xref: /openbmc/linux/mm/swapfile.c (revision f77f13e2)
1 /*
2  *  linux/mm/swapfile.c
3  *
4  *  Copyright (C) 1991, 1992, 1993, 1994  Linus Torvalds
5  *  Swap reorganised 29.12.95, Stephen Tweedie
6  */
7 
8 #include <linux/mm.h>
9 #include <linux/hugetlb.h>
10 #include <linux/mman.h>
11 #include <linux/slab.h>
12 #include <linux/kernel_stat.h>
13 #include <linux/swap.h>
14 #include <linux/vmalloc.h>
15 #include <linux/pagemap.h>
16 #include <linux/namei.h>
17 #include <linux/shm.h>
18 #include <linux/blkdev.h>
19 #include <linux/random.h>
20 #include <linux/writeback.h>
21 #include <linux/proc_fs.h>
22 #include <linux/seq_file.h>
23 #include <linux/init.h>
24 #include <linux/module.h>
25 #include <linux/ksm.h>
26 #include <linux/rmap.h>
27 #include <linux/security.h>
28 #include <linux/backing-dev.h>
29 #include <linux/mutex.h>
30 #include <linux/capability.h>
31 #include <linux/syscalls.h>
32 #include <linux/memcontrol.h>
33 
34 #include <asm/pgtable.h>
35 #include <asm/tlbflush.h>
36 #include <linux/swapops.h>
37 #include <linux/page_cgroup.h>
38 
39 static bool swap_count_continued(struct swap_info_struct *, pgoff_t,
40 				 unsigned char);
41 static void free_swap_count_continuations(struct swap_info_struct *);
42 static sector_t map_swap_entry(swp_entry_t, struct block_device**);
43 
44 static DEFINE_SPINLOCK(swap_lock);
45 static unsigned int nr_swapfiles;
46 long nr_swap_pages;
47 long total_swap_pages;
48 static int least_priority;
49 
50 static const char Bad_file[] = "Bad swap file entry ";
51 static const char Unused_file[] = "Unused swap file entry ";
52 static const char Bad_offset[] = "Bad swap offset entry ";
53 static const char Unused_offset[] = "Unused swap offset entry ";
54 
55 static struct swap_list_t swap_list = {-1, -1};
56 
57 static struct swap_info_struct *swap_info[MAX_SWAPFILES];
58 
59 static DEFINE_MUTEX(swapon_mutex);
60 
61 static inline unsigned char swap_count(unsigned char ent)
62 {
63 	return ent & ~SWAP_HAS_CACHE;	/* may include SWAP_HAS_CONT flag */
64 }
65 
66 /* returns 1 if swap entry is freed */
67 static int
68 __try_to_reclaim_swap(struct swap_info_struct *si, unsigned long offset)
69 {
70 	swp_entry_t entry = swp_entry(si->type, offset);
71 	struct page *page;
72 	int ret = 0;
73 
74 	page = find_get_page(&swapper_space, entry.val);
75 	if (!page)
76 		return 0;
77 	/*
78 	 * This function is called from scan_swap_map() and it's called
79 	 * by vmscan.c at reclaiming pages. So, we hold a lock on a page, here.
80 	 * We have to use trylock for avoiding deadlock. This is a special
81 	 * case and you should use try_to_free_swap() with explicit lock_page()
82 	 * in usual operations.
83 	 */
84 	if (trylock_page(page)) {
85 		ret = try_to_free_swap(page);
86 		unlock_page(page);
87 	}
88 	page_cache_release(page);
89 	return ret;
90 }
91 
92 /*
93  * We need this because the bdev->unplug_fn can sleep and we cannot
94  * hold swap_lock while calling the unplug_fn. And swap_lock
95  * cannot be turned into a mutex.
96  */
97 static DECLARE_RWSEM(swap_unplug_sem);
98 
99 void swap_unplug_io_fn(struct backing_dev_info *unused_bdi, struct page *page)
100 {
101 	swp_entry_t entry;
102 
103 	down_read(&swap_unplug_sem);
104 	entry.val = page_private(page);
105 	if (PageSwapCache(page)) {
106 		struct block_device *bdev = swap_info[swp_type(entry)]->bdev;
107 		struct backing_dev_info *bdi;
108 
109 		/*
110 		 * If the page is removed from swapcache from under us (with a
111 		 * racy try_to_unuse/swapoff) we need an additional reference
112 		 * count to avoid reading garbage from page_private(page) above.
113 		 * If the WARN_ON triggers during a swapoff it maybe the race
114 		 * condition and it's harmless. However if it triggers without
115 		 * swapoff it signals a problem.
116 		 */
117 		WARN_ON(page_count(page) <= 1);
118 
119 		bdi = bdev->bd_inode->i_mapping->backing_dev_info;
120 		blk_run_backing_dev(bdi, page);
121 	}
122 	up_read(&swap_unplug_sem);
123 }
124 
125 /*
126  * swapon tell device that all the old swap contents can be discarded,
127  * to allow the swap device to optimize its wear-levelling.
128  */
129 static int discard_swap(struct swap_info_struct *si)
130 {
131 	struct swap_extent *se;
132 	sector_t start_block;
133 	sector_t nr_blocks;
134 	int err = 0;
135 
136 	/* Do not discard the swap header page! */
137 	se = &si->first_swap_extent;
138 	start_block = (se->start_block + 1) << (PAGE_SHIFT - 9);
139 	nr_blocks = ((sector_t)se->nr_pages - 1) << (PAGE_SHIFT - 9);
140 	if (nr_blocks) {
141 		err = blkdev_issue_discard(si->bdev, start_block,
142 				nr_blocks, GFP_KERNEL, DISCARD_FL_BARRIER);
143 		if (err)
144 			return err;
145 		cond_resched();
146 	}
147 
148 	list_for_each_entry(se, &si->first_swap_extent.list, list) {
149 		start_block = se->start_block << (PAGE_SHIFT - 9);
150 		nr_blocks = (sector_t)se->nr_pages << (PAGE_SHIFT - 9);
151 
152 		err = blkdev_issue_discard(si->bdev, start_block,
153 				nr_blocks, GFP_KERNEL, DISCARD_FL_BARRIER);
154 		if (err)
155 			break;
156 
157 		cond_resched();
158 	}
159 	return err;		/* That will often be -EOPNOTSUPP */
160 }
161 
162 /*
163  * swap allocation tell device that a cluster of swap can now be discarded,
164  * to allow the swap device to optimize its wear-levelling.
165  */
166 static void discard_swap_cluster(struct swap_info_struct *si,
167 				 pgoff_t start_page, pgoff_t nr_pages)
168 {
169 	struct swap_extent *se = si->curr_swap_extent;
170 	int found_extent = 0;
171 
172 	while (nr_pages) {
173 		struct list_head *lh;
174 
175 		if (se->start_page <= start_page &&
176 		    start_page < se->start_page + se->nr_pages) {
177 			pgoff_t offset = start_page - se->start_page;
178 			sector_t start_block = se->start_block + offset;
179 			sector_t nr_blocks = se->nr_pages - offset;
180 
181 			if (nr_blocks > nr_pages)
182 				nr_blocks = nr_pages;
183 			start_page += nr_blocks;
184 			nr_pages -= nr_blocks;
185 
186 			if (!found_extent++)
187 				si->curr_swap_extent = se;
188 
189 			start_block <<= PAGE_SHIFT - 9;
190 			nr_blocks <<= PAGE_SHIFT - 9;
191 			if (blkdev_issue_discard(si->bdev, start_block,
192 				    nr_blocks, GFP_NOIO, DISCARD_FL_BARRIER))
193 				break;
194 		}
195 
196 		lh = se->list.next;
197 		se = list_entry(lh, struct swap_extent, list);
198 	}
199 }
200 
201 static int wait_for_discard(void *word)
202 {
203 	schedule();
204 	return 0;
205 }
206 
207 #define SWAPFILE_CLUSTER	256
208 #define LATENCY_LIMIT		256
209 
210 static inline unsigned long scan_swap_map(struct swap_info_struct *si,
211 					  unsigned char usage)
212 {
213 	unsigned long offset;
214 	unsigned long scan_base;
215 	unsigned long last_in_cluster = 0;
216 	int latency_ration = LATENCY_LIMIT;
217 	int found_free_cluster = 0;
218 
219 	/*
220 	 * We try to cluster swap pages by allocating them sequentially
221 	 * in swap.  Once we've allocated SWAPFILE_CLUSTER pages this
222 	 * way, however, we resort to first-free allocation, starting
223 	 * a new cluster.  This prevents us from scattering swap pages
224 	 * all over the entire swap partition, so that we reduce
225 	 * overall disk seek times between swap pages.  -- sct
226 	 * But we do now try to find an empty cluster.  -Andrea
227 	 * And we let swap pages go all over an SSD partition.  Hugh
228 	 */
229 
230 	si->flags += SWP_SCANNING;
231 	scan_base = offset = si->cluster_next;
232 
233 	if (unlikely(!si->cluster_nr--)) {
234 		if (si->pages - si->inuse_pages < SWAPFILE_CLUSTER) {
235 			si->cluster_nr = SWAPFILE_CLUSTER - 1;
236 			goto checks;
237 		}
238 		if (si->flags & SWP_DISCARDABLE) {
239 			/*
240 			 * Start range check on racing allocations, in case
241 			 * they overlap the cluster we eventually decide on
242 			 * (we scan without swap_lock to allow preemption).
243 			 * It's hardly conceivable that cluster_nr could be
244 			 * wrapped during our scan, but don't depend on it.
245 			 */
246 			if (si->lowest_alloc)
247 				goto checks;
248 			si->lowest_alloc = si->max;
249 			si->highest_alloc = 0;
250 		}
251 		spin_unlock(&swap_lock);
252 
253 		/*
254 		 * If seek is expensive, start searching for new cluster from
255 		 * start of partition, to minimize the span of allocated swap.
256 		 * But if seek is cheap, search from our current position, so
257 		 * that swap is allocated from all over the partition: if the
258 		 * Flash Translation Layer only remaps within limited zones,
259 		 * we don't want to wear out the first zone too quickly.
