1 /* 2 * linux/mm/swapfile.c 3 * 4 * Copyright (C) 1991, 1992, 1993, 1994 Linus Torvalds 5 * Swap reorganised 29.12.95, Stephen Tweedie 6 */ 7 8 #include <linux/mm.h> 9 #include <linux/hugetlb.h> 10 #include <linux/mman.h> 11 #include <linux/slab.h> 12 #include <linux/kernel_stat.h> 13 #include <linux/swap.h> 14 #include <linux/vmalloc.h> 15 #include <linux/pagemap.h> 16 #include <linux/namei.h> 17 #include <linux/shm.h> 18 #include <linux/blkdev.h> 19 #include <linux/writeback.h> 20 #include <linux/proc_fs.h> 21 #include <linux/seq_file.h> 22 #include <linux/init.h> 23 #include <linux/module.h> 24 #include <linux/rmap.h> 25 #include <linux/security.h> 26 #include <linux/backing-dev.h> 27 #include <linux/mutex.h> 28 #include <linux/capability.h> 29 #include <linux/syscalls.h> 30 #include <linux/memcontrol.h> 31 32 #include <asm/pgtable.h> 33 #include <asm/tlbflush.h> 34 #include <linux/swapops.h> 35 36 DEFINE_SPINLOCK(swap_lock); 37 unsigned int nr_swapfiles; 38 long total_swap_pages; 39 static int swap_overflow; 40 41 static const char Bad_file[] = "Bad swap file entry "; 42 static const char Unused_file[] = "Unused swap file entry "; 43 static const char Bad_offset[] = "Bad swap offset entry "; 44 static const char Unused_offset[] = "Unused swap offset entry "; 45 46 struct swap_list_t swap_list = {-1, -1}; 47 48 static struct swap_info_struct swap_info[MAX_SWAPFILES]; 49 50 static DEFINE_MUTEX(swapon_mutex); 51 52 /* 53 * We need this because the bdev->unplug_fn can sleep and we cannot 54 * hold swap_lock while calling the unplug_fn. And swap_lock 55 * cannot be turned into a mutex. 56 */ 57 static DECLARE_RWSEM(swap_unplug_sem); 58 59 void swap_unplug_io_fn(struct backing_dev_info *unused_bdi, struct page *page) 60 { 61 swp_entry_t entry; 62 63 down_read(&swap_unplug_sem); 64 entry.val = page_private(page); 65 if (PageSwapCache(page)) { 66 struct block_device *bdev = swap_info[swp_type(entry)].bdev; 67 struct backing_dev_info *bdi; 68 69 /* 70 * If the page is removed from swapcache from under us (with a 71 * racy try_to_unuse/swapoff) we need an additional reference 72 * count to avoid reading garbage from page_private(page) above. 73 * If the WARN_ON triggers during a swapoff it maybe the race 74 * condition and it's harmless. However if it triggers without 75 * swapoff it signals a problem. 76 */ 77 WARN_ON(page_count(page) <= 1); 78 79 bdi = bdev->bd_inode->i_mapping->backing_dev_info; 80 blk_run_backing_dev(bdi, page); 81 } 82 up_read(&swap_unplug_sem); 83 } 84 85 #define SWAPFILE_CLUSTER 256 86 #define LATENCY_LIMIT 256 87 88 static inline unsigned long scan_swap_map(struct swap_info_struct *si) 89 { 90 unsigned long offset, last_in_cluster; 91 int latency_ration = LATENCY_LIMIT; 92 93 /* 94 * We try to cluster swap pages by allocating them sequentially 95 * in swap. Once we've allocated SWAPFILE_CLUSTER pages this 96 * way, however, we resort to first-free allocation, starting 97 * a new cluster. This prevents us from scattering swap pages 98 * all over the entire swap partition, so that we reduce 99 * overall disk seek times between swap pages. -- sct 100 * But we do now try to find an empty cluster. -Andrea 101 */ 102 103 si->flags += SWP_SCANNING; 104 if (unlikely(!si->cluster_nr)) { 105 si->cluster_nr = SWAPFILE_CLUSTER - 1; 106 if (si->pages - si->inuse_pages < SWAPFILE_CLUSTER) 107 goto lowest; 108 spin_unlock(&swap_lock); 109 110 offset = si->lowest_bit; 111 last_in_cluster = offset + SWAPFILE_CLUSTER - 1; 112 113 /* Locate the first empty (unaligned) cluster */ 114 for (; last_in_cluster <= si->highest_bit; offset++) { 115 if (si->swap_map[offset]) 116 last_in_cluster = offset + SWAPFILE_CLUSTER; 117 else if (offset == last_in_cluster) { 118 spin_lock(&swap_lock); 119 si->cluster_next = offset-SWAPFILE_CLUSTER+1; 120 goto cluster; 121 } 122 if (unlikely(--latency_ration < 0)) { 123 cond_resched(); 124 latency_ration = LATENCY_LIMIT; 125 } 126 } 127 spin_lock(&swap_lock); 128 goto lowest; 129 } 130 131 si->cluster_nr--; 132 cluster: 133 offset = si->cluster_next; 134 if (offset > si->highest_bit) 135 lowest: offset = si->lowest_bit; 136 checks: if (!(si->flags & SWP_WRITEOK)) 137 goto no_page; 138 if (!si->highest_bit) 139 goto no_page; 140 if (!si->swap_map[offset]) { 141 if (offset == si->lowest_bit) 142 si->lowest_bit++; 143 if (offset == si->highest_bit) 144 si->highest_bit--; 145 si->inuse_pages++; 146 if (si->inuse_pages == si->pages) { 147 si->lowest_bit = si->max; 148 si->highest_bit = 0; 149 } 150 si->swap_map[offset] = 1; 151 si->cluster_next = offset + 1; 152 si->flags -= SWP_SCANNING; 153 return offset; 154 } 155 156 spin_unlock(&swap_lock); 157 while (++offset <= si->highest_bit) { 158 if (!si->swap_map[offset]) { 159 spin_lock(&swap_lock); 160 goto checks; 161 } 162 if (unlikely(--latency_ration < 0)) { 163 cond_resched(); 164 latency_ration = LATENCY_LIMIT; 165 } 166 } 167 spin_lock(&swap_lock); 168 goto lowest; 169 170 no_page: 171 si->flags -= SWP_SCANNING; 172 return 0; 173 } 174 175 swp_entry_t get_swap_page(void) 176 { 177 struct swap_info_struct *si; 178 pgoff_t offset; 179 int type, next; 180 int wrapped = 0; 181 182 spin_lock(&swap_lock); 183 if (nr_swap_pages <= 0) 184 goto noswap; 185 nr_swap_pages--; 186 187 for (type = swap_list.next; type >= 0 && wrapped < 2; type = next) { 188 si = swap_info + type; 189 next = si->next; 190 if (next < 0 || 191 (!wrapped && si->prio != swap_info[next].prio)) { 192 next = swap_list.head; 193 wrapped++; 194 } 195 196 if (!si->highest_bit) 197 continue; 198 if (!(si->flags & SWP_WRITEOK)) 199 continue; 200 201 swap_list.next = next; 202 offset = scan_swap_map(si); 203 if (offset) { 204 spin_unlock(&swap_lock); 205 return swp_entry(type, offset); 206 } 207 next = swap_list.next; 208 } 209 210 nr_swap_pages++; 211 noswap: 212 spin_unlock(&swap_lock); 213 return (swp_entry_t) {0}; 214 } 215 216 swp_entry_t get_swap_page_of_type(int type) 217 { 218 struct swap_info_struct *si; 219 pgoff_t offset; 220 221 spin_lock(&swap_lock); 222 si = swap_info + type; 223 if (si->flags & SWP_WRITEOK) { 224 nr_swap_pages--; 225 offset = scan_swap_map(si); 226 if (offset) { 227 spin_unlock(&swap_lock); 228 return swp_entry(type, offset); 229 } 230 nr_swap_pages++; 231 } 232 spin_unlock(&swap_lock); 233 return (swp_entry_t) {0}; 234 } 235 236 static struct swap_info_struct * swap_info_get(swp_entry_t entry) 237 { 238 struct swap_info_struct * p; 239 unsigned long offset, type; 240 241 if (!entry.val) 242 goto out; 243 type = swp_type(entry); 244 if (type >= nr_swapfiles) 245 goto bad_nofile; 246 p = & swap_info[type]; 247 if (!