xref: /openbmc/linux/mm/swapfile.c (revision f42b3800)
1 /*
2  *  linux/mm/swapfile.c
3  *
4  *  Copyright (C) 1991, 1992, 1993, 1994  Linus Torvalds
5  *  Swap reorganised 29.12.95, Stephen Tweedie
6  */
7 
8 #include <linux/mm.h>
9 #include <linux/hugetlb.h>
10 #include <linux/mman.h>
11 #include <linux/slab.h>
12 #include <linux/kernel_stat.h>
13 #include <linux/swap.h>
14 #include <linux/vmalloc.h>
15 #include <linux/pagemap.h>
16 #include <linux/namei.h>
17 #include <linux/shm.h>
18 #include <linux/blkdev.h>
19 #include <linux/writeback.h>
20 #include <linux/proc_fs.h>
21 #include <linux/seq_file.h>
22 #include <linux/init.h>
23 #include <linux/module.h>
24 #include <linux/rmap.h>
25 #include <linux/security.h>
26 #include <linux/backing-dev.h>
27 #include <linux/mutex.h>
28 #include <linux/capability.h>
29 #include <linux/syscalls.h>
30 #include <linux/memcontrol.h>
31 
32 #include <asm/pgtable.h>
33 #include <asm/tlbflush.h>
34 #include <linux/swapops.h>
35 
36 DEFINE_SPINLOCK(swap_lock);
37 unsigned int nr_swapfiles;
38 long total_swap_pages;
39 static int swap_overflow;
40 
41 static const char Bad_file[] = "Bad swap file entry ";
42 static const char Unused_file[] = "Unused swap file entry ";
43 static const char Bad_offset[] = "Bad swap offset entry ";
44 static const char Unused_offset[] = "Unused swap offset entry ";
45 
46 struct swap_list_t swap_list = {-1, -1};
47 
48 static struct swap_info_struct swap_info[MAX_SWAPFILES];
49 
50 static DEFINE_MUTEX(swapon_mutex);
51 
52 /*
53  * We need this because the bdev->unplug_fn can sleep and we cannot
54  * hold swap_lock while calling the unplug_fn. And swap_lock
55  * cannot be turned into a mutex.
56  */
57 static DECLARE_RWSEM(swap_unplug_sem);
58 
59 void swap_unplug_io_fn(struct backing_dev_info *unused_bdi, struct page *page)
60 {
61 	swp_entry_t entry;
62 
63 	down_read(&swap_unplug_sem);
64 	entry.val = page_private(page);
65 	if (PageSwapCache(page)) {
66 		struct block_device *bdev = swap_info[swp_type(entry)].bdev;
67 		struct backing_dev_info *bdi;
68 
69 		/*
70 		 * If the page is removed from swapcache from under us (with a
71 		 * racy try_to_unuse/swapoff) we need an additional reference
72 		 * count to avoid reading garbage from page_private(page) above.
73 		 * If the WARN_ON triggers during a swapoff it maybe the race
74 		 * condition and it's harmless. However if it triggers without
75 		 * swapoff it signals a problem.
76 		 */
77 		WARN_ON(page_count(page) <= 1);
78 
79 		bdi = bdev->bd_inode->i_mapping->backing_dev_info;
80 		blk_run_backing_dev(bdi, page);
81 	}
82 	up_read(&swap_unplug_sem);
83 }
84 
85 #define SWAPFILE_CLUSTER	256
86 #define LATENCY_LIMIT		256
87 
88 static inline unsigned long scan_swap_map(struct swap_info_struct *si)
89 {
90 	unsigned long offset, last_in_cluster;
91 	int latency_ration = LATENCY_LIMIT;
92 
93 	/*
94 	 * We try to cluster swap pages by allocating them sequentially
95 	 * in swap.  Once we've allocated SWAPFILE_CLUSTER pages this
96 	 * way, however, we resort to first-free allocation, starting
97 	 * a new cluster.  This prevents us from scattering swap pages
98 	 * all over the entire swap partition, so that we reduce
99 	 * overall disk seek times between swap pages.  -- sct
100 	 * But we do now try to find an empty cluster.  -Andrea
101 	 */
102 
103 	si->flags += SWP_SCANNING;
104 	if (unlikely(!si->cluster_nr)) {
105 		si->cluster_nr = SWAPFILE_CLUSTER - 1;
106 		if (si->pages - si->inuse_pages < SWAPFILE_CLUSTER)
107 			goto lowest;
108 		spin_unlock(&swap_lock);
109 
110 		offset = si->lowest_bit;
111 		last_in_cluster = offset + SWAPFILE_CLUSTER - 1;
112 
113 		/* Locate the first empty (unaligned) cluster */
114 		for (; last_in_cluster <= si->highest_bit; offset++) {
115 			if (si->swap_map[offset])
116 				last_in_cluster = offset + SWAPFILE_CLUSTER;
117 			else if (offset == last_in_cluster) {
118 				spin_lock(&swap_lock);
119 				si->cluster_next = offset-SWAPFILE_CLUSTER+1;
120 				goto cluster;
121 			}
122 			if (unlikely(--latency_ration < 0)) {
123 				cond_resched();
124 				latency_ration = LATENCY_LIMIT;
125 			}
126 		}
127 		spin_lock(&swap_lock);
128 		goto lowest;
129 	}
130 
131 	si->cluster_nr--;
132 cluster:
133 	offset = si->cluster_next;
134 	if (offset > si->highest_bit)
135 lowest:		offset = si->lowest_bit;
136 checks:	if (!(si->flags & SWP_WRITEOK))
137 		goto no_page;
138 	if (!si->highest_bit)
139 		goto no_page;
140 	if (!si->swap_map[offset]) {
141 		if (offset == si->lowest_bit)
142 			si->lowest_bit++;
143 		if (offset == si->highest_bit)
144 			si->highest_bit--;
145 		si->inuse_pages++;
146 		if (si->inuse_pages == si->pages) {
147 			si->lowest_bit = si->max;
148 			si->highest_bit = 0;
149 		}
150 		si->swap_map[offset] = 1;
151 		si->cluster_next = offset + 1;
152 		si->flags -= SWP_SCANNING;
153 		return offset;
154 	}
155 
156 	spin_unlock(&swap_lock);
157 	while (++offset <= si->highest_bit) {
158 		if (!si->swap_map[offset]) {
159 			spin_lock(&swap_lock);
160 			goto checks;
161 		}
162 		if (unlikely(--latency_ration < 0)) {
163 			cond_resched();
164 			latency_ration = LATENCY_LIMIT;
165 		}
166 	}
167 	spin_lock(&swap_lock);
168 	goto lowest;
169 
170 no_page:
171 	si->flags -= SWP_SCANNING;
172 	return 0;
173 }
174 
175 swp_entry_t get_swap_page(void)
176 {
177 	struct swap_info_struct *si;
178 	pgoff_t offset;
179 	int type, next;
180 	int wrapped = 0;
181 
182 	spin_lock(&swap_lock);
183 	if (nr_swap_pages <= 0)
184 		goto noswap;
185 	nr_swap_pages--;
186 
187 	for (type = swap_list.next; type >= 0 && wrapped < 2; type = next) {
188 		si = swap_info + type;
189 		next = si->next;
190 		if (next < 0 ||
191 		    (!wrapped && si->prio != swap_info[next].prio)) {
192 			next = swap_list.head;
193 			wrapped++;
194 		}
195 
196 		if (!si->highest_bit)
197 			continue;
198 		if (!(si->flags & SWP_WRITEOK))
199 			continue;
200 
201 		swap_list.next = next;
202 		offset = scan_swap_map(si);
203 		if (offset) {
204 			spin_unlock(&swap_lock);
205 			return swp_entry(type, offset);
206 		}
207 		next = swap_list.next;
208 	}
209 
210 	nr_swap_pages++;
211 noswap:
212 	spin_unlock(&swap_lock);
213 	return (swp_entry_t) {0};
214 }
215 
216 swp_entry_t get_swap_page_of_type(int type)
217 {
218 	struct swap_info_struct *si;
219 	pgoff_t offset;
220 
221 	spin_lock(&swap_lock);
222 	si = swap_info + type;
223 	if (si->flags & SWP_WRITEOK) {
224 		nr_swap_pages--;
225 		offset = scan_swap_map(si);
226 		if (offset) {
227 			spin_unlock(&swap_lock);
228 			return swp_entry(type, offset);
229 		}
230 		nr_swap_pages++;
231 	}
232 	spin_unlock(&swap_lock);
233 	return (swp_entry_t) {0};
234 }
235 
236 static struct swap_info_struct * swap_info_get(swp_entry_t entry)
237 {
238 	struct swap_info_struct * p;
239 	unsigned long offset, type;
240 
241 	if (!entry.val)
242 		goto out;
243 	type = swp_type(entry);
244 	if (type >= nr_swapfiles)
245 		goto bad_nofile;
246 	p = & swap_info[type];
247 	if (!(p->flags & SWP_USED))
248 		goto bad_device;
249 	offset = swp_offset(entry);
250 	if (offset >= p->max)
251 		goto bad_offset;
252 	if (!p->swap_map[offset])
253 		goto bad_free;
254 	spin_lock(&swap_lock);
255 	return p;
256 
257 bad_free:
258 	printk(KERN_ERR "swap_free: %s%08lx\n", Unused_offset, entry.val);
259 	goto out;
260 bad_offset:
261 	printk(KERN_ERR "swap_free: %s%08lx\n", Bad_offset, entry.val);
262 	goto out;
263 bad_device:
264 	printk(KERN_ERR "swap_free: %s%08lx\n", Unused_file, entry.val);
265 	goto out;
266 bad_nofile:
267 	printk(KERN_ERR "swap_free: %s%08lx\n", Bad_file, entry.val);
268 out:
269 	return NULL;
270 }
271 
272 static int swap_entry_free(struct swap_info_struct *p, unsigned long offset)
273 {
274 	int count = p->swap_map[offset];
275 
276 	if (count < SWAP_MAP_MAX) {
277 		count--;
278 		p->swap_map[offset] = count;
279 		if (!count) {
280 			if (offset < p->lowest_bit)
281 				p->lowest_bit = offset;
282 			if (offset > p->highest_bit)
283 				p->highest_bit = offset;
284 			if (p->prio > swap_info[swap_list.next].prio)
285 				swap_list.next = p - swap_info;
286 			nr_swap_pages++;
287 			p->inuse_pages--;
288 		}
289 	}
290 	return count;
291 }
292 
293 /*
294  * Caller has made sure that the swapdevice corresponding to entry
295  * is still around or has not been recycled.