260 		 */
261 		if (!(si->flags & SWP_SOLIDSTATE))
262 			scan_base = offset = si->lowest_bit;
263 		last_in_cluster = offset + SWAPFILE_CLUSTER - 1;
264 
265 		/* Locate the first empty (unaligned) cluster */
266 		for (; last_in_cluster <= si->highest_bit; offset++) {
267 			if (si->swap_map[offset])
268 				last_in_cluster = offset + SWAPFILE_CLUSTER;
269 			else if (offset == last_in_cluster) {
270 				spin_lock(&swap_lock);
271 				offset -= SWAPFILE_CLUSTER - 1;
272 				si->cluster_next = offset;
273 				si->cluster_nr = SWAPFILE_CLUSTER - 1;
274 				found_free_cluster = 1;
275 				goto checks;
276 			}
277 			if (unlikely(--latency_ration < 0)) {
278 				cond_resched();
279 				latency_ration = LATENCY_LIMIT;
280 			}
281 		}
282 
283 		offset = si->lowest_bit;
284 		last_in_cluster = offset + SWAPFILE_CLUSTER - 1;
285 
286 		/* Locate the first empty (unaligned) cluster */
287 		for (; last_in_cluster < scan_base; offset++) {
288 			if (si->swap_map[offset])
289 				last_in_cluster = offset + SWAPFILE_CLUSTER;
290 			else if (offset == last_in_cluster) {
291 				spin_lock(&swap_lock);
292 				offset -= SWAPFILE_CLUSTER - 1;
293 				si->cluster_next = offset;
294 				si->cluster_nr = SWAPFILE_CLUSTER - 1;
295 				found_free_cluster = 1;
296 				goto checks;
297 			}
298 			if (unlikely(--latency_ration < 0)) {
299 				cond_resched();
300 				latency_ration = LATENCY_LIMIT;
301 			}
302 		}
303 
304 		offset = scan_base;
305 		spin_lock(&swap_lock);
306 		si->cluster_nr = SWAPFILE_CLUSTER - 1;
307 		si->lowest_alloc = 0;
308 	}
309 
310 checks:
311 	if (!(si->flags & SWP_WRITEOK))
312 		goto no_page;
313 	if (!si->highest_bit)
314 		goto no_page;
315 	if (offset > si->highest_bit)
316 		scan_base = offset = si->lowest_bit;
317 
318 	/* reuse swap entry of cache-only swap if not busy. */
319 	if (vm_swap_full() && si->swap_map[offset] == SWAP_HAS_CACHE) {
320 		int swap_was_freed;
321 		spin_unlock(&swap_lock);
322 		swap_was_freed = __try_to_reclaim_swap(si, offset);
323 		spin_lock(&swap_lock);
324 		/* entry was freed successfully, try to use this again */
325 		if (swap_was_freed)
326 			goto checks;
327 		goto scan; /* check next one */
328 	}
329 
330 	if (si->swap_map[offset])
331 		goto scan;
332 
333 	if (offset == si->lowest_bit)
334 		si->lowest_bit++;
335 	if (offset == si->highest_bit)
336 		si->highest_bit--;
337 	si->inuse_pages++;
338 	if (si->inuse_pages == si->pages) {
339 		si->lowest_bit = si->max;
340 		si->highest_bit = 0;
341 	}
342 	si->swap_map[offset] = usage;
343 	si->cluster_next = offset + 1;
344 	si->flags -= SWP_SCANNING;
345 
346 	if (si->lowest_alloc) {
347 		/*
348 		 * Only set when SWP_DISCARDABLE, and there's a scan
349 		 * for a free cluster in progress or just completed.
350 		 */
351 		if (found_free_cluster) {
352 			/*
353 			 * To optimize wear-levelling, discard the
354 			 * old data of the cluster, taking care not to
355 			 * discard any of its pages that have already
356 			 * been allocated by racing tasks (offset has
357 			 * already stepped over any at the beginning).
358 			 */
359 			if (offset < si->highest_alloc &&
360 			    si->lowest_alloc <= last_in_cluster)
361 				last_in_cluster = si->lowest_alloc - 1;
362 			si->flags |= SWP_DISCARDING;
363 			spin_unlock(&swap_lock);
364 
365 			if (offset < last_in_cluster)
366 				discard_swap_cluster(si, offset,
367 					last_in_cluster - offset + 1);
368 
369 			spin_lock(&swap_lock);
370 			si->lowest_alloc = 0;
371 			si->flags &= ~SWP_DISCARDING;
372 
373 			smp_mb();	/* wake_up_bit advises this */
374 			wake_up_bit(&si->flags, ilog2(SWP_DISCARDING));
375 
376 		} else if (si->flags & SWP_DISCARDING) {
377 			/*
378 			 * Delay using pages allocated by racing tasks
379 			 * until the whole discard has been issued. We
380 			 * could defer that delay until swap_writepage,
381 			 * but it's easier to keep this self-contained.
382 			 */
383 			spin_unlock(&swap_lock);
384 			wait_on_bit(&si->flags, ilog2(SWP_DISCARDING),
385 				wait_for_discard, TASK_UNINTERRUPTIBLE);
386 			spin_lock(&swap_lock);
387 		} else {
388 			/*
389 			 * Note pages allocated by racing tasks while
390 			 * scan for a free cluster is in progress, so
391 			 * that its final discard can exclude them.
392 			 */
393 			if (offset < si->lowest_alloc)
394 				si->lowest_alloc = offset;
395 			if (offset > si->highest_alloc)
396 				si->highest_alloc = offset;
397 		}
398 	}
399 	return offset;
400 
401 scan:
402 	spin_unlock(&swap_lock);
403 	while (++offset <= si->highest_bit) {
404 		if (!si->swap_map[offset]) {
405 			spin_lock(&swap_lock);
406 			goto checks;
407 		}
408 		if (vm_swap_full() && si->swap_map[offset] == SWAP_HAS_CACHE) {
409 			spin_lock(&swap_lock);
410 			goto checks;
411 		}
412 		if (unlikely(--latency_ration < 0)) {
413 			cond_resched();
414 			latency_ration = LATENCY_LIMIT;
415 		}
416 	}
417 	offset = si->lowest_bit;
418 	while (++offset < scan_base) {
419 		if (!si->swap_map[offset]) {
420 			spin_lock(&swap_lock);
421 			goto checks;
422 		}
423 		if (vm_swap_full() && si->swap_map[offset] == SWAP_HAS_CACHE) {
424 			spin_lock(&swap_lock);
425 			goto checks;
426 		}
427 		if (unlikely(--latency_ration < 0)) {
428 			cond_resched();
429 			latency_ration = LATENCY_LIMIT;
430 		}
431 	}
432 	spin_lock(&swap_lock);
433 
434 no_page:
435 	si->flags -= SWP_SCANNING;
436 	return 0;
437 }
438 
439 swp_entry_t get_swap_page(void)
440 {
441 	struct swap_info_struct *si;
442 	pgoff_t offset;
443 	int type, next;
444 	int wrapped = 0;
445 
446 	spin_lock(&swap_lock);
447 	if (nr_swap_pages <= 0)
448 		goto noswap;
449 	nr_swap_pages--;
450 
451 	for (type = swap_list.next; type >= 0 && wrapped < 2; type = next) {
452 		si = swap_info[type];
453 		next = si->next;
454 		if (next < 0 ||
455 		    (!wrapped && si->prio != swap_info[next]->prio)) {
456 			next = swap_list.head;
457 			wrapped++;
458 		}
459 
460 		if (!si->highest_bit)
461 			continue;
462 		if (!(si->flags & SWP_WRITEOK))
463 			continue;
464 
465 		swap_list.next = next;
466 		/* This is called for allocating swap entry for cache */
467 		offset = scan_swap_map(si, SWAP_HAS_CACHE);
468 		if (offset) {
469 			spin_unlock(&swap_lock);
470 			return swp_entry(type, offset);
471 		}
472 		next = swap_list.next;
473 	}
474 
475 	nr_swap_pages++;
476 noswap:
477 	spin_unlock(&swap_lock);
478 	return (swp_entry_t) {0};
479 }
480 
481 /* The only caller of this function is now susupend routine */
482 swp_entry_t get_swap_page_of_type(int type)
483 {
484 	struct swap_info_struct *si;
485 	pgoff_t offset;
486 
487 	spin_lock(&swap_lock);
488 	si = swap_info[type];
489 	if (si && (si->flags & SWP_WRITEOK)) {
490 		nr_swap_pages--;
491 		/* This is called for allocating swap entry, not cache */
492 		offset = scan_swap_map(si, 1);
493 		if (offset) {
494 			spin_unlock(&swap_lock);
495 			return swp_entry(type, offset);
496 		}
497 		nr_swap_pages++;
498 	}
499 	spin_unlock(&swap_lock);
500 	return (swp_entry_t) {0};
501 }
502 
503 static struct swap_info_struct *swap_info_get(swp_entry_t entry)
504 {
505 	struct swap_info_struct *p;
506 	unsigned long offset, type;
507 
508 	if (!entry.val)
509 		goto out;
510 	type = swp_type(entry);
511 	if (type >= nr_swapfiles)
512 		goto bad_nofile;
513 	p = swap_info[type];
514 	if (!(p->flags & SWP_USED))
515 		goto bad_device;
516 	offset = swp_offset(entry);
517 	if (offset >= p->max)
518 		goto bad_offset;
519 	if (!p->swap_map[offset])
520 		goto bad_free;
521 	spin_lock(&swap_lock);
522 	return p;
523 
524 bad_free:
525 	printk(KERN_ERR "swap_free: %s%08lx\n", Unused_offset, entry.val);
526 	goto out;
527 bad_offset:
528 	printk(KERN_ERR "swap_free: %s%08lx\n", Bad_offset, entry.val);
529 	goto out;
530 bad_device:
531 	printk(KERN_ERR "swap_free: %s%08lx\n", Unused_file, entry.val);
532 	goto out;
533 bad_nofile:
534 	printk(KERN_ERR "swap_free: %s%08lx\n", Bad_file, entry.val);
535 out:
536 	return NULL;
537 }
538 
539 static unsigned char swap_entry_free(struct swap_info_struct *p,
540 				     swp_entry_t entry, unsigned char usage)
541 {
542 	unsigned long offset = swp_offset(entry);
543 	unsigned char count;
544 	unsigned char has_cache;
545 
546 	count = p->swap_map[offset];
547 	has_cache = count & SWAP_HAS_CACHE;
548 	count &= ~SWAP_HAS_CACHE;
549 
550 	if (usage == SWAP_HAS_CACHE) {
551 		VM_BUG_ON(!has_cache);
552 		has_cache = 0;
553 	} else if (count == SWAP_MAP_SHMEM) {
554 		/*
555 		 * Or we could insist on shmem.c using a special
556 		 * swap_shmem_free() and free_shmem_swap_and_cache()...
557 		 */
558 		count = 0;
559 	} else if ((count & ~COUNT_CONTINUED) <= SWAP_MAP_MAX) {
560 		if (count == COUNT_CONTINUED) {
561 			if (swap_count_continued(p, offset, count))
562 				count = SWAP_MAP_MAX | COUNT_CONTINUED;
563 			else
564 				count = SWAP_MAP_MAX;
565 		} else
566 			count--;
567 	}
568 
569 	if (!count)
570 		mem_cgroup_uncharge_swap(entry);
571 
572 	usage = count | has_cache;
573 	p->swap_map[offset] = usage;
574 
575 	/* free if no reference */
576 	if (!usage) {
577 		if (offset < p->lowest_bit)
578 			p->lowest_bit = offset;
579 		if (offset > p->highest_bit)
580 			p->highest_bit = offset;
581 		if (swap_list.next >= 0 &&
582 		    p->prio > swap_info[swap_list.next]->prio)
583 			swap_list.next = p->type;
584 		nr_swap_pages++;
585 		p->inuse_pages--;
586 	}
587 
588 	return usage;
589 }
590 
591 /*
592  * Caller has made sure that the swapdevice corresponding to entry
593  * is still around or has not been recycled.
594  */
595 void swap_free(swp_entry_t entry)
596 {
597 	struct swap_info_struct *p;
598 
599 	p = swap_info_get(entry);
600 	if (p) {
601 		swap_entry_free(p, entry, 1);
602 		spin_unlock(&swap_lock);
603 	}
604 }
605 
606 /*
607  * Called after dropping swapcache to decrease refcnt to swap entries.
608  */
609 void swapcache_free(swp_entry_t entry, struct page *page)
610 {
611 	struct swap_info_struct *p;
612 	unsigned char count;
613 
614 	p = swap_info_get(entry);
615 	if (p) {
616 		count = swap_entry_free(p, entry, SWAP_HAS_CACHE);
617 		if (page)
618 			mem_cgroup_uncharge_swapcache(page, entry, count != 0);
619 		spin_unlock(&swap_lock);
620 	}
621 }
622 
623 /*
624  * How many references to page are currently swapped out?
625  * This does not give an exact answer when swap count is continued,
626  * but does include the high COUNT_CONTINUED flag to allow for that.