(p->flags & SWP_USED)) 248 goto bad_device; 249 offset = swp_offset(entry); 250 if (offset >= p->max) 251 goto bad_offset; 252 if (!p->swap_map[offset]) 253 goto bad_free; 254 spin_lock(&swap_lock); 255 return p; 256 257 bad_free: 258 printk(KERN_ERR "swap_free: %s%08lx\n", Unused_offset, entry.val); 259 goto out; 260 bad_offset: 261 printk(KERN_ERR "swap_free: %s%08lx\n", Bad_offset, entry.val); 262 goto out; 263 bad_device: 264 printk(KERN_ERR "swap_free: %s%08lx\n", Unused_file, entry.val); 265 goto out; 266 bad_nofile: 267 printk(KERN_ERR "swap_free: %s%08lx\n", Bad_file, entry.val); 268 out: 269 return NULL; 270 } 271 272 static int swap_entry_free(struct swap_info_struct *p, unsigned long offset) 273 { 274 int count = p->swap_map[offset]; 275 276 if (count < SWAP_MAP_MAX) { 277 count--; 278 p->swap_map[offset] = count; 279 if (!count) { 280 if (offset < p->lowest_bit) 281 p->lowest_bit = offset; 282 if (offset > p->highest_bit) 283 p->highest_bit = offset; 284 if (p->prio > swap_info[swap_list.next].prio) 285 swap_list.next = p - swap_info; 286 nr_swap_pages++; 287 p->inuse_pages--; 288 } 289 } 290 return count; 291 } 292 293 /* 294 * Caller has made sure that the swapdevice corresponding to entry 295 * is still around or has not been recycled. 296 */ 297 void swap_free(swp_entry_t entry) 298 { 299 struct swap_info_struct * p; 300 301 p = swap_info_get(entry); 302 if (p) { 303 swap_entry_free(p, swp_offset(entry)); 304 spin_unlock(&swap_lock); 305 } 306 } 307 308 /* 309 * How many references to page are currently swapped out? 310 */ 311 static inline int page_swapcount(struct page *page) 312 { 313 int count = 0; 314 struct swap_info_struct *p; 315 swp_entry_t entry; 316 317 entry.val = page_private(page); 318 p = swap_info_get(entry); 319 if (p) { 320 /* Subtract the 1 for the swap cache itself */ 321 count = p->swap_map[swp_offset(entry)] - 1; 322 spin_unlock(&swap_lock); 323 } 324 return count; 325 } 326 327 /* 328 * We can use this swap cache entry directly 329 * if there are no other references to it. 330 */ 331 int can_share_swap_page(struct page *page) 332 { 333 int count; 334 335 BUG_ON(!PageLocked(page)); 336 count = page_mapcount(page); 337 if (count <= 1 && PageSwapCache(page)) 338 count += page_swapcount(page); 339 return count == 1; 340 } 341 342 /* 343 * Work out if there are any other processes sharing this 344 * swap cache page. Free it if you can. Return success. 345 */ 346 int remove_exclusive_swap_page(struct page *page) 347 { 348 int retval; 349 struct swap_info_struct * p; 350 swp_entry_t entry; 351 352 BUG_ON(PagePrivate(page)); 353 BUG_ON(!PageLocked(page)); 354 355 if (!PageSwapCache(page)) 356 return 0; 357 if (PageWriteback(page)) 358 return 0; 359 if (page_count(page) != 2) /* 2: us + cache */ 360 return 0; 361 362 entry.val = page_private(page); 363 p = swap_info_get(entry); 364 if (!p) 365 return 0; 366 367 /* Is the only swap cache user the cache itself? */ 368 retval = 0; 369 if (p->swap_map[swp_offset(entry)] == 1) { 370 /* Recheck the page count with the swapcache lock held.. */ 371 write_lock_irq(&swapper_space.tree_lock); 372 if ((page_count(page) == 2) && !PageWriteback(page)) { 373 __delete_from_swap_cache(page); 374 SetPageDirty(page); 375 retval = 1; 376 } 377 write_unlock_irq(&swapper_space.tree_lock); 378 } 379 spin_unlock(&swap_lock); 380 381 if (retval) { 382 swap_free(entry); 383 page_cache_release(page); 384 } 385 386 return retval; 387 } 388 389 /* 390 * Free the swap entry like above, but also try to 391 * free the page cache entry if it is the last user. 392 */ 393 void free_swap_and_cache(swp_entry_t entry) 394 { 395 struct swap_info_struct * p; 396 struct page *page = NULL; 397 398 if (is_migration_entry(entry)) 399 return; 400 401 p = swap_info_get(entry); 402 if (p) { 403 if (swap_entry_free(p, swp_offset(entry)) == 1) { 404 page = find_get_page(&swapper_space, entry.val); 405 if (page && unlikely(TestSetPageLocked(page))) { 406 page_cache_release(page); 407 page = NULL; 408 } 409 } 410 spin_unlock(&swap_lock); 411 } 412 if (page) { 413 int one_user; 414 415 BUG_ON(PagePrivate(page)); 416 one_user = (page_count(page) == 2); 417 /* Only cache user (+us), or swap space full? Free it! */ 418 /* Also recheck PageSwapCache after page is locked (above) */ 419 if (PageSwapCache(page) && !PageWriteback(page) && 420 (one_user || vm_swap_full())) { 421 delete_from_swap_cache(page); 422 SetPageDirty(page); 423 } 424 unlock_page(page); 425 page_cache_release(page); 426 } 427 } 428 429 #ifdef CONFIG_HIBERNATION 430 /* 431 * Find the swap type that corresponds to given device (if any). 432 * 433 * @offset - number of the PAGE_SIZE-sized block of the device, starting 434 * from 0, in which the swap header is expected to be located. 435 * 436 * This is needed for the suspend to disk (aka swsusp). 437 */ 438 int swap_type_of(dev_t device, sector_t offset, struct block_device **bdev_p) 439 { 440 struct block_device *bdev = NULL; 441 int i; 442 443 if (device) 444 bdev = bdget(device); 445 446 spin_lock(&swap_lock); 447 for (i = 0; i < nr_swapfiles; i++) { 448 struct swap_info_struct *sis = swap_info + i; 449 450 if (!(sis->flags & SWP_WRITEOK)) 451 continue; 452 453 if (!bdev) { 454 if (bdev_p) 455 *bdev_p = sis->bdev; 456 457 spin_unlock(&swap_lock); 458 return i; 459 } 460 if (bdev == sis->bdev) { 461 struct swap_extent *se; 462 463 se = list_entry(sis->extent_list.next, 464 struct swap_extent, list); 465 if (se->start_block == offset) { 466 if (bdev_p) 467 *bdev_p = sis->bdev; 468 469 spin_unlock(&swap_lock); 470 bdput(bdev); 471 return i; 472 } 473 } 474 } 475 spin_unlock(&swap_lock); 476 if (bdev) 477 bdput(bdev); 478 479 return -ENODEV; 480 } 481 482 /* 483 * Return either the total number of swap pages of given type, or the number 484 * of free pages of that type (depending on @free) 485 * 486 * This is needed for software suspend 487 */ 488 unsigned int count_swap_pages(int type, int free) 489 { 490 unsigned int n = 0; 491 492 if (type < nr_swapfiles) { 493 spin_lock(&swap_lock); 494 if (swap_info[type].flags & SWP_WRITEOK) { 495 n = swap_info[type].pages; 496 if (free) 497 n -= swap_info[type].inuse_pages; 498 } 499 spin_unlock(&swap_lock); 500 } 501 