296  */
297 void swap_free(swp_entry_t entry)
298 {
299 	struct swap_info_struct * p;
300 
301 	p = swap_info_get(entry);
302 	if (p) {
303 		swap_entry_free(p, swp_offset(entry));
304 		spin_unlock(&swap_lock);
305 	}
306 }
307 
308 /*
309  * How many references to page are currently swapped out?
310  */
311 static inline int page_swapcount(struct page *page)
312 {
313 	int count = 0;
314 	struct swap_info_struct *p;
315 	swp_entry_t entry;
316 
317 	entry.val = page_private(page);
318 	p = swap_info_get(entry);
319 	if (p) {
320 		/* Subtract the 1 for the swap cache itself */
321 		count = p->swap_map[swp_offset(entry)] - 1;
322 		spin_unlock(&swap_lock);
323 	}
324 	return count;
325 }
326 
327 /*
328  * We can use this swap cache entry directly
329  * if there are no other references to it.
330  */
331 int can_share_swap_page(struct page *page)
332 {
333 	int count;
334 
335 	BUG_ON(!PageLocked(page));
336 	count = page_mapcount(page);
337 	if (count <= 1 && PageSwapCache(page))
338 		count += page_swapcount(page);
339 	return count == 1;
340 }
341 
342 /*
343  * Work out if there are any other processes sharing this
344  * swap cache page. Free it if you can. Return success.
345  */
346 int remove_exclusive_swap_page(struct page *page)
347 {
348 	int retval;
349 	struct swap_info_struct * p;
350 	swp_entry_t entry;
351 
352 	BUG_ON(PagePrivate(page));
353 	BUG_ON(!PageLocked(page));
354 
355 	if (!PageSwapCache(page))
356 		return 0;
357 	if (PageWriteback(page))
358 		return 0;
359 	if (page_count(page) != 2) /* 2: us + cache */
360 		return 0;
361 
362 	entry.val = page_private(page);
363 	p = swap_info_get(entry);
364 	if (!p)
365 		return 0;
366 
367 	/* Is the only swap cache user the cache itself? */
368 	retval = 0;
369 	if (p->swap_map[swp_offset(entry)] == 1) {
370 		/* Recheck the page count with the swapcache lock held.. */
371 		write_lock_irq(&swapper_space.tree_lock);
372 		if ((page_count(page) == 2) && !PageWriteback(page)) {
373 			__delete_from_swap_cache(page);
374 			SetPageDirty(page);
375 			retval = 1;
376 		}
377 		write_unlock_irq(&swapper_space.tree_lock);
378 	}
379 	spin_unlock(&swap_lock);
380 
381 	if (retval) {
382 		swap_free(entry);
383 		page_cache_release(page);
384 	}
385 
386 	return retval;
387 }
388 
389 /*
390  * Free the swap entry like above, but also try to
391  * free the page cache entry if it is the last user.
392  */
393 void free_swap_and_cache(swp_entry_t entry)
394 {
395 	struct swap_info_struct * p;
396 	struct page *page = NULL;
397 
398 	if (is_migration_entry(entry))
399 		return;
400 
401 	p = swap_info_get(entry);
402 	if (p) {
403 		if (swap_entry_free(p, swp_offset(entry)) == 1) {
404 			page = find_get_page(&swapper_space, entry.val);
405 			if (page && unlikely(TestSetPageLocked(page))) {
406 				page_cache_release(page);
407 				page = NULL;
408 			}
409 		}
410 		spin_unlock(&swap_lock);
411 	}
412 	if (page) {
413 		int one_user;
414 
415 		BUG_ON(PagePrivate(page));
416 		one_user = (page_count(page) == 2);
417 		/* Only cache user (+us), or swap space full? Free it! */
418 		/* Also recheck PageSwapCache after page is locked (above) */
419 		if (PageSwapCache(page) && !PageWriteback(page) &&
420 					(one_user || vm_swap_full())) {
421 			delete_from_swap_cache(page);
422 			SetPageDirty(page);
423 		}
424 		unlock_page(page);
425 		page_cache_release(page);
426 	}
427 }
428 
429 #ifdef CONFIG_HIBERNATION
430 /*
431  * Find the swap type that corresponds to given device (if any).
432  *
433  * @offset - number of the PAGE_SIZE-sized block of the device, starting
434  * from 0, in which the swap header is expected to be located.
435  *
436  * This is needed for the suspend to disk (aka swsusp).
437  */
438 int swap_type_of(dev_t device, sector_t offset, struct block_device **bdev_p)
439 {
440 	struct block_device *bdev = NULL;
441 	int i;
442 
443 	if (device)
444 		bdev = bdget(device);
445 
446 	spin_lock(&swap_lock);
447 	for (i = 0; i < nr_swapfiles; i++) {
448 		struct swap_info_struct *sis = swap_info + i;
449 
450 		if (!(sis->flags & SWP_WRITEOK))
451 			continue;
452 
453 		if (!bdev) {
454 			if (bdev_p)
455 				*bdev_p = sis->bdev;
456 
457 			spin_unlock(&swap_lock);
458 			return i;
459 		}
460 		if (bdev == sis->bdev) {
461 			struct swap_extent *se;
462 
463 			se = list_entry(sis->extent_list.next,
464 					struct swap_extent, list);
465 			if (se->start_block == offset) {
466 				if (bdev_p)
467 					*bdev_p = sis->bdev;
468 
469 				spin_unlock(&swap_lock);
470 				bdput(bdev);
471 				return i;
472 			}
473 		}
474 	}
475 	spin_unlock(&swap_lock);
476 	if (bdev)
477 		bdput(bdev);
478 
479 	return -ENODEV;
480 }
481 
482 /*
483  * Return either the total number of swap pages of given type, or the number
484  * of free pages of that type (depending on @free)
485  *
486  * This is needed for software suspend
487  */
488 unsigned int count_swap_pages(int type, int free)
489 {
490 	unsigned int n = 0;
491 
492 	if (type < nr_swapfiles) {
493 		spin_lock(&swap_lock);
494 		if (swap_info[type].flags & SWP_WRITEOK) {
495 			n = swap_info[type].pages;
496 			if (free)
497 				n -= swap_info[type].inuse_pages;
498 		}
499 		spin_unlock(&swap_lock);
500 	}
501 	return n;
502 }
503 #endif
504 
505 /*
506  * No need to decide whether this PTE shares the swap entry with others,
507  * just let do_wp_page work it out if a write is requested later - to
508  * force COW, vm_page_prot omits write permission from any private vma.
