xref: /openbmc/linux/mm/swapfile.c (revision ecefa105)
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  *  linux/mm/swapfile.c
4  *
5  *  Copyright (C) 1991, 1992, 1993, 1994  Linus Torvalds
6  *  Swap reorganised 29.12.95, Stephen Tweedie
7  */
8 
9 #include <linux/blkdev.h>
10 #include <linux/mm.h>
11 #include <linux/sched/mm.h>
12 #include <linux/sched/task.h>
13 #include <linux/hugetlb.h>
14 #include <linux/mman.h>
15 #include <linux/slab.h>
16 #include <linux/kernel_stat.h>
17 #include <linux/swap.h>
18 #include <linux/vmalloc.h>
19 #include <linux/pagemap.h>
20 #include <linux/namei.h>
21 #include <linux/shmem_fs.h>
22 #include <linux/blk-cgroup.h>
23 #include <linux/random.h>
24 #include <linux/writeback.h>
25 #include <linux/proc_fs.h>
26 #include <linux/seq_file.h>
27 #include <linux/init.h>
28 #include <linux/ksm.h>
29 #include <linux/rmap.h>
30 #include <linux/security.h>
31 #include <linux/backing-dev.h>
32 #include <linux/mutex.h>
33 #include <linux/capability.h>
34 #include <linux/syscalls.h>
35 #include <linux/memcontrol.h>
36 #include <linux/poll.h>
37 #include <linux/oom.h>
38 #include <linux/frontswap.h>
39 #include <linux/swapfile.h>
40 #include <linux/export.h>
41 #include <linux/swap_slots.h>
42 #include <linux/sort.h>
43 #include <linux/completion.h>
44 
45 #include <asm/tlbflush.h>
46 #include <linux/swapops.h>
47 #include <linux/swap_cgroup.h>
48 #include "swap.h"
49 
50 static bool swap_count_continued(struct swap_info_struct *, pgoff_t,
51 				 unsigned char);
52 static void free_swap_count_continuations(struct swap_info_struct *);
53 
54 static DEFINE_SPINLOCK(swap_lock);
55 static unsigned int nr_swapfiles;
56 atomic_long_t nr_swap_pages;
57 /*
58  * Some modules use swappable objects and may try to swap them out under
59  * memory pressure (via the shrinker). Before doing so, they may wish to
60  * check to see if any swap space is available.
61  */
62 EXPORT_SYMBOL_GPL(nr_swap_pages);
63 /* protected with swap_lock. reading in vm_swap_full() doesn't need lock */
64 long total_swap_pages;
65 static int least_priority = -1;
66 unsigned long swapfile_maximum_size;
67 #ifdef CONFIG_MIGRATION
68 bool swap_migration_ad_supported;
69 #endif	/* CONFIG_MIGRATION */
70 
71 static const char Bad_file[] = "Bad swap file entry ";
72 static const char Unused_file[] = "Unused swap file entry ";
73 static const char Bad_offset[] = "Bad swap offset entry ";
74 static const char Unused_offset[] = "Unused swap offset entry ";
75 
76 /*
77  * all active swap_info_structs
78  * protected with swap_lock, and ordered by priority.
79  */
80 static PLIST_HEAD(swap_active_head);
81 
82 /*
83  * all available (active, not full) swap_info_structs
84  * protected with swap_avail_lock, ordered by priority.
85  * This is used by folio_alloc_swap() instead of swap_active_head
86  * because swap_active_head includes all swap_info_structs,
87  * but folio_alloc_swap() doesn't need to look at full ones.
88  * This uses its own lock instead of swap_lock because when a
89  * swap_info_struct changes between not-full/full, it needs to
90  * add/remove itself to/from this list, but the swap_info_struct->lock
91  * is held and the locking order requires swap_lock to be taken
92  * before any swap_info_struct->lock.
93  */
94 static struct plist_head *swap_avail_heads;
95 static DEFINE_SPINLOCK(swap_avail_lock);
96 
97 struct swap_info_struct *swap_info[MAX_SWAPFILES];
98 
99 static DEFINE_MUTEX(swapon_mutex);
100 
101 static DECLARE_WAIT_QUEUE_HEAD(proc_poll_wait);
102 /* Activity counter to indicate that a swapon or swapoff has occurred */
103 static atomic_t proc_poll_event = ATOMIC_INIT(0);
104 
105 atomic_t nr_rotate_swap = ATOMIC_INIT(0);
106 
107 static struct swap_info_struct *swap_type_to_swap_info(int type)
108 {
109 	if (type >= MAX_SWAPFILES)
110 		return NULL;
111 
112 	return READ_ONCE(swap_info[type]); /* rcu_dereference() */
113 }
114 
115 static inline unsigned char swap_count(unsigned char ent)
116 {
117 	return ent & ~SWAP_HAS_CACHE;	/* may include COUNT_CONTINUED flag */
118 }
119 
120 /* Reclaim the swap entry anyway if possible */
121 #define TTRS_ANYWAY		0x1
122 /*
123  * Reclaim the swap entry if there are no more mappings of the
124  * corresponding page
125  */
126 #define TTRS_UNMAPPED		0x2
127 /* Reclaim the swap entry if swap is getting full*/
128 #define TTRS_FULL		0x4
129 
130 /* returns 1 if swap entry is freed */
131 static int __try_to_reclaim_swap(struct swap_info_struct *si,
132 				 unsigned long offset, unsigned long flags)
133 {
134 	swp_entry_t entry = swp_entry(si->type, offset);
135 	struct folio *folio;
136 	int ret = 0;
137 
138 	folio = filemap_get_folio(swap_address_space(entry), offset);
139 	if (!folio)
140 		return 0;
141 	/*
142 	 * When this function is called from scan_swap_map_slots() and it's
143 	 * called by vmscan.c at reclaiming folios. So we hold a folio lock
144 	 * here. We have to use trylock for avoiding deadlock. This is a special
145 	 * case and you should use folio_free_swap() with explicit folio_lock()
146 	 * in usual operations.
147 	 */
148 	if (folio_trylock(folio)) {
149 		if ((flags & TTRS_ANYWAY) ||
150 		    ((flags & TTRS_UNMAPPED) && !folio_mapped(folio)) ||
151 		    ((flags & TTRS_FULL) && mem_cgroup_swap_full(folio)))
152 			ret = folio_free_swap(folio);
153 		folio_unlock(folio);
154 	}
155 	folio_put(folio);
156 	return ret;
157 }
158 
159 static inline struct swap_extent *first_se(struct swap_info_struct *sis)
160 {
161 	struct rb_node *rb = rb_first(&sis->swap_extent_root);
162 	return rb_entry(rb, struct swap_extent, rb_node);
163 }
164 
165 static inline struct swap_extent *next_se(struct swap_extent *se)
166 {
167 	struct rb_node *rb = rb_next(&se->rb_node);
168 	return rb ? rb_entry(rb, struct swap_extent, rb_node) : NULL;
169 }
170 
171 /*
172  * swapon tell device that all the old swap contents can be discarded,
173  * to allow the swap device to optimize its wear-levelling.
174  */
175 static int discard_swap(struct swap_info_struct *si)
176 {
177 	struct swap_extent *se;
178 	sector_t start_block;
179 	sector_t nr_blocks;
180 	int err = 0;
181 
182 	/* Do not discard the swap header page! */
183 	se = first_se(si);
184 	start_block = (se->start_block + 1) << (PAGE_SHIFT - 9);
185 	nr_blocks = ((sector_t)se->nr_pages - 1) << (PAGE_SHIFT - 9);
186 	if (nr_blocks) {
187 		err = blkdev_issue_discard(si->bdev, start_block,
188 				nr_blocks, GFP_KERNEL);
189 		if (err)
190 			return err;
191 		cond_resched();
192 	}
193 
194 	for (se = next_se(se); se; se = next_se(se)) {
195 		start_block = se->start_block << (PAGE_SHIFT - 9);
196 		nr_blocks = (sector_t)se->nr_pages << (PAGE_SHIFT - 9);
197 
198 		err = blkdev_issue_discard(si->bdev, start_block,
199 				nr_blocks, GFP_KERNEL);
200 		if (err)
201 			break;
202 
203 		cond_resched();
204 	}
205 	return err;		/* That will often be -EOPNOTSUPP */
206 }
207 
208 static struct swap_extent *
209 offset_to_swap_extent(struct swap_info_struct *sis, unsigned long offset)
210 {
211 	struct swap_extent *se;
212 	struct rb_node *rb;
213 
214 	rb = sis->swap_extent_root.rb_node;
215 	while (rb) {
216 		se = rb_entry(rb, struct swap_extent, rb_node);
217 		if (offset < se->start_page)
218 			rb = rb->rb_left;
219 		else if (offset >= se->start_page + se->nr_pages)
220 			rb = rb->rb_right;
221 		else
222 			return se;
223 	}
224 	/* It *must* be present */
225 	BUG();
226 }
227 
228 sector_t swap_page_sector(struct page *page)
229 {
230 	struct swap_info_struct *sis = page_swap_info(page);
231 	struct swap_extent *se;
232 	sector_t sector;
233 	pgoff_t offset;
234 
235 	offset = __page_file_index(page);
236 	se = offset_to_swap_extent(sis, offset);
237 	sector = se->start_block + (offset - se->start_page);
238 	return sector << (PAGE_SHIFT - 9);
239 }
240 
241 /*
242  * swap allocation tell device that a cluster of swap can now be discarded,
243  * to allow the swap device to optimize its wear-levelling.
244  */
245 static void discard_swap_cluster(struct swap_info_struct *si,
246 				 pgoff_t start_page, pgoff_t nr_pages)
247 {
248 	struct swap_extent *se = offset_to_swap_extent(si, start_page);
249 
250 	while (nr_pages) {
251 		pgoff_t offset = start_page - se->start_page;
252 		sector_t start_block = se->start_block + offset;
253 		sector_t nr_blocks = se->nr_pages - offset;
254 
255 		if (nr_blocks > nr_pages)
256 			nr_blocks = nr_pages;
257 		start_page += nr_blocks;
258 		nr_pages -= nr_blocks;
259 
260 		start_block <<= PAGE_SHIFT - 9;
261 		nr_blocks <<= PAGE_SHIFT - 9;
262 		if (blkdev_issue_discard(si->bdev, start_block,
263 					nr_blocks, GFP_NOIO))
264 			break;
265 
266 		se = next_se(se);
267 	}
268 }
269 
270 #ifdef CONFIG_THP_SWAP
271 #define SWAPFILE_CLUSTER	HPAGE_PMD_NR
272 
273 #define swap_entry_size(size)	(size)
274 #else
275 #define SWAPFILE_CLUSTER	256
276 
277 /*
278  * Define swap_entry_size() as constant to let compiler to optimize
279  * out some code if !CONFIG_THP_SWAP
280  */
281 #define swap_entry_size(size)	1
282 #endif
283 #define LATENCY_LIMIT		256
284 
285 static inline void cluster_set_flag(struct swap_cluster_info *info,
286 	unsigned int flag)
287 {
288 	info->flags = flag;
289 }
290 
291 static inline unsigned int cluster_count(struct swap_cluster_info *info)
292 {
293 	return info->data;
294 }
295 
296 static inline void cluster_set_count(struct swap_cluster_info *info,
297 				     unsigned int c)
298 {
299 	info->data = c;
300 }
301 
302 static inline void cluster_set_count_flag(struct swap_cluster_info *info,
303 					 unsigned int c, unsigned int f)
304 {
305 	info->flags = f;
306 	info->data = c;
307 }
308 
309 static inline unsigned int cluster_next(struct swap_cluster_info *info)
310 {
311 	return info->data;
312 }
313 
314 static inline void cluster_set_next(struct swap_cluster_info *info,
315 				    unsigned int n)
316 {
317 	info->data = n;
318 }
319 
320 static inline void cluster_set_next_flag(struct swap_cluster_info *info,
321 					 unsigned int n, unsigned int f)
322 {
323 	info->flags = f;
324 	info->data = n;
325 }
326 
327 static inline bool cluster_is_free(struct swap_cluster_info *info)
328 {
329 	return info->flags & CLUSTER_FLAG_FREE;
330 }
331 
332 static inline bool cluster_is_null(struct swap_cluster_info *info)
333 {
334 	return info->flags & CLUSTER_FLAG_NEXT_NULL;
335 }
336 
337 static inline void cluster_set_null(struct swap_cluster_info *info)
338 {
339 	info->flags = CLUSTER_FLAG_NEXT_NULL;
340 	info->data = 0;
341 }
342 
343 static inline bool cluster_is_huge(struct swap_cluster_info *info)
344 {
345 	if (IS_ENABLED(CONFIG_THP_SWAP))
346 		return info->flags & CLUSTER_FLAG_HUGE;
347 	return false;
348 }
349 
350 static inline void cluster_clear_huge(struct swap_cluster_info *info)
351 {
352 	info->flags &= ~CLUSTER_FLAG_HUGE;
353 }
354 
355 static inline struct swap_cluster_info *lock_cluster(struct swap_info_struct *si,
356 						     unsigned long offset)
357 {
358 	struct swap_cluster_info *ci;
359 
360 	ci = si->cluster_info;
361 	if (ci) {
362 		ci += offset / SWAPFILE_CLUSTER;
363 		spin_lock(&ci->lock);
364 	}
365 	return ci;
366 }
367 
368 static inline void unlock_cluster(struct swap_cluster_info *ci)
369 {
370 	if (ci)
371 		spin_unlock(&ci->lock);
372 }
373 
374 /*
375  * Determine the locking method in use for this device.  Return
376  * swap_cluster_info if SSD-style cluster-based locking is in place.
377  */
378 static inline struct swap_cluster_info *lock_cluster_or_swap_info(
379 		struct swap_info_struct *si, unsigned long offset)
380 {
381 	struct swap_cluster_info *ci;
382 
383 	/* Try to use fine-grained SSD-style locking if available: */
384 	ci = lock_cluster(si, offset);
385 	/* Otherwise, fall back to traditional, coarse locking: */
386 	if (!ci)
387 		spin_lock(&si->lock);
388 
389 	return ci;
390 }
391 
392 static inline void unlock_cluster_or_swap_info(struct swap_info_struct *si,
393 					       struct swap_cluster_info *ci)
394 {
395 	if (ci)
396 		unlock_cluster(ci);
397 	else
398 		spin_unlock(&si->lock);
399 }
400 
401 static inline bool cluster_list_empty(struct swap_cluster_list *list)
402 {
403 	return cluster_is_null(&list->head);
404 }
405 
406 static inline unsigned int cluster_list_first(struct swap_cluster_list *list)
407 {
408 	return cluster_next(&list->head);
409 }
410 
411 static void cluster_list_init(struct swap_cluster_list *list)
412 {
413 	cluster_set_null(&list->head);
414 	cluster_set_null(&list->tail);
415 }
416 
417 static void cluster_list_add_tail(struct swap_cluster_list *list,
418 				  struct swap_cluster_info *ci,
419 				  unsigned int idx)
420 {
421 	if (cluster_list_empty(list)) {
422 		cluster_set_next_flag(&list->head, idx, 0);
423 		cluster_set_next_flag(&list->tail, idx, 0);
424 	} else {
425 		struct swap_cluster_info *ci_tail;
426 		unsigned int tail = cluster_next(&list->tail);
427 
428 		/*
429 		 * Nested cluster lock, but both cluster locks are
430 		 * only acquired when we held swap_info_struct->lock
431 		 */
432 		ci_tail = ci + tail;
433 		spin_lock_nested(&ci_tail->lock, SINGLE_DEPTH_NESTING);
434 		cluster_set_next(ci_tail, idx);
435 		spin_unlock(&ci_tail->lock);
436 		cluster_set_next_flag(&list->tail, idx, 0);
437 	}
438 }
439 
440 static unsigned int cluster_list_del_first(struct swap_cluster_list *list,
441 					   struct swap_cluster_info *ci)
442 {
443 	unsigned int idx;
444 
445 	idx = cluster_next(&list->head);
446 	if (cluster_next(&list->tail) == idx) {
447 		cluster_set_null(&list->head);
448 		cluster_set_null(&list->tail);
449 	} else
450 		cluster_set_next_flag(&list->head,
451 				      cluster_next(&ci[idx]), 0);
452 
453 	return idx;
454 }
455 
456 /* Add a cluster to discard list and schedule it to do discard */
457 static void swap_cluster_schedule_discard(struct swap_info_struct *si,
458 		unsigned int idx)
459 {
460 	/*
461 	 * If scan_swap_map_slots() can't find a free cluster, it will check
462 	 * si->swap_map directly. To make sure the discarding cluster isn't
463 	 * taken by scan_swap_map_slots(), mark the swap entries bad (occupied).
464 	 * It will be cleared after discard
465 	 */
466 	memset(si->swap_map + idx * SWAPFILE_CLUSTER,
467 			SWAP_MAP_BAD, SWAPFILE_CLUSTER);
468 
469 	cluster_list_add_tail(&si->discard_clusters, si->cluster_info, idx);
470 
471 	schedule_work(&si->discard_work);
472 }
473 
474 static void __free_cluster(struct swap_info_struct *si, unsigned long idx)
475 {
476 	struct swap_cluster_info *ci = si->cluster_info;
477 
478 	cluster_set_flag(ci + idx, CLUSTER_FLAG_FREE);
479 	cluster_list_add_tail(&si->free_clusters, ci, idx);
480 }
481 
482 /*
483  * Doing discard actually. After a cluster discard is finished, the cluster
484  * will be added to free cluster list. caller should hold si->lock.