return n; 502 } 503 #endif 504 505 /* 506 * No need to decide whether this PTE shares the swap entry with others, 507 * just let do_wp_page work it out if a write is requested later - to 508 * force COW, vm_page_prot omits write permission from any private vma. 509 */ 510 static int unuse_pte(struct vm_area_struct *vma, pmd_t *pmd, 511 unsigned long addr, swp_entry_t entry, struct page *page) 512 { 513 spinlock_t *ptl; 514 pte_t *pte; 515 int ret = 1; 516 517 if (mem_cgroup_charge(page, vma->vm_mm, GFP_KERNEL)) 518 ret = -ENOMEM; 519 520 pte = pte_offset_map_lock(vma->vm_mm, pmd, addr, &ptl); 521 if (unlikely(!pte_same(*pte, swp_entry_to_pte(entry)))) { 522 if (ret > 0) 523 mem_cgroup_uncharge_page(page); 524 ret = 0; 525 goto out; 526 } 527 528 inc_mm_counter(vma->vm_mm, anon_rss); 529 get_page(page); 530 set_pte_at(vma->vm_mm, addr, pte, 531 pte_mkold(mk_pte(page, vma->vm_page_prot))); 532 page_add_anon_rmap(page, vma, addr); 533 swap_free(entry); 534 /* 535 * Move the page to the active list so it is not 536 * immediately swapped out again after swapon. 537 */ 538 activate_page(page); 539 out: 540 pte_unmap_unlock(pte, ptl); 541 return ret; 542 } 543 544 static int unuse_pte_range(struct vm_area_struct *vma, pmd_t *pmd, 545 unsigned long addr, unsigned long end, 546 swp_entry_t entry, struct page *page) 547 { 548 pte_t swp_pte = swp_entry_to_pte(entry); 549 pte_t *pte; 550 int ret = 0; 551 552 /* 553 * We don't actually need pte lock while scanning for swp_pte: since 554 * we hold page lock and mmap_sem, swp_pte cannot be inserted into the 555 * page table while we're scanning; though it could get zapped, and on 556 * some architectures (e.g. x86_32 with PAE) we might catch a glimpse 557 * of unmatched parts which look like swp_pte, so unuse_pte must 558 * recheck under pte lock. Scanning without pte lock lets it be 559 * preemptible whenever CONFIG_PREEMPT but not CONFIG_HIGHPTE. 560 */ 561 pte = pte_offset_map(pmd, addr); 562 do { 563 /* 564 * swapoff spends a _lot_ of time in this loop! 565 * Test inline before going to call unuse_pte. 566 */ 567 if (unlikely(pte_same(*pte, swp_pte))) { 568 pte_unmap(pte); 569 ret = unuse_pte(vma, pmd, addr, entry, page); 570 if (ret) 571 goto out; 572 pte = pte_offset_map(pmd, addr); 573 } 574 } while (pte++, addr += PAGE_SIZE, addr != end); 575 pte_unmap(pte - 1); 576 out: 577 return ret; 578 } 579 580 static inline int unuse_pmd_range(struct vm_area_struct *vma, pud_t *pud, 581 unsigned long addr, unsigned long end, 582 swp_entry_t entry, struct page *page) 583 { 584 pmd_t *pmd; 585 unsigned long next; 586 int ret; 587 588 pmd = pmd_offset(pud, addr); 589 do { 590 next = pmd_addr_end(addr, end); 591 if (pmd_none_or_clear_bad(pmd)) 592 continue; 593 ret = unuse_pte_range(vma, pmd, addr, next, entry, page); 594 if (ret) 595 return ret; 596 } while (pmd++, addr = next, addr != end); 597 return 0; 598 } 599 600 static inline int unuse_pud_range(struct vm_area_struct *vma, pgd_t *pgd, 601 unsigned long addr, unsigned long end, 602 swp_entry_t entry, struct page *page) 603 { 604 pud_t *pud; 605 unsigned long next; 606 int ret; 607 608 pud = pud_offset(pgd, addr); 609 do { 610 next = pud_addr_end(addr, end); 611 if (pud_none_or_clear_bad(pud)) 612 continue; 613 ret = unuse_pmd_range(vma, pud, addr, next, entry, page); 614 if (ret) 615 return ret; 616 } while (pud++, addr = next, addr != end); 617 return 0; 618 } 619 620 static int unuse_vma(struct vm_area_struct *vma, 621 swp_entry_t entry, struct page *page) 622 { 623 pgd_t *pgd; 624 unsigned long addr, end, next; 625 int ret; 626 627 if (page->mapping) { 628 addr = page_address_in_vma(page, vma); 629 if (addr == -EFAULT) 630 return 0; 631 else 632 end = addr + PAGE_SIZE; 633 } else { 634 addr = vma->vm_start; 635 end = vma->vm_end; 636 } 637 638 pgd = pgd_offset(vma->vm_mm, addr); 639 do { 640 next = pgd_addr_end(addr, end); 641 if (pgd_none_or_clear_bad(pgd)) 642 continue; 643 ret = unuse_pud_range(vma, pgd, addr, next, entry, page); 644 if (ret) 645 return ret; 646 } while (pgd++, addr = next, addr != end); 647 return 0; 648 } 649 650 static int unuse_mm(struct mm_struct *mm, 651 swp_entry_t entry, struct page *page) 652 { 653 struct vm_area_struct *vma; 654 int ret = 0; 655 656 if (!down_read_trylock(&mm->mmap_sem)) { 657 /* 658 * Activate page so shrink_cache is unlikely to unmap its 659 * ptes while lock is dropped, so swapoff can make progress. 660 */ 661 activate_page(page); 662 unlock_page(page); 663 down_read(&mm->mmap_sem); 664 lock_page(page); 665 } 666 for (vma = mm->mmap; vma; vma = vma->vm_next) { 667 if (vma->anon_vma && (ret = unuse_vma(vma, entry, page))) 668 break; 669 } 670 up_read(&mm->mmap_sem); 671 return (ret < 0)? ret: 0; 672 } 673 674 /* 675 * Scan swap_map from current position to next entry still in use. 676 * Recycle to start on reaching the end, returning 0 when empty. 677 */ 678 static unsigned int find_next_to_unuse(struct swap_info_struct *si, 679 unsigned int prev) 680 { 681 unsigned int max = si->max; 682 unsigned int i = prev; 683 int count; 684 685 /* 686 * No need for swap_lock here: we're just looking 687 * for whether an entry is in use, not modifying it; false 688 * hits are okay, and sys_swapoff() has already prevented new 689 * allocations from this area (while holding swap_lock). 690 */ 691 for (;;) { 692 if (++i >= max) { 693 if (!prev) { 694 i = 0; 695 break; 696 } 697 /* 698 * No entries in use at top of swap_map, 699 * loop back to start and recheck there. 700 */ 701 max = prev + 1; 702 prev = 0; 703 i = 1; 704 } 705 count = si->swap_map[i]; 706 if (count && count != SWAP_MAP_BAD) 707 break; 708 } 709 return i; 710 } 711 712 /* 713 * We completely avoid races by reading each swap page in advance, 714 * and then search for the process using it. All the necessary 715 * page table adjustments can then be made atomically. 