509  */
510 static int unuse_pte(struct vm_area_struct *vma, pmd_t *pmd,
511 		unsigned long addr, swp_entry_t entry, struct page *page)
512 {
513 	spinlock_t *ptl;
514 	pte_t *pte;
515 	int ret = 1;
516 
517 	if (mem_cgroup_charge(page, vma->vm_mm, GFP_KERNEL))
518 		ret = -ENOMEM;
519 
520 	pte = pte_offset_map_lock(vma->vm_mm, pmd, addr, &ptl);
521 	if (unlikely(!pte_same(*pte, swp_entry_to_pte(entry)))) {
522 		if (ret > 0)
523 			mem_cgroup_uncharge_page(page);
524 		ret = 0;
525 		goto out;
526 	}
527 
528 	inc_mm_counter(vma->vm_mm, anon_rss);
529 	get_page(page);
530 	set_pte_at(vma->vm_mm, addr, pte,
531 		   pte_mkold(mk_pte(page, vma->vm_page_prot)));
532 	page_add_anon_rmap(page, vma, addr);
533 	swap_free(entry);
534 	/*
535 	 * Move the page to the active list so it is not
536 	 * immediately swapped out again after swapon.
537 	 */
538 	activate_page(page);
539 out:
540 	pte_unmap_unlock(pte, ptl);
541 	return ret;
542 }
543 
544 static int unuse_pte_range(struct vm_area_struct *vma, pmd_t *pmd,
545 				unsigned long addr, unsigned long end,
546 				swp_entry_t entry, struct page *page)
547 {
548 	pte_t swp_pte = swp_entry_to_pte(entry);
549 	pte_t *pte;
550 	int ret = 0;
551 
552 	/*
553 	 * We don't actually need pte lock while scanning for swp_pte: since
554 	 * we hold page lock and mmap_sem, swp_pte cannot be inserted into the
555 	 * page table while we're scanning; though it could get zapped, and on
556 	 * some architectures (e.g. x86_32 with PAE) we might catch a glimpse
557 	 * of unmatched parts which look like swp_pte, so unuse_pte must
558 	 * recheck under pte lock.  Scanning without pte lock lets it be
559 	 * preemptible whenever CONFIG_PREEMPT but not CONFIG_HIGHPTE.
560 	 */
561 	pte = pte_offset_map(pmd, addr);
562 	do {
563 		/*
564 		 * swapoff spends a _lot_ of time in this loop!
565 		 * Test inline before going to call unuse_pte.
566 		 */
567 		if (unlikely(pte_same(*pte, swp_pte))) {
568 			pte_unmap(pte);
569 			ret = unuse_pte(vma, pmd, addr, entry, page);
570 			if (ret)
571 				goto out;
572 			pte = pte_offset_map(pmd, addr);
573 		}
574 	} while (pte++, addr += PAGE_SIZE, addr != end);
575 	pte_unmap(pte - 1);
576 out:
577 	return ret;
578 }
579 
580 static inline int unuse_pmd_range(struct vm_area_struct *vma, pud_t *pud,
581 				unsigned long addr, unsigned long end,
582 				swp_entry_t entry, struct page *page)
583 {
584 	pmd_t *pmd;
585 	unsigned long next;
586 	int ret;
587 
588 	pmd = pmd_offset(pud, addr);
589 	do {
590 		next = pmd_addr_end(addr, end);
591 		if (pmd_none_or_clear_bad(pmd))
592 			continue;
593 		ret = unuse_pte_range(vma, pmd, addr, next, entry, page);
594 		if (ret)
595 			return ret;
596 	} while (pmd++, addr = next, addr != end);
597 	return 0;
598 }
599 
600 static inline int unuse_pud_range(struct vm_area_struct *vma, pgd_t *pgd,
601 				unsigned long addr, unsigned long end,
602 				swp_entry_t entry, struct page *page)
603 {
604 	pud_t *pud;
605 	unsigned long next;
606 	int ret;
607 
608 	pud = pud_offset(pgd, addr);
609 	do {
610 		next = pud_addr_end(addr, end);
611 		if (pud_none_or_clear_bad(pud))
612 			continue;
613 		ret = unuse_pmd_range(vma, pud, addr, next, entry, page);
614 		if (ret)
615 			return ret;
616 	} while (pud++, addr = next, addr != end);
617 	return 0;
618 }
619 
620 static int unuse_vma(struct vm_area_struct *vma,
621 				swp_entry_t entry, struct page *page)
622 {
623 	pgd_t *pgd;
624 	unsigned long addr, end, next;
625 	int ret;
626 
627 	if (page->mapping) {
628 		addr = page_address_in_vma(page, vma);
629 		if (addr == -EFAULT)
630 			return 0;
631 		else
632 			end = addr + PAGE_SIZE;
633 	} else {
634 		addr = vma->vm_start;
635 		end = vma->vm_end;
636 	}
637 
638 	pgd = pgd_offset(vma->vm_mm, addr);
639 	do {
640 		next = pgd_addr_end(addr, end);
641 		if (pgd_none_or_clear_bad(pgd))
642 			continue;
643 		ret = unuse_pud_range(vma, pgd, addr, next, entry, page);
644 		if (ret)
645 			return ret;
646 	} while (pgd++, addr = next, addr != end);
647 	return 0;
648 }
649 
650 static int unuse_mm(struct mm_struct *mm,
651 				swp_entry_t entry, struct page *page)
652 {
653 	struct vm_area_struct *vma;
654 	int ret = 0;
655 
656 	if (!down_read_trylock(&mm->mmap_sem)) {
657 		/*
658 		 * Activate page so shrink_cache is unlikely to unmap its
659 		 * ptes while lock is dropped, so swapoff can make progress.
660 		 */
661 		activate_page(page);
662 		unlock_page(page);
663 		down_read(&mm->mmap_sem);
664 		lock_page(page);
665 	}
666 	for (vma = mm->mmap; vma; vma = vma->vm_next) {
667 		if (vma->anon_vma && (ret = unuse_vma(vma, entry, page)))
668 			break;
669 	}
670 	up_read(&mm->mmap_sem);
671 	return (ret < 0)? ret: 0;
672 }
673 
674 /*
675  * Scan swap_map from current position to next entry still in use.
676  * Recycle to start on reaching the end, returning 0 when empty.
677  */
678 static unsigned int find_next_to_unuse(struct swap_info_struct *si,
679 					unsigned int prev)
680 {
681 	unsigned int max = si->max;
682 	unsigned int i = prev;
683 	int count;
684 
685 	/*
686 	 * No need for swap_lock here: we're just looking
687 	 * for whether an entry is in use, not modifying it; false
688 	 * hits are okay, and sys_swapoff() has already prevented new
689 	 * allocations from this area (while holding swap_lock).
690 	 */
691 	for (;;) {
692 		if (++i >= max) {
693 			if (!prev) {
694 				i = 0;
695 				break;
696 			}
697 			/*
698 			 * No entries in use at top of swap_map,
699 			 * loop back to start and recheck there.
700 			 */
701 			max = prev + 1;
702 			prev = 0;
703 			i = 1;
704 		}
705 		count = si->swap_map[i];
706 		if (count && count != SWAP_MAP_BAD)
707 			break;
708 	}
709 	return i;
710 }
711 
712 /*
713  * We completely avoid races by reading each swap page in advance,
714  * and then search for the process using it.  All the necessary
715  * page table adjustments can then be made atomically.
716  */
717 static int try_to_unuse(unsigned int type)
718 {
719 	struct swap_info_struct * si = &swap_info[type];
720 	struct mm_struct *start_mm;
721 	unsigned short *swap_map;
722 	unsigned short swcount;
723 	struct page *page;
724 	swp_entry_t entry;
725 	unsigned int i = 0;
726 	int retval = 0;
727 	int reset_overflow = 0;
728 	int shmem;
729 
730 	/*
731 	 * When searching mms for an entry, a good strategy is to
732 	 * start at the first mm we freed the previous entry from
733 	 * (though actually we don't notice whether we or coincidence
734 	 * freed the entry).  Initialize this start_mm with a hold.
735 	 *
736 	 * A simpler strategy would be to start at the last mm we
737 	 * freed the previous entry from; but that would take less
738 	 * advantage of mmlist ordering, which clusters forked mms
739 	 * together, child after parent.  If we race with dup_mmap(), we
740 	 * prefer to resolve parent before child, lest we miss entries
741 	 * duplicated after we scanned child: using last mm would invert
742 	 * that.  Though it's only a serious concern when an overflowed
743 	 * swap count is reset from SWAP_MAP_MAX, preventing a rescan.
