xref: /openbmc/linux/mm/swapfile.c (revision e8e0929d)
1 /*
2  *  linux/mm/swapfile.c
3  *
4  *  Copyright (C) 1991, 1992, 1993, 1994  Linus Torvalds
5  *  Swap reorganised 29.12.95, Stephen Tweedie
6  */
7 
8 #include <linux/mm.h>
9 #include <linux/hugetlb.h>
10 #include <linux/mman.h>
11 #include <linux/slab.h>
12 #include <linux/kernel_stat.h>
13 #include <linux/swap.h>
14 #include <linux/vmalloc.h>
15 #include <linux/pagemap.h>
16 #include <linux/namei.h>
17 #include <linux/shm.h>
18 #include <linux/blkdev.h>
19 #include <linux/random.h>
20 #include <linux/writeback.h>
21 #include <linux/proc_fs.h>
22 #include <linux/seq_file.h>
23 #include <linux/init.h>
24 #include <linux/module.h>
25 #include <linux/rmap.h>
26 #include <linux/security.h>
27 #include <linux/backing-dev.h>
28 #include <linux/mutex.h>
29 #include <linux/capability.h>
30 #include <linux/syscalls.h>
31 #include <linux/memcontrol.h>
32 
33 #include <asm/pgtable.h>
34 #include <asm/tlbflush.h>
35 #include <linux/swapops.h>
36 #include <linux/page_cgroup.h>
37 
38 static DEFINE_SPINLOCK(swap_lock);
39 static unsigned int nr_swapfiles;
40 long nr_swap_pages;
41 long total_swap_pages;
42 static int swap_overflow;
43 static int least_priority;
44 
45 static const char Bad_file[] = "Bad swap file entry ";
46 static const char Unused_file[] = "Unused swap file entry ";
47 static const char Bad_offset[] = "Bad swap offset entry ";
48 static const char Unused_offset[] = "Unused swap offset entry ";
49 
50 static struct swap_list_t swap_list = {-1, -1};
51 
52 static struct swap_info_struct swap_info[MAX_SWAPFILES];
53 
54 static DEFINE_MUTEX(swapon_mutex);
55 
56 /* For reference count accounting in swap_map */
57 /* enum for swap_map[] handling. internal use only */
58 enum {
59 	SWAP_MAP = 0,	/* ops for reference from swap users */
60 	SWAP_CACHE,	/* ops for reference from swap cache */
61 };
62 
63 static inline int swap_count(unsigned short ent)
64 {
65 	return ent & SWAP_COUNT_MASK;
66 }
67 
68 static inline bool swap_has_cache(unsigned short ent)
69 {
70 	return !!(ent & SWAP_HAS_CACHE);
71 }
72 
73 static inline unsigned short encode_swapmap(int count, bool has_cache)
74 {
75 	unsigned short ret = count;
76 
77 	if (has_cache)
78 		return SWAP_HAS_CACHE | ret;
79 	return ret;
80 }
81 
82 /* returnes 1 if swap entry is freed */
83 static int
84 __try_to_reclaim_swap(struct swap_info_struct *si, unsigned long offset)
85 {
86 	int type = si - swap_info;
87 	swp_entry_t entry = swp_entry(type, offset);
88 	struct page *page;
89 	int ret = 0;
90 
91 	page = find_get_page(&swapper_space, entry.val);
92 	if (!page)
93 		return 0;
94 	/*
95 	 * This function is called from scan_swap_map() and it's called
96 	 * by vmscan.c at reclaiming pages. So, we hold a lock on a page, here.
97 	 * We have to use trylock for avoiding deadlock. This is a special
98 	 * case and you should use try_to_free_swap() with explicit lock_page()
99 	 * in usual operations.
100 	 */
101 	if (trylock_page(page)) {
102 		ret = try_to_free_swap(page);
103 		unlock_page(page);
104 	}
105 	page_cache_release(page);
106 	return ret;
107 }
108 
109 /*
110  * We need this because the bdev->unplug_fn can sleep and we cannot
111  * hold swap_lock while calling the unplug_fn. And swap_lock
112  * cannot be turned into a mutex.
113  */
114 static DECLARE_RWSEM(swap_unplug_sem);
115 
116 void swap_unplug_io_fn(struct backing_dev_info *unused_bdi, struct page *page)
117 {
118 	swp_entry_t entry;
119 
120 	down_read(&swap_unplug_sem);
121 	entry.val = page_private(page);
122 	if (PageSwapCache(page)) {
123 		struct block_device *bdev = swap_info[swp_type(entry)].bdev;
124 		struct backing_dev_info *bdi;
125 
126 		/*
127 		 * If the page is removed from swapcache from under us (with a
128 		 * racy try_to_unuse/swapoff) we need an additional reference
129 		 * count to avoid reading garbage from page_private(page) above.
130 		 * If the WARN_ON triggers during a swapoff it maybe the race
131 		 * condition and it's harmless. However if it triggers without
132 		 * swapoff it signals a problem.
133 		 */
134 		WARN_ON(page_count(page) <= 1);
135 
136 		bdi = bdev->bd_inode->i_mapping->backing_dev_info;
137 		blk_run_backing_dev(bdi, page);
138 	}
139 	up_read(&swap_unplug_sem);
140 }
141 
142 /*
143  * swapon tell device that all the old swap contents can be discarded,
144  * to allow the swap device to optimize its wear-levelling.
145  */
146 static int discard_swap(struct swap_info_struct *si)
147 {
148 	struct swap_extent *se;
149 	int err = 0;
150 
151 	list_for_each_entry(se, &si->extent_list, list) {
152 		sector_t start_block = se->start_block << (PAGE_SHIFT - 9);
153 		sector_t nr_blocks = (sector_t)se->nr_pages << (PAGE_SHIFT - 9);
154 
155 		if (se->start_page == 0) {
156 			/* Do not discard the swap header page! */
157 			start_block += 1 << (PAGE_SHIFT - 9);
158 			nr_blocks -= 1 << (PAGE_SHIFT - 9);
159 			if (!nr_blocks)
160 				continue;
161 		}
162 
163 		err = blkdev_issue_discard(si->bdev, start_block,
164 						nr_blocks, GFP_KERNEL,
165 						DISCARD_FL_BARRIER);
166 		if (err)
167 			break;
168 
169 		cond_resched();
170 	}
171 	return err;		/* That will often be -EOPNOTSUPP */
172 }
173 
174 /*
175  * swap allocation tell device that a cluster of swap can now be discarded,
176  * to allow the swap device to optimize its wear-levelling.