485 */
486 static void swap_do_scheduled_discard(struct swap_info_struct *si)
487 {
488 	struct swap_cluster_info *info, *ci;
489 	unsigned int idx;
490 
491 	info = si->cluster_info;
492 
493 	while (!cluster_list_empty(&si->discard_clusters)) {
494 		idx = cluster_list_del_first(&si->discard_clusters, info);
495 		spin_unlock(&si->lock);
496 
497 		discard_swap_cluster(si, idx * SWAPFILE_CLUSTER,
498 				SWAPFILE_CLUSTER);
499 
500 		spin_lock(&si->lock);
501 		ci = lock_cluster(si, idx * SWAPFILE_CLUSTER);
502 		__free_cluster(si, idx);
503 		memset(si->swap_map + idx * SWAPFILE_CLUSTER,
504 				0, SWAPFILE_CLUSTER);
505 		unlock_cluster(ci);
506 	}
507 }
508 
509 static void swap_discard_work(struct work_struct *work)
510 {
511 	struct swap_info_struct *si;
512 
513 	si = container_of(work, struct swap_info_struct, discard_work);
514 
515 	spin_lock(&si->lock);
516 	swap_do_scheduled_discard(si);
517 	spin_unlock(&si->lock);
518 }
519 
520 static void swap_users_ref_free(struct percpu_ref *ref)
521 {
522 	struct swap_info_struct *si;
523 
524 	si = container_of(ref, struct swap_info_struct, users);
525 	complete(&si->comp);
526 }
527 
528 static void alloc_cluster(struct swap_info_struct *si, unsigned long idx)
529 {
530 	struct swap_cluster_info *ci = si->cluster_info;
531 
532 	VM_BUG_ON(cluster_list_first(&si->free_clusters) != idx);
533 	cluster_list_del_first(&si->free_clusters, ci);
534 	cluster_set_count_flag(ci + idx, 0, 0);
535 }
536 
537 static void free_cluster(struct swap_info_struct *si, unsigned long idx)
538 {
539 	struct swap_cluster_info *ci = si->cluster_info + idx;
540 
541 	VM_BUG_ON(cluster_count(ci) != 0);
542 	/*
543 	 * If the swap is discardable, prepare discard the cluster
544 	 * instead of free it immediately. The cluster will be freed
545 	 * after discard.
546 	 */
547 	if ((si->flags & (SWP_WRITEOK | SWP_PAGE_DISCARD)) ==
548 	    (SWP_WRITEOK | SWP_PAGE_DISCARD)) {
549 		swap_cluster_schedule_discard(si, idx);
550 		return;
551 	}
552 
553 	__free_cluster(si, idx);
554 }
555 
556 /*
557  * The cluster corresponding to page_nr will be used. The cluster will be
558  * removed from free cluster list and its usage counter will be increased.
559  */
560 static void inc_cluster_info_page(struct swap_info_struct *p,
561 	struct swap_cluster_info *cluster_info, unsigned long page_nr)
562 {
563 	unsigned long idx = page_nr / SWAPFILE_CLUSTER;
564 
565 	if (!cluster_info)
566 		return;
567 	if (cluster_is_free(&cluster_info[idx]))
568 		alloc_cluster(p, idx);
569 
570 	VM_BUG_ON(cluster_count(&cluster_info[idx]) >= SWAPFILE_CLUSTER);
571 	cluster_set_count(&cluster_info[idx],
572 		cluster_count(&cluster_info[idx]) + 1);
573 }
574 
575 /*
576  * The cluster corresponding to page_nr decreases one usage. If the usage
577  * counter becomes 0, which means no page in the cluster is in using, we can
578  * optionally discard the cluster and add it to free cluster list.
579  */
580 static void dec_cluster_info_page(struct swap_info_struct *p,
581 	struct swap_cluster_info *cluster_info, unsigned long page_nr)
582 {
583 	unsigned long idx = page_nr / SWAPFILE_CLUSTER;
584 
585 	if (!cluster_info)
586 		return;
587 
588 	VM_BUG_ON(cluster_count(&cluster_info[idx]) == 0);
589 	cluster_set_count(&cluster_info[idx],
590 		cluster_count(&cluster_info[idx]) - 1);
591 
592 	if (cluster_count(&cluster_info[idx]) == 0)
593 		free_cluster(p, idx);
594 }
595 
596 /*
597  * It's possible scan_swap_map_slots() uses a free cluster in the middle of free
598  * cluster list. Avoiding such abuse to avoid list corruption.
599  */
600 static bool
601 scan_swap_map_ssd_cluster_conflict(struct swap_info_struct *si,
602 	unsigned long offset)
603 {
604 	struct percpu_cluster *percpu_cluster;
605 	bool conflict;
606 
607 	offset /= SWAPFILE_CLUSTER;
608 	conflict = !cluster_list_empty(&si->free_clusters) &&
609 		offset != cluster_list_first(&si->free_clusters) &&
610 		cluster_is_free(&si->cluster_info[offset]);
611 
612 	if (!conflict)
613 		return false;
614 
615 	percpu_cluster = this_cpu_ptr(si->percpu_cluster);
616 	cluster_set_null(&percpu_cluster->index);
617 	return true;
618 }
619 
620 /*
621  * Try to get a swap entry from current cpu's swap entry pool (a cluster). This
622  * might involve allocating a new cluster for current CPU too.
623  */
624 static bool scan_swap_map_try_ssd_cluster(struct swap_info_struct *si,
625 	unsigned long *offset, unsigned long *scan_base)
626 {
627 	struct percpu_cluster *cluster;
628 	struct swap_cluster_info *ci;
629 	unsigned long tmp, max;
630 
631 new_cluster:
632 	cluster = this_cpu_ptr(si->percpu_cluster);
633 	if (cluster_is_null(&cluster->index)) {
634 		if (!cluster_list_empty(&si->free_clusters)) {
635 			cluster->index = si->free_clusters.head;
636 			cluster->next = cluster_next(&cluster->index) *
637 					SWAPFILE_CLUSTER;
638 		} else if (!cluster_list_empty(&si->discard_clusters)) {
639 			/*
640 			 * we don't have free cluster but have some clusters in
641 			 * discarding, do discard now and reclaim them, then
642 			 * reread cluster_next_cpu since we dropped si->lock
643 			 */
644 			swap_do_scheduled_discard(si);
645 			*scan_base = this_cpu_read(*si->cluster_next_cpu);
646 			*offset = *scan_base;
647 			goto new_cluster;
648 		} else
649 			return false;
650 	}
651 
652 	/*
653 	 * Other CPUs can use our cluster if they can't find a free cluster,
654 	 * check if there is still free entry in the cluster
655 	 */
656 	tmp = cluster->next;
657 	max = min_t(unsigned long, si->max,
658 		    (cluster_next(&cluster->index) + 1) * SWAPFILE_CLUSTER);
659 	if (tmp < max) {
660 		ci = lock_cluster(si, tmp);
661 		while (tmp < max) {
662 			if (!si->swap_map[tmp])
663 				break;
664 			tmp++;
665 		}
666 		unlock_cluster(ci);
667 	}
668 	if (tmp >= max) {
669 		cluster_set_null(&cluster->index);
670 		goto new_cluster;
671 	}
672 	cluster->next = tmp + 1;
673 	*offset = tmp;
674 	*scan_base = tmp;
675 	return true;
676 }
677 
678 static void __del_from_avail_list(struct swap_info_struct *p)
679 {
680 	int nid;
681 
682 	for_each_node(nid)
683 		plist_del(&p->avail_lists[nid], &swap_avail_heads[nid]);
684 }
685 
686 static void del_from_avail_list(struct swap_info_struct *p)
687 {
688 	spin_lock(&swap_avail_lock);
689 	__del_from_avail_list(p);
690 	spin_unlock(&swap_avail_lock);
691 }
692 
693 static void swap_range_alloc(struct swap_info_struct *si, unsigned long offset,
694 			     unsigned int nr_entries)
695 {
696 	unsigned int end = offset + nr_entries - 1;
697 
698 	if (offset == si->lowest_bit)
699 		si->lowest_bit += nr_entries;
700 	if (end == si->highest_bit)
701 		WRITE_ONCE(si->highest_bit, si->highest_bit - nr_entries);
702 	WRITE_ONCE(si->inuse_pages, si->inuse_pages + nr_entries);
703 	if (si->inuse_pages == si->pages) {
704 		si->lowest_bit = si->max;
705 		si->highest_bit = 0;
706 		del_from_avail_list(si);
707 	}
708 }
709 
710 static void add_to_avail_list(struct swap_info_struct *p)
711 {
712 	int nid;
713 
714 	spin_lock(&swap_avail_lock);
715 	for_each_node(nid) {
716 		WARN_ON(!plist_node_empty(&p->avail_lists[nid]));
717 		plist_add(&p->avail_lists[nid], &swap_avail_heads[nid]);
718 	}
719 	spin_unlock(&swap_avail_lock);
720 }
721 
722 static void swap_range_free(struct swap_info_struct *si, unsigned long offset,
723 			    unsigned int nr_entries)
724 {
725 	unsigned long begin = offset;
726 	unsigned long end = offset + nr_entries - 1;
727 	void (*swap_slot_free_notify)(struct block_device *, unsigned long);
728 
729 	if (offset < si->lowest_bit)
730 		si->lowest_bit = offset;
731 	if (end > si->highest_bit) {
732 		bool was_full = !si->highest_bit;
733 
734 		WRITE_ONCE(si->highest_bit, end);
735 		if (was_full && (si->flags & SWP_WRITEOK))
736 			add_to_avail_list(si);
737 	}
738 	atomic_long_add(nr_entries, &nr_swap_pages);
739 	WRITE_ONCE(si->inuse_pages, si->inuse_pages - nr_entries);
740 	if (si->flags & SWP_BLKDEV)
741 		swap_slot_free_notify =
742 			si->bdev->bd_disk->fops->swap_slot_free_notify;
743 	else
744 		swap_slot_free_notify = NULL;
745 	while (offset <= end) {
746 		arch_swap_invalidate_page(si->type, offset);
747 		frontswap_invalidate_page(si->type, offset);
748 		if (swap_slot_free_notify)
749 			swap_slot_free_notify(si->bdev, offset);
750 		offset++;
751 	}
752 	clear_shadow_from_swap_cache(si->type, begin, end);
753 }
754 
755 static void set_cluster_next(struct swap_info_struct *si, unsigned long next)
756 {
757 	unsigned long prev;
758 
759 	if (!(si->flags & SWP_SOLIDSTATE)) {
760 		si->cluster_next = next;
761 		return;
762 	}
763 
764 	prev = this_cpu_read(*si->cluster_next_cpu);
765 	/*
766 	 * Cross the swap address space size aligned trunk, choose
767 	 * another trunk randomly to avoid lock contention on swap
768 	 * address space if possible.
769 	 */
770 	if ((prev >> SWAP_ADDRESS_SPACE_SHIFT) !=
771 	    (next >> SWAP_ADDRESS_SPACE_SHIFT)) {
772 		/* No free swap slots available */
773 		if (si->highest_bit <= si->lowest_bit)
774 			return;
775 		next = get_random_u32_inclusive(si->lowest_bit, si->highest_bit);
776 		next = ALIGN_DOWN(next, SWAP_ADDRESS_SPACE_PAGES);
777 		next = max_t(unsigned int, next, si->lowest_bit);
778 	}
779 	this_cpu_write(*si->cluster_next_cpu, next);
780 }
781 
782 static bool swap_offset_available_and_locked(struct swap_info_struct *si,
783 					     unsigned long offset)
784 {
785 	if (data_race(!si->swap_map[offset])) {
786 		spin_lock(&si->lock);
787 		return true;
788 	}
789 
790 	if (vm_swap_full() && READ_ONCE(si->swap_map[offset]) == SWAP_HAS_CACHE) {
791 		spin_lock(&si->lock);
792 		return true;
793 	}
794 
795 	return false;
796 }
797 
798 static int scan_swap_map_slots(struct swap_info_struct *si,
799 			       unsigned char usage, int nr,
800 			       swp_entry_t slots[])
801 {
802 	struct swap_cluster_info *ci;
803 	unsigned long offset;
804 	unsigned long scan_base;
805 	unsigned long last_in_cluster = 0;
806 	int latency_ration = LATENCY_LIMIT;
807 	int n_ret = 0;
808 	bool scanned_many = false;
809 
810 	/*
811 	 * We try to cluster swap pages by allocating them sequentially
812 	 * in swap.  Once we've allocated SWAPFILE_CLUSTER pages this
813 	 * way, however, we resort to first-free allocation, starting
814 	 * a new cluster.  This prevents us from scattering swap pages
815 	 * all over the entire swap partition, so that we reduce
816 	 * overall disk seek times between swap pages.  -- sct
817 	 * But we do now try to find an empty cluster.  -Andrea
818 	 * And we let swap pages go all over an SSD partition.  Hugh
819 	 */
820 
821 	si->flags += SWP_SCANNING;
822 	/*
823 	 * Use percpu scan base for SSD to reduce lock contention on
824 	 * cluster and swap cache.  For HDD, sequential access is more
825 	 * important.
826 	 */
827 	if (si->flags & SWP_SOLIDSTATE)
828 		scan_base = this_cpu_read(*si->cluster_next_cpu);
829 	else
830 		scan_base = si->cluster_next;
831 	offset = scan_base;
832 
833 	/* SSD algorithm */
834 	if (si->cluster_info) {
835 		if (!scan_swap_map_try_ssd_cluster(si, &offset, &scan_base))
836 			goto scan;
837 	} else if (unlikely(!si->cluster_nr--)) {
838 		if (si->pages - si->inuse_pages < SWAPFILE_CLUSTER) {
839 			si->cluster_nr = SWAPFILE_CLUSTER - 1;
840 			goto checks;
841 		}
842 
843 		spin_unlock(&si->lock);
844 
845 		/*
846 		 * If seek is expensive, start searching for new cluster from
847 		 * start of partition, to minimize the span of allocated swap.
848 		 * If seek is cheap, that is the SWP_SOLIDSTATE si->cluster_info
849 		 * case, just handled by scan_swap_map_try_ssd_cluster() above.
850 		 */
851 		scan_base = offset = si->lowest_bit;
852 		last_in_cluster = offset + SWAPFILE_CLUSTER - 1;
853 
854 		/* Locate the first empty (unaligned) cluster */
855 		for (; last_in_cluster <= si->highest_bit; offset++) {
856 			if (si->swap_map[offset])
857 				last_in_cluster = offset + SWAPFILE_CLUSTER;
858 			else if (offset == last_in_cluster) {
859 				spin_lock(&si->lock);
860 				offset -= SWAPFILE_CLUSTER - 1;
861 				si->cluster_next = offset;
862 				si->cluster_nr = SWAPFILE_CLUSTER - 1;
863 				goto checks;
864 			}
865 			if (unlikely(--latency_ration < 0)) {
866 				cond_resched();
867 				latency_ration = LATENCY_LIMIT;
868 			}
869 		}
870 
871 		offset = scan_base;
872 		spin_lock(&si->lock);
873 		si->cluster_nr = SWAPFILE_CLUSTER - 1;
874 	}
875 
876 checks:
877 	if (si->cluster_info) {
878 		while (scan_swap_map_ssd_cluster_conflict(si, offset)) {
879 		/* take a break if we already got some slots */
880 			if (n_ret)
881 				goto done;
882 			if (!scan_swap_map_try_ssd_cluster(si, &offset,
883 							&scan_base))
884 				goto scan;
885 		}
886 	}
887 	if (!(si->flags & SWP_WRITEOK))
888 		goto no_page;
889 	if (!si->highest_bit)
890 		goto no_page;
891 	if (offset > si->highest_bit)
892 		scan_base = offset = si->lowest_bit;
893 
894 	ci = lock_cluster(si, offset);
895 	/* reuse swap entry of cache-only swap if not busy. */
896 	if (vm_swap_full() && si->swap_map[offset] == SWAP_HAS_CACHE) {
897 		int swap_was_freed;
898 		unlock_cluster(ci);
899 		spin_unlock(&si->lock);
900 		swap_was_freed = __try_to_reclaim_swap(si, offset, TTRS_ANYWAY);
901 		spin_lock(&si->lock);
902 		/* entry was freed successfully, try to use this again */
903 		if (swap_was_freed)
904 			goto checks;
905 		goto scan; /* check next one */
906 	}
907 
908 	if (si->swap_map[offset]) {
909 		unlock_cluster(ci);
910 		if (!n_ret)
911 			goto scan;
912 		else
913 			goto done;
914 	}
915 	WRITE_ONCE(si->swap_map[offset], usage);
916 	inc_cluster_info_page(si, si->cluster_info, offset);
917 	unlock_cluster(ci);
918 
919 	swap_range_alloc(si, offset, 1);
920 	slots[n_ret++] = swp_entry(si->type, offset);
921 
922 	/* got enough slots or reach max slots? */
923 	if ((n_ret == nr) || (offset >= si->highest_bit))
924 		goto done;
925 
926 	/* search for next available slot */
927 
928 	/* time to take a break? */
929 	if (unlikely(--latency_ration < 0)) {
930 		if (n_ret)
931 			goto done;
932 		spin_unlock(&si->lock);
933 		cond_resched();
934 		spin_lock(&si->lock);
935 		latency_ration = LATENCY_LIMIT;
936 	}
937 
938 	/* try to get more slots in cluster */
939 	if (si->cluster_info) {
940 		if (scan_swap_map_try_ssd_cluster(si, &offset, &scan_base))
941 			goto checks;
942 	} else if (si->cluster_nr && !si->swap_map[++offset]) {
943 		/* non-ssd case, still more slots in cluster? */
944 		--si->cluster_nr;
945 		goto checks;
946 	}
947 
948 	/*
949 	 * Even if there's no free clusters available (fragmented),
950 	 * try to scan a little more quickly with lock held unless we
951 	 * have scanned too many slots already.