744 	 */
745 	start_mm = &init_mm;
746 	atomic_inc(&init_mm.mm_users);
747 
748 	/*
749 	 * Keep on scanning until all entries have gone.  Usually,
750 	 * one pass through swap_map is enough, but not necessarily:
751 	 * there are races when an instance of an entry might be missed.
752 	 */
753 	while ((i = find_next_to_unuse(si, i)) != 0) {
754 		if (signal_pending(current)) {
755 			retval = -EINTR;
756 			break;
757 		}
758 
759 		/*
760 		 * Get a page for the entry, using the existing swap
761 		 * cache page if there is one.  Otherwise, get a clean
762 		 * page and read the swap into it.
763 		 */
764 		swap_map = &si->swap_map[i];
765 		entry = swp_entry(type, i);
766 		page = read_swap_cache_async(entry,
767 					GFP_HIGHUSER_MOVABLE, NULL, 0);
768 		if (!page) {
769 			/*
770 			 * Either swap_duplicate() failed because entry
771 			 * has been freed independently, and will not be
772 			 * reused since sys_swapoff() already disabled
773 			 * allocation from here, or alloc_page() failed.
774 			 */
775 			if (!*swap_map)
776 				continue;
777 			retval = -ENOMEM;
778 			break;
779 		}
780 
781 		/*
782 		 * Don't hold on to start_mm if it looks like exiting.
783 		 */
784 		if (atomic_read(&start_mm->mm_users) == 1) {
785 			mmput(start_mm);
786 			start_mm = &init_mm;
787 			atomic_inc(&init_mm.mm_users);
788 		}
789 
790 		/*
791 		 * Wait for and lock page.  When do_swap_page races with
792 		 * try_to_unuse, do_swap_page can handle the fault much
793 		 * faster than try_to_unuse can locate the entry.  This
794 		 * apparently redundant "wait_on_page_locked" lets try_to_unuse
795 		 * defer to do_swap_page in such a case - in some tests,
796 		 * do_swap_page and try_to_unuse repeatedly compete.
797 		 */
798 		wait_on_page_locked(page);
799 		wait_on_page_writeback(page);
800 		lock_page(page);
801 		wait_on_page_writeback(page);
802 
803 		/*
804 		 * Remove all references to entry.
805 		 * Whenever we reach init_mm, there's no address space
806 		 * to search, but use it as a reminder to search shmem.
807 		 */
808 		shmem = 0;
809 		swcount = *swap_map;
810 		if (swcount > 1) {
811 			if (start_mm == &init_mm)
812 				shmem = shmem_unuse(entry, page);
813 			else
814 				retval = unuse_mm(start_mm, entry, page);
815 		}
816 		if (*swap_map > 1) {
817 			int set_start_mm = (*swap_map >= swcount);
818 			struct list_head *p = &start_mm->mmlist;
819 			struct mm_struct *new_start_mm = start_mm;
820 			struct mm_struct *prev_mm = start_mm;
821 			struct mm_struct *mm;
822 
823 			atomic_inc(&new_start_mm->mm_users);
824 			atomic_inc(&prev_mm->mm_users);
825 			spin_lock(&mmlist_lock);
826 			while (*swap_map > 1 && !retval && !shmem &&
827 					(p = p->next) != &start_mm->mmlist) {
828 				mm = list_entry(p, struct mm_struct, mmlist);
829 				if (!atomic_inc_not_zero(&mm->mm_users))
830 					continue;
831 				spin_unlock(&mmlist_lock);
832 				mmput(prev_mm);
833 				prev_mm = mm;
834 
835 				cond_resched();
836 
837 				swcount = *swap_map;
838 				if (swcount <= 1)
839 					;
840 				else if (mm == &init_mm) {
841 					set_start_mm = 1;
842 					shmem = shmem_unuse(entry, page);
843 				} else
844 					retval = unuse_mm(mm, entry, page);
845 				if (set_start_mm && *swap_map < swcount) {
846 					mmput(new_start_mm);
847 					atomic_inc(&mm->mm_users);
848 					new_start_mm = mm;
849 					set_start_mm = 0;
850 				}
851 				spin_lock(&mmlist_lock);
852 			}
853 			spin_unlock(&mmlist_lock);
854 			mmput(prev_mm);
855 			mmput(start_mm);
856 			start_mm = new_start_mm;
857 		}
858 		if (shmem) {
859 			/* page has already been unlocked and released */
860 			if (shmem > 0)
861 				continue;
862 			retval = shmem;
863 			break;
864 		}
865 		if (retval) {
866 			unlock_page(page);
867 			page_cache_release(page);
868 			break;
869 		}
870 
871 		/*
872 		 * How could swap count reach 0x7fff when the maximum
873 		 * pid is 0x7fff, and there's no way to repeat a swap
874 		 * page within an mm (except in shmem, where it's the
875 		 * shared object which takes the reference count)?
876 		 * We believe SWAP_MAP_MAX cannot occur in Linux 2.4.
877 		 *
878 		 * If that's wrong, then we should worry more about
879 		 * exit_mmap() and do_munmap() cases described above:
880 		 * we might be resetting SWAP_MAP_MAX too early here.
881 		 * We know "Undead"s can happen, they're okay, so don't
882 		 * report them; but do report if we reset SWAP_MAP_MAX.
883 		 */
884 		if (*swap_map == SWAP_MAP_MAX) {
885 			spin_lock(&swap_lock);
886 			*swap_map = 1;
887 			spin_unlock(&swap_lock);
888 			reset_overflow = 1;
889 		}
890 
891 		/*
892 		 * If a reference remains (rare), we would like to leave
893 		 * the page in the swap cache; but try_to_unmap could
894 		 * then re-duplicate the entry once we drop page lock,
895 		 * so we might loop indefinitely; also, that page could
896 		 * not be swapped out to other storage meanwhile.  So:
897 		 * delete from cache even if there's another reference,
898 		 * after ensuring that the data has been saved to disk -
899 		 * since if the reference remains (rarer), it will be
900 		 * read from disk into another page.  Splitting into two
901 		 * pages would be incorrect if swap supported "shared
902 		 * private" pages, but they are handled by tmpfs files.
903 		 */
904 		if ((*swap_map > 1) && PageDirty(page) && PageSwapCache(page)) {
905 			struct writeback_control wbc = {
906 				.sync_mode = WB_SYNC_NONE,
907 			};
908 
909 			swap_writepage(page, &wbc);
910 			lock_page(page);
911 			wait_on_page_writeback(page);
912 		}
913 		if (PageSwapCache(page))
914 			delete_from_swap_cache(page);
915 
916 		/*
917 		 * So we could skip searching mms once swap count went
918 		 * to 1, we did not mark any present ptes as dirty: must
919 		 * mark page dirty so shrink_page_list will preserve it.
920 		 */
921 		SetPageDirty(page);
922 		unlock_page(page);
923 		page_cache_release(page);
924 
925 		/*
926 		 * Make sure that we aren't completely killing
927 		 * interactive performance.
928 		 */
929 		cond_resched();
930 	}
931 
932 	mmput(start_mm);
933 	if (reset_overflow) {
934 		printk(KERN_WARNING "swapoff: cleared swap entry overflow\n");
935 		swap_overflow = 0;
936 	}
937 	return retval;
938 }
939 
940 /*
941  * After a successful try_to_unuse, if no swap is now in use, we know
942  * we can empty the mmlist.  swap_lock must be held on entry and exit.
943  * Note that mmlist_lock nests inside swap_lock, and an mm must be
944  * added to the mmlist just after page_duplicate - before would be racy.
945  */
946 static void drain_mmlist(void)
947 {
948 	struct list_head *p, *next;
949 	unsigned int i;
950 
951 	for (i = 0; i < nr_swapfiles; i++)
952 		if (swap_info[i].inuse_pages)
953 			return;
954 	spin_lock(&mmlist_lock);
955 	list_for_each_safe(p, next, &init_mm.mmlist)
956 		list_del_init(p);
957 	spin_unlock(&mmlist_lock);
958 }
959 
960 /*
961  * Use this swapdev's extent info to locate the (PAGE_SIZE) block which
962  * corresponds to page offset `offset'.