177  */
178 static void discard_swap_cluster(struct swap_info_struct *si,
179 				 pgoff_t start_page, pgoff_t nr_pages)
180 {
181 	struct swap_extent *se = si->curr_swap_extent;
182 	int found_extent = 0;
183 
184 	while (nr_pages) {
185 		struct list_head *lh;
186 
187 		if (se->start_page <= start_page &&
188 		    start_page < se->start_page + se->nr_pages) {
189 			pgoff_t offset = start_page - se->start_page;
190 			sector_t start_block = se->start_block + offset;
191 			sector_t nr_blocks = se->nr_pages - offset;
192 
193 			if (nr_blocks > nr_pages)
194 				nr_blocks = nr_pages;
195 			start_page += nr_blocks;
196 			nr_pages -= nr_blocks;
197 
198 			if (!found_extent++)
199 				si->curr_swap_extent = se;
200 
201 			start_block <<= PAGE_SHIFT - 9;
202 			nr_blocks <<= PAGE_SHIFT - 9;
203 			if (blkdev_issue_discard(si->bdev, start_block,
204 							nr_blocks, GFP_NOIO,
205 							DISCARD_FL_BARRIER))
206 				break;
207 		}
208 
209 		lh = se->list.next;
210 		if (lh == &si->extent_list)
211 			lh = lh->next;
212 		se = list_entry(lh, struct swap_extent, list);
213 	}
214 }
215 
216 static int wait_for_discard(void *word)
217 {
218 	schedule();
219 	return 0;
220 }
221 
222 #define SWAPFILE_CLUSTER	256
223 #define LATENCY_LIMIT		256
224 
225 static inline unsigned long scan_swap_map(struct swap_info_struct *si,
226 					  int cache)
227 {
228 	unsigned long offset;
229 	unsigned long scan_base;
230 	unsigned long last_in_cluster = 0;
231 	int latency_ration = LATENCY_LIMIT;
232 	int found_free_cluster = 0;
233 
234 	/*
235 	 * We try to cluster swap pages by allocating them sequentially
236 	 * in swap.  Once we've allocated SWAPFILE_CLUSTER pages this
237 	 * way, however, we resort to first-free allocation, starting
238 	 * a new cluster.  This prevents us from scattering swap pages
239 	 * all over the entire swap partition, so that we reduce
240 	 * overall disk seek times between swap pages.  -- sct
241 	 * But we do now try to find an empty cluster.  -Andrea
242 	 * And we let swap pages go all over an SSD partition.  Hugh
243 	 */
244 
245 	si->flags += SWP_SCANNING;
246 	scan_base = offset = si->cluster_next;
247 
248 	if (unlikely(!si->cluster_nr--)) {
249 		if (si->pages - si->inuse_pages < SWAPFILE_CLUSTER) {
250 			si->cluster_nr = SWAPFILE_CLUSTER - 1;
251 			goto checks;
252 		}
253 		if (si->flags & SWP_DISCARDABLE) {
254 			/*
255 			 * Start range check on racing allocations, in case
256 			 * they overlap the cluster we eventually decide on
257 			 * (we scan without swap_lock to allow preemption).
258 			 * It's hardly conceivable that cluster_nr could be
259 			 * wrapped during our scan, but don't depend on it.
260 			 */
261 			if (si->lowest_alloc)
262 				goto checks;
263 			si->lowest_alloc = si->max;
264 			si->highest_alloc = 0;
265 		}
266 		spin_unlock(&swap_lock);
267 
268 		/*
269 		 * If seek is expensive, start searching for new cluster from
270 		 * start of partition, to minimize the span of allocated swap.
271 		 * But if seek is cheap, search from our current position, so
272 		 * that swap is allocated from all over the partition: if the
273 		 * Flash Translation Layer only remaps within limited zones,
274 		 * we don't want to wear out the first zone too quickly.
