found) { 2588 err = -EINVAL; 2589 spin_unlock(&swap_lock); 2590 goto out_dput; 2591 } 2592 if (!security_vm_enough_memory_mm(current->mm, p->pages)) 2593 vm_unacct_memory(p->pages); 2594 else { 2595 err = -ENOMEM; 2596 spin_unlock(&swap_lock); 2597 goto out_dput; 2598 } 2599 del_from_avail_list(p); 2600 spin_lock(&p->lock); 2601 if (p->prio < 0) { 2602 struct swap_info_struct *si = p; 2603 int nid; 2604 2605 plist_for_each_entry_continue(si, &swap_active_head, list) { 2606 si->prio++; 2607 si->list.prio--; 2608 for_each_node(nid) { 2609 if (si->avail_lists[nid].prio != 1) 2610 si->avail_lists[nid].prio--; 2611 } 2612 } 2613 least_priority++; 2614 } 2615 plist_del(&p->list, &swap_active_head); 2616 atomic_long_sub(p->pages, &nr_swap_pages); 2617 total_swap_pages -= p->pages; 2618 p->flags &= ~SWP_WRITEOK; 2619 spin_unlock(&p->lock); 2620 spin_unlock(&swap_lock); 2621 2622 disable_swap_slots_cache_lock(); 2623 2624 set_current_oom_origin(); 2625 err = try_to_unuse(p->type, false, 0); /* force unuse all pages */ 2626 clear_current_oom_origin(); 2627 2628 if (err) { 2629 /* re-insert swap space back into swap_list */ 2630 reinsert_swap_info(p); 2631 reenable_swap_slots_cache_unlock(); 2632 goto out_dput; 2633 } 2634 2635 reenable_swap_slots_cache_unlock(); 2636 2637 spin_lock(&swap_lock); 2638 spin_lock(&p->lock); 2639 p->flags &= ~SWP_VALID; /* mark swap device as invalid */ 2640 spin_unlock(&p->lock); 2641 spin_unlock(&swap_lock); 2642 /* 2643 * wait for swap operations protected by get/put_swap_device() 2644 * to complete 2645 */ 2646 synchronize_rcu(); 2647 2648 flush_work(&p->discard_work); 2649 2650 destroy_swap_extents(p); 2651 if (p->flags & SWP_CONTINUED) 2652 free_swap_count_continuations(p); 2653 2654 if (!p->bdev || !blk_queue_nonrot(bdev_get_queue(p->bdev))) 2655 atomic_dec(&nr_rotate_swap); 2656 2657 mutex_lock(&swapon_mutex); 2658 spin_lock(&swap_lock); 2659 spin_lock(&p->lock); 2660 drain_mmlist(); 2661 2662 /* wait for anyone still in scan_swap_map */ 2663 p->highest_bit = 0; /* cuts scans short */ 2664 while (p->flags >= SWP_SCANNING) { 2665 spin_unlock(&p->lock); 2666 spin_unlock(&swap_lock); 2667 schedule_timeout_uninterruptible(1); 2668 spin_lock(&swap_lock); 2669 spin_lock(&p->lock); 2670 } 2671 2672 swap_file = p->swap_file; 2673 old_block_size = p->old_block_size; 2674 p->swap_file = NULL; 2675 p->max = 0; 2676 swap_map = p->swap_map; 2677 p->swap_map = NULL; 2678 cluster_info = p->cluster_info; 2679 p->cluster_info = NULL; 2680 frontswap_map = frontswap_map_get(p); 2681 spin_unlock(&p->lock); 2682 spin_unlock(&swap_lock); 2683 arch_swap_invalidate_area(p->type); 2684 frontswap_invalidate_area(p->type); 2685 frontswap_map_set(p, NULL); 2686 mutex_unlock(&swapon_mutex); 2687 free_percpu(p->percpu_cluster); 2688 p->percpu_cluster = NULL; 2689 free_percpu(p->cluster_next_cpu); 2690 p->cluster_next_cpu = NULL; 2691 vfree(swap_map); 2692 kvfree(cluster_info); 2693 kvfree(frontswap_map); 2694 /* Destroy swap account information */ 2695 swap_cgroup_swapoff(p->type); 2696 exit_swap_address_space(p->type); 2697 2698 inode = mapping->host; 2699 if (S_ISBLK(inode->i_mode)) { 2700 struct block_device *bdev = I_BDEV(inode); 2701 2702 set_blocksize(bdev, old_block_size); 2703 blkdev_put(bdev, FMODE_READ | FMODE_WRITE | FMODE_EXCL); 2704 } 2705 2706 inode_lock(inode); 2707 inode->i_flags &= ~S_SWAPFILE; 2708 inode_unlock(inode); 2709 filp_close(swap_file, NULL); 2710 2711 /* 2712 * Clear the SWP_USED flag after all resources are freed so that swapon 2713 * can reuse this swap_info in alloc_swap_info() safely. It is ok to 2714 * not hold p->lock after we cleared its SWP_WRITEOK. 2715 */ 2716 spin_lock(&swap_lock); 2717 p->flags = 0; 2718 spin_unlock(&swap_lock); 2719 2720 err = 0; 2721 atomic_inc(&proc_poll_event); 2722 wake_up_interruptible(&proc_poll_wait); 2723 2724 out_dput: 2725 filp_close(victim, NULL); 2726 out: 2727 putname(pathname); 2728 return err; 2729 } 2730 2731 #ifdef CONFIG_PROC_FS 2732 static __poll_t swaps_poll(struct file *file, poll_table *wait) 2733 { 2734 struct seq_file *seq = file->private_data; 2735 2736 poll_wait(file, &proc_poll_wait, wait); 2737 2738 if (seq->poll_event != atomic_read(&proc_poll_event)) { 2739 seq->poll_event = atomic_read(&proc_poll_event); 2740 return EPOLLIN | EPOLLRDNORM | EPOLLERR | EPOLLPRI; 2741 } 2742 2743 return EPOLLIN | EPOLLRDNORM; 2744 } 2745 2746 /* iterator */ 2747 static void *swap_start(struct seq_file *swap, loff_t *pos) 2748 { 2749 struct swap_info_struct *si; 2750 int type; 2751 loff_t l = *pos; 2752 2753 mutex_lock(&swapon_mutex); 2754 2755 if (!l) 2756 return SEQ_START_TOKEN; 2757 2758 for (type = 0; (si = swap_type_to_swap_info(type)); type++) { 2759 if (!