963  */
964 sector_t map_swap_page(struct swap_info_struct *sis, pgoff_t offset)
965 {
966 	struct swap_extent *se = sis->curr_swap_extent;
967 	struct swap_extent *start_se = se;
968 
969 	for ( ; ; ) {
970 		struct list_head *lh;
971 
972 		if (se->start_page <= offset &&
973 				offset < (se->start_page + se->nr_pages)) {
974 			return se->start_block + (offset - se->start_page);
975 		}
976 		lh = se->list.next;
977 		if (lh == &sis->extent_list)
978 			lh = lh->next;
979 		se = list_entry(lh, struct swap_extent, list);
980 		sis->curr_swap_extent = se;
981 		BUG_ON(se == start_se);		/* It *must* be present */
982 	}
983 }
984 
985 #ifdef CONFIG_HIBERNATION
986 /*
987  * Get the (PAGE_SIZE) block corresponding to given offset on the swapdev
988  * corresponding to given index in swap_info (swap type).
989  */
990 sector_t swapdev_block(int swap_type, pgoff_t offset)
991 {
992 	struct swap_info_struct *sis;
993 
994 	if (swap_type >= nr_swapfiles)
995 		return 0;
996 
997 	sis = swap_info + swap_type;
998 	return (sis->flags & SWP_WRITEOK) ? map_swap_page(sis, offset) : 0;
999 }
1000 #endif /* CONFIG_HIBERNATION */
1001 
1002 /*
1003  * Free all of a swapdev's extent information
1004  */
1005 static void destroy_swap_extents(struct swap_info_struct *sis)
1006 {
1007 	while (!list_empty(&sis->extent_list)) {
1008 		struct swap_extent *se;
1009 
1010 		se = list_entry(sis->extent_list.next,
1011 				struct swap_extent, list);
1012 		list_del(&se->list);
1013 		kfree(se);
1014 	}
1015 }
1016 
1017 /*
1018  * Add a block range (and the corresponding page range) into this swapdev's
1019  * extent list.  The extent list is kept sorted in page order.
1020  *
1021  * This function rather assumes that it is called in ascending page order.
1022  */
1023 static int
1024 add_swap_extent(struct swap_info_struct *sis, unsigned long start_page,
1025 		unsigned long nr_pages, sector_t start_block)
1026 {
1027 	struct swap_extent *se;
1028 	struct swap_extent *new_se;
1029 	struct list_head *lh;
1030 
1031 	lh = sis->extent_list.prev;	/* The highest page extent */
1032 	if (lh != &sis->extent_list) {
1033 		se = list_entry(lh, struct swap_extent, list);
1034 		BUG_ON(se->start_page + se->nr_pages != start_page);
1035 		if (se->start_block + se->nr_pages == start_block) {
1036 			/* Merge it */
1037 			se->nr_pages += nr_pages;
1038 			return 0;
1039 		}
1040 	}
1041 
1042 	/*
1043 	 * No merge.  Insert a new extent, preserving ordering.
1044 	 */
1045 	new_se = kmalloc(sizeof(*se), GFP_KERNEL);
1046 	if (new_se == NULL)
1047 		return -ENOMEM;
1048 	new_se->start_page = start_page;
1049 	new_se->nr_pages = nr_pages;
1050 	new_se->start_block = start_block;
1051 
1052 	list_add_tail(&new_se->list, &sis->extent_list);
1053 	return 1;
1054 }
1055 
1056 /*
1057  * A `swap extent' is a simple thing which maps a contiguous range of pages
1058  * onto a contiguous range of disk blocks.  An ordered list of swap extents
1059  * is built at swapon time and is then used at swap_writepage/swap_readpage
1060  * time for locating where on disk a page belongs.
1061  *
1062  * If the swapfile is an S_ISBLK block device, a single extent is installed.
1063  * This is done so that the main operating code can treat S_ISBLK and S_ISREG
1064  * swap files identically.
1065  *
1066  * Whether the swapdev is an S_ISREG file or an S_ISBLK blockdev, the swap
1067  * extent list operates in PAGE_SIZE disk blocks.  Both S_ISREG and S_ISBLK
1068  * swapfiles are handled *identically* after swapon time.
1069  *
1070  * For S_ISREG swapfiles, setup_swap_extents() will walk all the file's blocks
1071  * and will parse them into an ordered extent list, in PAGE_SIZE chunks.  If
1072  * some stray blocks are found which do not fall within the PAGE_SIZE alignment
1073  * requirements, they are simply tossed out - we will never use those blocks
1074  * for swapping.
1075  *
1076  * For S_ISREG swapfiles we set S_SWAPFILE across the life of the swapon.  This
1077  * prevents root from shooting her foot off by ftruncating an in-use swapfile,
1078  * which will scribble on the fs.
1079  *
1080  * The amount of disk space which a single swap extent represents varies.
1081  * Typically it is in the 1-4 megabyte range.  So we can have hundreds of
1082  * extents in the list.  To avoid much list walking, we cache the previous
1083  * search location in `curr_swap_extent', and start new searches from there.
1084  * This is extremely effective.  The average number of iterations in
1085  * map_swap_page() has been measured at about 0.3 per page.  - akpm.
1086  */
1087 static int setup_swap_extents(struct swap_info_struct *sis, sector_t *span)
1088 {
1089 	struct inode *inode;
1090 	unsigned blocks_per_page;
1091 	unsigned long page_no;
1092 	unsigned blkbits;
1093 	sector_t probe_block;
1094 	sector_t last_block;
1095 	sector_t lowest_block = -1;
1096 	sector_t highest_block = 0;
1097 	int nr_extents = 0;
1098 	int ret;
1099 
1100 	inode = sis->swap_file->f_mapping->host;
1101 	if (S_ISBLK(inode->i_mode)) {
1102 		ret = add_swap_extent(sis, 0, sis->max, 0);
1103 		*span = sis->pages;
1104 		goto done;
1105 	}
1106 
1107 	blkbits = inode->i_blkbits;
1108 	blocks_per_page = PAGE_SIZE >> blkbits;
1109 
1110 	/*
1111 	 * Map all the blocks into the extent list.  This code doesn't try
1112 	 * to be very smart.