275 		 */
276 		if (!(si->flags & SWP_SOLIDSTATE))
277 			scan_base = offset = si->lowest_bit;
278 		last_in_cluster = offset + SWAPFILE_CLUSTER - 1;
279 
280 		/* Locate the first empty (unaligned) cluster */
281 		for (; last_in_cluster <= si->highest_bit; offset++) {
282 			if (si->swap_map[offset])
283 				last_in_cluster = offset + SWAPFILE_CLUSTER;
284 			else if (offset == last_in_cluster) {
285 				spin_lock(&swap_lock);
286 				offset -= SWAPFILE_CLUSTER - 1;
287 				si->cluster_next = offset;
288 				si->cluster_nr = SWAPFILE_CLUSTER - 1;
289 				found_free_cluster = 1;
290 				goto checks;
291 			}
292 			if (unlikely(--latency_ration < 0)) {
293 				cond_resched();
294 				latency_ration = LATENCY_LIMIT;
295 			}
296 		}
297 
298 		offset = si->lowest_bit;
299 		last_in_cluster = offset + SWAPFILE_CLUSTER - 1;
300 
301 		/* Locate the first empty (unaligned) cluster */
302 		for (; last_in_cluster < scan_base; offset++) {
303 			if (si->swap_map[offset])
304 				last_in_cluster = offset + SWAPFILE_CLUSTER;
305 			else if (offset == last_in_cluster) {
306 				spin_lock(&swap_lock);
307 				offset -= SWAPFILE_CLUSTER - 1;
308 				si->cluster_next = offset;
309 				si->cluster_nr = SWAPFILE_CLUSTER - 1;
310 				found_free_cluster = 1;
311 				goto checks;
312 			}
313 			if (unlikely(--latency_ration < 0)) {
314 				cond_resched();
315 				latency_ration = LATENCY_LIMIT;
316 			}
317 		}
318 
319 		offset = scan_base;
320 		spin_lock(&swap_lock);
321 		si->cluster_nr = SWAPFILE_CLUSTER - 1;
322 		si->lowest_alloc = 0;
323 	}
324 
325 checks:
326 	if (!(si->flags & SWP_WRITEOK))
327 		goto no_page;
328 	if (!si->highest_bit)
329 		goto no_page;
330 	if (offset > si->highest_bit)
331 		scan_base = offset = si->lowest_bit;
332 
333 	/* reuse swap entry of cache-only swap if not busy. */
334 	if (vm_swap_full() && si->swap_map[offset] == SWAP_HAS_CACHE) {
335 		int swap_was_freed;
336 		spin_unlock(&swap_lock);
337 		swap_was_freed = __try_to_reclaim_swap(si, offset);
338 		spin_lock(&swap_lock);
339 		/* entry was freed successfully, try to use this again */
340 		if (swap_was_freed)
341 			goto checks;
342 		goto scan; /* check next one */
343 	}
344 
345 	if (si->swap_map[offset])
346 		goto scan;
347 
348 	if (offset == si->lowest_bit)
349 		si->lowest_bit++;
350 	if (offset == si->highest_bit)
351 		si->highest_bit--;
352 	si->inuse_pages++;
353 	if (si->inuse_pages == si->pages) {
354 		si->lowest_bit = si->max;
355 		si->highest_bit = 0;
356 	}
357 	if (cache == SWAP_CACHE) /* at usual swap-out via vmscan.c */
358 		si->swap_map[offset] = encode_swapmap(0, true);
359 	else /* at suspend */
360 		si->swap_map[offset] = encode_swapmap(1, false);
361 	si->cluster_next = offset + 1;
362 	si->flags -= SWP_SCANNING;
363 
364 	if (si->lowest_alloc) {
365 		/*
366 		 * Only set when SWP_DISCARDABLE, and there's a scan
367 		 * for a free cluster in progress or just completed.
368 		 */
369 		if (found_free_cluster) {
370 			/*
371 			 * To optimize wear-levelling, discard the
372 			 * old data of the cluster, taking care not to
373 			 * discard any of its pages that have already
374 			 * been allocated by racing tasks (offset has
375 			 * already stepped over any at the beginning).
376 			 */
377 			if (offset < si->highest_alloc &&
378 			    si->lowest_alloc <= last_in_cluster)
379 				last_in_cluster = si->lowest_alloc - 1;
380 			si->flags |= SWP_DISCARDING;
381 			spin_unlock(&swap_lock);
382 
383 			if (offset < last_in_cluster)
384 				discard_swap_cluster(si, offset,
385 					last_in_cluster - offset + 1);
386 
387 			spin_lock(&swap_lock);
388 			si->lowest_alloc = 0;
389 			si->flags &= ~SWP_DISCARDING;
390 
391 			smp_mb();	/* wake_up_bit advises this */
392 			wake_up_bit(&si->flags, ilog2(SWP_DISCARDING));
393 
394 		} else if (si->flags & SWP_DISCARDING) {
395 			/*
396 			 * Delay using pages allocated by racing tasks
397 			 * until the whole discard has been issued. We
398 			 * could defer that delay until swap_writepage,
399 			 * but it's easier to keep this self-contained.
400 			 */
401 			spin_unlock(&swap_lock);
402 			wait_on_bit(&si->flags, ilog2(SWP_DISCARDING),
403 				wait_for_discard, TASK_UNINTERRUPTIBLE);
404 			spin_lock(&swap_lock);
405 		} else {
406 			/*
407 			 * Note pages allocated by racing tasks while
408 			 * scan for a free cluster is in progress, so
409 			 * that its final discard can exclude them.
410 			 */
411 			if (offset < si->lowest_alloc)
412 				si->lowest_alloc = offset;
413 			if (offset > si->highest_alloc)
414 				si->highest_alloc = offset;
415 		}
416 	}
417 	return offset;
418 
419 scan:
420 	spin_unlock(&swap_lock);
421 	while (++offset <= si->highest_bit) {
422 		if (!si->swap_map[offset]) {
423 			spin_lock(&swap_lock);
424 			goto checks;
425 		}
426 		if (vm_swap_full() && si->swap_map[offset] == SWAP_HAS_CACHE) {
427 			spin_lock(&swap_lock);
428 			goto checks;
429 		}
430 		if (unlikely(--latency_ration < 0)) {
431 			cond_resched();
432 			latency_ration = LATENCY_LIMIT;
433 		}
434 	}
435 	offset = si->lowest_bit;
436 	while (++offset < scan_base) {
437 		if (!si->swap_map[offset]) {
438 			spin_lock(&swap_lock);
439 			goto checks;
440 		}
441 		if (vm_swap_full() && si->swap_map[offset] == SWAP_HAS_CACHE) {
442 			spin_lock(&swap_lock);
443 			goto checks;
444 		}
445 		if (unlikely(--latency_ration < 0)) {
446 			cond_resched();
447 			latency_ration = LATENCY_LIMIT;
448 		}