952 	 */
953 	if (!scanned_many) {
954 		unsigned long scan_limit;
955 
956 		if (offset < scan_base)
957 			scan_limit = scan_base;
958 		else
959 			scan_limit = si->highest_bit;
960 		for (; offset <= scan_limit && --latency_ration > 0;
961 		     offset++) {
962 			if (!si->swap_map[offset])
963 				goto checks;
964 		}
965 	}
966 
967 done:
968 	set_cluster_next(si, offset + 1);
969 	si->flags -= SWP_SCANNING;
970 	return n_ret;
971 
972 scan:
973 	spin_unlock(&si->lock);
974 	while (++offset <= READ_ONCE(si->highest_bit)) {
975 		if (unlikely(--latency_ration < 0)) {
976 			cond_resched();
977 			latency_ration = LATENCY_LIMIT;
978 			scanned_many = true;
979 		}
980 		if (swap_offset_available_and_locked(si, offset))
981 			goto checks;
982 	}
983 	offset = si->lowest_bit;
984 	while (offset < scan_base) {
985 		if (unlikely(--latency_ration < 0)) {
986 			cond_resched();
987 			latency_ration = LATENCY_LIMIT;
988 			scanned_many = true;
989 		}
990 		if (swap_offset_available_and_locked(si, offset))
991 			goto checks;
992 		offset++;
993 	}
994 	spin_lock(&si->lock);
995 
996 no_page:
997 	si->flags -= SWP_SCANNING;
998 	return n_ret;
999 }
1000 
1001 static int swap_alloc_cluster(struct swap_info_struct *si, swp_entry_t *slot)
1002 {
1003 	unsigned long idx;
1004 	struct swap_cluster_info *ci;
1005 	unsigned long offset;
1006 
1007 	/*
1008 	 * Should not even be attempting cluster allocations when huge
1009 	 * page swap is disabled.  Warn and fail the allocation.
1010 	 */
1011 	if (!IS_ENABLED(CONFIG_THP_SWAP)) {
1012 		VM_WARN_ON_ONCE(1);
1013 		return 0;
1014 	}
1015 
1016 	if (cluster_list_empty(&si->free_clusters))
1017 		return 0;
1018 
1019 	idx = cluster_list_first(&si->free_clusters);
1020 	offset = idx * SWAPFILE_CLUSTER;
1021 	ci = lock_cluster(si, offset);
1022 	alloc_cluster(si, idx);
1023 	cluster_set_count_flag(ci, SWAPFILE_CLUSTER, CLUSTER_FLAG_HUGE);
1024 
1025 	memset(si->swap_map + offset, SWAP_HAS_CACHE, SWAPFILE_CLUSTER);
1026 	unlock_cluster(ci);
1027 	swap_range_alloc(si, offset, SWAPFILE_CLUSTER);
1028 	*slot = swp_entry(si->type, offset);
1029 
1030 	return 1;
1031 }
1032 
1033 static void swap_free_cluster(struct swap_info_struct *si, unsigned long idx)
1034 {
1035 	unsigned long offset = idx * SWAPFILE_CLUSTER;
1036 	struct swap_cluster_info *ci;
1037 
1038 	ci = lock_cluster(si, offset);
1039 	memset(si->swap_map + offset, 0, SWAPFILE_CLUSTER);
1040 	cluster_set_count_flag(ci, 0, 0);
1041 	free_cluster(si, idx);
1042 	unlock_cluster(ci);
1043 	swap_range_free(si, offset, SWAPFILE_CLUSTER);
1044 }
1045 
1046 int get_swap_pages(int n_goal, swp_entry_t swp_entries[], int entry_size)
1047 {
1048 	unsigned long size = swap_entry_size(entry_size);
1049 	struct swap_info_struct *si, *next;
1050 	long avail_pgs;
1051 	int n_ret = 0;
1052 	int node;
1053 
1054 	/* Only single cluster request supported */
1055 	WARN_ON_ONCE(n_goal > 1 && size == SWAPFILE_CLUSTER);
1056 
1057 	spin_lock(&swap_avail_lock);
1058 
1059 	avail_pgs = atomic_long_read(&nr_swap_pages) / size;
1060 	if (avail_pgs <= 0) {
1061 		spin_unlock(&swap_avail_lock);
1062 		goto noswap;
1063 	}
1064 
1065 	n_goal = min3((long)n_goal, (long)SWAP_BATCH, avail_pgs);
1066 
1067 	atomic_long_sub(n_goal * size, &nr_swap_pages);
1068 
1069 start_over:
1070 	node = numa_node_id();
1071 	plist_for_each_entry_safe(si, next, &swap_avail_heads[node], avail_lists[node]) {
1072 		/* requeue si to after same-priority siblings */
1073 		plist_requeue(&si->avail_lists[node], &swap_avail_heads[node]);
1074 		spin_unlock(&swap_avail_lock);
1075 		spin_lock(&si->lock);
1076 		if (!si->highest_bit || !(si->flags & SWP_WRITEOK)) {
1077 			spin_lock(&swap_avail_lock);
1078 			if (plist_node_empty(&si->avail_lists[node])) {
1079 				spin_unlock(&si->lock);
1080 				goto nextsi;
1081 			}
1082 			WARN(!si->highest_bit,
1083 			     "swap_info %d in list but !highest_bit\n",
1084 			     si->type);
1085 			WARN(!(si->flags & SWP_WRITEOK),
1086 			     "swap_info %d in list but !SWP_WRITEOK\n",
1087 			     si->type);
1088 			__del_from_avail_list(si);
1089 			spin_unlock(&si->lock);
1090 			goto nextsi;
1091 		}
1092 		if (size == SWAPFILE_CLUSTER) {
1093 			if (si->flags & SWP_BLKDEV)
1094 				n_ret = swap_alloc_cluster(si, swp_entries);
1095 		} else
1096 			n_ret = scan_swap_map_slots(si, SWAP_HAS_CACHE,
1097 						    n_goal, swp_entries);
1098 		spin_unlock(&si->lock);
1099 		if (n_ret || size == SWAPFILE_CLUSTER)
1100 			goto check_out;
1101 		cond_resched();
1102 
1103 		spin_lock(&swap_avail_lock);
1104 nextsi:
1105 		/*
1106 		 * if we got here, it's likely that si was almost full before,
1107 		 * and since scan_swap_map_slots() can drop the si->lock,
1108 		 * multiple callers probably all tried to get a page from the
1109 		 * same si and it filled up before we could get one; or, the si
1110 		 * filled up between us dropping swap_avail_lock and taking
1111 		 * si->lock. Since we dropped the swap_avail_lock, the
1112 		 * swap_avail_head list may have been modified; so if next is
1113 		 * still in the swap_avail_head list then try it, otherwise
1114 		 * start over if we have not gotten any slots.
1115 		 */
1116 		if (plist_node_empty(&next->avail_lists[node]))
1117 			goto start_over;
1118 	}
1119 
1120 	spin_unlock(&swap_avail_lock);
1121 
1122 check_out:
1123 	if (n_ret < n_goal)
1124 		atomic_long_add((long)(n_goal - n_ret) * size,
1125 				&nr_swap_pages);
1126 noswap:
1127 	return n_ret;
1128 }
1129 
1130 static struct swap_info_struct *_swap_info_get(swp_entry_t entry)
1131 {
1132 	struct swap_info_struct *p;
1133 	unsigned long offset;
1134 
1135 	if (!entry.val)
1136 		goto out;
1137 	p = swp_swap_info(entry);
1138 	if (!p)
1139 		goto bad_nofile;
1140 	if (data_race(!(p->flags & SWP_USED)))
1141 		goto bad_device;
1142 	offset = swp_offset(entry);
1143 	if (offset >= p->max)
1144 		goto bad_offset;
1145 	if (data_race(!p->swap_map[swp_offset(entry)]))
1146 		goto bad_free;
1147 	return p;
1148 
1149 bad_free:
1150 	pr_err("%s: %s%08lx\n", __func__, Unused_offset, entry.val);
1151 	goto out;
1152 bad_offset:
1153 	pr_err("%s: %s%08lx\n", __func__, Bad_offset, entry.val);
1154 	goto out;
1155 bad_device:
1156 	pr_err("%s: %s%08lx\n", __func__, Unused_file, entry.val);
1157 	goto out;
1158 bad_nofile:
1159 	pr_err("%s: %s%08lx\n", __func__, Bad_file, entry.val);
1160 out:
1161 	return NULL;
1162 }
1163 
1164 static struct swap_info_struct *swap_info_get_cont(swp_entry_t entry,
1165 					struct swap_info_struct *q)
1166 {
1167 	struct swap_info_struct *p;
1168 
1169 	p = _swap_info_get(entry);
1170 
1171 	if (p != q) {
1172 		if (q != NULL)
1173 			spin_unlock(&q->lock);
1174 		if (p != NULL)
1175 			spin_lock(&p->lock);
1176 	}
1177 	return p;
1178 }
1179 
1180 static unsigned char __swap_entry_free_locked(struct swap_info_struct *p,
1181 					      unsigned long offset,
1182 					      unsigned char usage)
1183 {
1184 	unsigned char count;
1185 	unsigned char has_cache;
1186 
1187 	count = p->swap_map[offset];
1188 
1189 	has_cache = count & SWAP_HAS_CACHE;
1190 	count &= ~SWAP_HAS_CACHE;
1191 
1192 	if (usage == SWAP_HAS_CACHE) {
1193 		VM_BUG_ON(!has_cache);
1194 		has_cache = 0;
1195 	} else if (count == SWAP_MAP_SHMEM) {
1196 		/*
1197 		 * Or we could insist on shmem.c using a special
1198 		 * swap_shmem_free() and free_shmem_swap_and_cache()...
1199 		 */
1200 		count = 0;
1201 	} else if ((count & ~COUNT_CONTINUED) <= SWAP_MAP_MAX) {
1202 		if (count == COUNT_CONTINUED) {
1203 			if (swap_count_continued(p, offset, count))
1204 				count = SWAP_MAP_MAX | COUNT_CONTINUED;
1205 			else
1206 				count = SWAP_MAP_MAX;
1207 		} else
1208 			count--;
1209 	}
1210 
1211 	usage = count | has_cache;
1212 	if (usage)
1213 		WRITE_ONCE(p->swap_map[offset], usage);
1214 	else
1215 		WRITE_ONCE(p->swap_map[offset], SWAP_HAS_CACHE);
1216 
1217 	return usage;
1218 }
1219 
1220 /*
1221  * Check whether swap entry is valid in the swap device.  If so,
1222  * return pointer to swap_info_struct, and keep the swap entry valid
1223  * via preventing the swap device from being swapoff, until
1224  * put_swap_device() is called.  Otherwise return NULL.
1225  *
1226  * Notice that swapoff or swapoff+swapon can still happen before the
1227  * percpu_ref_tryget_live() in get_swap_device() or after the
1228  * percpu_ref_put() in put_swap_device() if there isn't any other way
1229  * to prevent swapoff, such as page lock, page table lock, etc.  The
1230  * caller must be prepared for that.  For example, the following
1231  * situation is possible.
1232  *
1233  *   CPU1				CPU2
1234  *   do_swap_page()
1235  *     ...				swapoff+swapon
1236  *     __read_swap_cache_async()
1237  *       swapcache_prepare()
1238  *         __swap_duplicate()
1239  *           // check swap_map
1240  *     // verify PTE not changed
1241  *
1242  * In __swap_duplicate(), the swap_map need to be checked before
1243  * changing partly because the specified swap entry may be for another
1244  * swap device which has been swapoff.  And in do_swap_page(), after
1245  * the page is read from the swap device, the PTE is verified not
1246  * changed with the page table locked to check whether the swap device
1247  * has been swapoff or swapoff+swapon.
1248  */
1249 struct swap_info_struct *get_swap_device(swp_entry_t entry)
1250 {
1251 	struct swap_info_struct *si;
1252 	unsigned long offset;
1253 
1254 	if (!entry.val)
1255 		goto out;
1256 	si = swp_swap_info(entry);
1257 	if (!si)
1258 		goto bad_nofile;
1259 	if (!percpu_ref_tryget_live(&si->users))
1260 		goto out;
1261 	/*
1262 	 * Guarantee the si->users are checked before accessing other
1263 	 * fields of swap_info_struct.
1264 	 *
1265 	 * Paired with the spin_unlock() after setup_swap_info() in
1266 	 * enable_swap_info().
1267 	 */
1268 	smp_rmb();
1269 	offset = swp_offset(entry);
1270 	if (offset >= si->max)
1271 		goto put_out;
1272 
1273 	return si;
1274 bad_nofile:
1275 	pr_err("%s: %s%08lx\n", __func__, Bad_file, entry.val);
1276 out:
1277 	return NULL;
1278 put_out:
1279 	pr_err("%s: %s%08lx\n", __func__, Bad_offset, entry.val);
1280 	percpu_ref_put(&si->users);
1281 	return NULL;
1282 }
1283 
1284 static unsigned char __swap_entry_free(struct swap_info_struct *p,
1285 				       swp_entry_t entry)
1286 {
1287 	struct swap_cluster_info *ci;
1288 	unsigned long offset = swp_offset(entry);
1289 	unsigned char usage;
1290 
1291 	ci = lock_cluster_or_swap_info(p, offset);
1292 	usage = __swap_entry_free_locked(p, offset, 1);
1293 	unlock_cluster_or_swap_info(p, ci);
1294 	if (!usage)
1295 		free_swap_slot(entry);
1296 
1297 	return usage;
1298 }
1299 
1300 static void swap_entry_free(struct swap_info_struct *p, swp_entry_t entry)
1301 {
1302 	struct swap_cluster_info *ci;
1303 	unsigned long offset = swp_offset(entry);
1304 	unsigned char count;
1305 
1306 	ci = lock_cluster(p, offset);
1307 	count = p->swap_map[offset];
1308 	VM_BUG_ON(count != SWAP_HAS_CACHE);
1309 	p->swap_map[offset] = 0;
1310 	dec_cluster_info_page(p, p->cluster_info, offset);
1311 	unlock_cluster(ci);
1312 
1313 	mem_cgroup_uncharge_swap(entry, 1);
1314 	swap_range_free(p, offset, 1);
1315 }
1316 
1317 /*
1318  * Caller has made sure that the swap device corresponding to entry
1319  * is still around or has not been recycled.
1320  */
1321 void swap_free(swp_entry_t entry)
1322 {
1323 	struct swap_info_struct *p;
1324 
1325 	p = _swap_info_get(entry);
1326 	if (p)
1327 		__swap_entry_free(p, entry);
1328 }
1329 
1330 /*
1331  * Called after dropping swapcache to decrease refcnt to swap entries.
1332  */
1333 void put_swap_folio(struct folio *folio, swp_entry_t entry)
1334 {
1335 	unsigned long offset = swp_offset(entry);
1336 	unsigned long idx = offset / SWAPFILE_CLUSTER;
1337 	struct swap_cluster_info *ci;
1338 	struct swap_info_struct *si;
1339 	unsigned char *map;
1340 	unsigned int i, free_entries = 0;
1341 	unsigned char val;
1342 	int size = swap_entry_size(folio_nr_pages(folio));
1343 
1344 	si = _swap_info_get(entry);
1345 	if (!si)
1346 		return;
1347 
1348 	ci = lock_cluster_or_swap_info(si, offset);
1349 	if (size == SWAPFILE_CLUSTER) {
1350 		VM_BUG_ON(!cluster_is_huge(ci));
1351 		map = si->swap_map + offset;
1352 		for (i = 0; i < SWAPFILE_CLUSTER; i++) {
1353 			val = map[i];
1354 			VM_BUG_ON(!(val & SWAP_HAS_CACHE));
1355 			if (val == SWAP_HAS_CACHE)
1356 				free_entries++;
1357 		}
1358 		cluster_clear_huge(ci);
1359 		if (free_entries == SWAPFILE_CLUSTER) {
1360 			unlock_cluster_or_swap_info(si, ci);
1361 			spin_lock(&si->lock);
1362 			mem_cgroup_uncharge_swap(entry, SWAPFILE_CLUSTER);
1363 			swap_free_cluster(si, idx);
1364 			spin_unlock(&si->lock);
1365 			return;
1366 		}
1367 	}
1368 	for (i = 0; i < size; i++, entry.val++) {
1369 		if (!__swap_entry_free_locked(si, offset + i, SWAP_HAS_CACHE)) {
1370 			unlock_cluster_or_swap_info(si, ci);
1371 			free_swap_slot(entry);
1372 			if (i == size - 1)
1373 				return;
1374 			lock_cluster_or_swap_info(si, offset);
1375 		}
1376 	}
1377 	unlock_cluster_or_swap_info(si, ci);
1378 }
1379 
1380 #ifdef CONFIG_THP_SWAP
1381 int split_swap_cluster(swp_entry_t entry)
1382 {
1383 	struct swap_info_struct *si;
1384 	struct swap_cluster_info *ci;
1385 	unsigned long offset = swp_offset(entry);
1386 
1387 	si = _swap_info_get(entry);
1388 	if (!si)
1389 		return -EBUSY;
1390 	ci = lock_cluster(si, offset);
1391 	cluster_clear_huge(ci);
1392 	unlock_cluster(ci);
1393 	return 0;
1394 }
1395 #endif
1396 
1397 static int swp_entry_cmp(const void *ent1, const void *ent2)
1398 {
1399 	const swp_entry_t *e1 = ent1, *e2 = ent2;
1400 
1401 	return (int)swp_type(*e1) - (int)swp_type(*e2);
1402 }
1403 
1404 void swapcache_free_entries(swp_entry_t *entries, int n)
1405 {
1406 	struct swap_info_struct *p, *prev;
1407 	int i;
1408 
1409 	if (n <= 0)
1410 		return;
1411 
1412 	prev = NULL;
1413 	p = NULL;
1414 
1415 	/*
1416 	 * Sort swap entries by swap device, so each lock is only taken once.