716 */ 717 static int try_to_unuse(unsigned int type) 718 { 719 struct swap_info_struct * si = &swap_info[type]; 720 struct mm_struct *start_mm; 721 unsigned short *swap_map; 722 unsigned short swcount; 723 struct page *page; 724 swp_entry_t entry; 725 unsigned int i = 0; 726 int retval = 0; 727 int reset_overflow = 0; 728 int shmem; 729 730 /* 731 * When searching mms for an entry, a good strategy is to 732 * start at the first mm we freed the previous entry from 733 * (though actually we don't notice whether we or coincidence 734 * freed the entry). Initialize this start_mm with a hold. 735 * 736 * A simpler strategy would be to start at the last mm we 737 * freed the previous entry from; but that would take less 738 * advantage of mmlist ordering, which clusters forked mms 739 * together, child after parent. If we race with dup_mmap(), we 740 * prefer to resolve parent before child, lest we miss entries 741 * duplicated after we scanned child: using last mm would invert 742 * that. Though it's only a serious concern when an overflowed 743 * swap count is reset from SWAP_MAP_MAX, preventing a rescan. 744 */ 745 start_mm = &init_mm; 746 atomic_inc(&init_mm.mm_users); 747 748 /* 749 * Keep on scanning until all entries have gone. Usually, 750 * one pass through swap_map is enough, but not necessarily: 751 * there are races when an instance of an entry might be missed. 752 */ 753 while ((i = find_next_to_unuse(si, i)) != 0) { 754 if (signal_pending(current)) { 755 retval = -EINTR; 756 break; 757 } 758 759 /* 760 * Get a page for the entry, using the existing swap 761 * cache page if there is one. Otherwise, get a clean 762 * page and read the swap into it. 763 */ 764 swap_map = &si->swap_map[i]; 765 entry = swp_entry(type, i); 766 page = read_swap_cache_async(entry, 767 GFP_HIGHUSER_MOVABLE, NULL, 0); 768 if (!page) { 769 /* 770 * Either swap_duplicate() failed because entry 771 * has been freed independently, and will not be 772 * reused since sys_swapoff() already disabled 773 * allocation from here, or alloc_page() failed. 774 */ 775 if (!*swap_map) 776 continue; 777 retval = -ENOMEM; 778 break; 779 } 780 781 /* 782 * Don't hold on to start_mm if it looks like exiting. 783 */ 784 if (atomic_read(&start_mm->mm_users) == 1) { 785 mmput(start_mm); 786 start_mm = &init_mm; 787 atomic_inc(&init_mm.mm_users); 788 } 789 790 /* 791 * Wait for and lock page. When do_swap_page races with 792 * try_to_unuse, do_swap_page can handle the fault much 793 * faster than try_to_unuse can locate the entry. This 794 * apparently redundant "wait_on_page_locked" lets try_to_unuse 795 * defer to do_swap_page in such a case - in some tests, 796 * do_swap_page and try_to_unuse repeatedly compete. 797 */ 798 wait_on_page_locked(page); 799 wait_on_page_writeback(page); 800 lock_page(page); 801 wait_on_page_writeback(page); 802 803 /* 804 * Remove all references to entry. 805 * Whenever we reach init_mm, there's no address space 806 * to search, but use it as a reminder to search shmem. 807 */ 808 shmem = 0; 809 swcount = *swap_map; 810 if (swcount > 1) { 811 if (start_mm == &init_mm) 812 shmem = shmem_unuse(entry, page); 813 else 814 retval = unuse_mm(start_mm, entry, page); 815 } 816 if (*swap_map > 1) { 817 int set_start_mm = (*swap_map >= swcount); 818 struct list_head *p = &start_mm->mmlist; 819 struct mm_struct *new_start_mm = start_mm; 820 struct mm_struct *prev_mm = start_mm; 821 struct mm_struct *mm; 822 823 atomic_inc(&new_start_mm->mm_users); 824 atomic_inc(&prev_mm->mm_users); 825 spin_lock(&mmlist_lock); 826 while (*swap_map > 1 && !retval && !shmem && 827 (p = p->next) != &start_mm->mmlist) { 828 mm = list_entry(p, struct mm_struct, mmlist); 829 if (!atomic_inc_not_zero(&mm->mm_users)) 830 continue; 831 spin_unlock(&mmlist_lock); 832 mmput(prev_mm); 833 prev_mm = mm; 834 835 cond_resched(); 836 837 swcount = *swap_map; 838 if (swcount <= 1) 839 ; 840 else if (mm == &init_mm) { 841 set_start_mm = 1; 842 shmem = shmem_unuse(entry, page); 843 } else 844 retval = unuse_mm(mm, entry, page); 845 if (set_start_mm && *swap_map < swcount) { 846 mmput(new_start_mm); 847 atomic_inc(&mm->mm_users); 848 new_start_mm = mm; 849 set_start_mm = 0; 850 } 851 spin_lock(&mmlist_lock); 852 } 853 spin_unlock(&mmlist_lock); 854 mmput(prev_mm); 855 mmput(start_mm); 856 start_mm = new_start_mm; 857 } 858 if (shmem) { 859 /* page has already been unlocked and released */ 860 if (shmem > 0) 861 continue; 862 retval = shmem; 863 break; 864 } 865 if (retval) { 866 unlock_page(page); 867 page_cache_release(page); 868 break; 869 } 870 871 /* 872 * How could swap count reach 0x7fff when the maximum 873 * pid is 0x7fff, and there's no way to repeat a swap 874 * page within an mm (except in shmem, where it's the 875 * shared object which takes the reference count)? 876 * We believe SWAP_MAP_MAX cannot occur in Linux 2.4. 877 * 878 * If that's wrong, then we should worry more about 879 * exit_mmap() and do_munmap() cases described above: 880 * we might be resetting SWAP_MAP_MAX too early here. 881 * We know "Undead"s can happen, they're okay, so don't 882 * report them; but do report if we reset SWAP_MAP_MAX. 883 */ 884 if (*swap_map == SWAP_MAP_MAX) { 885 spin_lock(&swap_lock); 886 *swap_map = 1; 887 spin_unlock(&swap_lock); 888 reset_overflow = 1; 889 } 890 891 /* 892 * If a reference remains (rare), we would like to leave 893 * the page in the swap cache; but try_to_unmap could 894 * then re-duplicate the entry once we drop page lock, 895 * so we might loop indefinitely; also, that page could 896 * not be swapped out to other storage meanwhile. So: 897 * delete from cache even if there's another reference, 898 * after ensuring that the data has been saved to disk - 899 * since if the reference remains (rarer), it will be 900 * read from disk into another page. Splitting into two 901 * pages would be incorrect if swap supported "shared 902 * private" pages, but they are handled by tmpfs files. 903 */ 904 if ((*swap_map > 1) && PageDirty(page) && PageSwapCache(page)) { 905 struct writeback_control wbc = { 906 .sync_mode = WB_SYNC_NONE, 907 }; 908 909 swap_writepage(page, &wbc); 910 lock_page(page); 911 wait_on_page_writeback(page); 912 } 913 if (PageSwapCache(page)) 914 delete_from_swap_cache(page); 915 916 /* 917 * So we could skip searching mms once swap count went 918 * to 1, we did not mark any present ptes as dirty: must 919 * mark page dirty so shrink_page_list will preserve it. 920 */ 921 SetPageDirty(page); 922 unlock_page(page); 923 page_cache_release(page); 924 925 /* 926 * Make sure that we aren't completely killing 927 * interactive performance. 