449 	}
450 	spin_lock(&swap_lock);
451 
452 no_page:
453 	si->flags -= SWP_SCANNING;
454 	return 0;
455 }
456 
457 swp_entry_t get_swap_page(void)
458 {
459 	struct swap_info_struct *si;
460 	pgoff_t offset;
461 	int type, next;
462 	int wrapped = 0;
463 
464 	spin_lock(&swap_lock);
465 	if (nr_swap_pages <= 0)
466 		goto noswap;
467 	nr_swap_pages--;
468 
469 	for (type = swap_list.next; type >= 0 && wrapped < 2; type = next) {
470 		si = swap_info + type;
471 		next = si->next;
472 		if (next < 0 ||
473 		    (!wrapped && si->prio != swap_info[next].prio)) {
474 			next = swap_list.head;
475 			wrapped++;
476 		}
477 
478 		if (!si->highest_bit)
479 			continue;
480 		if (!(si->flags & SWP_WRITEOK))
481 			continue;
482 
483 		swap_list.next = next;
484 		/* This is called for allocating swap entry for cache */
485 		offset = scan_swap_map(si, SWAP_CACHE);
486 		if (offset) {
487 			spin_unlock(&swap_lock);
488 			return swp_entry(type, offset);
489 		}
490 		next = swap_list.next;
491 	}
492 
493 	nr_swap_pages++;
494 noswap:
495 	spin_unlock(&swap_lock);
496 	return (swp_entry_t) {0};
497 }
498 
499 /* The only caller of this function is now susupend routine */
500 swp_entry_t get_swap_page_of_type(int type)
501 {
502 	struct swap_info_struct *si;
503 	pgoff_t offset;
504 
505 	spin_lock(&swap_lock);
506 	si = swap_info + type;
507 	if (si->flags & SWP_WRITEOK) {
508 		nr_swap_pages--;
509 		/* This is called for allocating swap entry, not cache */
510 		offset = scan_swap_map(si, SWAP_MAP);
511 		if (offset) {
512 			spin_unlock(&swap_lock);
513 			return swp_entry(type, offset);
514 		}
515 		nr_swap_pages++;
516 	}
517 	spin_unlock(&swap_lock);
518 	return (swp_entry_t) {0};
519 }
520 
521 static struct swap_info_struct * swap_info_get(swp_entry_t entry)
522 {
523 	struct swap_info_struct * p;
524 	unsigned long offset, type;
525 
526 	if (!entry.val)
527 		goto out;
528 	type = swp_type(entry);
529 	if (type >= nr_swapfiles)
530 		goto bad_nofile;
531 	p = & swap_info[type];
532 	if (!(p->flags & SWP_USED))
533 		goto bad_device;
534 	offset = swp_offset(entry);
535 	if (offset >= p->max)
536 		goto bad_offset;
537 	if (!p->swap_map[offset])
538 		goto bad_free;
539 	spin_lock(&swap_lock);
540 	return p;
541 
542 bad_free:
543 	printk(KERN_ERR "swap_free: %s%08lx\n", Unused_offset, entry.val);
544 	goto out;
545 bad_offset:
546 	printk(KERN_ERR "swap_free: %s%08lx\n", Bad_offset, entry.val);
547 	goto out;
548 bad_device:
549 	printk(KERN_ERR "swap_free: %s%08lx\n", Unused_file, entry.val);
550 	goto out;
551 bad_nofile:
552 	printk(KERN_ERR "swap_free: %s%08lx\n", Bad_file, entry.val);
553 out:
554 	return NULL;
555 }
556 
557 static int swap_entry_free(struct swap_info_struct *p,
558 			   swp_entry_t ent, int cache)
559 {
560 	unsigned long offset = swp_offset(ent);
561 	int count = swap_count(p->swap_map[offset]);
562 	bool has_cache;
563 
564 	has_cache = swap_has_cache(p->swap_map[offset]);
565 
566 	if (cache == SWAP_MAP) { /* dropping usage count of swap */
567 		if (count < SWAP_MAP_MAX) {
568 			count--;
569 			p->swap_map[offset] = encode_swapmap(count, has_cache);
570 		}
571 	} else { /* dropping swap cache flag */
572 		VM_BUG_ON(!has_cache);
573 		p->swap_map[offset] = encode_swapmap(count, false);
574 
575 	}
576 	/* return code. */
577 	count = p->swap_map[offset];
578 	/* free if no reference */
579 	if (!count) {
580 		if (offset < p->lowest_bit)
581 			p->lowest_bit = offset;
582 		if (offset > p->highest_bit)
583 			p->highest_bit = offset;
584 		if (p->prio > swap_info[swap_list.next].prio)
585 			swap_list.next = p - swap_info;
586 		nr_swap_pages++;
587 		p->inuse_pages--;
588 	}
589 	if (!swap_count(count))
590 		mem_cgroup_uncharge_swap(ent);
591 	return count;
592 }
593 
594 /*
595  * Caller has made sure that the swapdevice corresponding to entry
596  * is still around or has not been recycled.
597  */
598 void swap_free(swp_entry_t entry)
599 {
600 	struct swap_info_struct * p;
601 
602 	p = swap_info_get(entry);
603 	if (p) {
604 		swap_entry_free(p, entry, SWAP_MAP);
605 		spin_unlock(&swap_lock);
606 	}
607 }
608 
609 /*
610  * Called after dropping swapcache to decrease refcnt to swap entries.
611  */
612 void swapcache_free(swp_entry_t entry, struct page *page)
613 {
614 	struct swap_info_struct *p;
615 	int ret;
616 
617 	p = swap_info_get(entry);
618 	if (p) {
619 		ret = swap_entry_free(p, entry, SWAP_CACHE);
620 		if (page) {
621 			bool swapout;
622 			if (ret)
623 				swapout = true; /* the end of swap out */
624 			else
625 				swapout = false; /* no more swap users! */
626 			mem_cgroup_uncharge_swapcache(page, entry, swapout);
627 		}
628 		spin_unlock(&swap_lock);
629 	}
630 	return;
631 }
632 
633 /*
634  * How many references to page are currently swapped out?
635  */
636 static inline int page_swapcount(struct page *page)
637 {
638 	int count = 0;
639 	struct swap_info_struct *p;
640 	swp_entry_t entry;
641 
642 	entry.val = page_private(page);
643 	p = swap_info_get(entry);
644 	if (p) {
645 		count = swap_count(p->swap_map[swp_offset(entry)]);
646 		spin_unlock(&swap_lock);
647 	}
648 	return count;
649 }
650 
651 /*
652  * We can write to an anon page without COW if there are no other references
653  * to it.  And as a side-effect, free up its swap: because the old content
654  * on disk will never be read, and seeking back there to write new content
655  * later would only waste time away from clustering.