1113 	 */
1114 	probe_block = 0;
1115 	page_no = 0;
1116 	last_block = i_size_read(inode) >> blkbits;
1117 	while ((probe_block + blocks_per_page) <= last_block &&
1118 			page_no < sis->max) {
1119 		unsigned block_in_page;
1120 		sector_t first_block;
1121 
1122 		first_block = bmap(inode, probe_block);
1123 		if (first_block == 0)
1124 			goto bad_bmap;
1125 
1126 		/*
1127 		 * It must be PAGE_SIZE aligned on-disk
1128 		 */
1129 		if (first_block & (blocks_per_page - 1)) {
1130 			probe_block++;
1131 			goto reprobe;
1132 		}
1133 
1134 		for (block_in_page = 1; block_in_page < blocks_per_page;
1135 					block_in_page++) {
1136 			sector_t block;
1137 
1138 			block = bmap(inode, probe_block + block_in_page);
1139 			if (block == 0)
1140 				goto bad_bmap;
1141 			if (block != first_block + block_in_page) {
1142 				/* Discontiguity */
1143 				probe_block++;
1144 				goto reprobe;
1145 			}
1146 		}
1147 
1148 		first_block >>= (PAGE_SHIFT - blkbits);
1149 		if (page_no) {	/* exclude the header page */
1150 			if (first_block < lowest_block)
1151 				lowest_block = first_block;
1152 			if (first_block > highest_block)
1153 				highest_block = first_block;
1154 		}
1155 
1156 		/*
1157 		 * We found a PAGE_SIZE-length, PAGE_SIZE-aligned run of blocks
1158 		 */
1159 		ret = add_swap_extent(sis, page_no, 1, first_block);
1160 		if (ret < 0)
1161 			goto out;
1162 		nr_extents += ret;
1163 		page_no++;
1164 		probe_block += blocks_per_page;
1165 reprobe:
1166 		continue;
1167 	}
1168 	ret = nr_extents;
1169 	*span = 1 + highest_block - lowest_block;
1170 	if (page_no == 0)
1171 		page_no = 1;	/* force Empty message */
1172 	sis->max = page_no;
1173 	sis->pages = page_no - 1;
1174 	sis->highest_bit = page_no - 1;
1175 done:
1176 	sis->curr_swap_extent = list_entry(sis->extent_list.prev,
1177 					struct swap_extent, list);
1178 	goto out;
1179 bad_bmap:
1180 	printk(KERN_ERR "swapon: swapfile has holes\n");
1181 	ret = -EINVAL;
1182 out:
1183 	return ret;
1184 }
1185 
1186 #if 0	/* We don't need this yet */
1187 #include <linux/backing-dev.h>
1188 int page_queue_congested(struct page *page)
1189 {
1190 	struct backing_dev_info *bdi;
1191 
1192 	BUG_ON(!PageLocked(page));	/* It pins the swap_info_struct */
1193 
1194 	if (PageSwapCache(page)) {
1195 		swp_entry_t entry = { .val = page_private(page) };
1196 		struct swap_info_struct *sis;
1197 
1198 		sis = get_swap_info_struct(swp_type(entry));
1199 		bdi = sis->bdev->bd_inode->i_mapping->backing_dev_info;
1200 	} else
1201 		bdi = page->mapping->backing_dev_info;
1202 	return bdi_write_congested(bdi);
1203 }
1204 #endif
1205 
1206 asmlinkage long sys_swapoff(const char __user * specialfile)
1207 {
1208 	struct swap_info_struct * p = NULL;
1209 	unsigned short *swap_map;
1210 	struct file *swap_file, *victim;
1211 	struct address_space *mapping;
1212 	struct inode *inode;
1213 	char * pathname;
1214 	int i, type, prev;
1215 	int err;
1216 
1217 	if (!capable(CAP_SYS_ADMIN))
1218 		return -EPERM;
1219 
1220 	pathname = getname(specialfile);
1221 	err = PTR_ERR(pathname);
1222 	if (IS_ERR(pathname))
1223 		goto out;
1224 
1225 	victim = filp_open(pathname, O_RDWR|O_LARGEFILE, 0);
1226 	putname(pathname);
1227 	err = PTR_ERR(victim);
1228 	if (IS_ERR(victim))
1229 		goto out;
1230 
1231 	mapping = victim->f_mapping;
1232 	prev = -1;
1233 	spin_lock(&swap_lock);
1234 	for (type = swap_list.head; type >= 0; type = swap_info[type].next) {
1235 		p = swap_info + type;
1236 		if ((p->flags & SWP_ACTIVE) == SWP_ACTIVE) {
1237 			if (p->swap_file->f_mapping == mapping)
1238 				break;
1239 		}
1240 		prev = type;
1241 	}
1242 	if (type < 0) {
1243 		err = -EINVAL;
1244 		spin_unlock(&swap_lock);
1245 		goto out_dput;
1246 	}
1247 	if (!security_vm_enough_memory(p->pages))
1248 		vm_unacct_memory(p->pages);
1249 	else {
1250 		err = -ENOMEM;
1251 		spin_unlock(&swap_lock);
1252 		goto out_dput;
1253 	}
1254 	if (prev < 0) {
1255 		swap_list.head = p->next;
1256 	} else {
1257 		swap_info[prev].next = p->next;
1258 	}
1259 	if (type == swap_list.next) {
1260 		/* just pick something that's safe... */
1261 		swap_list.next = swap_list.head;
1262 	}
1263 	nr_swap_pages -= p->pages;
1264 	total_swap_pages -= p->pages;
1265 	p->flags &= ~SWP_WRITEOK;
1266 	spin_unlock(&swap_lock);
1267 
1268 	current->flags |= PF_SWAPOFF;
1269 	err = try_to_unuse(type);
1270 	current->flags &= ~PF_SWAPOFF;
1271 
1272 	if (err) {
1273 		/* re-insert swap space back into swap_list */
1274 		spin_lock(&swap_lock);
1275 		for (prev = -1, i = swap_list.head; i >= 0; prev = i, i = swap_info[i].next)
1276 			if (p->prio >= swap_info[i].prio)
1277 				break;
1278 		p->next = i;
1279 		if (prev < 0)
1280 			swap_list.head = swap_list.next = p - swap_info;
1281 		else
1282 			swap_info[prev].next = p - swap_info;
1283 		nr_swap_pages += p->pages;
1284 		total_swap_pages += p->pages;
1285 		p->flags |= SWP_WRITEOK;
1286 		spin_unlock(&swap_lock);
1287 		goto out_dput;
1288 	}
1289 
1290 	/* wait for any unplug function to finish */
1291 	down_write(&swap_unplug_sem);
1292 	up_write(&swap_unplug_sem);
1293 
1294 	destroy_swap_extents(p);
1295 	mutex_lock(&swapon_mutex);
1296 	spin_lock(&swap_lock);
1297 	drain_mmlist();
1298 
1299 	/* wait for anyone still in scan_swap_map */
1300 	p->highest_bit = 0;		/* cuts scans short */
1301 	while (p->flags >= SWP_SCANNING) {
1302 		spin_unlock(&swap_lock);
1303 		schedule_timeout_uninterruptible(1);
1304 		spin_lock(&swap_lock);
1305 	}
1306 
1307 	swap_file = p->swap_file;
1308 	p->swap_file = NULL;
1309 	p->max = 0;
1310 	swap_map = p->swap_map;
1311 	p->swap_map = NULL;
1312 	p->flags = 0;
1313 	spin_unlock(&swap_lock);
1314 	mutex_unlock(&swapon_mutex);
1315 	vfree(swap_map);
1316 	inode = mapping->host;
1317 	if (S_ISBLK(inode->i_mode)) {
1318 		struct block_device *bdev = I_BDEV(inode);
1319 		set_blocksize(bdev, p->old_block_size);
1320 		bd_release(bdev);
1321 	} else {
1322 		mutex_lock(&inode->i_mutex);
1323 		inode->i_flags &= ~S_SWAPFILE;
1324 		mutex_unlock(&inode->i_mutex);
1325 	}
1326 	filp_close(swap_file, NULL);
1327 	err = 0;
1328 
1329 out_dput:
1330 	filp_close(victim, NULL);
1331 out:
1332 	return err;
1333 }
1334 
1335 #ifdef CONFIG_PROC_FS
1336 /* iterator */
1337 static void *swap_start(struct seq_file *swap, loff_t *pos)
1338 {
1339 	struct swap_info_struct *ptr = swap_info;
1340 	int i;
1341 	loff_t l = *pos;
1342 
1343 	mutex_lock(&swapon_mutex);
1344 
1345 	if (!l)
1346 		return SEQ_START_TOKEN;
1347 
1348 	for (i = 0; i < nr_swapfiles; i++, ptr++) {
1349 		if (!(ptr->flags & SWP_USED) || !ptr->swap_map)
1350 			continue;
1351 		if (!--l)
1352 			return ptr;
1353 	}
1354 
1355 	return NULL;
1356 }
1357 
1358 static void *swap_next(struct seq_file *swap, void *v, loff_t *pos)
1359 {
1360 	struct swap_info_struct *ptr;
1361 	struct swap_info_struct *endptr = swap_info + nr_swapfiles;
1362 
1363 	if (v == SEQ_START_TOKEN)
1364 		ptr = swap_info;
1365 	else {
1366 		ptr = v;
1367 		ptr++;
1368 	}
1369 
1370 	for (; ptr < endptr; ptr++) {
1371 		if (!(ptr->flags & SWP_USED) || !ptr->swap_map)
1372 			continue;
1373 		++*pos;
1374 		return ptr;
1375 	}
1376 
1377 	return NULL;
1378 }
1379 
1380 static void swap_stop(struct seq_file *swap, void *v)
1381 {
1382 	mutex_unlock(&swapon_mutex);
1383 }
1384 
1385 static int swap_show(struct seq_file *swap, void *v)
1386 {
1387 	struct swap_info_struct *ptr = v;
1388 	struct file *file;
1389 	int len;
1390 
1391 	if (ptr == SEQ_START_TOKEN) {
1392 		seq_puts(swap,"Filename\t\t\t\tType\t\tSize\tUsed\tPriority\n");
1393 		return 0;
1394 	}
1395 
1396 	file = ptr->swap_file;
1397 	len = seq_path(swap, &file->f_path, " \t\n\\");
1398 	seq_printf(swap, "%*s%s\t%u\t%u\t%d\n",
1399 		       len < 40 ? 40 - len : 1, " ",
1400 		       S_ISBLK(file->f_path.dentry->d_inode->i_mode) ?
1401 				"partition" : "file\t",
1402 		       ptr->pages << (PAGE_SHIFT - 10),
1403 		       ptr->inuse_pages << (PAGE_SHIFT - 10),
1404 		       ptr->prio);
1405 	return 0;
1406 }
1407 
1408 static const struct seq_operations swaps_op = {
1409 	.start =	swap_start,
1410 	.next =		swap_next,
1411 	.stop =		swap_stop,
1412 	.show =		swap_show
1413 };
1414 
1415 static int swaps_open(struct inode *inode, struct file *file)
1416 {
1417 	return seq_open(file, &swaps_op);
1418 }
1419 
1420 static const struct file_operations proc_swaps_operations = {
1421 	.open		= swaps_open,
1422 	.read		= seq_read,
1423 	.llseek		= seq_lseek,
1424 	.release	= seq_release,
1425 };
1426 
1427 static int __init procswaps_init(void)
1428 {
1429 	struct proc_dir_entry *entry;
1430 
1431 	entry = create_proc_entry("swaps", 0, NULL);
1432 	if (entry)
1433 		entry->proc_fops = &proc_swaps_operations;
1434 	return 0;
1435 }
1436 __initcall(procswaps_init);
1437 #endif /* CONFIG_PROC_FS */
1438 
1439 /*
1440  * Written 01/25/92 by Simmule Turner, heavily changed by Linus.