928 */ 929 cond_resched(); 930 } 931 932 mmput(start_mm); 933 if (reset_overflow) { 934 printk(KERN_WARNING "swapoff: cleared swap entry overflow\n"); 935 swap_overflow = 0; 936 } 937 return retval; 938 } 939 940 /* 941 * After a successful try_to_unuse, if no swap is now in use, we know 942 * we can empty the mmlist. swap_lock must be held on entry and exit. 943 * Note that mmlist_lock nests inside swap_lock, and an mm must be 944 * added to the mmlist just after page_duplicate - before would be racy. 945 */ 946 static void drain_mmlist(void) 947 { 948 struct list_head *p, *next; 949 unsigned int i; 950 951 for (i = 0; i < nr_swapfiles; i++) 952 if (swap_info[i].inuse_pages) 953 return; 954 spin_lock(&mmlist_lock); 955 list_for_each_safe(p, next, &init_mm.mmlist) 956 list_del_init(p); 957 spin_unlock(&mmlist_lock); 958 } 959 960 /* 961 * Use this swapdev's extent info to locate the (PAGE_SIZE) block which 962 * corresponds to page offset `offset'. 963 */ 964 sector_t map_swap_page(struct swap_info_struct *sis, pgoff_t offset) 965 { 966 struct swap_extent *se = sis->curr_swap_extent; 967 struct swap_extent *start_se = se; 968 969 for ( ; ; ) { 970 struct list_head *lh; 971 972 if (se->start_page <= offset && 973 offset < (se->start_page + se->nr_pages)) { 974 return se->start_block + (offset - se->start_page); 975 } 976 lh = se->list.next; 977 if (lh == &sis->extent_list) 978 lh = lh->next; 979 se = list_entry(lh, struct swap_extent, list); 980 sis->curr_swap_extent = se; 981 BUG_ON(se == start_se); /* It *must* be present */ 982 } 983 } 984 985 #ifdef CONFIG_HIBERNATION 986 /* 987 * Get the (PAGE_SIZE) block corresponding to given offset on the swapdev 988 * corresponding to given index in swap_info (swap type). 989 */ 990 sector_t swapdev_block(int swap_type, pgoff_t offset) 991 { 992 struct swap_info_struct *sis; 993 994 if (swap_type >= nr_swapfiles) 995 return 0; 996 997 sis = swap_info + swap_type; 998 return (sis->flags & SWP_WRITEOK) ? map_swap_page(sis, offset) : 0; 999 } 1000 #endif /* CONFIG_HIBERNATION */ 1001 1002 /* 1003 * Free all of a swapdev's extent information 1004 */ 1005 static void destroy_swap_extents(struct swap_info_struct *sis) 1006 { 1007 while (!list_empty(&sis->extent_list)) { 1008 struct swap_extent *se; 1009 1010 se = list_entry(sis->extent_list.next, 1011 struct swap_extent, list); 1012 list_del(&se->list); 1013 kfree(se); 1014 } 1015 } 1016 1017 /* 1018 * Add a block range (and the corresponding page range) into this swapdev's 1019 * extent list. The extent list is kept sorted in page order. 1020 * 1021 * This function rather assumes that it is called in ascending page order. 1022 */ 1023 static int 1024 add_swap_extent(struct swap_info_struct *sis, unsigned long start_page, 1025 unsigned long nr_pages, sector_t start_block) 1026 { 1027 struct swap_extent *se; 1028 struct swap_extent *new_se; 1029 struct list_head *lh; 1030 1031 lh = sis->extent_list.prev; /* The highest page extent */ 1032 if (lh != &sis->extent_list) { 1033 se = list_entry(lh, struct swap_extent, list); 1034 BUG_ON(se->start_page + se->nr_pages != start_page); 1035 if (se->start_block + se->nr_pages == start_block) { 1036 /* Merge it */ 1037 se->nr_pages += nr_pages; 1038 return 0; 1039 } 1040 } 1041 1042 /* 1043 * No merge. Insert a new extent, preserving ordering. 1044 */ 1045 new_se = kmalloc(sizeof(*se), GFP_KERNEL); 1046 if (new_se == NULL) 1047 return -ENOMEM; 1048 new_se->start_page = start_page; 1049 new_se->nr_pages = nr_pages; 1050 new_se->start_block = start_block; 1051 1052 list_add_tail(&new_se->list, &sis->extent_list); 1053 return 1; 1054 } 1055 1056 /* 1057 * A `swap extent' is a simple thing which maps a contiguous range of pages 1058 * onto a contiguous range of disk blocks. An ordered list of swap extents 1059 * is built at swapon time and is then used at swap_writepage/swap_readpage 1060 * time for locating where on disk a page belongs. 1061 * 1062 * If the swapfile is an S_ISBLK block device, a single extent is installed. 1063 * This is done so that the main operating code can treat S_ISBLK and S_ISREG 1064 * swap files identically. 1065 * 1066 * Whether the swapdev is an S_ISREG file or an S_ISBLK blockdev, the swap 1067 * extent list operates in PAGE_SIZE disk blocks. Both S_ISREG and S_ISBLK 1068 * swapfiles are handled *identically* after swapon time. 1069 * 1070 * For S_ISREG swapfiles, setup_swap_extents() will walk all the file's blocks 1071 * and will parse them into an ordered extent list, in PAGE_SIZE chunks. If 1072 * some stray blocks are found which do not fall within the PAGE_SIZE alignment 1073 * requirements, they are simply tossed out - we will never use those blocks 1074 * for swapping. 1075 * 1076 * For S_ISREG swapfiles we set S_SWAPFILE across the life of the swapon. This 1077 * prevents root from shooting her foot off by ftruncating an in-use swapfile, 1078 * which will scribble on the fs. 1079 * 1080 * The amount of disk space which a single swap extent represents varies. 1081 * Typically it is in the 1-4 megabyte range. So we can have hundreds of 1082 * extents in the list. To avoid much list walking, we cache the previous 1083 * search location in `curr_swap_extent', and start new searches from there. 1084 * This is extremely effective. The average number of iterations in 1085 * map_swap_page() has been measured at about 0.3 per page. - akpm. 1086 */ 1087 static int setup_swap_extents(struct swap_info_struct *sis, sector_t *span) 1088 { 1089 struct inode *inode; 1090 unsigned blocks_per_page; 1091 unsigned long page_no; 1092 unsigned blkbits; 1093 sector_t probe_block; 1094 sector_t last_block; 1095 sector_t lowest_block = -1; 1096 sector_t highest_block = 0; 1097 int nr_extents = 0; 1098 int ret; 1099 1100 inode = sis->swap_file->f_mapping->host; 1101 if (S_ISBLK(inode->i_mode)) { 1102 ret = add_swap_extent(sis, 0, sis->max, 0); 1103 *span = sis->pages; 1104 goto done; 1105 } 1106 1107 blkbits = inode->i_blkbits; 1108 blocks_per_page = PAGE_SIZE >> blkbits; 1109 1110 /* 1111 * Map all the blocks into the extent list. This code doesn't try 1112 * to be very smart. 