656  */
657 int reuse_swap_page(struct page *page)
658 {
659 	int count;
660 
661 	VM_BUG_ON(!PageLocked(page));
662 	count = page_mapcount(page);
663 	if (count <= 1 && PageSwapCache(page)) {
664 		count += page_swapcount(page);
665 		if (count == 1 && !PageWriteback(page)) {
666 			delete_from_swap_cache(page);
667 			SetPageDirty(page);
668 		}
669 	}
670 	return count == 1;
671 }
672 
673 /*
674  * If swap is getting full, or if there are no more mappings of this page,
675  * then try_to_free_swap is called to free its swap space.
676  */
677 int try_to_free_swap(struct page *page)
678 {
679 	VM_BUG_ON(!PageLocked(page));
680 
681 	if (!PageSwapCache(page))
682 		return 0;
683 	if (PageWriteback(page))
684 		return 0;
685 	if (page_swapcount(page))
686 		return 0;
687 
688 	delete_from_swap_cache(page);
689 	SetPageDirty(page);
690 	return 1;
691 }
692 
693 /*
694  * Free the swap entry like above, but also try to
695  * free the page cache entry if it is the last user.
696  */
697 int free_swap_and_cache(swp_entry_t entry)
698 {
699 	struct swap_info_struct *p;
700 	struct page *page = NULL;
701 
702 	if (non_swap_entry(entry))
703 		return 1;
704 
705 	p = swap_info_get(entry);
706 	if (p) {
707 		if (swap_entry_free(p, entry, SWAP_MAP) == SWAP_HAS_CACHE) {
708 			page = find_get_page(&swapper_space, entry.val);
709 			if (page && !trylock_page(page)) {
710 				page_cache_release(page);
711 				page = NULL;
712 			}
713 		}
714 		spin_unlock(&swap_lock);
715 	}
716 	if (page) {
717 		/*
718 		 * Not mapped elsewhere, or swap space full? Free it!
719 		 * Also recheck PageSwapCache now page is locked (above).
720 		 */
721 		if (PageSwapCache(page) && !PageWriteback(page) &&
722 				(!page_mapped(page) || vm_swap_full())) {
723 			delete_from_swap_cache(page);
724 			SetPageDirty(page);
725 		}
726 		unlock_page(page);
727 		page_cache_release(page);
728 	}
729 	return p != NULL;
730 }
731 
732 #ifdef CONFIG_HIBERNATION
733 /*
734  * Find the swap type that corresponds to given device (if any).
735  *
736  * @offset - number of the PAGE_SIZE-sized block of the device, starting
737  * from 0, in which the swap header is expected to be located.
738  *
739  * This is needed for the suspend to disk (aka swsusp).
740  */
741 int swap_type_of(dev_t device, sector_t offset, struct block_device **bdev_p)
742 {
743 	struct block_device *bdev = NULL;
744 	int i;
745 
746 	if (device)
747 		bdev = bdget(device);
748 
749 	spin_lock(&swap_lock);
750 	for (i = 0; i < nr_swapfiles; i++) {
751 		struct swap_info_struct *sis = swap_info + i;
752 
753 		if (!(sis->flags & SWP_WRITEOK))
754 			continue;
755 
756 		if (!bdev) {
757 			if (bdev_p)
758 				*bdev_p = bdgrab(sis->bdev);
759 
760 			spin_unlock(&swap_lock);
761 			return i;
762 		}
763 		if (bdev == sis->bdev) {
764 			struct swap_extent *se;
765 
766 			se = list_entry(sis->extent_list.next,
767 					struct swap_extent, list);
768 			if (se->start_block == offset) {
769 				if (bdev_p)
770 					*bdev_p = bdgrab(sis->bdev);
771 
772 				spin_unlock(&swap_lock);
773 				bdput(bdev);
774 				return i;
775 			}
776 		}
777 	}
778 	spin_unlock(&swap_lock);
779 	if (bdev)
780 		bdput(bdev);
781 
782 	return -ENODEV;
783 }
784 
785 /*
786  * Return either the total number of swap pages of given type, or the number
787  * of free pages of that type (depending on @free)
788  *
789  * This is needed for software suspend
790  */
791 unsigned int count_swap_pages(int type, int free)
792 {
793 	unsigned int n = 0;
794 
795 	if (type < nr_swapfiles) {
796 		spin_lock(&swap_lock);
797 		if (swap_info[type].flags & SWP_WRITEOK) {
798 			n = swap_info[type].pages;
799 			if (free)
800 				n -= swap_info[type].inuse_pages;
801 		}
802 		spin_unlock(&swap_lock);
803 	}
804 	return n;
805 }
806 #endif
807 
808 /*
809  * No need to decide whether this PTE shares the swap entry with others,
810  * just let do_wp_page work it out if a write is requested later - to
811  * force COW, vm_page_prot omits write permission from any private vma.
812  */
813 static int unuse_pte(struct vm_area_struct *vma, pmd_t *pmd,
814 		unsigned long addr, swp_entry_t entry, struct page *page)
815 {
816 	struct mem_cgroup *ptr = NULL;
817 	spinlock_t *ptl;
818 	pte_t *pte;
819 	int ret = 1;
820 
821 	if (mem_cgroup_try_charge_swapin(vma->vm_mm, page, GFP_KERNEL, &ptr)) {
822 		ret = -ENOMEM;
823 		goto out_nolock;
824 	}
825 
826 	pte = pte_offset_map_lock(vma->vm_mm, pmd, addr, &ptl);
827 	if (unlikely(!pte_same(*pte, swp_entry_to_pte(entry)))) {
828 		if (ret > 0)
829 			mem_cgroup_cancel_charge_swapin(ptr);
830 		ret = 0;
831 		goto out;
832 	}
833 
834 	inc_mm_counter(vma->vm_mm, anon_rss);
835 	get_page(page);
836 	set_pte_at(vma->vm_mm, addr, pte,
837 		   pte_mkold(mk_pte(page, vma->vm_page_prot)));
838 	page_add_anon_rmap(page, vma, addr);
839 	mem_cgroup_commit_charge_swapin(page, ptr);
840 	swap_free(entry);
841 	/*
842 	 * Move the page to the active list so it is not
843 	 * immediately swapped out again after swapon.