627  */
628 static inline int page_swapcount(struct page *page)
629 {
630 	int count = 0;
631 	struct swap_info_struct *p;
632 	swp_entry_t entry;
633 
634 	entry.val = page_private(page);
635 	p = swap_info_get(entry);
636 	if (p) {
637 		count = swap_count(p->swap_map[swp_offset(entry)]);
638 		spin_unlock(&swap_lock);
639 	}
640 	return count;
641 }
642 
643 /*
644  * We can write to an anon page without COW if there are no other references
645  * to it.  And as a side-effect, free up its swap: because the old content
646  * on disk will never be read, and seeking back there to write new content
647  * later would only waste time away from clustering.
648  */
649 int reuse_swap_page(struct page *page)
650 {
651 	int count;
652 
653 	VM_BUG_ON(!PageLocked(page));
654 	if (unlikely(PageKsm(page)))
655 		return 0;
656 	count = page_mapcount(page);
657 	if (count <= 1 && PageSwapCache(page)) {
658 		count += page_swapcount(page);
659 		if (count == 1 && !PageWriteback(page)) {
660 			delete_from_swap_cache(page);
661 			SetPageDirty(page);
662 		}
663 	}
664 	return count <= 1;
665 }
666 
667 /*
668  * If swap is getting full, or if there are no more mappings of this page,
669  * then try_to_free_swap is called to free its swap space.
670  */
671 int try_to_free_swap(struct page *page)
672 {
673 	VM_BUG_ON(!PageLocked(page));
674 
675 	if (!PageSwapCache(page))
676 		return 0;
677 	if (PageWriteback(page))
678 		return 0;
679 	if (page_swapcount(page))
680 		return 0;
681 
682 	delete_from_swap_cache(page);
683 	SetPageDirty(page);
684 	return 1;
685 }
686 
687 /*
688  * Free the swap entry like above, but also try to
689  * free the page cache entry if it is the last user.
690  */
691 int free_swap_and_cache(swp_entry_t entry)
692 {
693 	struct swap_info_struct *p;
694 	struct page *page = NULL;
695 
696 	if (non_swap_entry(entry))
697 		return 1;
698 
699 	p = swap_info_get(entry);
700 	if (p) {
701 		if (swap_entry_free(p, entry, 1) == SWAP_HAS_CACHE) {
702 			page = find_get_page(&swapper_space, entry.val);
703 			if (page && !trylock_page(page)) {
704 				page_cache_release(page);
705 				page = NULL;
706 			}
707 		}
708 		spin_unlock(&swap_lock);
709 	}
710 	if (page) {
711 		/*
712 		 * Not mapped elsewhere, or swap space full? Free it!
713 		 * Also recheck PageSwapCache now page is locked (above).
714 		 */
715 		if (PageSwapCache(page) && !PageWriteback(page) &&
716 				(!page_mapped(page) || vm_swap_full())) {
717 			delete_from_swap_cache(page);
718 			SetPageDirty(page);
719 		}
720 		unlock_page(page);
721 		page_cache_release(page);
722 	}
723 	return p != NULL;
724 }
725 
726 #ifdef CONFIG_CGROUP_MEM_RES_CTLR
727 /**
728  * mem_cgroup_count_swap_user - count the user of a swap entry
729  * @ent: the swap entry to be checked
730  * @pagep: the pointer for the swap cache page of the entry to be stored
731  *
732  * Returns the number of the user of the swap entry. The number is valid only
733  * for swaps of anonymous pages.
734  * If the entry is found on swap cache, the page is stored to pagep with
735  * refcount of it being incremented.
736  */
737 int mem_cgroup_count_swap_user(swp_entry_t ent, struct page **pagep)
738 {
739 	struct page *page;
740 	struct swap_info_struct *p;
741 	int count = 0;
742 
743 	page = find_get_page(&swapper_space, ent.val);
744 	if (page)
745 		count += page_mapcount(page);
746 	p = swap_info_get(ent);
747 	if (p) {
748 		count += swap_count(p->swap_map[swp_offset(ent)]);
749 		spin_unlock(&swap_lock);
750 	}
751 
752 	*pagep = page;
753 	return count;
754 }
755 #endif
756 
757 #ifdef CONFIG_HIBERNATION
758 /*
759  * Find the swap type that corresponds to given device (if any).
760  *
761  * @offset - number of the PAGE_SIZE-sized block of the device, starting
762  * from 0, in which the swap header is expected to be located.
763  *
764  * This is needed for the suspend to disk (aka swsusp).
765  */
766 int swap_type_of(dev_t device, sector_t offset, struct block_device **bdev_p)
767 {
768 	struct block_device *bdev = NULL;
769 	int type;
770 
771 	if (device)
772 		bdev = bdget(device);
773 
774 	spin_lock(&swap_lock);
775 	for (type = 0; type < nr_swapfiles; type++) {
776 		struct swap_info_struct *sis = swap_info[type];
777 
778 		if (!(sis->flags & SWP_WRITEOK))
779 			continue;
780 
781 		if (!bdev) {
782 			if (bdev_p)
783 				*bdev_p = bdgrab(sis->bdev);
784 
785 			spin_unlock(&swap_lock);
786 			return type;
787 		}
788 		if (bdev == sis->bdev) {
789 			struct swap_extent *se = &sis->first_swap_extent;
790 
791 			if (se->start_block == offset) {
792 				if (bdev_p)
793 					*bdev_p = bdgrab(sis->bdev);
794 
795 				spin_unlock(&swap_lock);
796 				bdput(bdev);
797 				return type;
798 			}
799 		}
800 	}
801 	spin_unlock(&swap_lock);
802 	if (bdev)
803 		bdput(bdev);
804 
805 	return -ENODEV;
806 }
807 
808 /*
809  * Get the (PAGE_SIZE) block corresponding to given offset on the swapdev
810  * corresponding to given index in swap_info (swap type).
811  */
812 sector_t swapdev_block(int type, pgoff_t offset)
813 {
814 	struct block_device *bdev;
815 
816 	if ((unsigned int)type >= nr_swapfiles)
817 		return 0;
818 	if (!(swap_info[type]->flags & SWP_WRITEOK))
819 		return 0;
820 	return map_swap_entry(swp_entry(type, offset), &bdev);
821 }
822 
823 /*
824  * Return either the total number of swap pages of given type, or the number
825  * of free pages of that type (depending on @free)
826  *
827  * This is needed for software suspend
828  */
829 unsigned int count_swap_pages(int type, int free)
830 {
831 	unsigned int n = 0;
832 
833 	spin_lock(&swap_lock);
834 	if ((unsigned int)type < nr_swapfiles) {
835 		struct swap_info_struct *sis = swap_info[type];
836 
837 		if (sis->flags & SWP_WRITEOK) {
838 			n = sis->pages;
839 			if (free)
840 				n -= sis->inuse_pages;
841 		}
842 	}
843 	spin_unlock(&swap_lock);
844 	return n;
845 }
846 #endif /* CONFIG_HIBERNATION */
847 
848 /*
849  * No need to decide whether this PTE shares the swap entry with others,
850  * just let do_wp_page work it out if a write is requested later - to
851  * force COW, vm_page_prot omits write permission from any private vma.
852  */
853 static int unuse_pte(struct vm_area_struct *vma, pmd_t *pmd,
854 		unsigned long addr, swp_entry_t entry, struct page *page)
855 {
856 	struct mem_cgroup *ptr = NULL;
857 	spinlock_t *ptl;
858 	pte_t *pte;
859 	int ret = 1;
860 
861 	if (mem_cgroup_try_charge_swapin(vma->vm_mm, page, GFP_KERNEL, &ptr)) {
862 		ret = -ENOMEM;
863 		goto out_nolock;
864 	}
865 
866 	pte = pte_offset_map_lock(vma->vm_mm, pmd, addr, &ptl);
867 	if (unlikely(!pte_same(*pte, swp_entry_to_pte(entry)))) {
868 		if (ret > 0)
869 			mem_cgroup_cancel_charge_swapin(ptr);
870 		ret = 0;
871 		goto out;
872 	}
873 
874 	dec_mm_counter(vma->vm_mm, MM_SWAPENTS);
875 	inc_mm_counter(vma->vm_mm, MM_ANONPAGES);
876 	get_page(page);
877 	set_pte_at(vma->vm_mm, addr, pte,
878 		   pte_mkold(mk_pte(page, vma->vm_page_prot)));
879 	page_add_anon_rmap(page, vma, addr);
880 	mem_cgroup_commit_charge_swapin(page, ptr);
881 	swap_free(entry);
882 	/*
883 	 * Move the page to the active list so it is not
884 	 * immediately swapped out again after swapon.
885 	 */
886 	activate_page(page);
887 out:
888 	pte_unmap_unlock(pte, ptl);
889 out_nolock:
890 	return ret;
891 }
892 
893 static int unuse_pte_range(struct vm_area_struct *vma, pmd_t *pmd,
894 				unsigned long addr, unsigned long end,
895 				swp_entry_t entry, struct page *page)
896 {
897 	pte_t swp_pte = swp_entry_to_pte(entry);
898 	pte_t *pte;
899 	int ret = 0;
900 
901 	/*
902 	 * We don't actually need pte lock while scanning for swp_pte: since
903 	 * we hold page lock and mmap_sem, swp_pte cannot be inserted into the
904 	 * page table while we're scanning; though it could get zapped, and on
905 	 * some architectures (e.g. x86_32 with PAE) we might catch a glimpse
906 	 * of unmatched parts which look like swp_pte, so unuse_pte must
907 	 * recheck under pte lock.  Scanning without pte lock lets it be
908 	 * preemptible whenever CONFIG_PREEMPT but not CONFIG_HIGHPTE.
909 	 */
910 	pte = pte_offset_map(pmd, addr);
911 	do {
912 		/*
913 		 * swapoff spends a _lot_ of time in this loop!
914 		 * Test inline before going to call unuse_pte.
915 		 */
916 		if (unlikely(pte_same(*pte, swp_pte))) {
917 			pte_unmap(pte);
918 			ret = unuse_pte(vma, pmd, addr, entry, page);
919 			if (ret)
920 				goto out;
921 			pte = pte_offset_map(pmd, addr);
922 		}
923 	} while (pte++, addr += PAGE_SIZE, addr != end);
924 	pte_unmap(pte - 1);
925 out:
926 	return ret;
927 }
928 
929 static inline int unuse_pmd_range(struct vm_area_struct *vma, pud_t *pud,
930 				unsigned long addr, unsigned long end,
931 				swp_entry_t entry, struct page *page)
932 {
933 	pmd_t *pmd;
934 	unsigned long next;
935 	int ret;
936 
937 	pmd = pmd_offset(pud, addr);
938 	do {
939 		next = pmd_addr_end(addr, end);
940 		if (pmd_none_or_clear_bad(pmd))
941 			continue;
942 		ret = unuse_pte_range(vma, pmd, addr, next, entry, page);
943 		if (ret)
944 			return ret;
945 	} while (pmd++, addr = next, addr != end);
946 	return 0;
947 }
948 
949 static inline int unuse_pud_range(struct vm_area_struct *vma, pgd_t *pgd,
950 				unsigned long addr, unsigned long end,
951 				swp_entry_t entry, struct page *page)
952 {
953 	pud_t *pud;
954 	unsigned long next;
955 	int ret;
956 
957 	pud = pud_offset(pgd, addr);
958 	do {
959 		next = pud_addr_end(addr, end);
960 		if (pud_none_or_clear_bad(pud))
961 			continue;
962 		ret = unuse_pmd_range(vma, pud, addr, next, entry, page);
963 		if (ret)
964 			return ret;
965 	} while (pud++, addr = next, addr != end);
966 	return 0;
967 }
968 
969 static int unuse_vma(struct vm_area_struct *vma,
970 				swp_entry_t entry, struct page *page)
971 {
972 	pgd_t *pgd;
973 	unsigned long addr, end, next;
974 	int ret;
975 
976 	if (page_anon_vma(page)) {
977 		addr = page_address_in_vma(page, vma);
978 		if (addr == -EFAULT)
979 			return 0;
980 		else
981 			end = addr + PAGE_SIZE;
982 	} else {
983 		addr = vma->vm_start;
984 		end = vma->vm_end;
985 	}
986 
987 	pgd = pgd_offset(vma->vm_mm, addr);
988 	do {
989 		next = pgd_addr_end(addr, end);
990 		if (pgd_none_or_clear_bad(pgd))
991 			continue;
992 		ret = unuse_pud_range(vma, pgd, addr, next, entry, page);
993 		if (ret)
994 			return ret;
995 	} while (pgd++, addr = next, addr != end);
996 	return 0;
997 }
998 
999 static int unuse_mm(struct mm_struct *mm,
1000 				swp_entry_t entry, struct page *page)
1001 {
1002 	struct vm_area_struct *vma;
1003 	int ret = 0;
1004 
1005 	if (!down_read_trylock(&mm->mmap_sem)) {
1006 		/*
1007 		 * Activate page so shrink_inactive_list is unlikely to unmap
1008 		 * its ptes while lock is dropped, so swapoff can make progress.