1113 */ 1114 probe_block = 0; 1115 page_no = 0; 1116 last_block = i_size_read(inode) >> blkbits; 1117 while ((probe_block + blocks_per_page) <= last_block && 1118 page_no < sis->max) { 1119 unsigned block_in_page; 1120 sector_t first_block; 1121 1122 first_block = bmap(inode, probe_block); 1123 if (first_block == 0) 1124 goto bad_bmap; 1125 1126 /* 1127 * It must be PAGE_SIZE aligned on-disk 1128 */ 1129 if (first_block & (blocks_per_page - 1)) { 1130 probe_block++; 1131 goto reprobe; 1132 } 1133 1134 for (block_in_page = 1; block_in_page < blocks_per_page; 1135 block_in_page++) { 1136 sector_t block; 1137 1138 block = bmap(inode, probe_block + block_in_page); 1139 if (block == 0) 1140 goto bad_bmap; 1141 if (block != first_block + block_in_page) { 1142 /* Discontiguity */ 1143 probe_block++; 1144 goto reprobe; 1145 } 1146 } 1147 1148 first_block >>= (PAGE_SHIFT - blkbits); 1149 if (page_no) { /* exclude the header page */ 1150 if (first_block < lowest_block) 1151 lowest_block = first_block; 1152 if (first_block > highest_block) 1153 highest_block = first_block; 1154 } 1155 1156 /* 1157 * We found a PAGE_SIZE-length, PAGE_SIZE-aligned run of blocks 1158 */ 1159 ret = add_swap_extent(sis, page_no, 1, first_block); 1160 if (ret < 0) 1161 goto out; 1162 nr_extents += ret; 1163 page_no++; 1164 probe_block += blocks_per_page; 1165 reprobe: 1166 continue; 1167 } 1168 ret = nr_extents; 1169 *span = 1 + highest_block - lowest_block; 1170 if (page_no == 0) 1171 page_no = 1; /* force Empty message */ 1172 sis->max = page_no; 1173 sis->pages = page_no - 1; 1174 sis->highest_bit = page_no - 1; 1175 done: 1176 sis->curr_swap_extent = list_entry(sis->extent_list.prev, 1177 struct swap_extent, list); 1178 goto out; 1179 bad_bmap: 1180 printk(KERN_ERR "swapon: swapfile has holes\n"); 1181 ret = -EINVAL; 1182 out: 1183 return ret; 1184 } 1185 1186 #if 0 /* We don't need this yet */ 1187 #include <linux/backing-dev.h> 1188 int page_queue_congested(struct page *page) 1189 { 1190 struct backing_dev_info *bdi; 1191 1192 BUG_ON(!PageLocked(page)); /* It pins the swap_info_struct */ 1193 1194 if (PageSwapCache(page)) { 1195 swp_entry_t entry = { .val = page_private(page) }; 1196 struct swap_info_struct *sis; 1197 1198 sis = get_swap_info_struct(swp_type(entry)); 1199 bdi = sis->bdev->bd_inode->i_mapping->backing_dev_info; 1200 } else 1201 bdi = page->mapping->backing_dev_info; 1202 return bdi_write_congested(bdi); 1203 } 1204 #endif 1205 1206 asmlinkage long sys_swapoff(const char __user * specialfile) 1207 { 1208 struct swap_info_struct * p = NULL; 1209 unsigned short *swap_map; 1210 struct file *swap_file, *victim; 1211 struct address_space *mapping; 1212 struct inode *inode; 1213 char * pathname; 1214 int i, type, prev; 1215 int err; 1216 1217 if (!capable(CAP_SYS_ADMIN)) 1218 return -EPERM; 1219 1220 pathname = getname(specialfile); 1221 err = PTR_ERR(pathname); 1222 if (IS_ERR(pathname)) 1223 goto out; 1224 1225 victim = filp_open(pathname, O_RDWR|O_LARGEFILE, 0); 1226 putname(pathname); 1227 err = PTR_ERR(victim); 1228 if (IS_ERR(victim)) 1229 goto out; 1230 1231 mapping = victim->f_mapping; 1232 prev = -1; 1233 spin_lock(&swap_lock); 1234 for (type = swap_list.head; type >= 0; type = swap_info[type].next) { 1235 p = swap_info + type; 1236 if ((p->flags & SWP_ACTIVE) == SWP_ACTIVE) { 1237 if (p->swap_file->f_mapping == mapping) 1238 break; 1239 } 1240 prev = type; 1241 } 1242 if (type < 0) { 1243 err = -EINVAL; 1244 spin_unlock(&swap_lock); 1245 goto out_dput; 1246 } 1247 if (!security_vm_enough_memory(p->pages)) 1248 vm_unacct_memory(p->pages); 1249 else { 1250 err = -ENOMEM; 1251 spin_unlock(&swap_lock); 1252 goto out_dput; 1253 } 1254 if (prev < 0) { 1255 swap_list.head = p->next; 1256 } else { 1257 swap_info[prev].next = p->next; 1258 } 1259 if (type == swap_list.next) { 1260 /* just pick something that's safe... */ 1261 swap_list.next = swap_list.head; 1262 } 1263 nr_swap_pages -= p->pages; 1264 total_swap_pages -= p->pages; 1265 p->flags &= ~SWP_WRITEOK; 1266 spin_unlock(&swap_lock); 1267 1268 current->flags |= PF_SWAPOFF; 1269 err = try_to_unuse(type); 1270 current->flags &= ~PF_SWAPOFF; 1271 1272 if (err) { 1273 /* re-insert swap space back into swap_list */ 1274 spin_lock(&swap_lock); 1275 for (prev = -1, i = swap_list.head; i >= 0; prev = i, i = swap_info[i].next) 1276 if (p->prio >= swap_info[i].prio) 1277 break; 1278 p->next = i; 1279 if (prev < 0) 1280 swap_list.head = swap_list.next = p - swap_info; 1281 else 1282 swap_info[prev].next = p - swap_info; 1283 nr_swap_pages += p->pages; 1284 total_swap_pages += p->pages; 1285 p->flags |= SWP_WRITEOK; 1286 spin_unlock(&swap_lock); 1287 goto out_dput; 1288 } 1289 1290 /* wait for any unplug function to finish */ 1291 down_write(&swap_unplug_sem); 1292 up_write(&swap_unplug_sem); 1293 1294 destroy_swap_extents(p); 1295 mutex_lock(&swapon_mutex); 1296 spin_lock(&swap_lock); 1297 drain_mmlist(); 1298 1299 /* wait for anyone still in scan_swap_map */ 1300 p->highest_bit = 0; /* cuts scans short */ 1301 while (p->flags >= SWP_SCANNING) { 1302 spin_unlock(&swap_lock); 1303 schedule_timeout_uninterruptible(1); 1304 spin_lock(&swap_lock); 1305 } 1306 1307 swap_file = p->swap_file; 1308 p->swap_file = NULL; 1309 p->max = 0; 1310 swap_map = p->swap_map; 1311 p->swap_map = NULL; 1312 p->flags = 0; 1313 spin_unlock(&swap_lock); 1314 mutex_unlock(&swapon_mutex); 1315 vfree(swap_map); 1316 inode = mapping->host; 1317 if (S_ISBLK(inode->i_mode)) { 1318 struct block_device *bdev = I_BDEV(inode); 1319 set_blocksize(bdev, p->old_block_size); 1320 bd_release(bdev); 1321 } else { 1322 mutex_lock(&inode->i_mutex); 1323 inode->i_flags &= ~S_SWAPFILE; 1324 mutex_unlock(&inode->i_mutex); 1325 } 1326 filp_close(swap_file, NULL); 1327 err = 0; 1328 1329 out_dput: 1330 filp_close(victim, NULL); 1331 out: 1332 return err; 1333 } 1334 1335 #ifdef CONFIG_PROC_FS 1336 /* iterator */ 1337 static void *swap_start(struct seq_file *swap, loff_t *pos) 1338 { 1339 struct swap_info_struct *ptr = swap_info; 1340 int i; 1341 loff_t l = *pos; 1342 1343 mutex_lock(&swapon_mutex); 1344 1345 if (!l) 1346 return SEQ_START_TOKEN; 1347 1348 for (i = 0; i < nr_swapfiles; i++, ptr++) { 1349 if (!(ptr->flags & SWP_USED) || !ptr->swap_map) 1350 continue; 1351 if (!--l) 1352 return ptr; 1353 } 1354 1355 return NULL; 1356 } 1357 1358 static void *swap_next(struct seq_file *swap, void *v, loff_t *pos) 1359 { 1360 struct swap_info_struct *ptr; 1361 struct swap_info_struct *endptr = swap_info + nr_swapfiles; 1362 1363 if (v == SEQ_START_TOKEN) 1364 ptr = swap_info; 1365 else { 1366 ptr = v; 1367 ptr++; 1368 } 1369 1370 for (; ptr < endptr; ptr++) { 1371 if (!(ptr->flags & SWP_USED) || !ptr->swap_map) 1372 continue; 1373 ++*pos; 1374 return ptr; 1375 } 1376 1377 return NULL; 1378 } 1379 1380 static void swap_stop(struct seq_file *swap, void *v) 1381 { 1382 mutex_unlock(&swapon_mutex); 1383 } 1384 1385 static int swap_show(struct seq_file *swap, void *v) 1386 { 1387 struct swap_info_struct *ptr = v; 1388 struct file *file; 1389 int len; 1390 1391 if (ptr == SEQ_START_TOKEN) { 1392 seq_puts(swap,"Filename\t\t\t\tType\t\tSize\tUsed\tPriority\n"); 1393 return 0; 1394 } 1395 1396 file = ptr->swap_file; 1397 len = seq_path(swap, &file->f_path, " \t\n\\"); 1398 seq_printf(swap, "%*s%s\t%u\t%u\t%d\n", 1399 len < 40 ? 