1417 	 * nr_swapfiles isn't absolutely correct, but the overhead of sort() is
1418 	 * so low that it isn't necessary to optimize further.
1419 	 */
1420 	if (nr_swapfiles > 1)
1421 		sort(entries, n, sizeof(entries[0]), swp_entry_cmp, NULL);
1422 	for (i = 0; i < n; ++i) {
1423 		p = swap_info_get_cont(entries[i], prev);
1424 		if (p)
1425 			swap_entry_free(p, entries[i]);
1426 		prev = p;
1427 	}
1428 	if (p)
1429 		spin_unlock(&p->lock);
1430 }
1431 
1432 int __swap_count(swp_entry_t entry)
1433 {
1434 	struct swap_info_struct *si;
1435 	pgoff_t offset = swp_offset(entry);
1436 	int count = 0;
1437 
1438 	si = get_swap_device(entry);
1439 	if (si) {
1440 		count = swap_count(si->swap_map[offset]);
1441 		put_swap_device(si);
1442 	}
1443 	return count;
1444 }
1445 
1446 /*
1447  * How many references to @entry are currently swapped out?
1448  * This does not give an exact answer when swap count is continued,
1449  * but does include the high COUNT_CONTINUED flag to allow for that.
1450  */
1451 static int swap_swapcount(struct swap_info_struct *si, swp_entry_t entry)
1452 {
1453 	pgoff_t offset = swp_offset(entry);
1454 	struct swap_cluster_info *ci;
1455 	int count;
1456 
1457 	ci = lock_cluster_or_swap_info(si, offset);
1458 	count = swap_count(si->swap_map[offset]);
1459 	unlock_cluster_or_swap_info(si, ci);
1460 	return count;
1461 }
1462 
1463 /*
1464  * How many references to @entry are currently swapped out?
1465  * This does not give an exact answer when swap count is continued,
1466  * but does include the high COUNT_CONTINUED flag to allow for that.
1467  */
1468 int __swp_swapcount(swp_entry_t entry)
1469 {
1470 	int count = 0;
1471 	struct swap_info_struct *si;
1472 
1473 	si = get_swap_device(entry);
1474 	if (si) {
1475 		count = swap_swapcount(si, entry);
1476 		put_swap_device(si);
1477 	}
1478 	return count;
1479 }
1480 
1481 /*
1482  * How many references to @entry are currently swapped out?
1483  * This considers COUNT_CONTINUED so it returns exact answer.
1484  */
1485 int swp_swapcount(swp_entry_t entry)
1486 {
1487 	int count, tmp_count, n;
1488 	struct swap_info_struct *p;
1489 	struct swap_cluster_info *ci;
1490 	struct page *page;
1491 	pgoff_t offset;
1492 	unsigned char *map;
1493 
1494 	p = _swap_info_get(entry);
1495 	if (!p)
1496 		return 0;
1497 
1498 	offset = swp_offset(entry);
1499 
1500 	ci = lock_cluster_or_swap_info(p, offset);
1501 
1502 	count = swap_count(p->swap_map[offset]);
1503 	if (!(count & COUNT_CONTINUED))
1504 		goto out;
1505 
1506 	count &= ~COUNT_CONTINUED;
1507 	n = SWAP_MAP_MAX + 1;
1508 
1509 	page = vmalloc_to_page(p->swap_map + offset);
1510 	offset &= ~PAGE_MASK;
1511 	VM_BUG_ON(page_private(page) != SWP_CONTINUED);
1512 
1513 	do {
1514 		page = list_next_entry(page, lru);
1515 		map = kmap_atomic(page);
1516 		tmp_count = map[offset];
1517 		kunmap_atomic(map);
1518 
1519 		count += (tmp_count & ~COUNT_CONTINUED) * n;
1520 		n *= (SWAP_CONT_MAX + 1);
1521 	} while (tmp_count & COUNT_CONTINUED);
1522 out:
1523 	unlock_cluster_or_swap_info(p, ci);
1524 	return count;
1525 }
1526 
1527 static bool swap_page_trans_huge_swapped(struct swap_info_struct *si,
1528 					 swp_entry_t entry)
1529 {
1530 	struct swap_cluster_info *ci;
1531 	unsigned char *map = si->swap_map;
1532 	unsigned long roffset = swp_offset(entry);
1533 	unsigned long offset = round_down(roffset, SWAPFILE_CLUSTER);
1534 	int i;
1535 	bool ret = false;
1536 
1537 	ci = lock_cluster_or_swap_info(si, offset);
1538 	if (!ci || !cluster_is_huge(ci)) {
1539 		if (swap_count(map[roffset]))
1540 			ret = true;
1541 		goto unlock_out;
1542 	}
1543 	for (i = 0; i < SWAPFILE_CLUSTER; i++) {
1544 		if (swap_count(map[offset + i])) {
1545 			ret = true;
1546 			break;
1547 		}
1548 	}
1549 unlock_out:
1550 	unlock_cluster_or_swap_info(si, ci);
1551 	return ret;
1552 }
1553 
1554 static bool folio_swapped(struct folio *folio)
1555 {
1556 	swp_entry_t entry = folio_swap_entry(folio);
1557 	struct swap_info_struct *si = _swap_info_get(entry);
1558 
1559 	if (!si)
1560 		return false;
1561 
1562 	if (!IS_ENABLED(CONFIG_THP_SWAP) || likely(!folio_test_large(folio)))
1563 		return swap_swapcount(si, entry) != 0;
1564 
1565 	return swap_page_trans_huge_swapped(si, entry);
1566 }
1567 
1568 /**
1569  * folio_free_swap() - Free the swap space used for this folio.
1570  * @folio: The folio to remove.
1571  *
1572  * If swap is getting full, or if there are no more mappings of this folio,
1573  * then call folio_free_swap to free its swap space.
1574  *
1575  * Return: true if we were able to release the swap space.
1576  */
1577 bool folio_free_swap(struct folio *folio)
1578 {
1579 	VM_BUG_ON_FOLIO(!folio_test_locked(folio), folio);
1580 
1581 	if (!folio_test_swapcache(folio))
1582 		return false;
1583 	if (folio_test_writeback(folio))
1584 		return false;
1585 	if (folio_swapped(folio))
1586 		return false;
1587 
1588 	/*
1589 	 * Once hibernation has begun to create its image of memory,
1590 	 * there's a danger that one of the calls to folio_free_swap()
1591 	 * - most probably a call from __try_to_reclaim_swap() while
1592 	 * hibernation is allocating its own swap pages for the image,
1593 	 * but conceivably even a call from memory reclaim - will free
1594 	 * the swap from a folio which has already been recorded in the
1595 	 * image as a clean swapcache folio, and then reuse its swap for
1596 	 * another page of the image.  On waking from hibernation, the
1597 	 * original folio might be freed under memory pressure, then
1598 	 * later read back in from swap, now with the wrong data.
1599 	 *
1600 	 * Hibernation suspends storage while it is writing the image
1601 	 * to disk so check that here.
1602 	 */
1603 	if (pm_suspended_storage())
1604 		return false;
1605 
1606 	delete_from_swap_cache(folio);
1607 	folio_set_dirty(folio);
1608 	return true;
1609 }
1610 
1611 /*
1612  * Free the swap entry like above, but also try to
1613  * free the page cache entry if it is the last user.
1614  */
1615 int free_swap_and_cache(swp_entry_t entry)
1616 {
1617 	struct swap_info_struct *p;
1618 	unsigned char count;
1619 
1620 	if (non_swap_entry(entry))
1621 		return 1;
1622 
1623 	p = _swap_info_get(entry);
1624 	if (p) {
1625 		count = __swap_entry_free(p, entry);
1626 		if (count == SWAP_HAS_CACHE &&
1627 		    !swap_page_trans_huge_swapped(p, entry))
1628 			__try_to_reclaim_swap(p, swp_offset(entry),
1629 					      TTRS_UNMAPPED | TTRS_FULL);
1630 	}
1631 	return p != NULL;
1632 }
1633 
1634 #ifdef CONFIG_HIBERNATION
1635 
1636 swp_entry_t get_swap_page_of_type(int type)
1637 {
1638 	struct swap_info_struct *si = swap_type_to_swap_info(type);
1639 	swp_entry_t entry = {0};
1640 
1641 	if (!si)
1642 		goto fail;
1643 
1644 	/* This is called for allocating swap entry, not cache */
1645 	spin_lock(&si->lock);
1646 	if ((si->flags & SWP_WRITEOK) && scan_swap_map_slots(si, 1, 1, &entry))
1647 		atomic_long_dec(&nr_swap_pages);
1648 	spin_unlock(&si->lock);
1649 fail:
1650 	return entry;
1651 }
1652 
1653 /*
1654  * Find the swap type that corresponds to given device (if any).
1655  *
1656  * @offset - number of the PAGE_SIZE-sized block of the device, starting
1657  * from 0, in which the swap header is expected to be located.
1658  *
1659  * This is needed for the suspend to disk (aka swsusp).
1660  */
1661 int swap_type_of(dev_t device, sector_t offset)
1662 {
1663 	int type;
1664 
1665 	if (!device)
1666 		return -1;
1667 
1668 	spin_lock(&swap_lock);
1669 	for (type = 0; type < nr_swapfiles; type++) {
1670 		struct swap_info_struct *sis = swap_info[type];
1671 
1672 		if (!(sis->flags & SWP_WRITEOK))
1673 			continue;
1674 
1675 		if (device == sis->bdev->bd_dev) {
1676 			struct swap_extent *se = first_se(sis);
1677 
1678 			if (se->start_block == offset) {
1679 				spin_unlock(&swap_lock);
1680 				return type;
1681 			}
1682 		}
1683 	}
1684 	spin_unlock(&swap_lock);
1685 	return -ENODEV;
1686 }
1687 
1688 int find_first_swap(dev_t *device)
1689 {
1690 	int type;
1691 
1692 	spin_lock(&swap_lock);
1693 	for (type = 0; type < nr_swapfiles; type++) {
1694 		struct swap_info_struct *sis = swap_info[type];
1695 
1696 		if (!(sis->flags & SWP_WRITEOK))
1697 			continue;
1698 		*device = sis->bdev->bd_dev;
1699 		spin_unlock(&swap_lock);
1700 		return type;
1701 	}
1702 	spin_unlock(&swap_lock);
1703 	return -ENODEV;
1704 }
1705 
1706 /*
1707  * Get the (PAGE_SIZE) block corresponding to given offset on the swapdev
1708  * corresponding to given index in swap_info (swap type).
1709  */
1710 sector_t swapdev_block(int type, pgoff_t offset)
1711 {
1712 	struct swap_info_struct *si = swap_type_to_swap_info(type);
1713 	struct swap_extent *se;
1714 
1715 	if (!si || !(si->flags & SWP_WRITEOK))
1716 		return 0;
1717 	se = offset_to_swap_extent(si, offset);
1718 	return se->start_block + (offset - se->start_page);
1719 }
1720 
1721 /*
1722  * Return either the total number of swap pages of given type, or the number
1723  * of free pages of that type (depending on @free)
1724  *
1725  * This is needed for software suspend
1726  */
1727 unsigned int count_swap_pages(int type, int free)
1728 {
1729 	unsigned int n = 0;
1730 
1731 	spin_lock(&swap_lock);
1732 	if ((unsigned int)type < nr_swapfiles) {
1733 		struct swap_info_struct *sis = swap_info[type];
1734 
1735 		spin_lock(&sis->lock);
1736 		if (sis->flags & SWP_WRITEOK) {
1737 			n = sis->pages;
1738 			if (free)
1739 				n -= sis->inuse_pages;
1740 		}
1741 		spin_unlock(&sis->lock);
1742 	}
1743 	spin_unlock(&swap_lock);
1744 	return n;
1745 }
1746 #endif /* CONFIG_HIBERNATION */
1747 
1748 static inline int pte_same_as_swp(pte_t pte, pte_t swp_pte)
1749 {
1750 	return pte_same(pte_swp_clear_flags(pte), swp_pte);
1751 }
1752 
1753 /*
1754  * No need to decide whether this PTE shares the swap entry with others,
1755  * just let do_wp_page work it out if a write is requested later - to
1756  * force COW, vm_page_prot omits write permission from any private vma.
1757  */
1758 static int unuse_pte(struct vm_area_struct *vma, pmd_t *pmd,
1759 		unsigned long addr, swp_entry_t entry, struct folio *folio)
1760 {
1761 	struct page *page = folio_file_page(folio, swp_offset(entry));
1762 	struct page *swapcache;
1763 	spinlock_t *ptl;
1764 	pte_t *pte, new_pte;
1765 	bool hwposioned = false;
1766 	int ret = 1;
1767 
1768 	swapcache = page;
1769 	page = ksm_might_need_to_copy(page, vma, addr);
1770 	if (unlikely(!page))
1771 		return -ENOMEM;
1772 	else if (unlikely(PTR_ERR(page) == -EHWPOISON))
1773 		hwposioned = true;
1774 
1775 	pte = pte_offset_map_lock(vma->vm_mm, pmd, addr, &ptl);
1776 	if (unlikely(!pte_same_as_swp(*pte, swp_entry_to_pte(entry)))) {
1777 		ret = 0;
1778 		goto out;
1779 	}
1780 
1781 	if (unlikely(hwposioned || !PageUptodate(page))) {
1782 		swp_entry_t swp_entry;
1783 
1784 		dec_mm_counter(vma->vm_mm, MM_SWAPENTS);
1785 		if (hwposioned) {
1786 			swp_entry = make_hwpoison_entry(swapcache);
1787 			page = swapcache;
1788 		} else {
1789 			swp_entry = make_swapin_error_entry();
1790 		}
1791 		new_pte = swp_entry_to_pte(swp_entry);
1792 		ret = 0;
1793 		goto setpte;
1794 	}
1795 
1796 	/* See do_swap_page() */
1797 	BUG_ON(!PageAnon(page) && PageMappedToDisk(page));
1798 	BUG_ON(PageAnon(page) && PageAnonExclusive(page));
1799 
1800 	dec_mm_counter(vma->vm_mm, MM_SWAPENTS);
1801 	inc_mm_counter(vma->vm_mm, MM_ANONPAGES);
1802 	get_page(page);
1803 	if (page == swapcache) {
1804 		rmap_t rmap_flags = RMAP_NONE;
1805 
1806 		/*
1807 		 * See do_swap_page(): PageWriteback() would be problematic.
1808 		 * However, we do a wait_on_page_writeback() just before this
1809 		 * call and have the page locked.