1009 		 */
1010 		activate_page(page);
1011 		unlock_page(page);
1012 		down_read(&mm->mmap_sem);
1013 		lock_page(page);
1014 	}
1015 	for (vma = mm->mmap; vma; vma = vma->vm_next) {
1016 		if (vma->anon_vma && (ret = unuse_vma(vma, entry, page)))
1017 			break;
1018 	}
1019 	up_read(&mm->mmap_sem);
1020 	return (ret < 0)? ret: 0;
1021 }
1022 
1023 /*
1024  * Scan swap_map from current position to next entry still in use.
1025  * Recycle to start on reaching the end, returning 0 when empty.
1026  */
1027 static unsigned int find_next_to_unuse(struct swap_info_struct *si,
1028 					unsigned int prev)
1029 {
1030 	unsigned int max = si->max;
1031 	unsigned int i = prev;
1032 	unsigned char count;
1033 
1034 	/*
1035 	 * No need for swap_lock here: we're just looking
1036 	 * for whether an entry is in use, not modifying it; false
1037 	 * hits are okay, and sys_swapoff() has already prevented new
1038 	 * allocations from this area (while holding swap_lock).
1039 	 */
1040 	for (;;) {
1041 		if (++i >= max) {
1042 			if (!prev) {
1043 				i = 0;
1044 				break;
1045 			}
1046 			/*
1047 			 * No entries in use at top of swap_map,
1048 			 * loop back to start and recheck there.
1049 			 */
1050 			max = prev + 1;
1051 			prev = 0;
1052 			i = 1;
1053 		}
1054 		count = si->swap_map[i];
1055 		if (count && swap_count(count) != SWAP_MAP_BAD)
1056 			break;
1057 	}
1058 	return i;
1059 }
1060 
1061 /*
1062  * We completely avoid races by reading each swap page in advance,
1063  * and then search for the process using it.  All the necessary
1064  * page table adjustments can then be made atomically.
1065  */
1066 static int try_to_unuse(unsigned int type)
1067 {
1068 	struct swap_info_struct *si = swap_info[type];
1069 	struct mm_struct *start_mm;
1070 	unsigned char *swap_map;
1071 	unsigned char swcount;
1072 	struct page *page;
1073 	swp_entry_t entry;
1074 	unsigned int i = 0;
1075 	int retval = 0;
1076 
1077 	/*
1078 	 * When searching mms for an entry, a good strategy is to
1079 	 * start at the first mm we freed the previous entry from
1080 	 * (though actually we don't notice whether we or coincidence
1081 	 * freed the entry).  Initialize this start_mm with a hold.
1082 	 *
1083 	 * A simpler strategy would be to start at the last mm we
1084 	 * freed the previous entry from; but that would take less
1085 	 * advantage of mmlist ordering, which clusters forked mms
1086 	 * together, child after parent.  If we race with dup_mmap(), we
1087 	 * prefer to resolve parent before child, lest we miss entries
1088 	 * duplicated after we scanned child: using last mm would invert
1089 	 * that.
1090 	 */
1091 	start_mm = &init_mm;
1092 	atomic_inc(&init_mm.mm_users);
1093 
1094 	/*
1095 	 * Keep on scanning until all entries have gone.  Usually,
1096 	 * one pass through swap_map is enough, but not necessarily:
1097 	 * there are races when an instance of an entry might be missed.
1098 	 */
1099 	while ((i = find_next_to_unuse(si, i)) != 0) {
1100 		if (signal_pending(current)) {
1101 			retval = -EINTR;
1102 			break;
1103 		}
1104 
1105 		/*
1106 		 * Get a page for the entry, using the existing swap
1107 		 * cache page if there is one.  Otherwise, get a clean
1108 		 * page and read the swap into it.
1109 		 */
1110 		swap_map = &si->swap_map[i];
1111 		entry = swp_entry(type, i);
1112 		page = read_swap_cache_async(entry,
1113 					GFP_HIGHUSER_MOVABLE, NULL, 0);
1114 		if (!page) {
1115 			/*
1116 			 * Either swap_duplicate() failed because entry
1117 			 * has been freed independently, and will not be
1118 			 * reused since sys_swapoff() already disabled
1119 			 * allocation from here, or alloc_page() failed.
1120 			 */
1121 			if (!*swap_map)
1122 				continue;
1123 			retval = -ENOMEM;
1124 			break;
1125 		}
1126 
1127 		/*
1128 		 * Don't hold on to start_mm if it looks like exiting.
1129 		 */
1130 		if (atomic_read(&start_mm->mm_users) == 1) {
1131 			mmput(start_mm);
1132 			start_mm = &init_mm;
1133 			atomic_inc(&init_mm.mm_users);
1134 		}
1135 
1136 		/*
1137 		 * Wait for and lock page.  When do_swap_page races with
1138 		 * try_to_unuse, do_swap_page can handle the fault much
1139 		 * faster than try_to_unuse can locate the entry.  This
1140 		 * apparently redundant "wait_on_page_locked" lets try_to_unuse
1141 		 * defer to do_swap_page in such a case - in some tests,
1142 		 * do_swap_page and try_to_unuse repeatedly compete.
1143 		 */
1144 		wait_on_page_locked(page);
1145 		wait_on_page_writeback(page);
1146 		lock_page(page);
1147 		wait_on_page_writeback(page);
1148 
1149 		/*
1150 		 * Remove all references to entry.
1151 		 */
1152 		swcount = *swap_map;
1153 		if (swap_count(swcount) == SWAP_MAP_SHMEM) {
1154 			retval = shmem_unuse(entry, page);
1155 			/* page has already been unlocked and released */
1156 			if (retval < 0)
1157 				break;
1158 			continue;
1159 		}
1160 		if (swap_count(swcount) && start_mm != &init_mm)
1161 			retval = unuse_mm(start_mm, entry, page);
1162 
1163 		if (swap_count(*swap_map)) {
1164 			int set_start_mm = (*swap_map >= swcount);
1165 			struct list_head *p = &start_mm->mmlist;
1166 			struct mm_struct *new_start_mm = start_mm;
1167 			struct mm_struct *prev_mm = start_mm;
1168 			struct mm_struct *mm;
1169 
1170 			atomic_inc(&new_start_mm->mm_users);
1171 			atomic_inc(&prev_mm->mm_users);
1172 			spin_lock(&mmlist_lock);
1173 			while (swap_count(*swap_map) && !retval &&
1174 					(p = p->next) != &start_mm->mmlist) {
1175 				mm = list_entry(p, struct mm_struct, mmlist);
1176 				if (!atomic_inc_not_zero(&mm->mm_users))
1177 					continue;
1178 				spin_unlock(&mmlist_lock);
1179 				mmput(prev_mm);
1180 				prev_mm = mm;
1181 
1182 				cond_resched();
1183 
1184 				swcount = *swap_map;
1185 				if (!swap_count(swcount)) /* any usage ? */
1186 					;
1187 				else if (mm == &init_mm)
1188 					set_start_mm = 1;
1189 				else
1190 					retval = unuse_mm(mm, entry, page);
1191 
1192 				if (set_start_mm && *swap_map < swcount) {
1193 					mmput(new_start_mm);
1194 					atomic_inc(&mm->mm_users);
1195 					new_start_mm = mm;
1196 					set_start_mm = 0;
1197 				}
1198 				spin_lock(&mmlist_lock);
1199 			}
1200 			spin_unlock(&mmlist_lock);
1201 			mmput(prev_mm);
1202 			mmput(start_mm);
1203 			start_mm = new_start_mm;
1204 		}
1205 		if (retval) {
1206 			unlock_page(page);
1207 			page_cache_release(page);
1208 			break;
1209 		}
1210 
1211 		/*
1212 		 * If a reference remains (rare), we would like to leave
1213 		 * the page in the swap cache; but try_to_unmap could
1214 		 * then re-duplicate the entry once we drop page lock,
1215 		 * so we might loop indefinitely; also, that page could
1216 		 * not be swapped out to other storage meanwhile.  So:
1217 		 * delete from cache even if there's another reference,
1218 		 * after ensuring that the data has been saved to disk -
1219 		 * since if the reference remains (rarer), it will be
1220 		 * read from disk into another page.  Splitting into two
1221 		 * pages would be incorrect if swap supported "shared
1222 		 * private" pages, but they are handled by tmpfs files.
1223 		 *
1224 		 * Given how unuse_vma() targets one particular offset
1225 		 * in an anon_vma, once the anon_vma has been determined,
1226 		 * this splitting happens to be just what is needed to
1227 		 * handle where KSM pages have been swapped out: re-reading
1228 		 * is unnecessarily slow, but we can fix that later on.
1229 		 */
1230 		if (swap_count(*swap_map) &&
1231 		     PageDirty(page) && PageSwapCache(page)) {
1232 			struct writeback_control wbc = {
1233 				.sync_mode = WB_SYNC_NONE,
1234 			};
1235 
1236 			swap_writepage(page, &wbc);
1237 			lock_page(page);
1238 			wait_on_page_writeback(page);
1239 		}
1240 
1241 		/*
1242 		 * It is conceivable that a racing task removed this page from
1243 		 * swap cache just before we acquired the page lock at the top,
1244 		 * or while we dropped it in unuse_mm().  The page might even
1245 		 * be back in swap cache on another swap area: that we must not
1246 		 * delete, since it may not have been written out to swap yet.
1247 		 */
1248 		if (PageSwapCache(page) &&
1249 		    likely(page_private(page) == entry.val))
1250 			delete_from_swap_cache(page);
1251 
1252 		/*
1253 		 * So we could skip searching mms once swap count went
1254 		 * to 1, we did not mark any present ptes as dirty: must
1255 		 * mark page dirty so shrink_page_list will preserve it.
1256 		 */
1257 		SetPageDirty(page);
1258 		unlock_page(page);
1259 		page_cache_release(page);
1260 
1261 		/*
1262 		 * Make sure that we aren't completely killing
1263 		 * interactive performance.
1264 		 */
1265 		cond_resched();
1266 	}
1267 
1268 	mmput(start_mm);
1269 	return retval;
1270 }
1271 
1272 /*
1273  * After a successful try_to_unuse, if no swap is now in use, we know
1274  * we can empty the mmlist.  swap_lock must be held on entry and exit.
1275  * Note that mmlist_lock nests inside swap_lock, and an mm must be
1276  * added to the mmlist just after page_duplicate - before would be racy.