40 - len : 1, " ", 1400 S_ISBLK(file->f_path.dentry->d_inode->i_mode) ? 1401 "partition" : "file\t", 1402 ptr->pages << (PAGE_SHIFT - 10), 1403 ptr->inuse_pages << (PAGE_SHIFT - 10), 1404 ptr->prio); 1405 return 0; 1406 } 1407 1408 static const struct seq_operations swaps_op = { 1409 .start = swap_start, 1410 .next = swap_next, 1411 .stop = swap_stop, 1412 .show = swap_show 1413 }; 1414 1415 static int swaps_open(struct inode *inode, struct file *file) 1416 { 1417 return seq_open(file, &swaps_op); 1418 } 1419 1420 static const struct file_operations proc_swaps_operations = { 1421 .open = swaps_open, 1422 .read = seq_read, 1423 .llseek = seq_lseek, 1424 .release = seq_release, 1425 }; 1426 1427 static int __init procswaps_init(void) 1428 { 1429 struct proc_dir_entry *entry; 1430 1431 entry = create_proc_entry("swaps", 0, NULL); 1432 if (entry) 1433 entry->proc_fops = &proc_swaps_operations; 1434 return 0; 1435 } 1436 __initcall(procswaps_init); 1437 #endif /* CONFIG_PROC_FS */ 1438 1439 /* 1440 * Written 01/25/92 by Simmule Turner, heavily changed by Linus. 1441 * 1442 * The swapon system call 1443 */ 1444 asmlinkage long sys_swapon(const char __user * specialfile, int swap_flags) 1445 { 1446 struct swap_info_struct * p; 1447 char *name = NULL; 1448 struct block_device *bdev = NULL; 1449 struct file *swap_file = NULL; 1450 struct address_space *mapping; 1451 unsigned int type; 1452 int i, prev; 1453 int error; 1454 static int least_priority; 1455 union swap_header *swap_header = NULL; 1456 int swap_header_version; 1457 unsigned int nr_good_pages = 0; 1458 int nr_extents = 0; 1459 sector_t span; 1460 unsigned long maxpages = 1; 1461 int swapfilesize; 1462 unsigned short *swap_map; 1463 struct page *page = NULL; 1464 struct inode *inode = NULL; 1465 int did_down = 0; 1466 1467 if (!capable(CAP_SYS_ADMIN)) 1468 return -EPERM; 1469 spin_lock(&swap_lock); 1470 p = swap_info; 1471 for (type = 0 ; type < nr_swapfiles ; type++,p++) 1472 if (!(p->flags & SWP_USED)) 1473 break; 1474 error = -EPERM; 1475 if (type >= MAX_SWAPFILES) { 1476 spin_unlock(&swap_lock); 1477 goto out; 1478 } 1479 if (type >= nr_swapfiles) 1480 nr_swapfiles = type+1; 1481 INIT_LIST_HEAD(&p->extent_list); 1482 p->flags = SWP_USED; 1483 p->swap_file = NULL; 1484 p->old_block_size = 0; 1485 p->swap_map = NULL; 1486 p->lowest_bit = 0; 1487 p->highest_bit = 0; 1488 p->cluster_nr = 0; 1489 p->inuse_pages = 0; 1490 p->next = -1; 1491 if (swap_flags & SWAP_FLAG_PREFER) { 1492 p->prio = 1493 (swap_flags & SWAP_FLAG_PRIO_MASK)>>SWAP_FLAG_PRIO_SHIFT; 1494 } else { 1495 p->prio = --least_priority; 1496 } 1497 spin_unlock(&swap_lock); 1498 name = getname(specialfile); 1499 error = PTR_ERR(name); 1500 if (IS_ERR(name)) { 1501 name = NULL; 1502 goto bad_swap_2; 1503 } 1504 swap_file = filp_open(name, O_RDWR|O_LARGEFILE, 0); 1505 error = PTR_ERR(swap_file); 1506 if (IS_ERR(swap_file)) { 1507 swap_file = NULL; 1508 goto bad_swap_2; 1509 } 1510 1511 p->swap_file = swap_file; 1512 mapping = swap_file->f_mapping; 1513 inode = mapping->host; 1514 1515 error = -EBUSY; 1516 for (i = 0; i < nr_swapfiles; i++) { 1517 struct swap_info_struct *q = &swap_info[i]; 1518 1519 if (i == type || !q->swap_file) 1520 continue; 1521 if (mapping == q->swap_file->f_mapping) 1522 goto bad_swap; 1523 } 1524 1525 error = -EINVAL; 1526 if (S_ISBLK(inode->i_mode)) { 1527 bdev = I_BDEV(inode); 1528 error = bd_claim(bdev, sys_swapon); 1529 if (error < 0) { 1530 bdev = NULL; 1531 error = -EINVAL; 1532 goto bad_swap; 1533 } 1534 p->old_block_size = block_size(bdev); 1535 error = set_blocksize(bdev, PAGE_SIZE); 1536 if (error < 0) 1537 goto bad_swap; 1538 p->bdev = bdev; 1539 } else if (S_ISREG(inode->i_mode)) { 1540 p->bdev = inode->i_sb->s_bdev; 1541 mutex_lock(&inode->i_mutex); 1542 did_down = 1; 1543 if (IS_SWAPFILE(inode)) { 1544 error = -EBUSY; 1545 goto bad_swap; 1546 } 1547 } else { 1548 goto bad_swap; 1549 } 1550 1551 swapfilesize = i_size_read(inode) >> PAGE_SHIFT; 1552 1553 /* 1554 * Read the swap header. 1555 */ 1556 if (!mapping->a_ops->readpage) { 1557 error = -EINVAL; 1558 goto bad_swap; 1559 } 1560 page = read_mapping_page(mapping, 0, swap_file); 1561 if (IS_ERR(page)) { 1562 error = PTR_ERR(page); 1563 goto bad_swap; 1564 } 1565 kmap(page); 1566 swap_header = page_address(page); 1567 1568 if (!memcmp("SWAP-SPACE",swap_header->magic.magic,10)) 1569 swap_header_version = 1; 1570 else if (!memcmp("SWAPSPACE2",swap_header->magic.magic,10)) 1571 swap_header_version = 2; 1572 else { 1573 printk(KERN_ERR "Unable to find swap-space signature\n"); 1574 error = -EINVAL; 1575 goto bad_swap; 1576 } 1577 1578 switch (swap_header_version) { 1579 case 1: 1580 printk(KERN_ERR "version 0 swap is no longer supported. " 1581 "Use mkswap -v1 %s\n", name); 1582 error = -EINVAL; 1583 goto bad_swap; 1584 case 2: 1585 /* Check the swap header's sub-version and the size of 1586 the swap file and bad block lists */ 1587 if (swap_header->info.version != 1) { 1588 printk(KERN_WARNING 1589 "Unable to handle swap header version %d\n", 1590 swap_header->info.version); 1591 error = -EINVAL; 1592 goto bad_swap; 1593 } 1594 1595 p->lowest_bit = 1; 1596 p->cluster_next = 1; 1597 1598 /* 1599 * Find out how many pages are allowed for a single swap 1600 * device. There are two limiting factors: 1) the number of 1601 * bits for the swap offset in the swp_entry_t type and 1602 * 2) the number of bits in the a swap pte as defined by 1603 * the different architectures. In order to find the 1604 * largest possible bit mask a swap entry with swap type 0 1605 * and swap offset ~0UL is created, encoded to a swap pte, 1606 * decoded to a swp_entry_t again and finally the swap 1607 * offset is extracted. This will mask all the bits from 1608 * the initial ~0UL mask that can't be encoded in either 1609 * the swp_entry_t or the architecture definition of a 1610 * swap pte. 1611 */ 1612 maxpages = swp_offset(pte_to_swp_entry(swp_entry_to_pte(swp_entry(0,~0UL)))) - 1; 1613 if (maxpages > swap_header->info.last_page) 1614 maxpages = swap_header->info.last_page; 1615 p->highest_bit = maxpages - 1; 1616 1617 error = -EINVAL; 1618 if (!maxpages) 1619 goto bad_swap; 1620 if (swapfilesize && maxpages > swapfilesize) { 1621 printk(KERN_WARNING 1622 "Swap area shorter than signature indicates\n"); 1623 goto bad_swap; 1624 } 1625 if (swap_header->info.nr_badpages && S_ISREG(inode->i_mode)) 1626 goto bad_swap; 1627 if (swap_header->info.nr_badpages > MAX_SWAP_BADPAGES) 1628 goto bad_swap; 1629 1630 /* OK, set up the swap map and apply the bad block list */ 1631 if (!