(si->flags & SWP_USED) || !si->swap_map) 2760 continue; 2761 if (!--l) 2762 return si; 2763 } 2764 2765 return NULL; 2766 } 2767 2768 static void *swap_next(struct seq_file *swap, void *v, loff_t *pos) 2769 { 2770 struct swap_info_struct *si = v; 2771 int type; 2772 2773 if (v == SEQ_START_TOKEN) 2774 type = 0; 2775 else 2776 type = si->type + 1; 2777 2778 ++(*pos); 2779 for (; (si = swap_type_to_swap_info(type)); type++) { 2780 if (!(si->flags & SWP_USED) || !si->swap_map) 2781 continue; 2782 return si; 2783 } 2784 2785 return NULL; 2786 } 2787 2788 static void swap_stop(struct seq_file *swap, void *v) 2789 { 2790 mutex_unlock(&swapon_mutex); 2791 } 2792 2793 static int swap_show(struct seq_file *swap, void *v) 2794 { 2795 struct swap_info_struct *si = v; 2796 struct file *file; 2797 int len; 2798 unsigned int bytes, inuse; 2799 2800 if (si == SEQ_START_TOKEN) { 2801 seq_puts(swap,"Filename\t\t\t\tType\t\tSize\t\tUsed\t\tPriority\n"); 2802 return 0; 2803 } 2804 2805 bytes = si->pages << (PAGE_SHIFT - 10); 2806 inuse = si->inuse_pages << (PAGE_SHIFT - 10); 2807 2808 file = si->swap_file; 2809 len = seq_file_path(swap, file, " \t\n\\"); 2810 seq_printf(swap, "%*s%s\t%u\t%s%u\t%s%d\n", 2811 len < 40 ? 40 - len : 1, " ", 2812 S_ISBLK(file_inode(file)->i_mode) ? 2813 "partition" : "file\t", 2814 bytes, bytes < 10000000 ? "\t" : "", 2815 inuse, inuse < 10000000 ? "\t" : "", 2816 si->prio); 2817 return 0; 2818 } 2819 2820 static const struct seq_operations swaps_op = { 2821 .start = swap_start, 2822 .next = swap_next, 2823 .stop = swap_stop, 2824 .show = swap_show 2825 }; 2826 2827 static int swaps_open(struct inode *inode, struct file *file) 2828 { 2829 struct seq_file *seq; 2830 int ret; 2831 2832 ret = seq_open(file, &swaps_op); 2833 if (ret) 2834 return ret; 2835 2836 seq = file->private_data; 2837 seq->poll_event = atomic_read(&proc_poll_event); 2838 return 0; 2839 } 2840 2841 static const struct proc_ops swaps_proc_ops = { 2842 .proc_flags = PROC_ENTRY_PERMANENT, 2843 .proc_open = swaps_open, 2844 .proc_read = seq_read, 2845 .proc_lseek = seq_lseek, 2846 .proc_release = seq_release, 2847 .proc_poll = swaps_poll, 2848 }; 2849 2850 static int __init procswaps_init(void) 2851 { 2852 proc_create("swaps", 0, NULL, &swaps_proc_ops); 2853 return 0; 2854 } 2855 __initcall(procswaps_init); 2856 #endif /* CONFIG_PROC_FS */ 2857 2858 #ifdef MAX_SWAPFILES_CHECK 2859 static int __init max_swapfiles_check(void) 2860 { 2861 MAX_SWAPFILES_CHECK(); 2862 return 0; 2863 } 2864 late_initcall(max_swapfiles_check); 2865 #endif 2866 2867 static struct swap_info_struct *alloc_swap_info(void) 2868 { 2869 struct swap_info_struct *p; 2870 unsigned int type; 2871 int i; 2872 2873 p = kvzalloc(struct_size(p, avail_lists, nr_node_ids), GFP_KERNEL); 2874 if (!p) 2875 return ERR_PTR(-ENOMEM); 2876 2877 spin_lock(&swap_lock); 2878 for (type = 0; type < nr_swapfiles; type++) { 2879 if (!(swap_info[type]->flags & SWP_USED)) 2880 break; 2881 } 2882 if (type >= MAX_SWAPFILES) { 2883 spin_unlock(&swap_lock); 2884 kvfree(p); 2885 return ERR_PTR(-EPERM); 2886 } 2887 if (type >= nr_swapfiles) { 2888 p->type = type; 2889 WRITE_ONCE(swap_info[type], p); 2890 /* 2891 * Write swap_info[type] before nr_swapfiles, in case a 2892 * racing procfs swap_start() or swap_next() is reading them. 2893 * (We never shrink nr_swapfiles, we never free this entry.) 2894 */ 2895 smp_wmb(); 2896 WRITE_ONCE(nr_swapfiles, nr_swapfiles + 1); 2897 } else { 2898 kvfree(p); 2899 p = swap_info[type]; 2900 /* 2901 * Do not memset this entry: a racing procfs swap_next() 2902 * would be relying on p->type to remain valid. 2903 */ 2904 } 2905 p->swap_extent_root = RB_ROOT; 2906 plist_node_init(&p->list, 0); 2907 for_each_node(i) 2908 plist_node_init(&p->avail_lists[i], 0); 2909 p->flags = SWP_USED; 2910 spin_unlock(&swap_lock); 2911 spin_lock_init(&p->lock); 2912 spin_lock_init(&p->cont_lock); 2913 2914 return p; 2915 } 2916 2917 static int claim_swapfile(struct swap_info_struct *p, struct inode *inode) 2918 { 2919 int error; 2920 2921 if (S_ISBLK(inode->i_mode)) { 2922 p->bdev = blkdev_get_by_dev(inode->i_rdev, 2923 FMODE_READ | FMODE_WRITE | FMODE_EXCL, p); 2924 if (IS_ERR(p->bdev)) { 2925 error = PTR_ERR(p->bdev); 2926 p->bdev = NULL; 2927 return error; 2928 } 2929 p->old_block_size = block_size(p->bdev); 2930 error = set_blocksize(p->bdev, PAGE_SIZE); 2931 if (error < 0) 2932 return error; 