1810 		 */
1811 		VM_BUG_ON_PAGE(PageWriteback(page), page);
1812 		if (pte_swp_exclusive(*pte))
1813 			rmap_flags |= RMAP_EXCLUSIVE;
1814 
1815 		page_add_anon_rmap(page, vma, addr, rmap_flags);
1816 	} else { /* ksm created a completely new copy */
1817 		page_add_new_anon_rmap(page, vma, addr);
1818 		lru_cache_add_inactive_or_unevictable(page, vma);
1819 	}
1820 	new_pte = pte_mkold(mk_pte(page, vma->vm_page_prot));
1821 	if (pte_swp_soft_dirty(*pte))
1822 		new_pte = pte_mksoft_dirty(new_pte);
1823 	if (pte_swp_uffd_wp(*pte))
1824 		new_pte = pte_mkuffd_wp(new_pte);
1825 setpte:
1826 	set_pte_at(vma->vm_mm, addr, pte, new_pte);
1827 	swap_free(entry);
1828 out:
1829 	pte_unmap_unlock(pte, ptl);
1830 	if (page != swapcache) {
1831 		unlock_page(page);
1832 		put_page(page);
1833 	}
1834 	return ret;
1835 }
1836 
1837 static int unuse_pte_range(struct vm_area_struct *vma, pmd_t *pmd,
1838 			unsigned long addr, unsigned long end,
1839 			unsigned int type)
1840 {
1841 	swp_entry_t entry;
1842 	pte_t *pte;
1843 	struct swap_info_struct *si;
1844 	int ret = 0;
1845 
1846 	si = swap_info[type];
1847 	pte = pte_offset_map(pmd, addr);
1848 	do {
1849 		struct folio *folio;
1850 		unsigned long offset;
1851 		unsigned char swp_count;
1852 
1853 		if (!is_swap_pte(*pte))
1854 			continue;
1855 
1856 		entry = pte_to_swp_entry(*pte);
1857 		if (swp_type(entry) != type)
1858 			continue;
1859 
1860 		offset = swp_offset(entry);
1861 		pte_unmap(pte);
1862 		folio = swap_cache_get_folio(entry, vma, addr);
1863 		if (!folio) {
1864 			struct page *page;
1865 			struct vm_fault vmf = {
1866 				.vma = vma,
1867 				.address = addr,
1868 				.real_address = addr,
1869 				.pmd = pmd,
1870 			};
1871 
1872 			page = swapin_readahead(entry, GFP_HIGHUSER_MOVABLE,
1873 						&vmf);
1874 			if (page)
1875 				folio = page_folio(page);
1876 		}
1877 		if (!folio) {
1878 			swp_count = READ_ONCE(si->swap_map[offset]);
1879 			if (swp_count == 0 || swp_count == SWAP_MAP_BAD)
1880 				goto try_next;
1881 
1882 			return -ENOMEM;
1883 		}
1884 
1885 		folio_lock(folio);
1886 		folio_wait_writeback(folio);
1887 		ret = unuse_pte(vma, pmd, addr, entry, folio);
1888 		if (ret < 0) {
1889 			folio_unlock(folio);
1890 			folio_put(folio);
1891 			goto out;
1892 		}
1893 
1894 		folio_free_swap(folio);
1895 		folio_unlock(folio);
1896 		folio_put(folio);
1897 try_next:
1898 		pte = pte_offset_map(pmd, addr);
1899 	} while (pte++, addr += PAGE_SIZE, addr != end);
1900 	pte_unmap(pte - 1);
1901 
1902 	ret = 0;
1903 out:
1904 	return ret;
1905 }
1906 
1907 static inline int unuse_pmd_range(struct vm_area_struct *vma, pud_t *pud,
1908 				unsigned long addr, unsigned long end,
1909 				unsigned int type)
1910 {
1911 	pmd_t *pmd;
1912 	unsigned long next;
1913 	int ret;
1914 
1915 	pmd = pmd_offset(pud, addr);
1916 	do {
1917 		cond_resched();
1918 		next = pmd_addr_end(addr, end);
1919 		if (pmd_none_or_trans_huge_or_clear_bad(pmd))
1920 			continue;
1921 		ret = unuse_pte_range(vma, pmd, addr, next, type);
1922 		if (ret)
1923 			return ret;
1924 	} while (pmd++, addr = next, addr != end);
1925 	return 0;
1926 }
1927 
1928 static inline int unuse_pud_range(struct vm_area_struct *vma, p4d_t *p4d,
1929 				unsigned long addr, unsigned long end,
1930 				unsigned int type)
1931 {
1932 	pud_t *pud;
1933 	unsigned long next;
1934 	int ret;
1935 
1936 	pud = pud_offset(p4d, addr);
1937 	do {
1938 		next = pud_addr_end(addr, end);
1939 		if (pud_none_or_clear_bad(pud))
1940 			continue;
1941 		ret = unuse_pmd_range(vma, pud, addr, next, type);
1942 		if (ret)
1943 			return ret;
1944 	} while (pud++, addr = next, addr != end);
1945 	return 0;
1946 }
1947 
1948 static inline int unuse_p4d_range(struct vm_area_struct *vma, pgd_t *pgd,
1949 				unsigned long addr, unsigned long end,
1950 				unsigned int type)
1951 {
1952 	p4d_t *p4d;
1953 	unsigned long next;
1954 	int ret;
1955 
1956 	p4d = p4d_offset(pgd, addr);
1957 	do {
1958 		next = p4d_addr_end(addr, end);
1959 		if (p4d_none_or_clear_bad(p4d))
1960 			continue;
1961 		ret = unuse_pud_range(vma, p4d, addr, next, type);
1962 		if (ret)
1963 			return ret;
1964 	} while (p4d++, addr = next, addr != end);
1965 	return 0;
1966 }
1967 
1968 static int unuse_vma(struct vm_area_struct *vma, unsigned int type)
1969 {
1970 	pgd_t *pgd;
1971 	unsigned long addr, end, next;
1972 	int ret;
1973 
1974 	addr = vma->vm_start;
1975 	end = vma->vm_end;
1976 
1977 	pgd = pgd_offset(vma->vm_mm, addr);
1978 	do {
1979 		next = pgd_addr_end(addr, end);
1980 		if (pgd_none_or_clear_bad(pgd))
1981 			continue;
1982 		ret = unuse_p4d_range(vma, pgd, addr, next, type);
1983 		if (ret)
1984 			return ret;
1985 	} while (pgd++, addr = next, addr != end);
1986 	return 0;
1987 }
1988 
1989 static int unuse_mm(struct mm_struct *mm, unsigned int type)
1990 {
1991 	struct vm_area_struct *vma;
1992 	int ret = 0;
1993 	VMA_ITERATOR(vmi, mm, 0);
1994 
1995 	mmap_read_lock(mm);
1996 	for_each_vma(vmi, vma) {
1997 		if (vma->anon_vma) {
1998 			ret = unuse_vma(vma, type);
1999 			if (ret)
2000 				break;
2001 		}
2002 
2003 		cond_resched();
2004 	}
2005 	mmap_read_unlock(mm);
2006 	return ret;
2007 }
2008 
2009 /*
2010  * Scan swap_map from current position to next entry still in use.
2011  * Return 0 if there are no inuse entries after prev till end of
2012  * the map.
2013  */
2014 static unsigned int find_next_to_unuse(struct swap_info_struct *si,
2015 					unsigned int prev)
2016 {
2017 	unsigned int i;
2018 	unsigned char count;
2019 
2020 	/*
2021 	 * No need for swap_lock here: we're just looking
2022 	 * for whether an entry is in use, not modifying it; false
2023 	 * hits are okay, and sys_swapoff() has already prevented new
2024 	 * allocations from this area (while holding swap_lock).
2025 	 */
2026 	for (i = prev + 1; i < si->max; i++) {
2027 		count = READ_ONCE(si->swap_map[i]);
2028 		if (count && swap_count(count) != SWAP_MAP_BAD)
2029 			break;
2030 		if ((i % LATENCY_LIMIT) == 0)
2031 			cond_resched();
2032 	}
2033 
2034 	if (i == si->max)
2035 		i = 0;
2036 
2037 	return i;
2038 }
2039 
2040 static int try_to_unuse(unsigned int type)
2041 {
2042 	struct mm_struct *prev_mm;
2043 	struct mm_struct *mm;
2044 	struct list_head *p;
2045 	int retval = 0;
2046 	struct swap_info_struct *si = swap_info[type];
2047 	struct folio *folio;
2048 	swp_entry_t entry;
2049 	unsigned int i;
2050 
2051 	if (!READ_ONCE(si->inuse_pages))
2052 		return 0;
2053 
2054 retry:
2055 	retval = shmem_unuse(type);
2056 	if (retval)
2057 		return retval;
2058 
2059 	prev_mm = &init_mm;
2060 	mmget(prev_mm);
2061 
2062 	spin_lock(&mmlist_lock);
2063 	p = &init_mm.mmlist;
2064 	while (READ_ONCE(si->inuse_pages) &&
2065 	       !signal_pending(current) &&
2066 	       (p = p->next) != &init_mm.mmlist) {
2067 
2068 		mm = list_entry(p, struct mm_struct, mmlist);
2069 		if (!mmget_not_zero(mm))
2070 			continue;
2071 		spin_unlock(&mmlist_lock);
2072 		mmput(prev_mm);
2073 		prev_mm = mm;
2074 		retval = unuse_mm(mm, type);
2075 		if (retval) {
2076 			mmput(prev_mm);
2077 			return retval;
2078 		}
2079 
2080 		/*
2081 		 * Make sure that we aren't completely killing
2082 		 * interactive performance.
2083 		 */
2084 		cond_resched();
2085 		spin_lock(&mmlist_lock);
2086 	}
2087 	spin_unlock(&mmlist_lock);
2088 
2089 	mmput(prev_mm);
2090 
2091 	i = 0;
2092 	while (READ_ONCE(si->inuse_pages) &&
2093 	       !signal_pending(current) &&
2094 	       (i = find_next_to_unuse(si, i)) != 0) {
2095 
2096 		entry = swp_entry(type, i);
2097 		folio = filemap_get_folio(swap_address_space(entry), i);
2098 		if (!folio)
2099 			continue;
2100 
2101 		/*
2102 		 * It is conceivable that a racing task removed this folio from
2103 		 * swap cache just before we acquired the page lock. The folio
2104 		 * might even be back in swap cache on another swap area. But
2105 		 * that is okay, folio_free_swap() only removes stale folios.
2106 		 */
2107 		folio_lock(folio);
2108 		folio_wait_writeback(folio);
2109 		folio_free_swap(folio);
2110 		folio_unlock(folio);
2111 		folio_put(folio);
2112 	}
2113 
2114 	/*
2115 	 * Lets check again to see if there are still swap entries in the map.
2116 	 * If yes, we would need to do retry the unuse logic again.
2117 	 * Under global memory pressure, swap entries can be reinserted back
2118 	 * into process space after the mmlist loop above passes over them.
2119 	 *
2120 	 * Limit the number of retries? No: when mmget_not_zero()
2121 	 * above fails, that mm is likely to be freeing swap from
2122 	 * exit_mmap(), which proceeds at its own independent pace;
2123 	 * and even shmem_writepage() could have been preempted after
2124 	 * folio_alloc_swap(), temporarily hiding that swap.  It's easy
2125 	 * and robust (though cpu-intensive) just to keep retrying.
2126 	 */
2127 	if (READ_ONCE(si->inuse_pages)) {
2128 		if (!signal_pending(current))
2129 			goto retry;
2130 		return -EINTR;
2131 	}
2132 
2133 	return 0;
2134 }
2135 
2136 /*
2137  * After a successful try_to_unuse, if no swap is now in use, we know
2138  * we can empty the mmlist.  swap_lock must be held on entry and exit.
2139  * Note that mmlist_lock nests inside swap_lock, and an mm must be
2140  * added to the mmlist just after page_duplicate - before would be racy.
2141  */
2142 static void drain_mmlist(void)
2143 {
2144 	struct list_head *p, *next;
2145 	unsigned int type;
2146 
2147 	for (type = 0; type < nr_swapfiles; type++)
2148 		if (swap_info[type]->inuse_pages)
2149 			return;
2150 	spin_lock(&mmlist_lock);
2151 	list_for_each_safe(p, next, &init_mm.mmlist)
2152 		list_del_init(p);
2153 	spin_unlock(&mmlist_lock);
2154 }
2155 
2156 /*
2157  * Free all of a swapdev's extent information
2158  */
2159 static void destroy_swap_extents(struct swap_info_struct *sis)
2160 {
2161 	while (!RB_EMPTY_ROOT(&sis->swap_extent_root)) {
2162 		struct rb_node *rb = sis->swap_extent_root.rb_node;
2163 		struct swap_extent *se = rb_entry(rb, struct swap_extent, rb_node);
2164 
2165 		rb_erase(rb, &sis->swap_extent_root);
2166 		kfree(se);
2167 	}
2168 
2169 	if (sis->flags & SWP_ACTIVATED) {
2170 		struct file *swap_file = sis->swap_file;
2171 		struct address_space *mapping = swap_file->f_mapping;
2172 
2173 		sis->flags &= ~SWP_ACTIVATED;
2174 		if (mapping->a_ops->swap_deactivate)
2175 			mapping->a_ops->swap_deactivate(swap_file);
2176 	}
2177 }
2178 
2179 /*
2180  * Add a block range (and the corresponding page range) into this swapdev's
2181  * extent tree.
2182  *
2183  * This function rather assumes that it is called in ascending page order.
2184  */
2185 int
2186 add_swap_extent(struct swap_info_struct *sis, unsigned long start_page,
2187 		unsigned long nr_pages, sector_t start_block)
2188 {
2189 	struct rb_node **link = &sis->swap_extent_root.rb_node, *parent = NULL;
2190 	struct swap_extent *se;
2191 	struct swap_extent *new_se;
2192 
2193 	/*
2194 	 * place the new node at the right most since the
2195 	 * function is called in ascending page order.
2196 	 */
2197 	while (*link) {
2198 		parent = *link;
2199 		link = &parent->rb_right;
2200 	}
2201 
2202 	if (parent) {
2203 		se = rb_entry(parent, struct swap_extent, rb_node);
2204 		BUG_ON(se->start_page + se->nr_pages != start_page);
2205 		if (se->start_block + se->nr_pages == start_block) {
2206 			/* Merge it */
2207 			se->nr_pages += nr_pages;
2208 			return 0;
2209 		}
2210 	}
2211 
2212 	/* No merge, insert a new extent. */
2213 	new_se = kmalloc(sizeof(*se), GFP_KERNEL);
2214 	if (new_se == NULL)
2215 		return -ENOMEM;
2216 	new_se->start_page = start_page;
2217 	new_se->nr_pages = nr_pages;
2218 	new_se->start_block = start_block;
2219 
2220 	rb_link_node(&new_se->rb_node, parent, link);
2221 	rb_insert_color(&new_se->rb_node, &sis->swap_extent_root);
2222 	return 1;
2223 }
2224 EXPORT_SYMBOL_GPL(add_swap_extent);
2225 
2226 /*
2227  * A `swap extent' is a simple thing which maps a contiguous range of pages
2228  * onto a contiguous range of disk blocks.  A rbtree of swap extents is
2229  * built at swapon time and is then used at swap_writepage/swap_readpage
2230  * time for locating where on disk a page belongs.
2231  *
2232  * If the swapfile is an S_ISBLK block device, a single extent is installed.
2233  * This is done so that the main operating code can treat S_ISBLK and S_ISREG
2234  * swap files identically.
2235  *
2236  * Whether the swapdev is an S_ISREG file or an S_ISBLK blockdev, the swap
2237  * extent rbtree operates in PAGE_SIZE disk blocks.  Both S_ISREG and S_ISBLK
2238  * swapfiles are handled *identically* after swapon time.
2239  *
2240  * For S_ISREG swapfiles, setup_swap_extents() will walk all the file's blocks
2241  * and will parse them into a rbtree, in PAGE_SIZE chunks.  If some stray
2242  * blocks are found which do not fall within the PAGE_SIZE alignment
2243  * requirements, they are simply tossed out - we will never use those blocks
2244  * for swapping.
2245  *
2246  * For all swap devices we set S_SWAPFILE across the life of the swapon.  This
2247  * prevents users from writing to the swap device, which will corrupt memory.
2248  *
2249  * The amount of disk space which a single swap extent represents varies.
2250  * Typically it is in the 1-4 megabyte range.  So we can have hundreds of
2251  * extents in the rbtree. - akpm.
2252  */
2253 static int setup_swap_extents(struct swap_info_struct *sis, sector_t *span)
2254 {
2255 	struct file *swap_file = sis->swap_file;
2256 	struct address_space *mapping = swap_file->f_mapping;
2257 	struct inode *inode = mapping->host;
2258 	int ret;
2259 
2260 	if (S_ISBLK(inode->i_mode)) {
2261 		ret = add_swap_extent(sis, 0, sis->max, 0);
2262 		*span = sis->pages;
2263 		return ret;
2264 	}
2265 
2266 	if (mapping->a_ops->swap_activate) {
2267 		ret = mapping->a_ops->swap_activate(sis, swap_file, span);
2268 		if (ret < 0)
2269 			return ret;
2270 		sis->flags |= SWP_ACTIVATED;
2271 		if ((sis->flags & SWP_FS_OPS) &&
2272 		    sio_pool_init() != 0) {
2273 			destroy_swap_extents(sis);
2274 			return -ENOMEM;
2275 		}
2276 		return ret;
2277 	}
2278 
2279 	return generic_swapfile_activate(sis, swap_file, span);
2280 }
2281 
2282 static int swap_node(struct swap_info_struct *p)
2283 {
2284 	struct block_device *bdev;
2285 
2286 	if (p->bdev)
2287 		bdev = p->bdev;
2288 	else
2289 		bdev = p->swap_file->f_inode->i_sb->s_bdev;
2290 
2291 	return bdev ? bdev->bd_disk->node_id : NUMA_NO_NODE;
2292 }
2293 
2294 static void setup_swap_info(struct swap_info_struct *p, int prio,
2295 			    unsigned char *swap_map,
2296 			    struct swap_cluster_info *cluster_info)
2297 {
2298 	int i;
2299 
2300 	if (prio >= 0)
2301 		p->prio = prio;
2302 	else
2303 		p->prio = --least_priority;
2304 	/*
2305 	 * the plist prio is negated because plist ordering is
2306 	 * low-to-high, while swap ordering is high-to-low
2307 	 */
2308 	p->list.prio = -p->prio;
2309 	for_each_node(i) {
2310 		if (p->prio >= 0)
2311 			p->avail_lists[i].prio = -p->prio;
2312 		else {
2313 			if (swap_node(p) == i)
2314 				p->avail_lists[i].prio = 1;
2315 			else
2316 				p->avail_lists[i].prio = -p->prio;
2317 		}
2318 	}
2319 	p->swap_map = swap_map;
2320 	p->cluster_info = cluster_info;
2321 }
2322 
2323 static void _enable_swap_info(struct swap_info_struct *p)
2324 {
2325 	p->flags |= SWP_WRITEOK;
2326 	atomic_long_add(p->pages, &nr_swap_pages);
2327 	total_swap_pages += p->pages;
2328 
2329 	assert_spin_locked(&swap_lock);
2330 	/*
2331 	 * both lists are plists, and thus priority ordered.
2332 	 * swap_active_head needs to be priority ordered for swapoff(),
2333 	 * which on removal of any swap_info_struct with an auto-assigned
2334 	 * (i.e. negative) priority increments the auto-assigned priority
2335 	 * of any lower-priority swap_info_structs.
2336 	 * swap_avail_head needs to be priority ordered for folio_alloc_swap(),
2337 	 * which allocates swap pages from the highest available priority
2338 	 * swap_info_struct.
2339 	 */
2340 	plist_add(&p->list, &swap_active_head);
2341 	add_to_avail_list(p);
2342 }
2343 
2344 static void enable_swap_info(struct swap_info_struct *p, int prio,
2345 				unsigned char *swap_map,
2346 				struct swap_cluster_info *cluster_info,
2347 				unsigned long *frontswap_map)
2348 {
2349 	if (IS_ENABLED(CONFIG_FRONTSWAP))
2350 		frontswap_init(p->type, frontswap_map);
2351 	spin_lock(&swap_lock);
2352 	spin_lock(&p->lock);
2353 	setup_swap_info(p, prio, swap_map, cluster_info);
2354 	spin_unlock(&p->lock);
2355 	spin_unlock(&swap_lock);
2356 	/*
2357 	 * Finished initializing swap device, now it's safe to reference it.