(p->swap_map = vmalloc(maxpages * sizeof(short)))) { 1632 error = -ENOMEM; 1633 goto bad_swap; 1634 } 1635 1636 error = 0; 1637 memset(p->swap_map, 0, maxpages * sizeof(short)); 1638 for (i = 0; i < swap_header->info.nr_badpages; i++) { 1639 int page_nr = swap_header->info.badpages[i]; 1640 if (page_nr <= 0 || page_nr >= swap_header->info.last_page) 1641 error = -EINVAL; 1642 else 1643 p->swap_map[page_nr] = SWAP_MAP_BAD; 1644 } 1645 nr_good_pages = swap_header->info.last_page - 1646 swap_header->info.nr_badpages - 1647 1 /* header page */; 1648 if (error) 1649 goto bad_swap; 1650 } 1651 1652 if (nr_good_pages) { 1653 p->swap_map[0] = SWAP_MAP_BAD; 1654 p->max = maxpages; 1655 p->pages = nr_good_pages; 1656 nr_extents = setup_swap_extents(p, &span); 1657 if (nr_extents < 0) { 1658 error = nr_extents; 1659 goto bad_swap; 1660 } 1661 nr_good_pages = p->pages; 1662 } 1663 if (!nr_good_pages) { 1664 printk(KERN_WARNING "Empty swap-file\n"); 1665 error = -EINVAL; 1666 goto bad_swap; 1667 } 1668 1669 mutex_lock(&swapon_mutex); 1670 spin_lock(&swap_lock); 1671 p->flags = SWP_ACTIVE; 1672 nr_swap_pages += nr_good_pages; 1673 total_swap_pages += nr_good_pages; 1674 1675 printk(KERN_INFO "Adding %uk swap on %s. " 1676 "Priority:%d extents:%d across:%lluk\n", 1677 nr_good_pages<<(PAGE_SHIFT-10), name, p->prio, 1678 nr_extents, (unsigned long long)span<<(PAGE_SHIFT-10)); 1679 1680 /* insert swap space into swap_list: */ 1681 prev = -1; 1682 for (i = swap_list.head; i >= 0; i = swap_info[i].next) { 1683 if (p->prio >= swap_info[i].prio) { 1684 break; 1685 } 1686 prev = i; 1687 } 1688 p->next = i; 1689 if (prev < 0) { 1690 swap_list.head = swap_list.next = p - swap_info; 1691 } else { 1692 swap_info[prev].next = p - swap_info; 1693 } 1694 spin_unlock(&swap_lock); 1695 mutex_unlock(&swapon_mutex); 1696 error = 0; 1697 goto out; 1698 bad_swap: 1699 if (bdev) { 1700 set_blocksize(bdev, p->old_block_size); 1701 bd_release(bdev); 1702 } 1703 destroy_swap_extents(p); 1704 bad_swap_2: 1705 spin_lock(&swap_lock); 1706 swap_map = p->swap_map; 1707 p->swap_file = NULL; 1708 p->swap_map = NULL; 1709 p->flags = 0; 1710 if (!(swap_flags & SWAP_FLAG_PREFER)) 1711 ++least_priority; 1712 spin_unlock(&swap_lock); 1713 vfree(swap_map); 1714 if (swap_file) 1715 filp_close(swap_file, NULL); 1716 out: 1717 if (page && !IS_ERR(page)) { 1718 kunmap(page); 1719 page_cache_release(page); 1720 } 1721 if (name) 1722 putname(name); 1723 if (did_down) { 1724 if (!error) 1725 inode->i_flags |= S_SWAPFILE; 1726 mutex_unlock(&inode->i_mutex); 1727 } 1728 return error; 1729 } 1730 1731 void si_swapinfo(struct sysinfo *val) 1732 { 1733 unsigned int i; 1734 unsigned long nr_to_be_unused = 0; 1735 1736 spin_lock(&swap_lock); 1737 for (i = 0; i < nr_swapfiles; i++) { 1738 if (!(swap_info[i].flags & SWP_USED) || 1739 (swap_info[i].flags & SWP_WRITEOK)) 1740 continue; 1741 nr_to_be_unused += swap_info[i].inuse_pages; 1742 } 1743 val->freeswap = nr_swap_pages + nr_to_be_unused; 1744 val->totalswap = total_swap_pages + nr_to_be_unused; 1745 spin_unlock(&swap_lock); 1746 } 1747 1748 /* 1749 * Verify that a swap entry is valid and increment its swap map count. 1750 * 1751 * Note: if swap_map[] reaches SWAP_MAP_MAX the entries are treated as 1752 * "permanent", but will be reclaimed by the next swapoff. 1753 */ 1754 int swap_duplicate(swp_entry_t entry) 1755 { 1756 struct swap_info_struct * p; 1757 unsigned long offset, type; 1758 int result = 0; 1759 1760 if (is_migration_entry(entry)) 1761 return 1; 1762 1763 type = swp_type(entry); 1764 if (type >= nr_swapfiles) 1765 goto bad_file; 1766 p = type + swap_info; 1767 offset = swp_offset(entry); 1768 1769 spin_lock(&swap_lock); 1770 if (offset < p->max && p->swap_map[offset]) { 1771 if (p->swap_map[offset] < SWAP_MAP_MAX - 1) { 1772 p->swap_map[offset]++; 1773 result = 1; 1774 } else if (p->swap_map[offset] <= SWAP_MAP_MAX) { 1775 if (swap_overflow++ < 5) 1776 printk(KERN_WARNING "swap_dup: swap entry overflow\n"); 1777 p->swap_map[offset] = SWAP_MAP_MAX; 1778 result = 1; 1779 } 1780 } 1781 spin_unlock(&swap_lock); 1782 out: 1783 return result; 1784 1785 bad_file: 1786 printk(KERN_ERR "swap_dup: %s%08lx\n", Bad_file, entry.val); 1787 goto out; 1788 } 1789 1790 struct swap_info_struct * 1791 get_swap_info_struct(unsigned type) 1792 { 1793 return &swap_info[type]; 1794 } 1795 1796 /* 1797 * swap_lock prevents swap_map being freed. Don't grab an extra 1798 * reference on the swaphandle, it doesn't matter if it becomes unused. 1799 */ 1800 int valid_swaphandles(swp_entry_t entry, unsigned long *offset) 1801 { 1802 struct swap_info_struct *si; 1803 int our_page_cluster = page_cluster; 1804 pgoff_t target, toff; 1805 pgoff_t base, end; 1806 int nr_pages = 0; 1807 1808 if (!our_page_cluster) /* no readahead */ 1809 return 0; 1810 1811 si = &swap_info[swp_type(entry)]; 1812 target = swp_offset(entry); 1813 base = (target >> our_page_cluster) << our_page_cluster; 1814 end = base + (1 << our_page_cluster); 1815 if (!base) /* first page is swap header */ 1816 base++; 1817 1818 spin_lock(&swap_lock); 1819 if (end > si->max) /* don't go beyond end of map */ 1820 end = si->max; 1821 1822 /* Count contiguous allocated slots above our target */ 1823 for (toff = target; ++toff < end; nr_pages++) { 1824 /* Don't read in free or bad pages */ 1825 if (!si->swap_map[toff]) 1826 break; 1827 if (si->swap_map[toff] == SWAP_MAP_BAD) 1828 break; 1829 } 1830 /* Count contiguous allocated slots below our target */ 1831 for (toff = target; --toff >= base; nr_pages++) { 1832 /* Don't read in free or bad pages */ 1833 if (!si->swap_map[toff]) 1834 break; 1835 if (si->swap_map[toff] == SWAP_MAP_BAD) 1836 break; 1837 } 1838 spin_unlock(&swap_lock); 1839 1840 /* 1841 * Indicate starting offset, and return number of pages to get: 1842 * if only 1, say 0, since there's then no readahead to be done. 1843 */ 1844 *offset = ++toff; 1845 return nr_pages? ++nr_pages: 0; 1846 } 1847