2933 /* 2934 * Zoned block devices contain zones that have a sequential 2935 * write only restriction. Hence zoned block devices are not 2936 * suitable for swapping. Disallow them here. 2937 */ 2938 if (blk_queue_is_zoned(p->bdev->bd_disk->queue)) 2939 return -EINVAL; 2940 p->flags |= SWP_BLKDEV; 2941 } else if (S_ISREG(inode->i_mode)) { 2942 p->bdev = inode->i_sb->s_bdev; 2943 } 2944 2945 return 0; 2946 } 2947 2948 2949 /* 2950 * Find out how many pages are allowed for a single swap device. There 2951 * are two limiting factors: 2952 * 1) the number of bits for the swap offset in the swp_entry_t type, and 2953 * 2) the number of bits in the swap pte, as defined by the different 2954 * architectures. 2955 * 2956 * In order to find the largest possible bit mask, a swap entry with 2957 * swap type 0 and swap offset ~0UL is created, encoded to a swap pte, 2958 * decoded to a swp_entry_t again, and finally the swap offset is 2959 * extracted. 2960 * 2961 * This will mask all the bits from the initial ~0UL mask that can't 2962 * be encoded in either the swp_entry_t or the architecture definition 2963 * of a swap pte. 2964 */ 2965 unsigned long generic_max_swapfile_size(void) 2966 { 2967 return swp_offset(pte_to_swp_entry( 2968 swp_entry_to_pte(swp_entry(0, ~0UL)))) + 1; 2969 } 2970 2971 /* Can be overridden by an architecture for additional checks. */ 2972 __weak unsigned long max_swapfile_size(void) 2973 { 2974 return generic_max_swapfile_size(); 2975 } 2976 2977 static unsigned long read_swap_header(struct swap_info_struct *p, 2978 union swap_header *swap_header, 2979 struct inode *inode) 2980 { 2981 int i; 2982 unsigned long maxpages; 2983 unsigned long swapfilepages; 2984 unsigned long last_page; 2985 2986 if (memcmp("SWAPSPACE2", swap_header->magic.magic, 10)) { 2987 pr_err("Unable to find swap-space signature\n"); 2988 return 0; 2989 } 2990 2991 /* swap partition endianess hack... */ 2992 if (swab32(swap_header->info.version) == 1) { 2993 swab32s(&swap_header->info.version); 2994 swab32s(&swap_header->info.last_page); 2995 swab32s(&swap_header->info.nr_badpages); 2996 if (swap_header->info.nr_badpages > MAX_SWAP_BADPAGES) 2997 return 0; 2998 for (i = 0; i < swap_header->info.nr_badpages; i++) 2999 swab32s(&swap_header->info.badpages[i]); 3000 } 3001 /* Check the swap header's sub-version */ 3002 if (swap_header->info.version != 1) { 3003 pr_warn("Unable to handle swap header version %d\n", 3004 swap_header->info.version); 3005 return 0; 3006 } 3007 3008 p->lowest_bit = 1; 3009 p->cluster_next = 1; 3010 p->cluster_nr = 0; 3011 3012 maxpages = max_swapfile_size(); 3013 last_page = swap_header->info.last_page; 3014 if (!last_page) { 3015 pr_warn("Empty swap-file\n"); 3016 return 0; 3017 } 3018 if (last_page > maxpages) { 3019 pr_warn("Truncating oversized swap area, only using %luk out of %luk\n", 3020 maxpages << (PAGE_SHIFT - 10), 3021 last_page << (PAGE_SHIFT - 10)); 3022 } 3023 if (maxpages > last_page) { 3024 maxpages = last_page + 1; 3025 /* p->max is an unsigned int: don't overflow it */ 3026 if ((unsigned int)maxpages == 0) 3027 maxpages = UINT_MAX; 3028 } 3029 p->highest_bit = maxpages - 1; 3030 3031 if (!maxpages) 3032 return 0; 3033 swapfilepages = i_size_read(inode) >> PAGE_SHIFT; 3034 if (swapfilepages && maxpages > swapfilepages) { 3035 pr_warn("Swap area shorter than signature indicates\n"); 3036 return 0; 3037 } 3038 if (swap_header->info.nr_badpages && S_ISREG(inode->i_mode)) 3039 return 0; 3040 if (swap_header->info.nr_badpages > MAX_SWAP_BADPAGES) 3041 return 0; 3042 3043 return maxpages; 3044 } 3045 3046 #define SWAP_CLUSTER_INFO_COLS \ 3047 DIV_ROUND_UP(L1_CACHE_BYTES, sizeof(struct swap_cluster_info)) 3048 #define SWAP_CLUSTER_SPACE_COLS \ 3049 DIV_ROUND_UP(SWAP_ADDRESS_SPACE_PAGES, SWAPFILE_CLUSTER) 3050 #define SWAP_CLUSTER_COLS \ 3051 max_t(unsigned int, SWAP_CLUSTER_INFO_COLS, SWAP_CLUSTER_SPACE_COLS) 3052 3053 static int setup_swap_map_and_extents(struct swap_info_struct *p, 3054 union swap_header *swap_header, 3055 unsigned char *swap_map, 3056 struct swap_cluster_info *cluster_info, 3057 unsigned long maxpages, 3058 sector_t *span) 3059 { 3060 unsigned int j, k; 3061 unsigned int nr_good_pages; 3062 int nr_extents; 3063 unsigned long nr_clusters = DIV_ROUND_UP(maxpages, SWAPFILE_CLUSTER); 3064 unsigned long col = p->cluster_next / SWAPFILE_CLUSTER % SWAP_CLUSTER_COLS; 3065 unsigned long i, idx; 3066 3067 nr_good_pages = maxpages - 1; /* omit header page */ 3068 3069 cluster_list_init(&p->free_clusters); 3070 cluster_list_init(&p->discard_clusters); 