1277  */
1278 static void drain_mmlist(void)
1279 {
1280 	struct list_head *p, *next;
1281 	unsigned int type;
1282 
1283 	for (type = 0; type < nr_swapfiles; type++)
1284 		if (swap_info[type]->inuse_pages)
1285 			return;
1286 	spin_lock(&mmlist_lock);
1287 	list_for_each_safe(p, next, &init_mm.mmlist)
1288 		list_del_init(p);
1289 	spin_unlock(&mmlist_lock);
1290 }
1291 
1292 /*
1293  * Use this swapdev's extent info to locate the (PAGE_SIZE) block which
1294  * corresponds to page offset for the specified swap entry.
1295  * Note that the type of this function is sector_t, but it returns page offset
1296  * into the bdev, not sector offset.
1297  */
1298 static sector_t map_swap_entry(swp_entry_t entry, struct block_device **bdev)
1299 {
1300 	struct swap_info_struct *sis;
1301 	struct swap_extent *start_se;
1302 	struct swap_extent *se;
1303 	pgoff_t offset;
1304 
1305 	sis = swap_info[swp_type(entry)];
1306 	*bdev = sis->bdev;
1307 
1308 	offset = swp_offset(entry);
1309 	start_se = sis->curr_swap_extent;
1310 	se = start_se;
1311 
1312 	for ( ; ; ) {
1313 		struct list_head *lh;
1314 
1315 		if (se->start_page <= offset &&
1316 				offset < (se->start_page + se->nr_pages)) {
1317 			return se->start_block + (offset - se->start_page);
1318 		}
1319 		lh = se->list.next;
1320 		se = list_entry(lh, struct swap_extent, list);
1321 		sis->curr_swap_extent = se;
1322 		BUG_ON(se == start_se);		/* It *must* be present */
1323 	}
1324 }
1325 
1326 /*
1327  * Returns the page offset into bdev for the specified page's swap entry.
1328  */
1329 sector_t map_swap_page(struct page *page, struct block_device **bdev)
1330 {
1331 	swp_entry_t entry;
1332 	entry.val = page_private(page);
1333 	return map_swap_entry(entry, bdev);
1334 }
1335 
1336 /*
1337  * Free all of a swapdev's extent information
1338  */
1339 static void destroy_swap_extents(struct swap_info_struct *sis)
1340 {
1341 	while (!list_empty(&sis->first_swap_extent.list)) {
1342 		struct swap_extent *se;
1343 
1344 		se = list_entry(sis->first_swap_extent.list.next,
1345 				struct swap_extent, list);
1346 		list_del(&se->list);
1347 		kfree(se);
1348 	}
1349 }
1350 
1351 /*
1352  * Add a block range (and the corresponding page range) into this swapdev's
1353  * extent list.  The extent list is kept sorted in page order.
1354  *
1355  * This function rather assumes that it is called in ascending page order.
1356  */
1357 static int
1358 add_swap_extent(struct swap_info_struct *sis, unsigned long start_page,
1359 		unsigned long nr_pages, sector_t start_block)
1360 {
1361 	struct swap_extent *se;
1362 	struct swap_extent *new_se;
1363 	struct list_head *lh;
1364 
1365 	if (start_page == 0) {
1366 		se = &sis->first_swap_extent;
1367 		sis->curr_swap_extent = se;
1368 		se->start_page = 0;
1369 		se->nr_pages = nr_pages;
1370 		se->start_block = start_block;
1371 		return 1;
1372 	} else {
1373 		lh = sis->first_swap_extent.list.prev;	/* Highest extent */
1374 		se = list_entry(lh, struct swap_extent, list);
1375 		BUG_ON(se->start_page + se->nr_pages != start_page);
1376 		if (se->start_block + se->nr_pages == start_block) {
1377 			/* Merge it */
1378 			se->nr_pages += nr_pages;
1379 			return 0;
1380 		}
1381 	}
1382 
1383 	/*
1384 	 * No merge.  Insert a new extent, preserving ordering.
1385 	 */
1386 	new_se = kmalloc(sizeof(*se), GFP_KERNEL);
1387 	if (new_se == NULL)
1388 		return -ENOMEM;
1389 	new_se->start_page = start_page;
1390 	new_se->nr_pages = nr_pages;
1391 	new_se->start_block = start_block;
1392 
1393 	list_add_tail(&new_se->list, &sis->first_swap_extent.list);
1394 	return 1;
1395 }
1396 
1397 /*
1398  * A `swap extent' is a simple thing which maps a contiguous range of pages
1399  * onto a contiguous range of disk blocks.  An ordered list of swap extents
1400  * is built at swapon time and is then used at swap_writepage/swap_readpage
1401  * time for locating where on disk a page belongs.
1402  *
1403  * If the swapfile is an S_ISBLK block device, a single extent is installed.
1404  * This is done so that the main operating code can treat S_ISBLK and S_ISREG
1405  * swap files identically.
1406  *
1407  * Whether the swapdev is an S_ISREG file or an S_ISBLK blockdev, the swap
1408  * extent list operates in PAGE_SIZE disk blocks.  Both S_ISREG and S_ISBLK
1409  * swapfiles are handled *identically* after swapon time.
1410  *
1411  * For S_ISREG swapfiles, setup_swap_extents() will walk all the file's blocks
1412  * and will parse them into an ordered extent list, in PAGE_SIZE chunks.  If
1413  * some stray blocks are found which do not fall within the PAGE_SIZE alignment
1414  * requirements, they are simply tossed out - we will never use those blocks
1415  * for swapping.
1416  *
1417  * For S_ISREG swapfiles we set S_SWAPFILE across the life of the swapon.  This
1418  * prevents root from shooting her foot off by ftruncating an in-use swapfile,
1419  * which will scribble on the fs.
1420  *
1421  * The amount of disk space which a single swap extent represents varies.
1422  * Typically it is in the 1-4 megabyte range.  So we can have hundreds of
1423  * extents in the list.  To avoid much list walking, we cache the previous
1424  * search location in `curr_swap_extent', and start new searches from there.
1425  * This is extremely effective.  The average number of iterations in
1426  * map_swap_page() has been measured at about 0.3 per page.  - akpm.
1427  */
1428 static int setup_swap_extents(struct swap_info_struct *sis, sector_t *span)
1429 {
1430 	struct inode *inode;
1431 	unsigned blocks_per_page;
1432 	unsigned long page_no;
1433 	unsigned blkbits;
1434 	sector_t probe_block;
1435 	sector_t last_block;
1436 	sector_t lowest_block = -1;
1437 	sector_t highest_block = 0;
1438 	int nr_extents = 0;
1439 	int ret;
1440 
1441 	inode = sis->swap_file->f_mapping->host;
1442 	if (S_ISBLK(inode->i_mode)) {
1443 		ret = add_swap_extent(sis, 0, sis->max, 0);
1444 		*span = sis->pages;
1445 		goto out;
1446 	}
1447 
1448 	blkbits = inode->i_blkbits;
1449 	blocks_per_page = PAGE_SIZE >> blkbits;
1450 
1451 	/*
1452 	 * Map all the blocks into the extent list.  This code doesn't try
1453 	 * to be very smart.
1454 	 */
1455 	probe_block = 0;
1456 	page_no = 0;
1457 	last_block = i_size_read(inode) >> blkbits;
1458 	while ((probe_block + blocks_per_page) <= last_block &&
1459 			page_no < sis->max) {
1460 		unsigned block_in_page;
1461 		sector_t first_block;
1462 
1463 		first_block = bmap(inode, probe_block);
1464 		if (first_block == 0)
1465 			goto bad_bmap;
1466 
1467 		/*
1468 		 * It must be PAGE_SIZE aligned on-disk
1469 		 */
1470 		if (first_block & (blocks_per_page - 1)) {
1471 			probe_block++;
1472 			goto reprobe;
1473 		}
1474 
1475 		for (block_in_page = 1; block_in_page < blocks_per_page;
1476 					block_in_page++) {
1477 			sector_t block;
1478 
1479 			block = bmap(inode, probe_block + block_in_page);
1480 			if (block == 0)
1481 				goto bad_bmap;
1482 			if (block != first_block + block_in_page) {
1483 				/* Discontiguity */
1484 				probe_block++;
1485 				goto reprobe;
1486 			}
1487 		}
1488 
1489 		first_block >>= (PAGE_SHIFT - blkbits);
1490 		if (page_no) {	/* exclude the header page */
1491 			if (first_block < lowest_block)
1492 				lowest_block = first_block;
1493 			if (first_block > highest_block)
1494 				highest_block = first_block;
1495 		}
1496 
1497 		/*
1498 		 * We found a PAGE_SIZE-length, PAGE_SIZE-aligned run of blocks
1499 		 */
1500 		ret = add_swap_extent(sis, page_no, 1, first_block);
1501 		if (ret < 0)
1502 			goto out;
1503 		nr_extents += ret;
1504 		page_no++;
1505 		probe_block += blocks_per_page;
1506 reprobe:
1507 		continue;
1508 	}
1509 	ret = nr_extents;
1510 	*span = 1 + highest_block - lowest_block;
1511 	if (page_no == 0)
1512 		page_no = 1;	/* force Empty message */
1513 	sis->max = page_no;
1514 	sis->pages = page_no - 1;
1515 	sis->highest_bit = page_no - 1;
1516 out:
1517 	return ret;
1518 bad_bmap:
1519 	printk(KERN_ERR "swapon: swapfile has holes\n");
1520 	ret = -EINVAL;
1521 	goto out;
1522 }
1523 
1524 SYSCALL_DEFINE1(swapoff, const char __user *, specialfile)
1525 {
1526 	struct swap_info_struct *p = NULL;
1527 	unsigned char *swap_map;
1528 	struct file *swap_file, *victim;
1529 	struct address_space *mapping;
1530 	struct inode *inode;
1531 	char *pathname;
1532 	int i, type, prev;
1533 	int err;
1534 
1535 	if (!capable(CAP_SYS_ADMIN))
1536 		return -EPERM;
1537 
1538 	pathname = getname(specialfile);
1539 	err = PTR_ERR(pathname);
1540 	if (IS_ERR(pathname))
1541 		goto out;
1542 
1543 	victim = filp_open(pathname, O_RDWR|O_LARGEFILE, 0);
1544 	putname(pathname);
1545 	err = PTR_ERR(victim);
1546 	if (IS_ERR(victim))
1547 		goto out;
1548 
1549 	mapping = victim->f_mapping;
1550 	prev = -1;
1551 	spin_lock(&swap_lock);
1552 	for (type = swap_list.head; type >= 0; type = swap_info[type]->next) {
1553 		p = swap_info[type];
1554 		if (p->flags & SWP_WRITEOK) {
1555 			if (p->swap_file->f_mapping == mapping)
1556 				break;
1557 		}
1558 		prev = type;
1559 	}
1560 	if (type < 0) {