1441  *
1442  * The swapon system call
1443  */
1444 asmlinkage long sys_swapon(const char __user * specialfile, int swap_flags)
1445 {
1446 	struct swap_info_struct * p;
1447 	char *name = NULL;
1448 	struct block_device *bdev = NULL;
1449 	struct file *swap_file = NULL;
1450 	struct address_space *mapping;
1451 	unsigned int type;
1452 	int i, prev;
1453 	int error;
1454 	static int least_priority;
1455 	union swap_header *swap_header = NULL;
1456 	int swap_header_version;
1457 	unsigned int nr_good_pages = 0;
1458 	int nr_extents = 0;
1459 	sector_t span;
1460 	unsigned long maxpages = 1;
1461 	int swapfilesize;
1462 	unsigned short *swap_map;
1463 	struct page *page = NULL;
1464 	struct inode *inode = NULL;
1465 	int did_down = 0;
1466 
1467 	if (!capable(CAP_SYS_ADMIN))
1468 		return -EPERM;
1469 	spin_lock(&swap_lock);
1470 	p = swap_info;
1471 	for (type = 0 ; type < nr_swapfiles ; type++,p++)
1472 		if (!(p->flags & SWP_USED))
1473 			break;
1474 	error = -EPERM;
1475 	if (type >= MAX_SWAPFILES) {
1476 		spin_unlock(&swap_lock);
1477 		goto out;
1478 	}
1479 	if (type >= nr_swapfiles)
1480 		nr_swapfiles = type+1;
1481 	INIT_LIST_HEAD(&p->extent_list);
1482 	p->flags = SWP_USED;
1483 	p->swap_file = NULL;
1484 	p->old_block_size = 0;
1485 	p->swap_map = NULL;
1486 	p->lowest_bit = 0;
1487 	p->highest_bit = 0;
1488 	p->cluster_nr = 0;
1489 	p->inuse_pages = 0;
1490 	p->next = -1;
1491 	if (swap_flags & SWAP_FLAG_PREFER) {
1492 		p->prio =
1493 		  (swap_flags & SWAP_FLAG_PRIO_MASK)>>SWAP_FLAG_PRIO_SHIFT;
1494 	} else {
1495 		p->prio = --least_priority;
1496 	}
1497 	spin_unlock(&swap_lock);
1498 	name = getname(specialfile);
1499 	error = PTR_ERR(name);
1500 	if (IS_ERR(name)) {
1501 		name = NULL;
1502 		goto bad_swap_2;
1503 	}
1504 	swap_file = filp_open(name, O_RDWR|O_LARGEFILE, 0);
1505 	error = PTR_ERR(swap_file);
1506 	if (IS_ERR(swap_file)) {
1507 		swap_file = NULL;
1508 		goto bad_swap_2;
1509 	}
1510 
1511 	p->swap_file = swap_file;
1512 	mapping = swap_file->f_mapping;
1513 	inode = mapping->host;
1514 
1515 	error = -EBUSY;
1516 	for (i = 0; i < nr_swapfiles; i++) {
1517 		struct swap_info_struct *q = &swap_info[i];
1518 
1519 		if (i == type || !q->swap_file)
1520 			continue;
1521 		if (mapping == q->swap_file->f_mapping)
1522 			goto bad_swap;
1523 	}
1524 
1525 	error = -EINVAL;
1526 	if (S_ISBLK(inode->i_mode)) {
1527 		bdev = I_BDEV(inode);
1528 		error = bd_claim(bdev, sys_swapon);
1529 		if (error < 0) {
1530 			bdev = NULL;
1531 			error = -EINVAL;
1532 			goto bad_swap;
1533 		}
1534 		p->old_block_size = block_size(bdev);
1535 		error = set_blocksize(bdev, PAGE_SIZE);
1536 		if (error < 0)
1537 			goto bad_swap;
1538 		p->bdev = bdev;
1539 	} else if (S_ISREG(inode->i_mode)) {
1540 		p->bdev = inode->i_sb->s_bdev;
1541 		mutex_lock(&inode->i_mutex);
1542 		did_down = 1;
1543 		if (IS_SWAPFILE(inode)) {
1544 			error = -EBUSY;
1545 			goto bad_swap;
1546 		}
1547 	} else {
1548 		goto bad_swap;
1549 	}
1550 
1551 	swapfilesize = i_size_read(inode) >> PAGE_SHIFT;
1552 
1553 	/*
1554 	 * Read the swap header.
1555 	 */
1556 	if (!mapping->a_ops->readpage) {
1557 		error = -EINVAL;
1558 		goto bad_swap;
1559 	}
1560 	page = read_mapping_page(mapping, 0, swap_file);
1561 	if (IS_ERR(page)) {
1562 		error = PTR_ERR(page);
1563 		goto bad_swap;
1564 	}
1565 	kmap(page);
1566 	swap_header = page_address(page);
1567 
1568 	if (!memcmp("SWAP-SPACE",swap_header->magic.magic,10))
1569 		swap_header_version = 1;
1570 	else if (!memcmp("SWAPSPACE2",swap_header->magic.magic,10))
1571 		swap_header_version = 2;
1572 	else {
1573 		printk(KERN_ERR "Unable to find swap-space signature\n");
1574 		error = -EINVAL;
1575 		goto bad_swap;
1576 	}
1577 
1578 	switch (swap_header_version) {
1579 	case 1:
1580 		printk(KERN_ERR "version 0 swap is no longer supported. "
1581 			"Use mkswap -v1 %s\n", name);
1582 		error = -EINVAL;
1583 		goto bad_swap;
1584 	case 2:
1585 		/* Check the swap header's sub-version and the size of
1586                    the swap file and bad block lists */
1587 		if (swap_header->info.version != 1) {
1588 			printk(KERN_WARNING
1589 			       "Unable to handle swap header version %d\n",
1590 			       swap_header->info.version);
1591 			error = -EINVAL;
1592 			goto bad_swap;
1593 		}
1594 
1595 		p->lowest_bit  = 1;
1596 		p->cluster_next = 1;
1597 
1598 		/*
1599 		 * Find out how many pages are allowed for a single swap
1600 		 * device. There are two limiting factors: 1) the number of
1601 		 * bits for the swap offset in the swp_entry_t type and
1602 		 * 2) the number of bits in the a swap pte as defined by
1603 		 * the different architectures. In order to find the
1604 		 * largest possible bit mask a swap entry with swap type 0
1605 		 * and swap offset ~0UL is created, encoded to a swap pte,
1606 		 * decoded to a swp_entry_t again and finally the swap
1607 		 * offset is extracted. This will mask all the bits from
1608 		 * the initial ~0UL mask that can't be encoded in either
1609 		 * the swp_entry_t or the architecture definition of a
1610 		 * swap pte.