3071 3072 for (i = 0; i < swap_header->info.nr_badpages; i++) { 3073 unsigned int page_nr = swap_header->info.badpages[i]; 3074 if (page_nr == 0 || page_nr > swap_header->info.last_page) 3075 return -EINVAL; 3076 if (page_nr < maxpages) { 3077 swap_map[page_nr] = SWAP_MAP_BAD; 3078 nr_good_pages--; 3079 /* 3080 * Haven't marked the cluster free yet, no list 3081 * operation involved 3082 */ 3083 inc_cluster_info_page(p, cluster_info, page_nr); 3084 } 3085 } 3086 3087 /* Haven't marked the cluster free yet, no list operation involved */ 3088 for (i = maxpages; i < round_up(maxpages, SWAPFILE_CLUSTER); i++) 3089 inc_cluster_info_page(p, cluster_info, i); 3090 3091 if (nr_good_pages) { 3092 swap_map[0] = SWAP_MAP_BAD; 3093 /* 3094 * Not mark the cluster free yet, no list 3095 * operation involved 3096 */ 3097 inc_cluster_info_page(p, cluster_info, 0); 3098 p->max = maxpages; 3099 p->pages = nr_good_pages; 3100 nr_extents = setup_swap_extents(p, span); 3101 if (nr_extents < 0) 3102 return nr_extents; 3103 nr_good_pages = p->pages; 3104 } 3105 if (!nr_good_pages) { 3106 pr_warn("Empty swap-file\n"); 3107 return -EINVAL; 3108 } 3109 3110 if (!cluster_info) 3111 return nr_extents; 3112 3113 3114 /* 3115 * Reduce false cache line sharing between cluster_info and 3116 * sharing same address space. 3117 */ 3118 for (k = 0; k < SWAP_CLUSTER_COLS; k++) { 3119 j = (k + col) % SWAP_CLUSTER_COLS; 3120 for (i = 0; i < DIV_ROUND_UP(nr_clusters, SWAP_CLUSTER_COLS); i++) { 3121 idx = i * SWAP_CLUSTER_COLS + j; 3122 if (idx >= nr_clusters) 3123 continue; 3124 if (cluster_count(&cluster_info[idx])) 3125 continue; 3126 cluster_set_flag(&cluster_info[idx], CLUSTER_FLAG_FREE); 3127 cluster_list_add_tail(&p->free_clusters, cluster_info, 3128 idx); 3129 } 3130 } 3131 return nr_extents; 3132 } 3133 3134 /* 3135 * Helper to sys_swapon determining if a given swap 3136 * backing device queue supports DISCARD operations. 3137 */ 3138 static bool swap_discardable(struct swap_info_struct *si) 3139 { 3140 struct request_queue *q = bdev_get_queue(si->bdev); 3141 3142 if (!q || !blk_queue_discard(q)) 3143 return false; 3144 3145 return true; 3146 } 3147 3148 SYSCALL_DEFINE2(swapon, const char __user *, specialfile, int, swap_flags) 3149 { 3150 struct swap_info_struct *p; 3151 struct filename *name; 3152 struct file *swap_file = NULL; 3153 struct address_space *mapping; 3154 int prio; 3155 int error; 3156 union swap_header *swap_header; 3157 int nr_extents; 3158 sector_t span; 3159 unsigned long maxpages; 3160 unsigned char *swap_map = NULL; 3161 struct swap_cluster_info *cluster_info = NULL; 3162 unsigned long *frontswap_map = NULL; 3163 struct page *page = NULL; 3164 struct inode *inode = NULL; 3165 bool inced_nr_rotate_swap = false; 3166 3167 if (swap_flags & ~SWAP_FLAGS_VALID) 3168 return -EINVAL; 3169 3170 if (!capable(CAP_SYS_ADMIN)) 3171 return -EPERM; 3172 3173 if (!swap_avail_heads) 3174 return -ENOMEM; 3175 3176 p = alloc_swap_info(); 3177 if (IS_ERR(p)) 3178 return PTR_ERR(p); 3179 3180 INIT_WORK(&p->discard_work, swap_discard_work); 3181 3182 name = getname(specialfile); 3183 if (IS_ERR(name)) { 3184 error = PTR_ERR(name); 3185 name = NULL; 3186 goto bad_swap; 3187 } 3188 swap_file = file_open_name(name, O_RDWR|O_LARGEFILE, 0); 3189 if (IS_ERR(swap_file)) { 3190 error = PTR_ERR(swap_file); 3191 swap_file = NULL; 3192 goto bad_swap; 3193 } 3194 3195 p->swap_file = swap_file; 3196 mapping = swap_file->f_mapping; 3197 inode = mapping->host; 3198 3199 error = claim_swapfile(p, inode); 3200 if (unlikely(error)) 3201 goto bad_swap; 3202 3203 inode_lock(inode); 3204 if (IS_SWAPFILE(inode)) { 3205 error = -EBUSY; 3206 goto bad_swap_unlock_inode; 3207 } 3208 3209 /* 3210 * Read the swap header. 3211 */ 3212 if (!mapping->a_ops->readpage) { 3213 error = -EINVAL; 3214 goto bad_swap_unlock_inode; 3215 } 3216 page = read_mapping_page(mapping, 0, swap_file); 3217 if (IS_ERR(page)) { 3218 error = PTR_ERR(page); 3219 goto bad_swap_unlock_inode; 3220 } 3221 swap_header = kmap(page); 3222 3223 maxpages = read_swap_header(p, swap_header, inode); 3224 if (unlikely(!maxpages)) { 3225 error = -EINVAL; 3226 goto bad_swap_unlock_inode; 3227 } 3228 3229 /* OK, set up the swap map and apply the bad block list */ 3230 swap_map = vzalloc(maxpages); 3231 if (!swap_map) { 3232 error = -ENOMEM; 3233 goto bad_swap_unlock_inode; 3234 } 3235 3236 if (p->bdev && blk_queue_stable_writes(p->bdev->bd_disk->queue)) 3237 p->flags |= SWP_STABLE_WRITES; 3238 3239 if (p->bdev && p->bdev->bd_disk->fops->rw_page) 3240 p->flags |= SWP_SYNCHRONOUS_IO; 