1561 		err = -EINVAL;
1562 		spin_unlock(&swap_lock);
1563 		goto out_dput;
1564 	}
1565 	if (!security_vm_enough_memory(p->pages))
1566 		vm_unacct_memory(p->pages);
1567 	else {
1568 		err = -ENOMEM;
1569 		spin_unlock(&swap_lock);
1570 		goto out_dput;
1571 	}
1572 	if (prev < 0)
1573 		swap_list.head = p->next;
1574 	else
1575 		swap_info[prev]->next = p->next;
1576 	if (type == swap_list.next) {
1577 		/* just pick something that's safe... */
1578 		swap_list.next = swap_list.head;
1579 	}
1580 	if (p->prio < 0) {
1581 		for (i = p->next; i >= 0; i = swap_info[i]->next)
1582 			swap_info[i]->prio = p->prio--;
1583 		least_priority++;
1584 	}
1585 	nr_swap_pages -= p->pages;
1586 	total_swap_pages -= p->pages;
1587 	p->flags &= ~SWP_WRITEOK;
1588 	spin_unlock(&swap_lock);
1589 
1590 	current->flags |= PF_OOM_ORIGIN;
1591 	err = try_to_unuse(type);
1592 	current->flags &= ~PF_OOM_ORIGIN;
1593 
1594 	if (err) {
1595 		/* re-insert swap space back into swap_list */
1596 		spin_lock(&swap_lock);
1597 		if (p->prio < 0)
1598 			p->prio = --least_priority;
1599 		prev = -1;
1600 		for (i = swap_list.head; i >= 0; i = swap_info[i]->next) {
1601 			if (p->prio >= swap_info[i]->prio)
1602 				break;
1603 			prev = i;
1604 		}
1605 		p->next = i;
1606 		if (prev < 0)
1607 			swap_list.head = swap_list.next = type;
1608 		else
1609 			swap_info[prev]->next = type;
1610 		nr_swap_pages += p->pages;
1611 		total_swap_pages += p->pages;
1612 		p->flags |= SWP_WRITEOK;
1613 		spin_unlock(&swap_lock);
1614 		goto out_dput;
1615 	}
1616 
1617 	/* wait for any unplug function to finish */
1618 	down_write(&swap_unplug_sem);
1619 	up_write(&swap_unplug_sem);
1620 
1621 	destroy_swap_extents(p);
1622 	if (p->flags & SWP_CONTINUED)
1623 		free_swap_count_continuations(p);
1624 
1625 	mutex_lock(&swapon_mutex);
1626 	spin_lock(&swap_lock);
1627 	drain_mmlist();
1628 
1629 	/* wait for anyone still in scan_swap_map */
1630 	p->highest_bit = 0;		/* cuts scans short */
1631 	while (p->flags >= SWP_SCANNING) {
1632 		spin_unlock(&swap_lock);
1633 		schedule_timeout_uninterruptible(1);
1634 		spin_lock(&swap_lock);
1635 	}
1636 
1637 	swap_file = p->swap_file;
1638 	p->swap_file = NULL;
1639 	p->max = 0;
1640 	swap_map = p->swap_map;
1641 	p->swap_map = NULL;
1642 	p->flags = 0;
1643 	spin_unlock(&swap_lock);
1644 	mutex_unlock(&swapon_mutex);
1645 	vfree(swap_map);
1646 	/* Destroy swap account informatin */
1647 	swap_cgroup_swapoff(type);
1648 
1649 	inode = mapping->host;
1650 	if (S_ISBLK(inode->i_mode)) {
1651 		struct block_device *bdev = I_BDEV(inode);
1652 		set_blocksize(bdev, p->old_block_size);
1653 		bd_release(bdev);
1654 	} else {
1655 		mutex_lock(&inode->i_mutex);
1656 		inode->i_flags &= ~S_SWAPFILE;
1657 		mutex_unlock(&inode->i_mutex);
1658 	}
1659 	filp_close(swap_file, NULL);
1660 	err = 0;
1661 
1662 out_dput:
1663 	filp_close(victim, NULL);
1664 out:
1665 	return err;
1666 }
1667 
1668 #ifdef CONFIG_PROC_FS
1669 /* iterator */
1670 static void *swap_start(struct seq_file *swap, loff_t *pos)
1671 {
1672 	struct swap_info_struct *si;
1673 	int type;
1674 	loff_t l = *pos;
1675 
1676 	mutex_lock(&swapon_mutex);
1677 
1678 	if (!l)
1679 		return SEQ_START_TOKEN;
1680 
1681 	for (type = 0; type < nr_swapfiles; type++) {
1682 		smp_rmb();	/* read nr_swapfiles before swap_info[type] */
1683 		si = swap_info[type];
1684 		if (!(si->flags & SWP_USED) || !si->swap_map)
1685 			continue;
1686 		if (!--l)
1687 			return si;
1688 	}
1689 
1690 	return NULL;
1691 }
1692 
1693 static void *swap_next(struct seq_file *swap, void *v, loff_t *pos)
1694 {
1695 	struct swap_info_struct *si = v;
1696 	int type;
1697 
1698 	if (v == SEQ_START_TOKEN)
1699 		type = 0;
1700 	else
1701 		type = si->type + 1;
1702 
1703 	for (; type < nr_swapfiles; type++) {
1704 		smp_rmb();	/* read nr_swapfiles before swap_info[type] */
1705 		si = swap_info[type];
1706 		if (!(si->flags & SWP_USED) || !si->swap_map)
1707 			continue;
1708 		++*pos;
1709 		return si;
1710 	}
1711 
1712 	return NULL;
1713 }
1714 
1715 static void swap_stop(struct seq_file *swap, void *v)
1716 {
1717 	mutex_unlock(&swapon_mutex);
1718 }
1719 
1720 static int swap_show(struct seq_file *swap, void *v)
1721 {
1722 	struct swap_info_struct *si = v;
1723 	struct file *file;
1724 	int len;
1725 
1726 	if (si == SEQ_START_TOKEN) {
1727 		seq_puts(swap,"Filename\t\t\t\tType\t\tSize\tUsed\tPriority\n");
1728 		return 0;
1729 	}
1730 
1731 	file = si->swap_file;
1732 	len = seq_path(swap, &file->f_path, " \t\n\\");
1733 	seq_printf(swap, "%*s%s\t%u\t%u\t%d\n",
1734 			len < 40 ? 40 - len : 1, " ",
1735 			S_ISBLK(file->f_path.dentry->d_inode->i_mode) ?
1736 				"partition" : "file\t",
1737 			si->pages << (PAGE_SHIFT - 10),
1738 			si->inuse_pages << (PAGE_SHIFT - 10),
1739 			si->prio);
1740 	return 0;
1741 }
1742 
1743 static const struct seq_operations swaps_op = {
1744 	.start =	swap_start,
1745 	.next =		swap_next,
1746 	.stop =		swap_stop,
1747 	.show =		swap_show
1748 };
1749 
1750 static int swaps_open(struct inode *inode, struct file *file)
1751 {
1752 	return seq_open(file, &swaps_op);
1753 }
1754 
1755 static const struct file_operations proc_swaps_operations = {
1756 	.open		= swaps_open,
1757 	.read		= seq_read,
1758 	.llseek		= seq_lseek,
1759 	.release	= seq_release,
1760 };
1761 
1762 static int __init procswaps_init(void)
1763 {
1764 	proc_create("swaps", 0, NULL, &proc_swaps_operations);
1765 	return 0;
1766 }
1767 __initcall(procswaps_init);
1768 #endif /* CONFIG_PROC_FS */
1769 
1770 #ifdef MAX_SWAPFILES_CHECK
1771 static int __init max_swapfiles_check(void)
1772 {
1773 	MAX_SWAPFILES_CHECK();
1774 	return 0;
1775 }
1776 late_initcall(max_swapfiles_check);
1777 #endif
1778 
1779 /*
1780  * Written 01/25/92 by Simmule Turner, heavily changed by Linus.
1781  *
1782  * The swapon system call
1783  */
1784 SYSCALL_DEFINE2(swapon, const char __user *, specialfile, int, swap_flags)
1785 {
1786 	struct swap_info_struct *p;
1787 	char *name = NULL;
1788 	struct block_device *bdev = NULL;
1789 	struct file *swap_file = NULL;
1790 	struct address_space *mapping;
1791 	unsigned int type;
1792 	int i, prev;
1793 	int error;
1794 	union swap_header *swap_header;
1795 	unsigned int nr_good_pages;
1796 	int nr_extents = 0;
1797 	sector_t span;
1798 	unsigned long maxpages;
1799 	unsigned long swapfilepages;
1800 	unsigned char *swap_map = NULL;
1801 	struct page *page = NULL;
1802 	struct inode *inode = NULL;
1803 	int did_down = 0;
1804 
1805 	if (!capable(CAP_SYS_ADMIN))
1806 		return -EPERM;
1807 
1808 	p = kzalloc(sizeof(*p), GFP_KERNEL);
1809 	if (!p)
1810 		return -ENOMEM;
1811 
1812 	spin_lock(&swap_lock);
1813 	for (type = 0; type < nr_swapfiles; type++) {
1814 		if (!(swap_info[type]->flags & SWP_USED))
1815 			break;
1816 	}
1817 	error = -EPERM;
1818 	if (type >= MAX_SWAPFILES) {
1819 		spin_unlock(&swap_lock);
1820 		kfree(p);
1821 		goto out;
1822 	}
1823 	if (type >= nr_swapfiles) {
1824 		p->type = type;
1825 		swap_info[type] = p;
1826 		/*
1827 		 * Write swap_info[type] before nr_swapfiles, in case a
1828 		 * racing procfs swap_start() or swap_next() is reading them.
1829 		 * (We never shrink nr_swapfiles, we never free this entry.)
1830 		 */
1831 		smp_wmb();
1832 		nr_swapfiles++;
1833 	} else {
1834 		kfree(p);
1835 		p = swap_info[type];
1836 		/*
1837 		 * Do not memset this entry: a racing procfs swap_next()
1838 		 * would be relying on p->type to remain valid.
1839 		 */
1840 	}
1841 	INIT_LIST_HEAD(&p->first_swap_extent.list);
1842 	p->flags = SWP_USED;
1843 	p->next = -1;
1844 	spin_unlock(&swap_lock);
1845 
1846 	name = getname(specialfile);
1847 	error = PTR_ERR(name);
1848 	if (IS_ERR(name)) {
1849 		name = NULL;
1850 		goto bad_swap_2;
1851 	}
1852 	swap_file = filp_open(name, O_RDWR|O_LARGEFILE, 0);
1853 	error = PTR_ERR(swap_file);
1854 	if (IS_ERR(swap_file)) {
1855 		swap_file = NULL;
1856 		goto bad_swap_2;
1857 	}
1858 
1859 	p->swap_file = swap_file;
1860 	mapping = swap_file->f_mapping;
1861 	inode = mapping->host;
1862 
1863 	error = -EBUSY;
1864 	for (i = 0; i < nr_swapfiles; i++) {
1865 		struct swap_info_struct *q = swap_info[i];
1866 
1867 		if (i == type || !q->swap_file)
1868 			continue;
1869 		if (mapping == q->swap_file->f_mapping)
1870 			goto bad_swap;
1871 	}
1872 
1873 	error = -EINVAL;
1874 	if (S_ISBLK(inode->i_mode)) {
1875 		bdev = I_BDEV(inode);
1876 		error = bd_claim(bdev, sys_swapon);
1877 		if (error < 0) {
1878 			bdev = NULL;
1879 			error = -EINVAL;
1880 			goto bad_swap;
1881 		}
1882 		p->old_block_size = block_size(bdev);
1883 		error = set_blocksize(bdev, PAGE_SIZE);
1884 		if (error < 0)
1885 			goto bad_swap;
1886 		p->bdev = bdev;
1887 	} else if (S_ISREG(inode->i_mode)) {
1888 		p->bdev = inode->i_sb->s_bdev;
1889 		mutex_lock(&inode->i_mutex);
1890 		did_down = 1;
1891 		if (IS_SWAPFILE(inode)) {
1892 			error = -EBUSY;
1893 			goto bad_swap;
1894 		}
1895 	} else {
1896 		goto bad_swap;
1897 	}
1898 
1899 	swapfilepages = i_size_read(inode) >> PAGE_SHIFT;
1900 
1901 	/*
1902 	 * Read the swap header.