1611 		 */
1612 		maxpages = swp_offset(pte_to_swp_entry(swp_entry_to_pte(swp_entry(0,~0UL)))) - 1;
1613 		if (maxpages > swap_header->info.last_page)
1614 			maxpages = swap_header->info.last_page;
1615 		p->highest_bit = maxpages - 1;
1616 
1617 		error = -EINVAL;
1618 		if (!maxpages)
1619 			goto bad_swap;
1620 		if (swapfilesize && maxpages > swapfilesize) {
1621 			printk(KERN_WARNING
1622 			       "Swap area shorter than signature indicates\n");
1623 			goto bad_swap;
1624 		}
1625 		if (swap_header->info.nr_badpages && S_ISREG(inode->i_mode))
1626 			goto bad_swap;
1627 		if (swap_header->info.nr_badpages > MAX_SWAP_BADPAGES)
1628 			goto bad_swap;
1629 
1630 		/* OK, set up the swap map and apply the bad block list */
1631 		if (!(p->swap_map = vmalloc(maxpages * sizeof(short)))) {
1632 			error = -ENOMEM;
1633 			goto bad_swap;
1634 		}
1635 
1636 		error = 0;
1637 		memset(p->swap_map, 0, maxpages * sizeof(short));
1638 		for (i = 0; i < swap_header->info.nr_badpages; i++) {
1639 			int page_nr = swap_header->info.badpages[i];
1640 			if (page_nr <= 0 || page_nr >= swap_header->info.last_page)
1641 				error = -EINVAL;
1642 			else
1643 				p->swap_map[page_nr] = SWAP_MAP_BAD;
1644 		}
1645 		nr_good_pages = swap_header->info.last_page -
1646 				swap_header->info.nr_badpages -
1647 				1 /* header page */;
1648 		if (error)
1649 			goto bad_swap;
1650 	}
1651 
1652 	if (nr_good_pages) {
1653 		p->swap_map[0] = SWAP_MAP_BAD;
1654 		p->max = maxpages;
1655 		p->pages = nr_good_pages;
1656 		nr_extents = setup_swap_extents(p, &span);
1657 		if (nr_extents < 0) {
1658 			error = nr_extents;
1659 			goto bad_swap;
1660 		}
1661 		nr_good_pages = p->pages;
1662 	}
1663 	if (!nr_good_pages) {
1664 		printk(KERN_WARNING "Empty swap-file\n");
1665 		error = -EINVAL;
1666 		goto bad_swap;
1667 	}
1668 
1669 	mutex_lock(&swapon_mutex);
1670 	spin_lock(&swap_lock);
1671 	p->flags = SWP_ACTIVE;
1672 	nr_swap_pages += nr_good_pages;
1673 	total_swap_pages += nr_good_pages;
1674 
1675 	printk(KERN_INFO "Adding %uk swap on %s.  "
1676 			"Priority:%d extents:%d across:%lluk\n",
1677 		nr_good_pages<<(PAGE_SHIFT-10), name, p->prio,
1678 		nr_extents, (unsigned long long)span<<(PAGE_SHIFT-10));
1679 
1680 	/* insert swap space into swap_list: */
1681 	prev = -1;
1682 	for (i = swap_list.head; i >= 0; i = swap_info[i].next) {
1683 		if (p->prio >= swap_info[i].prio) {
1684 			break;
1685 		}
1686 		prev = i;
1687 	}
1688 	p->next = i;
1689 	if (prev < 0) {
1690 		swap_list.head = swap_list.next = p - swap_info;
1691 	} else {
1692 		swap_info[prev].next = p - swap_info;
1693 	}
1694 	spin_unlock(&swap_lock);
1695 	mutex_unlock(&swapon_mutex);
1696 	error = 0;
1697 	goto out;
1698 bad_swap:
1699 	if (bdev) {
1700 		set_blocksize(bdev, p->old_block_size);
1701 		bd_release(bdev);
1702 	}
1703 	destroy_swap_extents(p);
1704 bad_swap_2:
1705 	spin_lock(&swap_lock);
1706 	swap_map = p->swap_map;
1707 	p->swap_file = NULL;
1708 	p->swap_map = NULL;
1709 	p->flags = 0;
1710 	if (!(swap_flags & SWAP_FLAG_PREFER))
1711 		++least_priority;
1712 	spin_unlock(&swap_lock);
1713 	vfree(swap_map);
1714 	if (swap_file)
1715 		filp_close(swap_file, NULL);
1716 out:
1717 	if (page && !IS_ERR(page)) {
1718 		kunmap(page);
1719 		page_cache_release(page);
1720 	}
1721 	if (name)
1722 		putname(name);
1723 	if (did_down) {
1724 		if (!error)
1725 			inode->i_flags |= S_SWAPFILE;
1726 		mutex_unlock(&inode->i_mutex);
1727 	}
1728 	return error;
1729 }
1730 
1731 void si_swapinfo(struct sysinfo *val)
1732 {
1733 	unsigned int i;
1734 	unsigned long nr_to_be_unused = 0;
1735 
1736 	spin_lock(&swap_lock);
1737 	for (i = 0; i < nr_swapfiles; i++) {
1738 		if (!(swap_info[i].flags & SWP_USED) ||
1739 		     (swap_info[i].flags & SWP_WRITEOK))
1740 			continue;
1741 		nr_to_be_unused += swap_info[i].inuse_pages;
1742 	}
1743 	val->freeswap = nr_swap_pages + nr_to_be_unused;
1744 	val->totalswap = total_swap_pages + nr_to_be_unused;
1745 	spin_unlock(&swap_lock);
1746 }
1747 
1748 /*
1749  * Verify that a swap entry is valid and increment its swap map count.
1750  *
1751  * Note: if swap_map[] reaches SWAP_MAP_MAX the entries are treated as
1752  * "permanent", but will be reclaimed by the next swapoff.
1753  */
1754 int swap_duplicate(swp_entry_t entry)
1755 {
1756 	struct swap_info_struct * p;
1757 	unsigned long offset, type;
1758 	int result = 0;
1759 
1760 	if (is_migration_entry(entry))
1761 		return 1;
1762 
1763 	type = swp_type(entry);
1764 	if (type >= nr_swapfiles)
1765 		goto bad_file;
1766 	p = type + swap_info;
1767 	offset = swp_offset(entry);
1768 
1769 	spin_lock(&swap_lock);
1770 	if (offset < p->max && p->swap_map[offset]) {
1771 		if (p->swap_map[offset] < SWAP_MAP_MAX - 1) {
1772 			p->swap_map[offset]++;
1773 			result = 1;
1774 		} else if (p->swap_map[offset] <= SWAP_MAP_MAX) {
1775 			if (swap_overflow++ < 5)
1776 				printk(KERN_WARNING "swap_dup: swap entry overflow\n");
1777 			p->swap_map[offset] = SWAP_MAP_MAX;
1778 			result = 1;
1779 		}
1780 	}
1781 	spin_unlock(&swap_lock);
1782 out:
1783 	return result;
1784 
1785 bad_file:
1786 	printk(KERN_ERR "swap_dup: %s%08lx\n", Bad_file, entry.val);
1787 	goto out;
1788 }
1789 
1790 struct swap_info_struct *
1791 get_swap_info_struct(unsigned type)
1792 {
1793 	return &swap_info[type];
1794 }
1795 
1796 /*
1797  * swap_lock prevents swap_map being freed. Don't grab an extra
1798  * reference on the swaphandle, it doesn't matter if it becomes unused.
1799  */
1800 int valid_swaphandles(swp_entry_t entry, unsigned long *offset)
1801 {
1802 	struct swap_info_struct *si;
1803 	int our_page_cluster = page_cluster;
1804 	pgoff_t target, toff;
1805 	pgoff_t base, end;
1806 	int nr_pages = 0;
1807 
1808 	if (!our_page_cluster)	/* no readahead */
1809 		return 0;
1810 
1811 	si = &swap_info[swp_type(entry)];
1812 	target = swp_offset(entry);
1813 	base = (target >> our_page_cluster) << our_page_cluster;
1814 	end = base + (1 << our_page_cluster);
1815 	if (!base)		/* first page is swap header */
1816 		base++;
1817 
1818 	spin_lock(&swap_lock);
1819 	if (end > si->max)	/* don't go beyond end of map */
1820 		end = si->max;
1821 
1822 	/* Count contiguous allocated slots above our target */
1823 	for (toff = target; ++toff < end; nr_pages++) {
1824 		/* Don't read in free or bad pages */
1825 		if (!si->swap_map[toff])
1826 			break;
1827 		if (si->swap_map[toff] == SWAP_MAP_BAD)
1828 			break;
1829 	}
1830 	/* Count contiguous allocated slots below our target */
1831 	for (toff = target; --toff >= base; nr_pages++) {
1832 		/* Don't read in free or bad pages */
1833 		if (!si->swap_map[toff])
1834 			break;
1835 		if (si->swap_map[toff] == SWAP_MAP_BAD)
1836 			break;
1837 	}
1838 	spin_unlock(&swap_lock);
1839 
1840 	/*
1841 	 * Indicate starting offset, and return number of pages to get:
1842 	 * if only 1, say 0, since there's then no readahead to be done.
1843 	 */
1844 	*offset = ++toff;
1845 	return nr_pages? ++nr_pages: 0;
1846 }
1847