3241 3242 if (p->bdev && blk_queue_nonrot(bdev_get_queue(p->bdev))) { 3243 int cpu; 3244 unsigned long ci, nr_cluster; 3245 3246 p->flags |= SWP_SOLIDSTATE; 3247 p->cluster_next_cpu = alloc_percpu(unsigned int); 3248 if (!p->cluster_next_cpu) { 3249 error = -ENOMEM; 3250 goto bad_swap_unlock_inode; 3251 } 3252 /* 3253 * select a random position to start with to help wear leveling 3254 * SSD 3255 */ 3256 for_each_possible_cpu(cpu) { 3257 per_cpu(*p->cluster_next_cpu, cpu) = 3258 1 + prandom_u32_max(p->highest_bit); 3259 } 3260 nr_cluster = DIV_ROUND_UP(maxpages, SWAPFILE_CLUSTER); 3261 3262 cluster_info = kvcalloc(nr_cluster, sizeof(*cluster_info), 3263 GFP_KERNEL); 3264 if (!cluster_info) { 3265 error = -ENOMEM; 3266 goto bad_swap_unlock_inode; 3267 } 3268 3269 for (ci = 0; ci < nr_cluster; ci++) 3270 spin_lock_init(&((cluster_info + ci)->lock)); 3271 3272 p->percpu_cluster = alloc_percpu(struct percpu_cluster); 3273 if (!p->percpu_cluster) { 3274 error = -ENOMEM; 3275 goto bad_swap_unlock_inode; 3276 } 3277 for_each_possible_cpu(cpu) { 3278 struct percpu_cluster *cluster; 3279 cluster = per_cpu_ptr(p->percpu_cluster, cpu); 3280 cluster_set_null(&cluster->index); 3281 } 3282 } else { 3283 atomic_inc(&nr_rotate_swap); 3284 inced_nr_rotate_swap = true; 3285 } 3286 3287 error = swap_cgroup_swapon(p->type, maxpages); 3288 if (error) 3289 goto bad_swap_unlock_inode; 3290 3291 nr_extents = setup_swap_map_and_extents(p, swap_header, swap_map, 3292 cluster_info, maxpages, &span); 3293 if (unlikely(nr_extents < 0)) { 3294 error = nr_extents; 3295 goto bad_swap_unlock_inode; 3296 } 3297 /* frontswap enabled? set up bit-per-page map for frontswap */ 3298 if (IS_ENABLED(CONFIG_FRONTSWAP)) 3299 frontswap_map = kvcalloc(BITS_TO_LONGS(maxpages), 3300 sizeof(long), 3301 GFP_KERNEL); 3302 3303 if (p->bdev &&(swap_flags & SWAP_FLAG_DISCARD) && swap_discardable(p)) { 3304 /* 3305 * When discard is enabled for swap with no particular 3306 * policy flagged, we set all swap discard flags here in 3307 * order to sustain backward compatibility with older 3308 * swapon(8) releases. 3309 */ 3310 p->flags |= (SWP_DISCARDABLE | SWP_AREA_DISCARD | 3311 SWP_PAGE_DISCARD); 3312 3313 /* 3314 * By flagging sys_swapon, a sysadmin can tell us to 3315 * either do single-time area discards only, or to just 3316 * perform discards for released swap page-clusters. 3317 * Now it's time to adjust the p->flags accordingly. 3318 */ 3319 if (swap_flags & SWAP_FLAG_DISCARD_ONCE) 3320 p->flags &= ~SWP_PAGE_DISCARD; 3321 else if (swap_flags & SWAP_FLAG_DISCARD_PAGES) 3322 p->flags &= ~SWP_AREA_DISCARD; 3323 3324 /* issue a swapon-time discard if it's still required */ 3325 if (p->flags & SWP_AREA_DISCARD) { 3326 int err = discard_swap(p); 3327 if (unlikely(err)) 3328 pr_err("swapon: discard_swap(%p): %d\n", 3329 p, err); 3330 } 3331 } 3332 3333 error = init_swap_address_space(p->type, maxpages); 3334 if (error) 3335 goto bad_swap_unlock_inode; 3336 3337 /* 3338 * Flush any pending IO and dirty mappings before we start using this 3339 * swap device. 3340 */ 3341 inode->i_flags |= S_SWAPFILE; 3342 error = inode_drain_writes(inode); 3343 if (error) { 3344 inode->i_flags &= ~S_SWAPFILE; 3345 goto free_swap_address_space; 3346 } 3347 3348 mutex_lock(&swapon_mutex); 3349 prio = -1; 3350 if (swap_flags & SWAP_FLAG_PREFER) 3351 prio = 3352 (swap_flags & SWAP_FLAG_PRIO_MASK) >> SWAP_FLAG_PRIO_SHIFT; 3353 enable_swap_info(p, prio, swap_map, cluster_info, frontswap_map); 3354 3355 pr_info("Adding %uk swap on %s. Priority:%d extents:%d across:%lluk %s%s%s%s%s\n", 3356 p->pages<<(PAGE_SHIFT-10), name->name, p->prio, 3357 nr_extents, (unsigned long long)span<<(PAGE_SHIFT-10), 3358 (p->flags & SWP_SOLIDSTATE) ? "SS" : "", 3359 (p->flags & SWP_DISCARDABLE) ? "D" : "", 3360 (p->flags & SWP_AREA_DISCARD) ? "s" : "", 3361 (p->flags & SWP_PAGE_DISCARD) ? "c" : "", 3362 (frontswap_map) ? "FS" : ""); 3363 3364 mutex_unlock(&swapon_mutex); 3365 atomic_inc(&proc_poll_event); 3366 wake_up_interruptible(&proc_poll_wait); 3367 3368 error = 0; 3369 goto out; 3370 free_swap_address_space: 3371 exit_swap_address_space(p->type); 3372 bad_swap_unlock_inode: 3373 inode_unlock(inode); 3374 bad_swap: 3375 free_percpu(p->percpu_cluster); 3376 p->percpu_cluster = NULL; 3377 free_percpu(p->cluster_next_cpu); 3378 p->cluster_next_cpu = NULL; 3379 if (inode && S_ISBLK(inode->i_mode) && p->bdev) { 3380 set_blocksize(p->bdev, p->old_block_size); 3381 blkdev_put(p->bdev, FMODE_READ | FMODE_WRITE | FMODE_EXCL); 3382 } 3383 inode = NULL; 3384 destroy_swap_extents(p); 