1903 	 */
1904 	if (!mapping->a_ops->readpage) {
1905 		error = -EINVAL;
1906 		goto bad_swap;
1907 	}
1908 	page = read_mapping_page(mapping, 0, swap_file);
1909 	if (IS_ERR(page)) {
1910 		error = PTR_ERR(page);
1911 		goto bad_swap;
1912 	}
1913 	swap_header = kmap(page);
1914 
1915 	if (memcmp("SWAPSPACE2", swap_header->magic.magic, 10)) {
1916 		printk(KERN_ERR "Unable to find swap-space signature\n");
1917 		error = -EINVAL;
1918 		goto bad_swap;
1919 	}
1920 
1921 	/* swap partition endianess hack... */
1922 	if (swab32(swap_header->info.version) == 1) {
1923 		swab32s(&swap_header->info.version);
1924 		swab32s(&swap_header->info.last_page);
1925 		swab32s(&swap_header->info.nr_badpages);
1926 		for (i = 0; i < swap_header->info.nr_badpages; i++)
1927 			swab32s(&swap_header->info.badpages[i]);
1928 	}
1929 	/* Check the swap header's sub-version */
1930 	if (swap_header->info.version != 1) {
1931 		printk(KERN_WARNING
1932 		       "Unable to handle swap header version %d\n",
1933 		       swap_header->info.version);
1934 		error = -EINVAL;
1935 		goto bad_swap;
1936 	}
1937 
1938 	p->lowest_bit  = 1;
1939 	p->cluster_next = 1;
1940 	p->cluster_nr = 0;
1941 
1942 	/*
1943 	 * Find out how many pages are allowed for a single swap
1944 	 * device. There are two limiting factors: 1) the number of
1945 	 * bits for the swap offset in the swp_entry_t type and
1946 	 * 2) the number of bits in the a swap pte as defined by
1947 	 * the different architectures. In order to find the
1948 	 * largest possible bit mask a swap entry with swap type 0
1949 	 * and swap offset ~0UL is created, encoded to a swap pte,
1950 	 * decoded to a swp_entry_t again and finally the swap
1951 	 * offset is extracted. This will mask all the bits from
1952 	 * the initial ~0UL mask that can't be encoded in either
1953 	 * the swp_entry_t or the architecture definition of a
1954 	 * swap pte.
1955 	 */
1956 	maxpages = swp_offset(pte_to_swp_entry(
1957 			swp_entry_to_pte(swp_entry(0, ~0UL)))) + 1;
1958 	if (maxpages > swap_header->info.last_page) {
1959 		maxpages = swap_header->info.last_page + 1;
1960 		/* p->max is an unsigned int: don't overflow it */
1961 		if ((unsigned int)maxpages == 0)
1962 			maxpages = UINT_MAX;
1963 	}
1964 	p->highest_bit = maxpages - 1;
1965 
1966 	error = -EINVAL;
1967 	if (!maxpages)
1968 		goto bad_swap;
1969 	if (swapfilepages && maxpages > swapfilepages) {
1970 		printk(KERN_WARNING
1971 		       "Swap area shorter than signature indicates\n");
1972 		goto bad_swap;
1973 	}
1974 	if (swap_header->info.nr_badpages && S_ISREG(inode->i_mode))
1975 		goto bad_swap;
1976 	if (swap_header->info.nr_badpages > MAX_SWAP_BADPAGES)
1977 		goto bad_swap;
1978 
1979 	/* OK, set up the swap map and apply the bad block list */
1980 	swap_map = vmalloc(maxpages);
1981 	if (!swap_map) {
1982 		error = -ENOMEM;
1983 		goto bad_swap;
1984 	}
1985 
1986 	memset(swap_map, 0, maxpages);
1987 	nr_good_pages = maxpages - 1;	/* omit header page */
1988 
1989 	for (i = 0; i < swap_header->info.nr_badpages; i++) {
1990 		unsigned int page_nr = swap_header->info.badpages[i];
1991 		if (page_nr == 0 || page_nr > swap_header->info.last_page) {
1992 			error = -EINVAL;
1993 			goto bad_swap;
1994 		}
1995 		if (page_nr < maxpages) {
1996 			swap_map[page_nr] = SWAP_MAP_BAD;
1997 			nr_good_pages--;
1998 		}
1999 	}
2000 
2001 	error = swap_cgroup_swapon(type, maxpages);
2002 	if (error)
2003 		goto bad_swap;
2004 
2005 	if (nr_good_pages) {
2006 		swap_map[0] = SWAP_MAP_BAD;
2007 		p->max = maxpages;
2008 		p->pages = nr_good_pages;
2009 		nr_extents = setup_swap_extents(p, &span);
2010 		if (nr_extents < 0) {
2011 			error = nr_extents;
2012 			goto bad_swap;
2013 		}
2014 		nr_good_pages = p->pages;
2015 	}
2016 	if (!nr_good_pages) {
2017 		printk(KERN_WARNING "Empty swap-file\n");
2018 		error = -EINVAL;
2019 		goto bad_swap;
2020 	}
2021 
2022 	if (p->bdev) {
2023 		if (blk_queue_nonrot(bdev_get_queue(p->bdev))) {
2024 			p->flags |= SWP_SOLIDSTATE;
2025 			p->cluster_next = 1 + (random32() % p->highest_bit);
2026 		}
2027 		if (discard_swap(p) == 0)
2028 			p->flags |= SWP_DISCARDABLE;
2029 	}
2030 
2031 	mutex_lock(&swapon_mutex);
2032 	spin_lock(&swap_lock);
2033 	if (swap_flags & SWAP_FLAG_PREFER)
2034 		p->prio =
2035 		  (swap_flags & SWAP_FLAG_PRIO_MASK) >> SWAP_FLAG_PRIO_SHIFT;
2036 	else
2037 		p->prio = --least_priority;
2038 	p->swap_map = swap_map;
2039 	p->flags |= SWP_WRITEOK;
2040 	nr_swap_pages += nr_good_pages;
2041 	total_swap_pages += nr_good_pages;
2042 
2043 	printk(KERN_INFO "Adding %uk swap on %s.  "
2044 			"Priority:%d extents:%d across:%lluk %s%s\n",
2045 		nr_good_pages<<(PAGE_SHIFT-10), name, p->prio,
2046 		nr_extents, (unsigned long long)span<<(PAGE_SHIFT-10),
2047 		(p->flags & SWP_SOLIDSTATE) ? "SS" : "",
2048 		(p->flags & SWP_DISCARDABLE) ? "D" : "");
2049 
2050 	/* insert swap space into swap_list: */
2051 	prev = -1;
2052 	for (i = swap_list.head; i >= 0; i = swap_info[i]->next) {
2053 		if (p->prio >= swap_info[i]->prio)
2054 			break;
2055 		prev = i;
2056 	}
2057 	p->next = i;
2058 	if (prev < 0)
2059 		swap_list.head = swap_list.next = type;
2060 	else
2061 		swap_info[prev]->next = type;
2062 	spin_unlock(&swap_lock);
2063 	mutex_unlock(&swapon_mutex);
2064 	error = 0;
2065 	goto out;
2066 bad_swap:
2067 	if (bdev) {
2068 		set_blocksize(bdev, p->old_block_size);
2069 		bd_release(bdev);
2070 	}
2071 	destroy_swap_extents(p);
2072 	swap_cgroup_swapoff(type);
2073 bad_swap_2:
2074 	spin_lock(&swap_lock);
2075 	p->swap_file = NULL;
2076 	p->flags = 0;
2077 	spin_unlock(&swap_lock);
2078 	vfree(swap_map);
2079 	if (swap_file)
2080 		filp_close(swap_file, NULL);
2081 out:
2082 	if (page && !IS_ERR(page)) {
2083 		kunmap(page);
2084 		page_cache_release(page);
2085 	}
2086 	if (name)
2087 		putname(name);
2088 	if (did_down) {
2089 		if (!error)
2090 			inode->i_flags |= S_SWAPFILE;
2091 		mutex_unlock(&inode->i_mutex);
2092 	}
2093 	return error;
2094 }
2095 
2096 void si_swapinfo(struct sysinfo *val)
2097 {
2098 	unsigned int type;
2099 	unsigned long nr_to_be_unused = 0;
2100 
2101 	spin_lock(&swap_lock);
2102 	for (type = 0; type < nr_swapfiles; type++) {
2103 		struct swap_info_struct *si = swap_info[type];
2104 
2105 		if ((si->flags & SWP_USED) && !(si->flags & SWP_WRITEOK))
2106 			nr_to_be_unused += si->inuse_pages;
2107 	}
2108 	val->freeswap = nr_swap_pages + nr_to_be_unused;
2109 	val->totalswap = total_swap_pages + nr_to_be_unused;
2110 	spin_unlock(&swap_lock);
2111 }
2112 
2113 /*
2114  * Verify that a swap entry is valid and increment its swap map count.
2115  *
2116  * Returns error code in following case.
2117  * - success -> 0
2118  * - swp_entry is invalid -> EINVAL
2119  * - swp_entry is migration entry -> EINVAL
2120  * - swap-cache reference is requested but there is already one. -> EEXIST
2121  * - swap-cache reference is requested but the entry is not used. -> ENOENT
2122  * - swap-mapped reference requested but needs continued swap count. -> ENOMEM
2123  */
2124 static int __swap_duplicate(swp_entry_t entry, unsigned char usage)
2125 {
2126 	struct swap_info_struct *p;
2127 	unsigned long offset, type;
2128 	unsigned char count;
2129 	unsigned char has_cache;
2130 	int err = -EINVAL;
2131 
2132 	if (non_swap_entry(entry))
2133 		goto out;
2134 
2135 	type = swp_type(entry);
2136 	if (type >= nr_swapfiles)
2137 		goto bad_file;
2138 	p = swap_info[type];
2139 	offset = swp_offset(entry);
2140 
2141 	spin_lock(&swap_lock);
2142 	if (unlikely(offset >= p->max))
2143 		goto unlock_out;
2144 
2145 	count = p->swap_map[offset];
2146 	has_cache = count & SWAP_HAS_CACHE;
2147 	count &= ~SWAP_HAS_CACHE;
2148 	err = 0;
2149 
2150 	if (usage == SWAP_HAS_CACHE) {
2151 
2152 		/* set SWAP_HAS_CACHE if there is no cache and entry is used */
2153 		if (!has_cache && count)
2154 			has_cache = SWAP_HAS_CACHE;
2155 		else if (has_cache)		/* someone else added cache */
2156 			err = -EEXIST;
2157 		else				/* no users remaining */
2158 			err = -ENOENT;
2159 
2160 	} else if (count || has_cache) {
2161 
2162 		if ((count & ~COUNT_CONTINUED) < SWAP_MAP_MAX)
2163 			count += usage;
2164 		else if ((count & ~COUNT_CONTINUED) > SWAP_MAP_MAX)
2165 			err = -EINVAL;
2166 		else if (swap_count_continued(p, offset, count))
2167 			count = COUNT_CONTINUED;
2168 		else
2169 			err = -ENOMEM;
2170 	} else
2171 		err = -ENOENT;			/* unused swap entry */
2172 
2173 	p->swap_map[offset] = count | has_cache;
2174 
2175 unlock_out:
2176 	spin_unlock(&swap_lock);
2177 out:
2178 	return err;
2179 
2180 bad_file:
2181 	printk(KERN_ERR "swap_dup: %s%08lx\n", Bad_file, entry.val);
2182 	goto out;
2183 }
2184 
2185 /*
2186  * Help swapoff by noting that swap entry belongs to shmem/tmpfs
2187  * (in which case its reference count is never incremented).
2188  */
2189 void swap_shmem_alloc(swp_entry_t entry)
2190 {
2191 	__swap_duplicate(entry, SWAP_MAP_SHMEM);
2192 }
2193 
2194 /*
2195  * Increase reference count of swap entry by 1.
2196  * Returns 0 for success, or -ENOMEM if a swap_count_continuation is required
2197  * but could not be atomically allocated.  Returns 0, just as if it succeeded,
2198  * if __swap_duplicate() fails for another reason (-EINVAL or -ENOENT), which
2199  * might occur if a page table entry has got corrupted.