844 	 */
845 	activate_page(page);
846 out:
847 	pte_unmap_unlock(pte, ptl);
848 out_nolock:
849 	return ret;
850 }
851 
852 static int unuse_pte_range(struct vm_area_struct *vma, pmd_t *pmd,
853 				unsigned long addr, unsigned long end,
854 				swp_entry_t entry, struct page *page)
855 {
856 	pte_t swp_pte = swp_entry_to_pte(entry);
857 	pte_t *pte;
858 	int ret = 0;
859 
860 	/*
861 	 * We don't actually need pte lock while scanning for swp_pte: since
862 	 * we hold page lock and mmap_sem, swp_pte cannot be inserted into the
863 	 * page table while we're scanning; though it could get zapped, and on
864 	 * some architectures (e.g. x86_32 with PAE) we might catch a glimpse
865 	 * of unmatched parts which look like swp_pte, so unuse_pte must
866 	 * recheck under pte lock.  Scanning without pte lock lets it be
867 	 * preemptible whenever CONFIG_PREEMPT but not CONFIG_HIGHPTE.
868 	 */
869 	pte = pte_offset_map(pmd, addr);
870 	do {
871 		/*
872 		 * swapoff spends a _lot_ of time in this loop!
873 		 * Test inline before going to call unuse_pte.
874 		 */
875 		if (unlikely(pte_same(*pte, swp_pte))) {
876 			pte_unmap(pte);
877 			ret = unuse_pte(vma, pmd, addr, entry, page);
878 			if (ret)
879 				goto out;
880 			pte = pte_offset_map(pmd, addr);
881 		}
882 	} while (pte++, addr += PAGE_SIZE, addr != end);
883 	pte_unmap(pte - 1);
884 out:
885 	return ret;
886 }
887 
888 static inline int unuse_pmd_range(struct vm_area_struct *vma, pud_t *pud,
889 				unsigned long addr, unsigned long end,
890 				swp_entry_t entry, struct page *page)
891 {
892 	pmd_t *pmd;
893 	unsigned long next;
894 	int ret;
895 
896 	pmd = pmd_offset(pud, addr);
897 	do {
898 		next = pmd_addr_end(addr, end);
899 		if (pmd_none_or_clear_bad(pmd))
900 			continue;
901 		ret = unuse_pte_range(vma, pmd, addr, next, entry, page);
902 		if (ret)
903 			return ret;
904 	} while (pmd++, addr = next, addr != end);
905 	return 0;
906 }
907 
908 static inline int unuse_pud_range(struct vm_area_struct *vma, pgd_t *pgd,
909 				unsigned long addr, unsigned long end,
910 				swp_entry_t entry, struct page *page)
911 {
912 	pud_t *pud;
913 	unsigned long next;
914 	int ret;
915 
916 	pud = pud_offset(pgd, addr);
917 	do {
918 		next = pud_addr_end(addr, end);
919 		if (pud_none_or_clear_bad(pud))
920 			continue;
921 		ret = unuse_pmd_range(vma, pud, addr, next, entry, page);
922 		if (ret)
923 			return ret;
924 	} while (pud++, addr = next, addr != end);
925 	return 0;
926 }
927 
928 static int unuse_vma(struct vm_area_struct *vma,
929 				swp_entry_t entry, struct page *page)
930 {
931 	pgd_t *pgd;
932 	unsigned long addr, end, next;
933 	int ret;
934 
935 	if (page->mapping) {
936 		addr = page_address_in_vma(page, vma);
937 		if (addr == -EFAULT)
938 			return 0;
939 		else
940 			end = addr + PAGE_SIZE;
941 	} else {
942 		addr = vma->vm_start;
943 		end = vma->vm_end;
944 	}
945 
946 	pgd = pgd_offset(vma->vm_mm, addr);
947 	do {
948 		next = pgd_addr_end(addr, end);
949 		if (pgd_none_or_clear_bad(pgd))
950 			continue;
951 		ret = unuse_pud_range(vma, pgd, addr, next, entry, page);
952 		if (ret)
953 			return ret;
954 	} while (pgd++, addr = next, addr != end);
955 	return 0;
956 }
957 
958 static int unuse_mm(struct mm_struct *mm,
959 				swp_entry_t entry, struct page *page)
960 {
961 	struct vm_area_struct *vma;
962 	int ret = 0;
963 
964 	if (!down_read_trylock(&mm->mmap_sem)) {
965 		/*
966 		 * Activate page so shrink_inactive_list is unlikely to unmap
967 		 * its ptes while lock is dropped, so swapoff can make progress.
968 		 */
969 		activate_page(page);
970 		unlock_page(page);
971 		down_read(&mm->mmap_sem);
972 		lock_page(page);
973 	}
974 	for (vma = mm->mmap; vma; vma = vma->vm_next) {
975 		if (vma->anon_vma && (ret = unuse_vma(vma, entry, page)))
976 			break;
977 	}
978 	up_read(&mm->mmap_sem);
979 	return (ret < 0)? ret: 0;
980 }
981 
982 /*
983  * Scan swap_map from current position to next entry still in use.
984  * Recycle to start on reaching the end, returning 0 when empty.
985  */
986 static unsigned int find_next_to_unuse(struct swap_info_struct *si,
987 					unsigned int prev)
988 {
989 	unsigned int max = si->max;
990 	unsigned int i = prev;
991 	int count;
992 
993 	/*
994 	 * No need for swap_lock here: we're just looking
995 	 * for whether an entry is in use, not modifying it; false
996 	 * hits are okay, and sys_swapoff() has already prevented new
997 	 * allocations from this area (while holding swap_lock).
998 	 */
999 	for (;;) {
1000 		if (++i >= max) {
1001 			if (!prev) {
1002 				i = 0;
1003 				break;
1004 			}
1005 			/*
1006 			 * No entries in use at top of swap_map,
1007 			 * loop back to start and recheck there.