3385 swap_cgroup_swapoff(p->type); 3386 spin_lock(&swap_lock); 3387 p->swap_file = NULL; 3388 p->flags = 0; 3389 spin_unlock(&swap_lock); 3390 vfree(swap_map); 3391 kvfree(cluster_info); 3392 kvfree(frontswap_map); 3393 if (inced_nr_rotate_swap) 3394 atomic_dec(&nr_rotate_swap); 3395 if (swap_file) 3396 filp_close(swap_file, NULL); 3397 out: 3398 if (page && !IS_ERR(page)) { 3399 kunmap(page); 3400 put_page(page); 3401 } 3402 if (name) 3403 putname(name); 3404 if (inode) 3405 inode_unlock(inode); 3406 if (!error) 3407 enable_swap_slots_cache(); 3408 return error; 3409 } 3410 3411 void si_swapinfo(struct sysinfo *val) 3412 { 3413 unsigned int type; 3414 unsigned long nr_to_be_unused = 0; 3415 3416 spin_lock(&swap_lock); 3417 for (type = 0; type < nr_swapfiles; type++) { 3418 struct swap_info_struct *si = swap_info[type]; 3419 3420 if ((si->flags & SWP_USED) && !(si->flags & SWP_WRITEOK)) 3421 nr_to_be_unused += si->inuse_pages; 3422 } 3423 val->freeswap = atomic_long_read(&nr_swap_pages) + nr_to_be_unused; 3424 val->totalswap = total_swap_pages + nr_to_be_unused; 3425 spin_unlock(&swap_lock); 3426 } 3427 3428 /* 3429 * Verify that a swap entry is valid and increment its swap map count. 3430 * 3431 * Returns error code in following case. 3432 * - success -> 0 3433 * - swp_entry is invalid -> EINVAL 3434 * - swp_entry is migration entry -> EINVAL 3435 * - swap-cache reference is requested but there is already one. -> EEXIST 3436 * - swap-cache reference is requested but the entry is not used. -> ENOENT 3437 * - swap-mapped reference requested but needs continued swap count. -> ENOMEM 3438 */ 3439 static int __swap_duplicate(swp_entry_t entry, unsigned char usage) 3440 { 3441 struct swap_info_struct *p; 3442 struct swap_cluster_info *ci; 3443 unsigned long offset; 3444 unsigned char count; 3445 unsigned char has_cache; 3446 int err = -EINVAL; 3447 3448 p = get_swap_device(entry); 3449 if (!p) 3450 goto out; 3451 3452 offset = swp_offset(entry); 3453 ci = lock_cluster_or_swap_info(p, offset); 3454 3455 count = p->swap_map[offset]; 3456 3457 /* 3458 * swapin_readahead() doesn't check if a swap entry is valid, so the 3459 * swap entry could be SWAP_MAP_BAD. Check here with lock held. 3460 */ 3461 if (unlikely(swap_count(count) == SWAP_MAP_BAD)) { 3462 err = -ENOENT; 3463 goto unlock_out; 3464 } 3465 3466 has_cache = count & SWAP_HAS_CACHE; 3467 count &= ~SWAP_HAS_CACHE; 3468 err = 0; 3469 3470 if (usage == SWAP_HAS_CACHE) { 3471 3472 /* set SWAP_HAS_CACHE if there is no cache and entry is used */ 3473 if (!has_cache && count) 3474 has_cache = SWAP_HAS_CACHE; 3475 else if (has_cache) /* someone else added cache */ 3476 err = -EEXIST; 3477 else /* no users remaining */ 3478 err = -ENOENT; 3479 3480 } else if (count || has_cache) { 3481 3482 if ((count & ~COUNT_CONTINUED) < SWAP_MAP_MAX) 3483 count += usage; 3484 else if ((count & ~COUNT_CONTINUED) > SWAP_MAP_MAX) 3485 err = -EINVAL; 3486 else if (swap_count_continued(p, offset, count)) 3487 count = COUNT_CONTINUED; 3488 else 3489 err = -ENOMEM; 3490 } else 3491 err = -ENOENT; /* unused swap entry */ 3492 3493 WRITE_ONCE(p->swap_map[offset], count | has_cache); 3494 3495 unlock_out: 3496 unlock_cluster_or_swap_info(p, ci); 3497 out: 3498 if (p) 3499 put_swap_device(p); 3500 return err; 3501 } 3502 3503 /* 3504 * Help swapoff by noting that swap entry belongs to shmem/tmpfs 3505 * (in which case its reference count is never incremented). 3506 */ 3507 void swap_shmem_alloc(swp_entry_t entry) 3508 { 3509 __swap_duplicate(entry, SWAP_MAP_SHMEM); 3510 } 3511 3512 /* 3513 * Increase reference count of swap entry by 1. 3514 * Returns 0 for success, or -ENOMEM if a swap_count_continuation is required 3515 * but could not be atomically allocated. Returns 0, just as if it succeeded, 3516 * if __swap_duplicate() fails for another reason (-EINVAL or -ENOENT), which 3517 * might occur if a page table entry has got corrupted. 3518 */ 3519 int swap_duplicate(swp_entry_t entry) 3520 { 3521 int err = 0; 3522 3523 while (!err && __swap_duplicate(entry, 1) == -ENOMEM) 3524 err = add_swap_count_continuation(entry, GFP_ATOMIC); 3525 return err; 3526 } 3527 3528 /* 3529 * @entry: swap entry for which we allocate swap cache. 3530 * 3531 * Called when allocating swap cache for existing swap entry, 3532 * This can return error codes. Returns 0 at success. 3533 * -EEXIST means there is a swap cache. 3534 * Note: return code is different from swap_duplicate(). 