2200  */
2201 int swap_duplicate(swp_entry_t entry)
2202 {
2203 	int err = 0;
2204 
2205 	while (!err && __swap_duplicate(entry, 1) == -ENOMEM)
2206 		err = add_swap_count_continuation(entry, GFP_ATOMIC);
2207 	return err;
2208 }
2209 
2210 /*
2211  * @entry: swap entry for which we allocate swap cache.
2212  *
2213  * Called when allocating swap cache for existing swap entry,
2214  * This can return error codes. Returns 0 at success.
2215  * -EBUSY means there is a swap cache.
2216  * Note: return code is different from swap_duplicate().
2217  */
2218 int swapcache_prepare(swp_entry_t entry)
2219 {
2220 	return __swap_duplicate(entry, SWAP_HAS_CACHE);
2221 }
2222 
2223 /*
2224  * swap_lock prevents swap_map being freed. Don't grab an extra
2225  * reference on the swaphandle, it doesn't matter if it becomes unused.
2226  */
2227 int valid_swaphandles(swp_entry_t entry, unsigned long *offset)
2228 {
2229 	struct swap_info_struct *si;
2230 	int our_page_cluster = page_cluster;
2231 	pgoff_t target, toff;
2232 	pgoff_t base, end;
2233 	int nr_pages = 0;
2234 
2235 	if (!our_page_cluster)	/* no readahead */
2236 		return 0;
2237 
2238 	si = swap_info[swp_type(entry)];
2239 	target = swp_offset(entry);
2240 	base = (target >> our_page_cluster) << our_page_cluster;
2241 	end = base + (1 << our_page_cluster);
2242 	if (!base)		/* first page is swap header */
2243 		base++;
2244 
2245 	spin_lock(&swap_lock);
2246 	if (end > si->max)	/* don't go beyond end of map */
2247 		end = si->max;
2248 
2249 	/* Count contiguous allocated slots above our target */
2250 	for (toff = target; ++toff < end; nr_pages++) {
2251 		/* Don't read in free or bad pages */
2252 		if (!si->swap_map[toff])
2253 			break;
2254 		if (swap_count(si->swap_map[toff]) == SWAP_MAP_BAD)
2255 			break;
2256 	}
2257 	/* Count contiguous allocated slots below our target */
2258 	for (toff = target; --toff >= base; nr_pages++) {
2259 		/* Don't read in free or bad pages */
2260 		if (!si->swap_map[toff])
2261 			break;
2262 		if (swap_count(si->swap_map[toff]) == SWAP_MAP_BAD)
2263 			break;
2264 	}
2265 	spin_unlock(&swap_lock);
2266 
2267 	/*
2268 	 * Indicate starting offset, and return number of pages to get:
2269 	 * if only 1, say 0, since there's then no readahead to be done.
2270 	 */
2271 	*offset = ++toff;
2272 	return nr_pages? ++nr_pages: 0;
2273 }
2274 
2275 /*
2276  * add_swap_count_continuation - called when a swap count is duplicated
2277  * beyond SWAP_MAP_MAX, it allocates a new page and links that to the entry's
2278  * page of the original vmalloc'ed swap_map, to hold the continuation count
2279  * (for that entry and for its neighbouring PAGE_SIZE swap entries).  Called
2280  * again when count is duplicated beyond SWAP_MAP_MAX * SWAP_CONT_MAX, etc.
2281  *
2282  * These continuation pages are seldom referenced: the common paths all work
2283  * on the original swap_map, only referring to a continuation page when the
2284  * low "digit" of a count is incremented or decremented through SWAP_MAP_MAX.
2285  *
2286  * add_swap_count_continuation(, GFP_ATOMIC) can be called while holding
2287  * page table locks; if it fails, add_swap_count_continuation(, GFP_KERNEL)
2288  * can be called after dropping locks.
2289  */
2290 int add_swap_count_continuation(swp_entry_t entry, gfp_t gfp_mask)
2291 {
2292 	struct swap_info_struct *si;
2293 	struct page *head;
2294 	struct page *page;
2295 	struct page *list_page;
2296 	pgoff_t offset;
2297 	unsigned char count;
2298 
2299 	/*
2300 	 * When debugging, it's easier to use __GFP_ZERO here; but it's better
2301 	 * for latency not to zero a page while GFP_ATOMIC and holding locks.
2302 	 */
2303 	page = alloc_page(gfp_mask | __GFP_HIGHMEM);
2304 
2305 	si = swap_info_get(entry);
2306 	if (!si) {
2307 		/*
2308 		 * An acceptable race has occurred since the failing
2309 		 * __swap_duplicate(): the swap entry has been freed,
2310 		 * perhaps even the whole swap_map cleared for swapoff.
2311 		 */
2312 		goto outer;
2313 	}
2314 
2315 	offset = swp_offset(entry);
2316 	count = si->swap_map[offset] & ~SWAP_HAS_CACHE;
2317 
2318 	if ((count & ~COUNT_CONTINUED) != SWAP_MAP_MAX) {
2319 		/*
2320 		 * The higher the swap count, the more likely it is that tasks
2321 		 * will race to add swap count continuation: we need to avoid
2322 		 * over-provisioning.
2323 		 */
2324 		goto out;
2325 	}
2326 
2327 	if (!page) {
2328 		spin_unlock(&swap_lock);
2329 		return -ENOMEM;
2330 	}
2331 
2332 	/*
2333 	 * We are fortunate that although vmalloc_to_page uses pte_offset_map,
2334 	 * no architecture is using highmem pages for kernel pagetables: so it
2335 	 * will not corrupt the GFP_ATOMIC caller's atomic pagetable kmaps.
2336 	 */
2337 	head = vmalloc_to_page(si->swap_map + offset);
2338 	offset &= ~PAGE_MASK;
2339 
2340 	/*
2341 	 * Page allocation does not initialize the page's lru field,
2342 	 * but it does always reset its private field.
2343 	 */
2344 	if (!page_private(head)) {
2345 		BUG_ON(count & COUNT_CONTINUED);
2346 		INIT_LIST_HEAD(&head->lru);
2347 		set_page_private(head, SWP_CONTINUED);
2348 		si->flags |= SWP_CONTINUED;
2349 	}
2350 
2351 	list_for_each_entry(list_page, &head->lru, lru) {
2352 		unsigned char *map;
2353 
2354 		/*
2355 		 * If the previous map said no continuation, but we've found
2356 		 * a continuation page, free our allocation and use this one.
2357 		 */
2358 		if (!(count & COUNT_CONTINUED))
2359 			goto out;
2360 
2361 		map = kmap_atomic(list_page, KM_USER0) + offset;
2362 		count = *map;
2363 		kunmap_atomic(map, KM_USER0);
2364 
2365 		/*
2366 		 * If this continuation count now has some space in it,
2367 		 * free our allocation and use this one.
2368 		 */
2369 		if ((count & ~COUNT_CONTINUED) != SWAP_CONT_MAX)
2370 			goto out;
2371 	}
2372 
2373 	list_add_tail(&page->lru, &head->lru);
2374 	page = NULL;			/* now it's attached, don't free it */
2375 out:
2376 	spin_unlock(&swap_lock);
2377 outer:
2378 	if (page)
2379 		__free_page(page);
2380 	return 0;
2381 }
2382 
2383 /*
2384  * swap_count_continued - when the original swap_map count is incremented
2385  * from SWAP_MAP_MAX, check if there is already a continuation page to carry
2386  * into, carry if so, or else fail until a new continuation page is allocated;
2387  * when the original swap_map count is decremented from 0 with continuation,
2388  * borrow from the continuation and report whether it still holds more.
2389  * Called while __swap_duplicate() or swap_entry_free() holds swap_lock.
2390  */
2391 static bool swap_count_continued(struct swap_info_struct *si,
2392 				 pgoff_t offset, unsigned char count)
2393 {
2394 	struct page *head;
2395 	struct page *page;
2396 	unsigned char *map;
2397 
2398 	head = vmalloc_to_page(si->swap_map + offset);
2399 	if (page_private(head) != SWP_CONTINUED) {
2400 		BUG_ON(count & COUNT_CONTINUED);
2401 		return false;		/* need to add count continuation */
2402 	}
2403 
2404 	offset &= ~PAGE_MASK;
2405 	page = list_entry(head->lru.next, struct page, lru);
2406 	map = kmap_atomic(page, KM_USER0) + offset;
2407 
2408 	if (count == SWAP_MAP_MAX)	/* initial increment from swap_map */
2409 		goto init_map;		/* jump over SWAP_CONT_MAX checks */
2410 
2411 	if (count == (SWAP_MAP_MAX | COUNT_CONTINUED)) { /* incrementing */
2412 		/*
2413 		 * Think of how you add 1 to 999
2414 		 */
2415 		while (*map == (SWAP_CONT_MAX | COUNT_CONTINUED)) {
2416 			kunmap_atomic(map, KM_USER0);
2417 			page = list_entry(page->lru.next, struct page, lru);
2418 			BUG_ON(page == head);
2419 			map = kmap_atomic(page, KM_USER0) + offset;
2420 		}
2421 		if (*map == SWAP_CONT_MAX) {
2422 			kunmap_atomic(map, KM_USER0);
2423 			page = list_entry(page->lru.next, struct page, lru);
2424 			if (page == head)
2425 				return false;	/* add count continuation */
2426 			map = kmap_atomic(page, KM_USER0) + offset;
2427 init_map:		*map = 0;		/* we didn't zero the page */
2428 		}
2429 		*map += 1;
2430 		kunmap_atomic(map, KM_USER0);
2431 		page = list_entry(page->lru.prev, struct page, lru);
2432 		while (page != head) {
2433 			map = kmap_atomic(page, KM_USER0) + offset;
2434 			*map = COUNT_CONTINUED;
2435 			kunmap_atomic(map, KM_USER0);
2436 			page = list_entry(page->lru.prev, struct page, lru);
2437 		}
2438 		return true;			/* incremented */
2439 
2440 	} else {				/* decrementing */
2441 		/*
2442 		 * Think of how you subtract 1 from 1000
2443 		 */
2444 		BUG_ON(count != COUNT_CONTINUED);
2445 		while (*map == COUNT_CONTINUED) {
2446 			kunmap_atomic(map, KM_USER0);
2447 			page = list_entry(page->lru.next, struct page, lru);
2448 			BUG_ON(page == head);
2449 			map = kmap_atomic(page, KM_USER0) + offset;
2450 		}
2451 		BUG_ON(*map == 0);
2452 		*map -= 1;
2453 		if (*map == 0)
2454 			count = 0;
2455 		kunmap_atomic(map, KM_USER0);
2456 		page = list_entry(page->lru.prev, struct page, lru);
2457 		while (page != head) {
2458 			map = kmap_atomic(page, KM_USER0) + offset;
2459 			*map = SWAP_CONT_MAX | count;
2460 			count = COUNT_CONTINUED;
2461 			kunmap_atomic(map, KM_USER0);
2462 			page = list_entry(page->lru.prev, struct page, lru);
2463 		}
2464 		return count == COUNT_CONTINUED;
2465 	}
2466 }
2467 
2468 /*
2469  * free_swap_count_continuations - swapoff free all the continuation pages
2470  * appended to the swap_map, after swap_map is quiesced, before vfree'ing it.
2471  */
2472 static void free_swap_count_continuations(struct swap_info_struct *si)
2473 {
2474 	pgoff_t offset;
2475 
2476 	for (offset = 0; offset < si->max; offset += PAGE_SIZE) {
2477 		struct page *head;
2478 		head = vmalloc_to_page(si->swap_map + offset);
2479 		if (page_private(head)) {
2480 			struct list_head *this, *next;
2481 			list_for_each_safe(this, next, &head->lru) {
2482 				struct page *page;
2483 				page = list_entry(this, struct page, lru);
2484 				list_del(this);
2485 				__free_page(page);
2486 			}
2487 		}
2488 	}
2489 }
2490