2358 	 */
2359 	percpu_ref_resurrect(&p->users);
2360 	spin_lock(&swap_lock);
2361 	spin_lock(&p->lock);
2362 	_enable_swap_info(p);
2363 	spin_unlock(&p->lock);
2364 	spin_unlock(&swap_lock);
2365 }
2366 
2367 static void reinsert_swap_info(struct swap_info_struct *p)
2368 {
2369 	spin_lock(&swap_lock);
2370 	spin_lock(&p->lock);
2371 	setup_swap_info(p, p->prio, p->swap_map, p->cluster_info);
2372 	_enable_swap_info(p);
2373 	spin_unlock(&p->lock);
2374 	spin_unlock(&swap_lock);
2375 }
2376 
2377 bool has_usable_swap(void)
2378 {
2379 	bool ret = true;
2380 
2381 	spin_lock(&swap_lock);
2382 	if (plist_head_empty(&swap_active_head))
2383 		ret = false;
2384 	spin_unlock(&swap_lock);
2385 	return ret;
2386 }
2387 
2388 SYSCALL_DEFINE1(swapoff, const char __user *, specialfile)
2389 {
2390 	struct swap_info_struct *p = NULL;
2391 	unsigned char *swap_map;
2392 	struct swap_cluster_info *cluster_info;
2393 	unsigned long *frontswap_map;
2394 	struct file *swap_file, *victim;
2395 	struct address_space *mapping;
2396 	struct inode *inode;
2397 	struct filename *pathname;
2398 	int err, found = 0;
2399 	unsigned int old_block_size;
2400 
2401 	if (!capable(CAP_SYS_ADMIN))
2402 		return -EPERM;
2403 
2404 	BUG_ON(!current->mm);
2405 
2406 	pathname = getname(specialfile);
2407 	if (IS_ERR(pathname))
2408 		return PTR_ERR(pathname);
2409 
2410 	victim = file_open_name(pathname, O_RDWR|O_LARGEFILE, 0);
2411 	err = PTR_ERR(victim);
2412 	if (IS_ERR(victim))
2413 		goto out;
2414 
2415 	mapping = victim->f_mapping;
2416 	spin_lock(&swap_lock);
2417 	plist_for_each_entry(p, &swap_active_head, list) {
2418 		if (p->flags & SWP_WRITEOK) {
2419 			if (p->swap_file->f_mapping == mapping) {
2420 				found = 1;
2421 				break;
2422 			}
2423 		}
2424 	}
2425 	if (!found) {
2426 		err = -EINVAL;
2427 		spin_unlock(&swap_lock);
2428 		goto out_dput;
2429 	}
2430 	if (!security_vm_enough_memory_mm(current->mm, p->pages))
2431 		vm_unacct_memory(p->pages);
2432 	else {
2433 		err = -ENOMEM;
2434 		spin_unlock(&swap_lock);
2435 		goto out_dput;
2436 	}
2437 	del_from_avail_list(p);
2438 	spin_lock(&p->lock);
2439 	if (p->prio < 0) {
2440 		struct swap_info_struct *si = p;
2441 		int nid;
2442 
2443 		plist_for_each_entry_continue(si, &swap_active_head, list) {
2444 			si->prio++;
2445 			si->list.prio--;
2446 			for_each_node(nid) {
2447 				if (si->avail_lists[nid].prio != 1)
2448 					si->avail_lists[nid].prio--;
2449 			}
2450 		}
2451 		least_priority++;
2452 	}
2453 	plist_del(&p->list, &swap_active_head);
2454 	atomic_long_sub(p->pages, &nr_swap_pages);
2455 	total_swap_pages -= p->pages;
2456 	p->flags &= ~SWP_WRITEOK;
2457 	spin_unlock(&p->lock);
2458 	spin_unlock(&swap_lock);
2459 
2460 	disable_swap_slots_cache_lock();
2461 
2462 	set_current_oom_origin();
2463 	err = try_to_unuse(p->type);
2464 	clear_current_oom_origin();
2465 
2466 	if (err) {
2467 		/* re-insert swap space back into swap_list */
2468 		reinsert_swap_info(p);
2469 		reenable_swap_slots_cache_unlock();
2470 		goto out_dput;
2471 	}
2472 
2473 	reenable_swap_slots_cache_unlock();
2474 
2475 	/*
2476 	 * Wait for swap operations protected by get/put_swap_device()
2477 	 * to complete.
2478 	 *
2479 	 * We need synchronize_rcu() here to protect the accessing to
2480 	 * the swap cache data structure.
2481 	 */
2482 	percpu_ref_kill(&p->users);
2483 	synchronize_rcu();
2484 	wait_for_completion(&p->comp);
2485 
2486 	flush_work(&p->discard_work);
2487 
2488 	destroy_swap_extents(p);
2489 	if (p->flags & SWP_CONTINUED)
2490 		free_swap_count_continuations(p);
2491 
2492 	if (!p->bdev || !bdev_nonrot(p->bdev))
2493 		atomic_dec(&nr_rotate_swap);
2494 
2495 	mutex_lock(&swapon_mutex);
2496 	spin_lock(&swap_lock);
2497 	spin_lock(&p->lock);
2498 	drain_mmlist();
2499 
2500 	/* wait for anyone still in scan_swap_map_slots */
2501 	p->highest_bit = 0;		/* cuts scans short */
2502 	while (p->flags >= SWP_SCANNING) {
2503 		spin_unlock(&p->lock);
2504 		spin_unlock(&swap_lock);
2505 		schedule_timeout_uninterruptible(1);
2506 		spin_lock(&swap_lock);
2507 		spin_lock(&p->lock);
2508 	}
2509 
2510 	swap_file = p->swap_file;
2511 	old_block_size = p->old_block_size;
2512 	p->swap_file = NULL;
2513 	p->max = 0;
2514 	swap_map = p->swap_map;
2515 	p->swap_map = NULL;
2516 	cluster_info = p->cluster_info;
2517 	p->cluster_info = NULL;
2518 	frontswap_map = frontswap_map_get(p);
2519 	spin_unlock(&p->lock);
2520 	spin_unlock(&swap_lock);
2521 	arch_swap_invalidate_area(p->type);
2522 	frontswap_invalidate_area(p->type);
2523 	frontswap_map_set(p, NULL);
2524 	mutex_unlock(&swapon_mutex);
2525 	free_percpu(p->percpu_cluster);
2526 	p->percpu_cluster = NULL;
2527 	free_percpu(p->cluster_next_cpu);
2528 	p->cluster_next_cpu = NULL;
2529 	vfree(swap_map);
2530 	kvfree(cluster_info);
2531 	kvfree(frontswap_map);
2532 	/* Destroy swap account information */
2533 	swap_cgroup_swapoff(p->type);
2534 	exit_swap_address_space(p->type);
2535 
2536 	inode = mapping->host;
2537 	if (S_ISBLK(inode->i_mode)) {
2538 		struct block_device *bdev = I_BDEV(inode);
2539 
2540 		set_blocksize(bdev, old_block_size);
2541 		blkdev_put(bdev, FMODE_READ | FMODE_WRITE | FMODE_EXCL);
2542 	}
2543 
2544 	inode_lock(inode);
2545 	inode->i_flags &= ~S_SWAPFILE;
2546 	inode_unlock(inode);
2547 	filp_close(swap_file, NULL);
2548 
2549 	/*
2550 	 * Clear the SWP_USED flag after all resources are freed so that swapon
2551 	 * can reuse this swap_info in alloc_swap_info() safely.  It is ok to
2552 	 * not hold p->lock after we cleared its SWP_WRITEOK.
2553 	 */
2554 	spin_lock(&swap_lock);
2555 	p->flags = 0;
2556 	spin_unlock(&swap_lock);
2557 
2558 	err = 0;
2559 	atomic_inc(&proc_poll_event);
2560 	wake_up_interruptible(&proc_poll_wait);
2561 
2562 out_dput:
2563 	filp_close(victim, NULL);
2564 out:
2565 	putname(pathname);
2566 	return err;
2567 }
2568 
2569 #ifdef CONFIG_PROC_FS
2570 static __poll_t swaps_poll(struct file *file, poll_table *wait)
2571 {
2572 	struct seq_file *seq = file->private_data;
2573 
2574 	poll_wait(file, &proc_poll_wait, wait);
2575 
2576 	if (seq->poll_event != atomic_read(&proc_poll_event)) {
2577 		seq->poll_event = atomic_read(&proc_poll_event);
2578 		return EPOLLIN | EPOLLRDNORM | EPOLLERR | EPOLLPRI;
2579 	}
2580 
2581 	return EPOLLIN | EPOLLRDNORM;
2582 }
2583 
2584 /* iterator */
2585 static void *swap_start(struct seq_file *swap, loff_t *pos)
2586 {
2587 	struct swap_info_struct *si;
2588 	int type;
2589 	loff_t l = *pos;
2590 
2591 	mutex_lock(&swapon_mutex);
2592 
2593 	if (!l)
2594 		return SEQ_START_TOKEN;
2595 
2596 	for (type = 0; (si = swap_type_to_swap_info(type)); type++) {
2597 		if (!(si->flags & SWP_USED) || !si->swap_map)
2598 			continue;
2599 		if (!--l)
2600 			return si;
2601 	}
2602 
2603 	return NULL;
2604 }
2605 
2606 static void *swap_next(struct seq_file *swap, void *v, loff_t *pos)
2607 {
2608 	struct swap_info_struct *si = v;
2609 	int type;
2610 
2611 	if (v == SEQ_START_TOKEN)
2612 		type = 0;
2613 	else
2614 		type = si->type + 1;
2615 
2616 	++(*pos);
2617 	for (; (si = swap_type_to_swap_info(type)); type++) {
2618 		if (!(si->flags & SWP_USED) || !si->swap_map)
2619 			continue;
2620 		return si;
2621 	}
2622 
2623 	return NULL;
2624 }
2625 
2626 static void swap_stop(struct seq_file *swap, void *v)
2627 {
2628 	mutex_unlock(&swapon_mutex);
2629 }
2630 
2631 static int swap_show(struct seq_file *swap, void *v)
2632 {
2633 	struct swap_info_struct *si = v;
2634 	struct file *file;
2635 	int len;
2636 	unsigned long bytes, inuse;
2637 
2638 	if (si == SEQ_START_TOKEN) {
2639 		seq_puts(swap, "Filename\t\t\t\tType\t\tSize\t\tUsed\t\tPriority\n");
2640 		return 0;
2641 	}
2642 
2643 	bytes = si->pages << (PAGE_SHIFT - 10);
2644 	inuse = READ_ONCE(si->inuse_pages) << (PAGE_SHIFT - 10);
2645 
2646 	file = si->swap_file;
2647 	len = seq_file_path(swap, file, " \t\n\\");
2648 	seq_printf(swap, "%*s%s\t%lu\t%s%lu\t%s%d\n",
2649 			len < 40 ? 40 - len : 1, " ",
2650 			S_ISBLK(file_inode(file)->i_mode) ?
2651 				"partition" : "file\t",
2652 			bytes, bytes < 10000000 ? "\t" : "",
2653 			inuse, inuse < 10000000 ? "\t" : "",
2654 			si->prio);
2655 	return 0;
2656 }
2657 
2658 static const struct seq_operations swaps_op = {
2659 	.start =	swap_start,
2660 	.next =		swap_next,
2661 	.stop =		swap_stop,
2662 	.show =		swap_show
2663 };
2664 
2665 static int swaps_open(struct inode *inode, struct file *file)
2666 {
2667 	struct seq_file *seq;
2668 	int ret;
2669 
2670 	ret = seq_open(file, &swaps_op);
2671 	if (ret)
2672 		return ret;
2673 
2674 	seq = file->private_data;
2675 	seq->poll_event = atomic_read(&proc_poll_event);
2676 	return 0;
2677 }
2678 
2679 static const struct proc_ops swaps_proc_ops = {
2680 	.proc_flags	= PROC_ENTRY_PERMANENT,
2681 	.proc_open	= swaps_open,
2682 	.proc_read	= seq_read,
2683 	.proc_lseek	= seq_lseek,
2684 	.proc_release	= seq_release,
2685 	.proc_poll	= swaps_poll,
2686 };
2687 
2688 static int __init procswaps_init(void)
2689 {
2690 	proc_create("swaps", 0, NULL, &swaps_proc_ops);
2691 	return 0;
2692 }
2693 __initcall(procswaps_init);
2694 #endif /* CONFIG_PROC_FS */
2695 
2696 #ifdef MAX_SWAPFILES_CHECK
2697 static int __init max_swapfiles_check(void)
2698 {
2699 	MAX_SWAPFILES_CHECK();
2700 	return 0;
2701 }
2702 late_initcall(max_swapfiles_check);
2703 #endif
2704 
2705 static struct swap_info_struct *alloc_swap_info(void)
2706 {
2707 	struct swap_info_struct *p;
2708 	struct swap_info_struct *defer = NULL;
2709 	unsigned int type;
2710 	int i;
2711 
2712 	p = kvzalloc(struct_size(p, avail_lists, nr_node_ids), GFP_KERNEL);
2713 	if (!p)
2714 		return ERR_PTR(-ENOMEM);
2715 
2716 	if (percpu_ref_init(&p->users, swap_users_ref_free,
2717 			    PERCPU_REF_INIT_DEAD, GFP_KERNEL)) {
2718 		kvfree(p);
2719 		return ERR_PTR(-ENOMEM);
2720 	}
2721 
2722 	spin_lock(&swap_lock);
2723 	for (type = 0; type < nr_swapfiles; type++) {
2724 		if (!(swap_info[type]->flags & SWP_USED))
2725 			break;
2726 	}
2727 	if (type >= MAX_SWAPFILES) {
2728 		spin_unlock(&swap_lock);
2729 		percpu_ref_exit(&p->users);
2730 		kvfree(p);
2731 		return ERR_PTR(-EPERM);
2732 	}
2733 	if (type >= nr_swapfiles) {
2734 		p->type = type;
2735 		/*
2736 		 * Publish the swap_info_struct after initializing it.
2737 		 * Note that kvzalloc() above zeroes all its fields.
2738 		 */
2739 		smp_store_release(&swap_info[type], p); /* rcu_assign_pointer() */
2740 		nr_swapfiles++;
2741 	} else {
2742 		defer = p;
2743 		p = swap_info[type];
2744 		/*
2745 		 * Do not memset this entry: a racing procfs swap_next()
2746 		 * would be relying on p->type to remain valid.
2747 		 */
2748 	}
2749 	p->swap_extent_root = RB_ROOT;
2750 	plist_node_init(&p->list, 0);
2751 	for_each_node(i)
2752 		plist_node_init(&p->avail_lists[i], 0);
2753 	p->flags = SWP_USED;
2754 	spin_unlock(&swap_lock);
2755 	if (defer) {
2756 		percpu_ref_exit(&defer->users);
2757 		kvfree(defer);
2758 	}
2759 	spin_lock_init(&p->lock);
2760 	spin_lock_init(&p->cont_lock);
2761 	init_completion(&p->comp);
2762 
2763 	return p;
2764 }
2765 
2766 static int claim_swapfile(struct swap_info_struct *p, struct inode *inode)
2767 {
2768 	int error;
2769 
2770 	if (S_ISBLK(inode->i_mode)) {
2771 		p->bdev = blkdev_get_by_dev(inode->i_rdev,
2772 				   FMODE_READ | FMODE_WRITE | FMODE_EXCL, p);
2773 		if (IS_ERR(p->bdev)) {
2774 			error = PTR_ERR(p->bdev);
2775 			p->bdev = NULL;
2776 			return error;
2777 		}
2778 		p->old_block_size = block_size(p->bdev);
2779 		error = set_blocksize(p->bdev, PAGE_SIZE);
2780 		if (error < 0)
2781 			return error;
2782 		/*
2783 		 * Zoned block devices contain zones that have a sequential
2784 		 * write only restriction.  Hence zoned block devices are not
2785 		 * suitable for swapping.  Disallow them here.
2786 		 */
2787 		if (bdev_is_zoned(p->bdev))
2788 			return -EINVAL;
2789 		p->flags |= SWP_BLKDEV;
2790 	} else if (S_ISREG(inode->i_mode)) {
2791 		p->bdev = inode->i_sb->s_bdev;
2792 	}
2793 
2794 	return 0;
2795 }
2796 
2797 
2798 /*
2799  * Find out how many pages are allowed for a single swap device. There
2800  * are two limiting factors:
2801  * 1) the number of bits for the swap offset in the swp_entry_t type, and
2802  * 2) the number of bits in the swap pte, as defined by the different
2803  * architectures.
2804  *
2805  * In order to find the largest possible bit mask, a swap entry with
2806  * swap type 0 and swap offset ~0UL is created, encoded to a swap pte,
2807  * decoded to a swp_entry_t again, and finally the swap offset is
2808  * extracted.
2809  *
2810  * This will mask all the bits from the initial ~0UL mask that can't
2811  * be encoded in either the swp_entry_t or the architecture definition
2812  * of a swap pte.