3535 */ 3536 int swapcache_prepare(swp_entry_t entry) 3537 { 3538 return __swap_duplicate(entry, SWAP_HAS_CACHE); 3539 } 3540 3541 struct swap_info_struct *swp_swap_info(swp_entry_t entry) 3542 { 3543 return swap_type_to_swap_info(swp_type(entry)); 3544 } 3545 3546 struct swap_info_struct *page_swap_info(struct page *page) 3547 { 3548 swp_entry_t entry = { .val = page_private(page) }; 3549 return swp_swap_info(entry); 3550 } 3551 3552 /* 3553 * out-of-line __page_file_ methods to avoid include hell. 3554 */ 3555 struct address_space *__page_file_mapping(struct page *page) 3556 { 3557 return page_swap_info(page)->swap_file->f_mapping; 3558 } 3559 EXPORT_SYMBOL_GPL(__page_file_mapping); 3560 3561 pgoff_t __page_file_index(struct page *page) 3562 { 3563 swp_entry_t swap = { .val = page_private(page) }; 3564 return swp_offset(swap); 3565 } 3566 EXPORT_SYMBOL_GPL(__page_file_index); 3567 3568 /* 3569 * add_swap_count_continuation - called when a swap count is duplicated 3570 * beyond SWAP_MAP_MAX, it allocates a new page and links that to the entry's 3571 * page of the original vmalloc'ed swap_map, to hold the continuation count 3572 * (for that entry and for its neighbouring PAGE_SIZE swap entries). Called 3573 * again when count is duplicated beyond SWAP_MAP_MAX * SWAP_CONT_MAX, etc. 3574 * 3575 * These continuation pages are seldom referenced: the common paths all work 3576 * on the original swap_map, only referring to a continuation page when the 3577 * low "digit" of a count is incremented or decremented through SWAP_MAP_MAX. 3578 * 3579 * add_swap_count_continuation(, GFP_ATOMIC) can be called while holding 3580 * page table locks; if it fails, add_swap_count_continuation(, GFP_KERNEL) 3581 * can be called after dropping locks. 3582 */ 3583 int add_swap_count_continuation(swp_entry_t entry, gfp_t gfp_mask) 3584 { 3585 struct swap_info_struct *si; 3586 struct swap_cluster_info *ci; 3587 struct page *head; 3588 struct page *page; 3589 struct page *list_page; 3590 pgoff_t offset; 3591 unsigned char count; 3592 int ret = 0; 3593 3594 /* 3595 * When debugging, it's easier to use __GFP_ZERO here; but it's better 3596 * for latency not to zero a page while GFP_ATOMIC and holding locks. 3597 */ 3598 page = alloc_page(gfp_mask | __GFP_HIGHMEM); 3599 3600 si = get_swap_device(entry); 3601 if (!si) { 3602 /* 3603 * An acceptable race has occurred since the failing 3604 * __swap_duplicate(): the swap device may be swapoff 3605 */ 3606 goto outer; 3607 } 3608 spin_lock(&si->lock); 3609 3610 offset = swp_offset(entry); 3611 3612 ci = lock_cluster(si, offset); 3613 3614 count = si->swap_map[offset] & ~SWAP_HAS_CACHE; 3615 3616 if ((count & ~COUNT_CONTINUED) != SWAP_MAP_MAX) { 3617 /* 3618 * The higher the swap count, the more likely it is that tasks 3619 * will race to add swap count continuation: we need to avoid 3620 * over-provisioning. 3621 */ 3622 goto out; 3623 } 3624 3625 if (!page) { 3626 ret = -ENOMEM; 3627 goto out; 3628 } 3629 3630 /* 3631 * We are fortunate that although vmalloc_to_page uses pte_offset_map, 3632 * no architecture is using highmem pages for kernel page tables: so it 3633 * will not corrupt the GFP_ATOMIC caller's atomic page table kmaps. 3634 */ 3635 head = vmalloc_to_page(si->swap_map + offset); 3636 offset &= ~PAGE_MASK; 3637 3638 spin_lock(&si->cont_lock); 3639 /* 3640 * Page allocation does not initialize the page's lru field, 3641 * but it does always reset its private field. 3642 */ 3643 if (!page_private(head)) { 3644 BUG_ON(count & COUNT_CONTINUED); 3645 INIT_LIST_HEAD(&head->lru); 3646 set_page_private(head, SWP_CONTINUED); 3647 si->flags |= SWP_CONTINUED; 3648 } 3649 3650 list_for_each_entry(list_page, &head->lru, lru) { 3651 unsigned char *map; 3652 3653 /* 3654 * If the previous map said no continuation, but we've found 3655 * a continuation page, free our allocation and use this one. 3656 */ 3657 if (!(count & COUNT_CONTINUED)) 3658 goto out_unlock_cont; 3659 3660 map = kmap_atomic(list_page) + offset; 3661 count = *map; 3662 kunmap_atomic(map); 3663 3664 /* 3665 * If this continuation count now has some space in it, 3666 * free our allocation and use this one. 3667 */ 3668 if ((count & ~COUNT_CONTINUED) != SWAP_CONT_MAX) 3669 goto out_unlock_cont; 3670 } 3671 3672 list_add_tail(&page->lru, &head->lru); 3673 page = NULL; /* now it's attached, don't free it */ 3674 out_unlock_cont: 3675 spin_unlock(&si->cont_lock); 3676 out: 3677 unlock_cluster(ci); 3678 spin_unlock(&si->lock); 3679 put_swap_device(si); 3680 outer: 3681 if (page) 3682 __free_page(page); 3683 return ret; 3684 } 3685 3686 /* 3687 * swap_count_continued - when the original