1008 			 */
1009 			max = prev + 1;
1010 			prev = 0;
1011 			i = 1;
1012 		}
1013 		count = si->swap_map[i];
1014 		if (count && swap_count(count) != SWAP_MAP_BAD)
1015 			break;
1016 	}
1017 	return i;
1018 }
1019 
1020 /*
1021  * We completely avoid races by reading each swap page in advance,
1022  * and then search for the process using it.  All the necessary
1023  * page table adjustments can then be made atomically.
1024  */
1025 static int try_to_unuse(unsigned int type)
1026 {
1027 	struct swap_info_struct * si = &swap_info[type];
1028 	struct mm_struct *start_mm;
1029 	unsigned short *swap_map;
1030 	unsigned short swcount;
1031 	struct page *page;
1032 	swp_entry_t entry;
1033 	unsigned int i = 0;
1034 	int retval = 0;
1035 	int reset_overflow = 0;
1036 	int shmem;
1037 
1038 	/*
1039 	 * When searching mms for an entry, a good strategy is to
1040 	 * start at the first mm we freed the previous entry from
1041 	 * (though actually we don't notice whether we or coincidence
1042 	 * freed the entry).  Initialize this start_mm with a hold.
1043 	 *
1044 	 * A simpler strategy would be to start at the last mm we
1045 	 * freed the previous entry from; but that would take less
1046 	 * advantage of mmlist ordering, which clusters forked mms
1047 	 * together, child after parent.  If we race with dup_mmap(), we
1048 	 * prefer to resolve parent before child, lest we miss entries
1049 	 * duplicated after we scanned child: using last mm would invert
1050 	 * that.  Though it's only a serious concern when an overflowed
1051 	 * swap count is reset from SWAP_MAP_MAX, preventing a rescan.
1052 	 */
1053 	start_mm = &init_mm;
1054 	atomic_inc(&init_mm.mm_users);
1055 
1056 	/*
1057 	 * Keep on scanning until all entries have gone.  Usually,
1058 	 * one pass through swap_map is enough, but not necessarily:
1059 	 * there are races when an instance of an entry might be missed.
1060 	 */
1061 	while ((i = find_next_to_unuse(si, i)) != 0) {
1062 		if (signal_pending(current)) {
1063 			retval = -EINTR;
1064 			break;
1065 		}
1066 
1067 		/*
1068 		 * Get a page for the entry, using the existing swap
1069 		 * cache page if there is one.  Otherwise, get a clean
1070 		 * page and read the swap into it.
1071 		 */
1072 		swap_map = &si->swap_map[i];
1073 		entry = swp_entry(type, i);
1074 		page = read_swap_cache_async(entry,
1075 					GFP_HIGHUSER_MOVABLE, NULL, 0);
1076 		if (!page) {
1077 			/*
1078 			 * Either swap_duplicate() failed because entry
1079 			 * has been freed independently, and will not be
1080 			 * reused since sys_swapoff() already disabled
1081 			 * allocation from here, or alloc_page() failed.
1082 			 */
1083 			if (!*swap_map)
1084 				continue;
1085 			retval = -ENOMEM;
1086 			break;
1087 		}
1088 
1089 		/*
1090 		 * Don't hold on to start_mm if it looks like exiting.
1091 		 */
1092 		if (atomic_read(&start_mm->mm_users) == 1) {
1093 			mmput(start_mm);
1094 			start_mm = &init_mm;
1095 			atomic_inc(&init_mm.mm_users);
1096 		}
1097 
1098 		/*
1099 		 * Wait for and lock page.  When do_swap_page races with
1100 		 * try_to_unuse, do_swap_page can handle the fault much
1101 		 * faster than try_to_unuse can locate the entry.  This
1102 		 * apparently redundant "wait_on_page_locked" lets try_to_unuse
1103 		 * defer to do_swap_page in such a case - in some tests,
1104 		 * do_swap_page and try_to_unuse repeatedly compete.
1105 		 */
1106 		wait_on_page_locked(page);
1107 		wait_on_page_writeback(page);
1108 		lock_page(page);
1109 		wait_on_page_writeback(page);
1110 
1111 		/*
1112 		 * Remove all references to entry.
1113 		 * Whenever we reach init_mm, there's no address space
1114 		 * to search, but use it as a reminder to search shmem.
1115 		 */
1116 		shmem = 0;
1117 		swcount = *swap_map;
1118 		if (swap_count(swcount)) {
1119 			if (start_mm == &init_mm)
1120 				shmem = shmem_unuse(entry, page);
1121 			else
1122 				retval = unuse_mm(start_mm, entry, page);
1123 		}
1124 		if (swap_count(*swap_map)) {
1125 			int set_start_mm = (*swap_map >= swcount);
1126 			struct list_head *p = &start_mm->mmlist;
1127 			struct mm_struct *new_start_mm = start_mm;
1128 			struct mm_struct *prev_mm = start_mm;
1129 			struct mm_struct *mm;
1130 
1131 			atomic_inc(&new_start_mm->mm_users);
1132 			atomic_inc(&prev_mm->mm_users);
1133 			spin_lock(&mmlist_lock);
1134 			while (swap_count(*swap_map) && !retval && !shmem &&
1135 					(p = p->next) != &start_mm->mmlist) {
1136 				mm = list_entry(p, struct mm_struct, mmlist);
1137 				if (!atomic_inc_not_zero(&mm->mm_users))
1138 					continue;
1139 				spin_unlock(&mmlist_lock);
1140 				mmput(prev_mm);
1141 				prev_mm = mm;
1142 
1143 				cond_resched();
1144 
1145 				swcount = *swap_map;
1146 				if (!swap_count(swcount)) /* any usage ? */
1147 					;
1148 				else if (mm == &init_mm) {
1149 					set_start_mm = 1;
1150 					shmem = shmem_unuse(entry, page);
1151 				} else
1152 					retval = unuse_mm(mm, entry, page);
1153 
1154 				if (set_start_mm &&
1155 				    swap_count(*swap_map) < swcount) {
1156 					mmput(new_start_mm);
1157 					atomic_inc(&mm->mm_users);
1158 					new_start_mm = mm;
1159 					set_start_mm = 0;
1160 				}
1161 				spin_lock(&mmlist_lock);
1162 			}
1163 			spin_unlock(&mmlist_lock);
1164 			mmput(prev_mm);
1165 			mmput(start_mm);
1166 			start_mm = new_start_mm;
1167 		}
1168 		if (shmem) {
1169 			/* page has already been unlocked and released */
1170 			if (shmem > 0)
1171 				continue;
1172 			retval = shmem;
1173 			break;
1174 		}
1175 		if (retval) {
1176 			unlock_page(page);
1177 			page_cache_release(page);
1178 			break;
1179 		}
1180 
1181 		/*
1182 		 * How could swap count reach 0x7ffe ?