2813  */
2814 unsigned long generic_max_swapfile_size(void)
2815 {
2816 	return swp_offset(pte_to_swp_entry(
2817 			swp_entry_to_pte(swp_entry(0, ~0UL)))) + 1;
2818 }
2819 
2820 /* Can be overridden by an architecture for additional checks. */
2821 __weak unsigned long arch_max_swapfile_size(void)
2822 {
2823 	return generic_max_swapfile_size();
2824 }
2825 
2826 static unsigned long read_swap_header(struct swap_info_struct *p,
2827 					union swap_header *swap_header,
2828 					struct inode *inode)
2829 {
2830 	int i;
2831 	unsigned long maxpages;
2832 	unsigned long swapfilepages;
2833 	unsigned long last_page;
2834 
2835 	if (memcmp("SWAPSPACE2", swap_header->magic.magic, 10)) {
2836 		pr_err("Unable to find swap-space signature\n");
2837 		return 0;
2838 	}
2839 
2840 	/* swap partition endianness hack... */
2841 	if (swab32(swap_header->info.version) == 1) {
2842 		swab32s(&swap_header->info.version);
2843 		swab32s(&swap_header->info.last_page);
2844 		swab32s(&swap_header->info.nr_badpages);
2845 		if (swap_header->info.nr_badpages > MAX_SWAP_BADPAGES)
2846 			return 0;
2847 		for (i = 0; i < swap_header->info.nr_badpages; i++)
2848 			swab32s(&swap_header->info.badpages[i]);
2849 	}
2850 	/* Check the swap header's sub-version */
2851 	if (swap_header->info.version != 1) {
2852 		pr_warn("Unable to handle swap header version %d\n",
2853 			swap_header->info.version);
2854 		return 0;
2855 	}
2856 
2857 	p->lowest_bit  = 1;
2858 	p->cluster_next = 1;
2859 	p->cluster_nr = 0;
2860 
2861 	maxpages = swapfile_maximum_size;
2862 	last_page = swap_header->info.last_page;
2863 	if (!last_page) {
2864 		pr_warn("Empty swap-file\n");
2865 		return 0;
2866 	}
2867 	if (last_page > maxpages) {
2868 		pr_warn("Truncating oversized swap area, only using %luk out of %luk\n",
2869 			maxpages << (PAGE_SHIFT - 10),
2870 			last_page << (PAGE_SHIFT - 10));
2871 	}
2872 	if (maxpages > last_page) {
2873 		maxpages = last_page + 1;
2874 		/* p->max is an unsigned int: don't overflow it */
2875 		if ((unsigned int)maxpages == 0)
2876 			maxpages = UINT_MAX;
2877 	}
2878 	p->highest_bit = maxpages - 1;
2879 
2880 	if (!maxpages)
2881 		return 0;
2882 	swapfilepages = i_size_read(inode) >> PAGE_SHIFT;
2883 	if (swapfilepages && maxpages > swapfilepages) {
2884 		pr_warn("Swap area shorter than signature indicates\n");
2885 		return 0;
2886 	}
2887 	if (swap_header->info.nr_badpages && S_ISREG(inode->i_mode))
2888 		return 0;
2889 	if (swap_header->info.nr_badpages > MAX_SWAP_BADPAGES)
2890 		return 0;
2891 
2892 	return maxpages;
2893 }
2894 
2895 #define SWAP_CLUSTER_INFO_COLS						\
2896 	DIV_ROUND_UP(L1_CACHE_BYTES, sizeof(struct swap_cluster_info))
2897 #define SWAP_CLUSTER_SPACE_COLS						\
2898 	DIV_ROUND_UP(SWAP_ADDRESS_SPACE_PAGES, SWAPFILE_CLUSTER)
2899 #define SWAP_CLUSTER_COLS						\
2900 	max_t(unsigned int, SWAP_CLUSTER_INFO_COLS, SWAP_CLUSTER_SPACE_COLS)
2901 
2902 static int setup_swap_map_and_extents(struct swap_info_struct *p,
2903 					union swap_header *swap_header,
2904 					unsigned char *swap_map,
2905 					struct swap_cluster_info *cluster_info,
2906 					unsigned long maxpages,
2907 					sector_t *span)
2908 {
2909 	unsigned int j, k;
2910 	unsigned int nr_good_pages;
2911 	int nr_extents;
2912 	unsigned long nr_clusters = DIV_ROUND_UP(maxpages, SWAPFILE_CLUSTER);
2913 	unsigned long col = p->cluster_next / SWAPFILE_CLUSTER % SWAP_CLUSTER_COLS;
2914 	unsigned long i, idx;
2915 
2916 	nr_good_pages = maxpages - 1;	/* omit header page */
2917 
2918 	cluster_list_init(&p->free_clusters);
2919 	cluster_list_init(&p->discard_clusters);
2920 
2921 	for (i = 0; i < swap_header->info.nr_badpages; i++) {
2922 		unsigned int page_nr = swap_header->info.badpages[i];
2923 		if (page_nr == 0 || page_nr > swap_header->info.last_page)
2924 			return -EINVAL;
2925 		if (page_nr < maxpages) {
2926 			swap_map[page_nr] = SWAP_MAP_BAD;
2927 			nr_good_pages--;
2928 			/*
2929 			 * Haven't marked the cluster free yet, no list
2930 			 * operation involved
2931 			 */
2932 			inc_cluster_info_page(p, cluster_info, page_nr);
2933 		}
2934 	}
2935 
2936 	/* Haven't marked the cluster free yet, no list operation involved */
2937 	for (i = maxpages; i < round_up(maxpages, SWAPFILE_CLUSTER); i++)
2938 		inc_cluster_info_page(p, cluster_info, i);
2939 
2940 	if (nr_good_pages) {
2941 		swap_map[0] = SWAP_MAP_BAD;
2942 		/*
2943 		 * Not mark the cluster free yet, no list
2944 		 * operation involved
2945 		 */
2946 		inc_cluster_info_page(p, cluster_info, 0);
2947 		p->max = maxpages;
2948 		p->pages = nr_good_pages;
2949 		nr_extents = setup_swap_extents(p, span);
2950 		if (nr_extents < 0)
2951 			return nr_extents;
2952 		nr_good_pages = p->pages;
2953 	}
2954 	if (!nr_good_pages) {
2955 		pr_warn("Empty swap-file\n");
2956 		return -EINVAL;
2957 	}
2958 
2959 	if (!cluster_info)
2960 		return nr_extents;
2961 
2962 
2963 	/*
2964 	 * Reduce false cache line sharing between cluster_info and
2965 	 * sharing same address space.
2966 	 */
2967 	for (k = 0; k < SWAP_CLUSTER_COLS; k++) {
2968 		j = (k + col) % SWAP_CLUSTER_COLS;
2969 		for (i = 0; i < DIV_ROUND_UP(nr_clusters, SWAP_CLUSTER_COLS); i++) {
2970 			idx = i * SWAP_CLUSTER_COLS + j;
2971 			if (idx >= nr_clusters)
2972 				continue;
2973 			if (cluster_count(&cluster_info[idx]))
2974 				continue;
2975 			cluster_set_flag(&cluster_info[idx], CLUSTER_FLAG_FREE);
2976 			cluster_list_add_tail(&p->free_clusters, cluster_info,
2977 					      idx);
2978 		}
2979 	}
2980 	return nr_extents;
2981 }
2982 
2983 SYSCALL_DEFINE2(swapon, const char __user *, specialfile, int, swap_flags)
2984 {
2985 	struct swap_info_struct *p;
2986 	struct filename *name;
2987 	struct file *swap_file = NULL;
2988 	struct address_space *mapping;
2989 	struct dentry *dentry;
2990 	int prio;
2991 	int error;
2992 	union swap_header *swap_header;
2993 	int nr_extents;
2994 	sector_t span;
2995 	unsigned long maxpages;
2996 	unsigned char *swap_map = NULL;
2997 	struct swap_cluster_info *cluster_info = NULL;
2998 	unsigned long *frontswap_map = NULL;
2999 	struct page *page = NULL;
3000 	struct inode *inode = NULL;
3001 	bool inced_nr_rotate_swap = false;
3002 
3003 	if (swap_flags & ~SWAP_FLAGS_VALID)
3004 		return -EINVAL;
3005 
3006 	if (!capable(CAP_SYS_ADMIN))
3007 		return -EPERM;
3008 
3009 	if (!swap_avail_heads)
3010 		return -ENOMEM;
3011 
3012 	p = alloc_swap_info();
3013 	if (IS_ERR(p))
3014 		return PTR_ERR(p);
3015 
3016 	INIT_WORK(&p->discard_work, swap_discard_work);
3017 
3018 	name = getname(specialfile);
3019 	if (IS_ERR(name)) {
3020 		error = PTR_ERR(name);
3021 		name = NULL;
3022 		goto bad_swap;
3023 	}
3024 	swap_file = file_open_name(name, O_RDWR|O_LARGEFILE, 0);
3025 	if (IS_ERR(swap_file)) {
3026 		error = PTR_ERR(swap_file);
3027 		swap_file = NULL;
3028 		goto bad_swap;
3029 	}
3030 
3031 	p->swap_file = swap_file;
3032 	mapping = swap_file->f_mapping;
3033 	dentry = swap_file->f_path.dentry;
3034 	inode = mapping->host;
3035 
3036 	error = claim_swapfile(p, inode);
3037 	if (unlikely(error))
3038 		goto bad_swap;
3039 
3040 	inode_lock(inode);
3041 	if (d_unlinked(dentry) || cant_mount(dentry)) {
3042 		error = -ENOENT;
3043 		goto bad_swap_unlock_inode;
3044 	}
3045 	if (IS_SWAPFILE(inode)) {
3046 		error = -EBUSY;
3047 		goto bad_swap_unlock_inode;
3048 	}
3049 
3050 	/*
3051 	 * Read the swap header.
3052 	 */
3053 	if (!mapping->a_ops->read_folio) {
3054 		error = -EINVAL;
3055 		goto bad_swap_unlock_inode;
3056 	}
3057 	page = read_mapping_page(mapping, 0, swap_file);
3058 	if (IS_ERR(page)) {
3059 		error = PTR_ERR(page);
3060 		goto bad_swap_unlock_inode;
3061 	}
3062 	swap_header = kmap(page);
3063 
3064 	maxpages = read_swap_header(p, swap_header, inode);
3065 	if (unlikely(!maxpages)) {
3066 		error = -EINVAL;
3067 		goto bad_swap_unlock_inode;
3068 	}
3069 
3070 	/* OK, set up the swap map and apply the bad block list */
3071 	swap_map = vzalloc(maxpages);
3072 	if (!swap_map) {
3073 		error = -ENOMEM;
3074 		goto bad_swap_unlock_inode;
3075 	}
3076 
3077 	if (p->bdev && bdev_stable_writes(p->bdev))
3078 		p->flags |= SWP_STABLE_WRITES;
3079 
3080 	if (p->bdev && bdev_synchronous(p->bdev))
3081 		p->flags |= SWP_SYNCHRONOUS_IO;
3082 
3083 	if (p->bdev && bdev_nonrot(p->bdev)) {
3084 		int cpu;
3085 		unsigned long ci, nr_cluster;
3086 
3087 		p->flags |= SWP_SOLIDSTATE;
3088 		p->cluster_next_cpu = alloc_percpu(unsigned int);
3089 		if (!p->cluster_next_cpu) {
3090 			error = -ENOMEM;
3091 			goto bad_swap_unlock_inode;
3092 		}
3093 		/*
3094 		 * select a random position to start with to help wear leveling
3095 		 * SSD
3096 		 */
3097 		for_each_possible_cpu(cpu) {
3098 			per_cpu(*p->cluster_next_cpu, cpu) =
3099 				get_random_u32_inclusive(1, p->highest_bit);
3100 		}
3101 		nr_cluster = DIV_ROUND_UP(maxpages, SWAPFILE_CLUSTER);
3102 
3103 		cluster_info = kvcalloc(nr_cluster, sizeof(*cluster_info),
3104 					GFP_KERNEL);
3105 		if (!cluster_info) {
3106 			error = -ENOMEM;
3107 			goto bad_swap_unlock_inode;
3108 		}
3109 
3110 		for (ci = 0; ci < nr_cluster; ci++)
3111 			spin_lock_init(&((cluster_info + ci)->lock));
3112 
3113 		p->percpu_cluster = alloc_percpu(struct percpu_cluster);
3114 		if (!p->percpu_cluster) {
3115 			error = -ENOMEM;
3116 			goto bad_swap_unlock_inode;
3117 		}
3118 		for_each_possible_cpu(cpu) {
3119 			struct percpu_cluster *cluster;
3120 			cluster = per_cpu_ptr(p->percpu_cluster, cpu);
3121 			cluster_set_null(&cluster->index);
3122 		}
3123 	} else {
3124 		atomic_inc(&nr_rotate_swap);
3125 		inced_nr_rotate_swap = true;
3126 	}
3127 
3128 	error = swap_cgroup_swapon(p->type, maxpages);
3129 	if (error)
3130 		goto bad_swap_unlock_inode;
3131 
3132 	nr_extents = setup_swap_map_and_extents(p, swap_header, swap_map,
3133 		cluster_info, maxpages, &span);
3134 	if (unlikely(nr_extents < 0)) {
3135 		error = nr_extents;
3136 		goto bad_swap_unlock_inode;
3137 	}
3138 	/* frontswap enabled? set up bit-per-page map for frontswap */
3139 	if (IS_ENABLED(CONFIG_FRONTSWAP))
3140 		frontswap_map = kvcalloc(BITS_TO_LONGS(maxpages),
3141 					 sizeof(long),
3142 					 GFP_KERNEL);
3143 
3144 	if ((swap_flags & SWAP_FLAG_DISCARD) &&
3145 	    p->bdev && bdev_max_discard_sectors(p->bdev)) {
3146 		/*
3147 		 * When discard is enabled for swap with no particular
3148 		 * policy flagged, we set all swap discard flags here in
3149 		 * order to sustain backward compatibility with older
3150 		 * swapon(8) releases.
3151 		 */
3152 		p->flags |= (SWP_DISCARDABLE | SWP_AREA_DISCARD |
3153 			     SWP_PAGE_DISCARD);
3154 
3155 		/*
3156 		 * By flagging sys_swapon, a sysadmin can tell us to
3157 		 * either do single-time area discards only, or to just
3158 		 * perform discards for released swap page-clusters.
3159 		 * Now it's time to adjust the p->flags accordingly.
3160 		 */
3161 		if (swap_flags & SWAP_FLAG_DISCARD_ONCE)
3162 			p->flags &= ~SWP_PAGE_DISCARD;
3163 		else if (swap_flags & SWAP_FLAG_DISCARD_PAGES)
3164 			p->flags &= ~SWP_AREA_DISCARD;
3165 
3166 		/* issue a swapon-time discard if it's still required */
3167 		if (p->flags & SWP_AREA_DISCARD) {
3168 			int err = discard_swap(p);
3169 			if (unlikely(err))
3170 				pr_err("swapon: discard_swap(%p): %d\n",
3171 					p, err);
3172 		}
3173 	}
3174 
3175 	error = init_swap_address_space(p->type, maxpages);
3176 	if (error)
3177 		goto bad_swap_unlock_inode;
3178 
3179 	/*
3180 	 * Flush any pending IO and dirty mappings before we start using this
3181 	 * swap device.
3182 	 */
3183 	inode->i_flags |= S_SWAPFILE;
3184 	error = inode_drain_writes(inode);
3185 	if (error) {
3186 		inode->i_flags &= ~S_SWAPFILE;
3187 		goto free_swap_address_space;
3188 	}
3189 
3190 	mutex_lock(&swapon_mutex);
3191 	prio = -1;
3192 	if (swap_flags & SWAP_FLAG_PREFER)
3193 		prio =
3194 		  (swap_flags & SWAP_FLAG_PRIO_MASK) >> SWAP_FLAG_PRIO_SHIFT;
3195 	enable_swap_info(p, prio, swap_map, cluster_info, frontswap_map);
3196 
3197 	pr_info("Adding %uk swap on %s.  Priority:%d extents:%d across:%lluk %s%s%s%s%s\n",
3198 		p->pages<<(PAGE_SHIFT-10), name->name, p->prio,
3199 		nr_extents, (unsigned long long)span<<(PAGE_SHIFT-10),
3200 		(p->flags & SWP_SOLIDSTATE) ? "SS" : "",
3201 		(p->flags & SWP_DISCARDABLE) ? "D" : "",
3202 		(p->flags & SWP_AREA_DISCARD) ? "s" : "",
3203 		(p->flags & SWP_PAGE_DISCARD) ? "c" : "",
3204 		(frontswap_map) ? "FS" : "");
3205 
3206 	mutex_unlock(&swapon_mutex);
3207 	atomic_inc(&proc_poll_event);
3208 	wake_up_interruptible(&proc_poll_wait);
3209 
3210 	error = 0;
3211 	goto out;
3212 free_swap_address_space:
3213 	exit_swap_address_space(p->type);
3214 bad_swap_unlock_inode:
3215 	inode_unlock(inode);
3216 bad_swap:
3217 	free_percpu(p->percpu_cluster);
3218 	p->percpu_cluster = NULL;
3219 	free_percpu(p->cluster_next_cpu);
3220 	p->cluster_next_cpu = NULL;
3221 	if (inode && S_ISBLK(inode->i_mode) && p->bdev) {
3222 		set_blocksize(p->bdev, p->old_block_size);
3223 		blkdev_put(p->bdev, FMODE_READ | FMODE_WRITE | FMODE_EXCL);
3224 	}
3225 	inode = NULL;
3226 	destroy_swap_extents(p);
3227 	swap_cgroup_swapoff(p->type);
3228 	spin_lock(&swap_lock);
3229 	p->swap_file = NULL;
3230 	p->flags = 0;
3231 	spin_unlock(&swap_lock);
3232 	vfree(swap_map);
3233 	kvfree(cluster_info);
3234 	kvfree(frontswap_map);
3235 	if (inced_nr_rotate_swap)
3236 		atomic_dec(&nr_rotate_swap);
3237 	if (swap_file)
3238 		filp_close(swap_file, NULL);
3239 out:
3240 	if (page && !IS_ERR(page)) {
3241 		kunmap(page);
3242 		put_page(page);
3243 	}
3244 	if (name)
3245 		putname(name);
3246 	if (inode)
3247 		inode_unlock(inode);
3248 	if (!error)
3249 		enable_swap_slots_cache();
3250 	return error;
3251 }
3252 
3253 void si_swapinfo(struct sysinfo *val)
3254 {
3255 	unsigned int type;
3256 	unsigned long nr_to_be_unused = 0;
3257 
3258 	spin_lock(&swap_lock);
3259 	for (type = 0; type < nr_swapfiles; type++) {
3260 		struct swap_info_struct *si = swap_info[type];
3261 
3262 		if ((si->flags & SWP_USED) && !(si->flags & SWP_WRITEOK))
3263 			nr_to_be_unused += READ_ONCE(si->inuse_pages);
3264 	}
3265 	val->freeswap = atomic_long_read(&nr_swap_pages) + nr_to_be_unused;
3266 	val->totalswap = total_swap_pages + nr_to_be_unused;
3267 	spin_unlock(&swap_lock);
3268 }
3269 
3270 /*
3271  * Verify that a swap entry is valid and increment its swap map count.