swap_map count is incremented 3688 * from SWAP_MAP_MAX, check if there is already a continuation page to carry 3689 * into, carry if so, or else fail until a new continuation page is allocated; 3690 * when the original swap_map count is decremented from 0 with continuation, 3691 * borrow from the continuation and report whether it still holds more. 3692 * Called while __swap_duplicate() or swap_entry_free() holds swap or cluster 3693 * lock. 3694 */ 3695 static bool swap_count_continued(struct swap_info_struct *si, 3696 pgoff_t offset, unsigned char count) 3697 { 3698 struct page *head; 3699 struct page *page; 3700 unsigned char *map; 3701 bool ret; 3702 3703 head = vmalloc_to_page(si->swap_map + offset); 3704 if (page_private(head) != SWP_CONTINUED) { 3705 BUG_ON(count & COUNT_CONTINUED); 3706 return false; /* need to add count continuation */ 3707 } 3708 3709 spin_lock(&si->cont_lock); 3710 offset &= ~PAGE_MASK; 3711 page = list_next_entry(head, lru); 3712 map = kmap_atomic(page) + offset; 3713 3714 if (count == SWAP_MAP_MAX) /* initial increment from swap_map */ 3715 goto init_map; /* jump over SWAP_CONT_MAX checks */ 3716 3717 if (count == (SWAP_MAP_MAX | COUNT_CONTINUED)) { /* incrementing */ 3718 /* 3719 * Think of how you add 1 to 999 3720 */ 3721 while (*map == (SWAP_CONT_MAX | COUNT_CONTINUED)) { 3722 kunmap_atomic(map); 3723 page = list_next_entry(page, lru); 3724 BUG_ON(page == head); 3725 map = kmap_atomic(page) + offset; 3726 } 3727 if (*map == SWAP_CONT_MAX) { 3728 kunmap_atomic(map); 3729 page = list_next_entry(page, lru); 3730 if (page == head) { 3731 ret = false; /* add count continuation */ 3732 goto out; 3733 } 3734 map = kmap_atomic(page) + offset; 3735 init_map: *map = 0; /* we didn't zero the page */ 3736 } 3737 *map += 1; 3738 kunmap_atomic(map); 3739 while ((page = list_prev_entry(page, lru)) != head) { 3740 map = kmap_atomic(page) + offset; 3741 *map = COUNT_CONTINUED; 3742 kunmap_atomic(map); 3743 } 3744 ret = true; /* incremented */ 3745 3746 } else { /* decrementing */ 3747 /* 3748 * Think of how you subtract 1 from 1000 3749 */ 3750 BUG_ON(count != COUNT_CONTINUED); 3751 while (*map == COUNT_CONTINUED) { 3752 kunmap_atomic(map); 3753 page = list_next_entry(page, lru); 3754 BUG_ON(page == head); 3755 map = kmap_atomic(page) + offset; 3756 } 3757 BUG_ON(*map == 0); 3758 *map -= 1; 3759 if (*map == 0) 3760 count = 0; 3761 kunmap_atomic(map); 3762 while ((page = list_prev_entry(page, lru)) != head) { 3763 map = kmap_atomic(page) + offset; 3764 *map = SWAP_CONT_MAX | count; 3765 count = COUNT_CONTINUED; 3766 kunmap_atomic(map); 3767 } 3768 ret = count == COUNT_CONTINUED; 3769 } 3770 out: 3771 spin_unlock(&si->cont_lock); 3772 return ret; 3773 } 3774 3775 /* 3776 * free_swap_count_continuations - swapoff free all the continuation pages 3777 * appended to the swap_map, after swap_map is quiesced, before vfree'ing it. 3778 */ 3779 static void free_swap_count_continuations(struct swap_info_struct *si) 3780 { 3781 pgoff_t offset; 3782 3783 for (offset = 0; offset < si->max; offset += PAGE_SIZE) { 3784 struct page *head; 3785 head = vmalloc_to_page(si->swap_map + offset); 3786 if (page_private(head)) { 3787 struct page *page, *next; 3788 3789 list_for_each_entry_safe(page, next, &head->lru, lru) { 3790 list_del(&page->lru); 3791 __free_page(page); 3792 } 3793 } 3794 } 3795 } 3796 3797 #if defined(CONFIG_MEMCG) && defined(CONFIG_BLK_CGROUP) 3798 void cgroup_throttle_swaprate(struct page *page, gfp_t gfp_mask) 3799 { 3800 struct swap_info_struct *si, *next; 3801 int nid = page_to_nid(page); 3802 3803 if (!(gfp_mask & __GFP_IO)) 3804 return; 3805 3806 if (!blk_cgroup_congested()) 3807 return; 3808 3809 /* 3810 * We've already scheduled a throttle, avoid taking the global swap 3811 * lock. 3812 */ 3813 if (current->throttle_queue) 3814 return; 3815 3816 spin_lock(&swap_avail_lock); 3817 plist_for_each_entry_safe(si, next, &swap_avail_heads[nid], 3818 avail_lists[nid]) { 3819 if (si->bdev) { 3820 blkcg_schedule_throttle(bdev_get_queue(si->bdev), true); 3821 break; 3822 } 3823 } 3824 spin_unlock(&swap_avail_lock); 3825 } 3826 #endif 3827 3828 static int __init swapfile_init(void) 3829 { 3830 int nid; 3831 3832 swap_avail_heads = kmalloc_array(nr_node_ids, sizeof(struct plist_head), 3833 GFP_KERNEL); 3834 if (!swap_avail_heads) { 3835 pr_emerg("Not enough memory for swap heads, swap is disabled\n"); 3836 return -ENOMEM; 3837 } 3838 3839 for_each_node(nid) 3840 plist_head_init(&swap_avail_heads[nid]); 3841 3842 return 0; 3843 } 3844 subsys_initcall(swapfile_init); 3845