3272  *
3273  * Returns error code in following case.
3274  * - success -> 0
3275  * - swp_entry is invalid -> EINVAL
3276  * - swp_entry is migration entry -> EINVAL
3277  * - swap-cache reference is requested but there is already one. -> EEXIST
3278  * - swap-cache reference is requested but the entry is not used. -> ENOENT
3279  * - swap-mapped reference requested but needs continued swap count. -> ENOMEM
3280  */
3281 static int __swap_duplicate(swp_entry_t entry, unsigned char usage)
3282 {
3283 	struct swap_info_struct *p;
3284 	struct swap_cluster_info *ci;
3285 	unsigned long offset;
3286 	unsigned char count;
3287 	unsigned char has_cache;
3288 	int err;
3289 
3290 	p = get_swap_device(entry);
3291 	if (!p)
3292 		return -EINVAL;
3293 
3294 	offset = swp_offset(entry);
3295 	ci = lock_cluster_or_swap_info(p, offset);
3296 
3297 	count = p->swap_map[offset];
3298 
3299 	/*
3300 	 * swapin_readahead() doesn't check if a swap entry is valid, so the
3301 	 * swap entry could be SWAP_MAP_BAD. Check here with lock held.
3302 	 */
3303 	if (unlikely(swap_count(count) == SWAP_MAP_BAD)) {
3304 		err = -ENOENT;
3305 		goto unlock_out;
3306 	}
3307 
3308 	has_cache = count & SWAP_HAS_CACHE;
3309 	count &= ~SWAP_HAS_CACHE;
3310 	err = 0;
3311 
3312 	if (usage == SWAP_HAS_CACHE) {
3313 
3314 		/* set SWAP_HAS_CACHE if there is no cache and entry is used */
3315 		if (!has_cache && count)
3316 			has_cache = SWAP_HAS_CACHE;
3317 		else if (has_cache)		/* someone else added cache */
3318 			err = -EEXIST;
3319 		else				/* no users remaining */
3320 			err = -ENOENT;
3321 
3322 	} else if (count || has_cache) {
3323 
3324 		if ((count & ~COUNT_CONTINUED) < SWAP_MAP_MAX)
3325 			count += usage;
3326 		else if ((count & ~COUNT_CONTINUED) > SWAP_MAP_MAX)
3327 			err = -EINVAL;
3328 		else if (swap_count_continued(p, offset, count))
3329 			count = COUNT_CONTINUED;
3330 		else
3331 			err = -ENOMEM;
3332 	} else
3333 		err = -ENOENT;			/* unused swap entry */
3334 
3335 	WRITE_ONCE(p->swap_map[offset], count | has_cache);
3336 
3337 unlock_out:
3338 	unlock_cluster_or_swap_info(p, ci);
3339 	put_swap_device(p);
3340 	return err;
3341 }
3342 
3343 /*
3344  * Help swapoff by noting that swap entry belongs to shmem/tmpfs
3345  * (in which case its reference count is never incremented).
3346  */
3347 void swap_shmem_alloc(swp_entry_t entry)
3348 {
3349 	__swap_duplicate(entry, SWAP_MAP_SHMEM);
3350 }
3351 
3352 /*
3353  * Increase reference count of swap entry by 1.
3354  * Returns 0 for success, or -ENOMEM if a swap_count_continuation is required
3355  * but could not be atomically allocated.  Returns 0, just as if it succeeded,
3356  * if __swap_duplicate() fails for another reason (-EINVAL or -ENOENT), which
3357  * might occur if a page table entry has got corrupted.
3358  */
3359 int swap_duplicate(swp_entry_t entry)
3360 {
3361 	int err = 0;
3362 
3363 	while (!err && __swap_duplicate(entry, 1) == -ENOMEM)
3364 		err = add_swap_count_continuation(entry, GFP_ATOMIC);
3365 	return err;
3366 }
3367 
3368 /*
3369  * @entry: swap entry for which we allocate swap cache.
3370  *
3371  * Called when allocating swap cache for existing swap entry,
3372  * This can return error codes. Returns 0 at success.
3373  * -EEXIST means there is a swap cache.
3374  * Note: return code is different from swap_duplicate().
3375  */
3376 int swapcache_prepare(swp_entry_t entry)
3377 {
3378 	return __swap_duplicate(entry, SWAP_HAS_CACHE);
3379 }
3380 
3381 struct swap_info_struct *swp_swap_info(swp_entry_t entry)
3382 {
3383 	return swap_type_to_swap_info(swp_type(entry));
3384 }
3385 
3386 struct swap_info_struct *page_swap_info(struct page *page)
3387 {
3388 	swp_entry_t entry = { .val = page_private(page) };
3389 	return swp_swap_info(entry);
3390 }
3391 
3392 /*
3393  * out-of-line methods to avoid include hell.
3394  */
3395 struct address_space *swapcache_mapping(struct folio *folio)
3396 {
3397 	return page_swap_info(&folio->page)->swap_file->f_mapping;
3398 }
3399 EXPORT_SYMBOL_GPL(swapcache_mapping);
3400 
3401 pgoff_t __page_file_index(struct page *page)
3402 {
3403 	swp_entry_t swap = { .val = page_private(page) };
3404 	return swp_offset(swap);
3405 }
3406 EXPORT_SYMBOL_GPL(__page_file_index);
3407 
3408 /*
3409  * add_swap_count_continuation - called when a swap count is duplicated
3410  * beyond SWAP_MAP_MAX, it allocates a new page and links that to the entry's
3411  * page of the original vmalloc'ed swap_map, to hold the continuation count
3412  * (for that entry and for its neighbouring PAGE_SIZE swap entries).  Called
3413  * again when count is duplicated beyond SWAP_MAP_MAX * SWAP_CONT_MAX, etc.
3414  *
3415  * These continuation pages are seldom referenced: the common paths all work
3416  * on the original swap_map, only referring to a continuation page when the
3417  * low "digit" of a count is incremented or decremented through SWAP_MAP_MAX.
3418  *
3419  * add_swap_count_continuation(, GFP_ATOMIC) can be called while holding
3420  * page table locks; if it fails, add_swap_count_continuation(, GFP_KERNEL)
3421  * can be called after dropping locks.
3422  */
3423 int add_swap_count_continuation(swp_entry_t entry, gfp_t gfp_mask)
3424 {
3425 	struct swap_info_struct *si;
3426 	struct swap_cluster_info *ci;
3427 	struct page *head;
3428 	struct page *page;
3429 	struct page *list_page;
3430 	pgoff_t offset;
3431 	unsigned char count;
3432 	int ret = 0;
3433 
3434 	/*
3435 	 * When debugging, it's easier to use __GFP_ZERO here; but it's better
3436 	 * for latency not to zero a page while GFP_ATOMIC and holding locks.
3437 	 */
3438 	page = alloc_page(gfp_mask | __GFP_HIGHMEM);
3439 
3440 	si = get_swap_device(entry);
3441 	if (!si) {
3442 		/*
3443 		 * An acceptable race has occurred since the failing
3444 		 * __swap_duplicate(): the swap device may be swapoff
3445 		 */
3446 		goto outer;
3447 	}
3448 	spin_lock(&si->lock);
3449 
3450 	offset = swp_offset(entry);
3451 
3452 	ci = lock_cluster(si, offset);
3453 
3454 	count = swap_count(si->swap_map[offset]);
3455 
3456 	if ((count & ~COUNT_CONTINUED) != SWAP_MAP_MAX) {
3457 		/*
3458 		 * The higher the swap count, the more likely it is that tasks
3459 		 * will race to add swap count continuation: we need to avoid
3460 		 * over-provisioning.
3461 		 */
3462 		goto out;
3463 	}
3464 
3465 	if (!page) {
3466 		ret = -ENOMEM;
3467 		goto out;
3468 	}
3469 
3470 	/*
3471 	 * We are fortunate that although vmalloc_to_page uses pte_offset_map,
3472 	 * no architecture is using highmem pages for kernel page tables: so it
3473 	 * will not corrupt the GFP_ATOMIC caller's atomic page table kmaps.
3474 	 */
3475 	head = vmalloc_to_page(si->swap_map + offset);
3476 	offset &= ~PAGE_MASK;
3477 
3478 	spin_lock(&si->cont_lock);
3479 	/*
3480 	 * Page allocation does not initialize the page's lru field,
3481 	 * but it does always reset its private field.
3482 	 */
3483 	if (!page_private(head)) {
3484 		BUG_ON(count & COUNT_CONTINUED);
3485 		INIT_LIST_HEAD(&head->lru);
3486 		set_page_private(head, SWP_CONTINUED);
3487 		si->flags |= SWP_CONTINUED;
3488 	}
3489 
3490 	list_for_each_entry(list_page, &head->lru, lru) {
3491 		unsigned char *map;
3492 
3493 		/*
3494 		 * If the previous map said no continuation, but we've found
3495 		 * a continuation page, free our allocation and use this one.
3496 		 */
3497 		if (!(count & COUNT_CONTINUED))
3498 			goto out_unlock_cont;
3499 
3500 		map = kmap_atomic(list_page) + offset;
3501 		count = *map;
3502 		kunmap_atomic(map);
3503 
3504 		/*
3505 		 * If this continuation count now has some space in it,
3506 		 * free our allocation and use this one.
3507 		 */
3508 		if ((count & ~COUNT_CONTINUED) != SWAP_CONT_MAX)
3509 			goto out_unlock_cont;
3510 	}
3511 
3512 	list_add_tail(&page->lru, &head->lru);
3513 	page = NULL;			/* now it's attached, don't free it */
3514 out_unlock_cont:
3515 	spin_unlock(&si->cont_lock);
3516 out:
3517 	unlock_cluster(ci);
3518 	spin_unlock(&si->lock);
3519 	put_swap_device(si);
3520 outer:
3521 	if (page)
3522 		__free_page(page);
3523 	return ret;
3524 }
3525 
3526 /*
3527  * swap_count_continued - when the original swap_map count is incremented
3528  * from SWAP_MAP_MAX, check if there is already a continuation page to carry
3529  * into, carry if so, or else fail until a new continuation page is allocated;
3530  * when the original swap_map count is decremented from 0 with continuation,
3531  * borrow from the continuation and report whether it still holds more.
3532  * Called while __swap_duplicate() or swap_entry_free() holds swap or cluster
3533  * lock.
3534  */
3535 static bool swap_count_continued(struct swap_info_struct *si,
3536 				 pgoff_t offset, unsigned char count)
3537 {
3538 	struct page *head;
3539 	struct page *page;
3540 	unsigned char *map;
3541 	bool ret;
3542 
3543 	head = vmalloc_to_page(si->swap_map + offset);
3544 	if (page_private(head) != SWP_CONTINUED) {
3545 		BUG_ON(count & COUNT_CONTINUED);
3546 		return false;		/* need to add count continuation */
3547 	}
3548 
3549 	spin_lock(&si->cont_lock);
3550 	offset &= ~PAGE_MASK;
3551 	page = list_next_entry(head, lru);
3552 	map = kmap_atomic(page) + offset;
3553 
3554 	if (count == SWAP_MAP_MAX)	/* initial increment from swap_map */
3555 		goto init_map;		/* jump over SWAP_CONT_MAX checks */
3556 
3557 	if (count == (SWAP_MAP_MAX | COUNT_CONTINUED)) { /* incrementing */
3558 		/*
3559 		 * Think of how you add 1 to 999
3560 		 */
3561 		while (*map == (SWAP_CONT_MAX | COUNT_CONTINUED)) {
3562 			kunmap_atomic(map);
3563 			page = list_next_entry(page, lru);
3564 			BUG_ON(page == head);
3565 			map = kmap_atomic(page) + offset;
3566 		}
3567 		if (*map == SWAP_CONT_MAX) {
3568 			kunmap_atomic(map);
3569 			page = list_next_entry(page, lru);
3570 			if (page == head) {
3571 				ret = false;	/* add count continuation */
3572 				goto out;
3573 			}
3574 			map = kmap_atomic(page) + offset;
3575 init_map:		*map = 0;		/* we didn't zero the page */
3576 		}
3577 		*map += 1;
3578 		kunmap_atomic(map);
3579 		while ((page = list_prev_entry(page, lru)) != head) {
3580 			map = kmap_atomic(page) + offset;
3581 			*map = COUNT_CONTINUED;
3582 			kunmap_atomic(map);
3583 		}
3584 		ret = true;			/* incremented */
3585 
3586 	} else {				/* decrementing */
3587 		/*
3588 		 * Think of how you subtract 1 from 1000
3589 		 */
3590 		BUG_ON(count != COUNT_CONTINUED);
3591 		while (*map == COUNT_CONTINUED) {
3592 			kunmap_atomic(map);
3593 			page = list_next_entry(page, lru);
3594 			BUG_ON(page == head);
3595 			map = kmap_atomic(page) + offset;
3596 		}
3597 		BUG_ON(*map == 0);
3598 		*map -= 1;
3599 		if (*map == 0)
3600 			count = 0;
3601 		kunmap_atomic(map);
3602 		while ((page = list_prev_entry(page, lru)) != head) {
3603 			map = kmap_atomic(page) + offset;
3604 			*map = SWAP_CONT_MAX | count;
3605 			count = COUNT_CONTINUED;
3606 			kunmap_atomic(map);
3607 		}
3608 		ret = count == COUNT_CONTINUED;
3609 	}
3610 out:
3611 	spin_unlock(&si->cont_lock);
3612 	return ret;
3613 }
3614 
3615 /*
3616  * free_swap_count_continuations - swapoff free all the continuation pages
3617  * appended to the swap_map, after swap_map is quiesced, before vfree'ing it.
3618  */
3619 static void free_swap_count_continuations(struct swap_info_struct *si)
3620 {
3621 	pgoff_t offset;
3622 
3623 	for (offset = 0; offset < si->max; offset += PAGE_SIZE) {
3624 		struct page *head;
3625 		head = vmalloc_to_page(si->swap_map + offset);
3626 		if (page_private(head)) {
3627 			struct page *page, *next;
3628 
3629 			list_for_each_entry_safe(page, next, &head->lru, lru) {
3630 				list_del(&page->lru);
3631 				__free_page(page);
3632 			}
3633 		}
3634 	}
3635 }
3636 
3637 #if defined(CONFIG_MEMCG) && defined(CONFIG_BLK_CGROUP)
3638 void __cgroup_throttle_swaprate(struct page *page, gfp_t gfp_mask)
3639 {
3640 	struct swap_info_struct *si, *next;
3641 	int nid = page_to_nid(page);
3642 
3643 	if (!(gfp_mask & __GFP_IO))
3644 		return;
3645 
3646 	if (!blk_cgroup_congested())
3647 		return;
3648 
3649 	/*
3650 	 * We've already scheduled a throttle, avoid taking the global swap
3651 	 * lock.
3652 	 */
3653 	if (current->throttle_disk)
3654 		return;
3655 
3656 	spin_lock(&swap_avail_lock);
3657 	plist_for_each_entry_safe(si, next, &swap_avail_heads[nid],
3658 				  avail_lists[nid]) {
3659 		if (si->bdev) {
3660 			blkcg_schedule_throttle(si->bdev->bd_disk, true);
3661 			break;
3662 		}
3663 	}
3664 	spin_unlock(&swap_avail_lock);
3665 }
3666 #endif
3667 
3668 static int __init swapfile_init(void)
3669 {
3670 	int nid;
3671 
3672 	swap_avail_heads = kmalloc_array(nr_node_ids, sizeof(struct plist_head),
3673 					 GFP_KERNEL);
3674 	if (!swap_avail_heads) {
3675 		pr_emerg("Not enough memory for swap heads, swap is disabled\n");
3676 		return -ENOMEM;
3677 	}
3678 
3679 	for_each_node(nid)
3680 		plist_head_init(&swap_avail_heads[nid]);
3681 
3682 	swapfile_maximum_size = arch_max_swapfile_size();
3683 
3684 #ifdef CONFIG_MIGRATION
3685 	if (swapfile_maximum_size >= (1UL << SWP_MIG_TOTAL_BITS))
3686 		swap_migration_ad_supported = true;
3687 #endif	/* CONFIG_MIGRATION */
3688 
3689 	return 0;
3690 }
3691 subsys_initcall(swapfile_init);
3692