1183 		 * There's no way to repeat a swap page within an mm
1184 		 * (except in shmem, where it's the shared object which takes
1185 		 * the reference count)?
1186 		 * We believe SWAP_MAP_MAX cannot occur.(if occur, unsigned
1187 		 * short is too small....)
1188 		 * If that's wrong, then we should worry more about
1189 		 * exit_mmap() and do_munmap() cases described above:
1190 		 * we might be resetting SWAP_MAP_MAX too early here.
1191 		 * We know "Undead"s can happen, they're okay, so don't
1192 		 * report them; but do report if we reset SWAP_MAP_MAX.
1193 		 */
1194 		/* We might release the lock_page() in unuse_mm(). */
1195 		if (!PageSwapCache(page) || page_private(page) != entry.val)
1196 			goto retry;
1197 
1198 		if (swap_count(*swap_map) == SWAP_MAP_MAX) {
1199 			spin_lock(&swap_lock);
1200 			*swap_map = encode_swapmap(0, true);
1201 			spin_unlock(&swap_lock);
1202 			reset_overflow = 1;
1203 		}
1204 
1205 		/*
1206 		 * If a reference remains (rare), we would like to leave
1207 		 * the page in the swap cache; but try_to_unmap could
1208 		 * then re-duplicate the entry once we drop page lock,
1209 		 * so we might loop indefinitely; also, that page could
1210 		 * not be swapped out to other storage meanwhile.  So:
1211 		 * delete from cache even if there's another reference,
1212 		 * after ensuring that the data has been saved to disk -
1213 		 * since if the reference remains (rarer), it will be
1214 		 * read from disk into another page.  Splitting into two
1215 		 * pages would be incorrect if swap supported "shared
1216 		 * private" pages, but they are handled by tmpfs files.
1217 		 */
1218 		if (swap_count(*swap_map) &&
1219 		     PageDirty(page) && PageSwapCache(page)) {
1220 			struct writeback_control wbc = {
1221 				.sync_mode = WB_SYNC_NONE,
1222 			};
1223 
1224 			swap_writepage(page, &wbc);
1225 			lock_page(page);
1226 			wait_on_page_writeback(page);
1227 		}
1228 
1229 		/*
1230 		 * It is conceivable that a racing task removed this page from
1231 		 * swap cache just before we acquired the page lock at the top,
1232 		 * or while we dropped it in unuse_mm().  The page might even
1233 		 * be back in swap cache on another swap area: that we must not
1234 		 * delete, since it may not have been written out to swap yet.
1235 		 */
1236 		if (PageSwapCache(page) &&
1237 		    likely(page_private(page) == entry.val))
1238 			delete_from_swap_cache(page);
1239 
1240 		/*
1241 		 * So we could skip searching mms once swap count went
1242 		 * to 1, we did not mark any present ptes as dirty: must
1243 		 * mark page dirty so shrink_page_list will preserve it.
1244 		 */
1245 		SetPageDirty(page);
1246 retry:
1247 		unlock_page(page);
1248 		page_cache_release(page);
1249 
1250 		/*
1251 		 * Make sure that we aren't completely killing
1252 		 * interactive performance.
1253 		 */
1254 		cond_resched();
1255 	}
1256 
1257 	mmput(start_mm);
1258 	if (reset_overflow) {
1259 		printk(KERN_WARNING "swapoff: cleared swap entry overflow\n");
1260 		swap_overflow = 0;
1261 	}
1262 	return retval;
1263 }
1264 
1265 /*
1266  * After a successful try_to_unuse, if no swap is now in use, we know
1267  * we can empty the mmlist.  swap_lock must be held on entry and exit.
1268  * Note that mmlist_lock nests inside swap_lock, and an mm must be
1269  * added to the mmlist just after page_duplicate - before would be racy.
1270  */
1271 static void drain_mmlist(void)
1272 {
1273 	struct list_head *p, *next;
1274 	unsigned int i;
1275 
1276 	for (i = 0; i < nr_swapfiles; i++)
1277 		if (swap_info[i].inuse_pages)
1278 			return;
1279 	spin_lock(&mmlist_lock);
1280 	list_for_each_safe(p, next, &init_mm.mmlist)
1281 		list_del_init(p);
1282 	spin_unlock(&mmlist_lock);
1283 }
1284 
1285 /*
1286  * Use this swapdev's extent info to locate the (PAGE_SIZE) block which
1287  * corresponds to page offset `offset'.
1288  */
1289 sector_t map_swap_page(struct swap_info_struct *sis, pgoff_t offset)
1290 {
1291 	struct swap_extent *se = sis->curr_swap_extent;
1292 	struct swap_extent *start_se = se;
1293 
1294 	for ( ; ; ) {
1295 		struct list_head *lh;
1296 
1297 		if (se->start_page <= offset &&
1298 				offset < (se->start_page + se->nr_pages)) {
1299 			return se->start_block + (offset - se->start_page);
1300 		}
1301 		lh = se->list.next;
1302 		if (lh == &sis->extent_list)
1303 			lh = lh->next;
1304 		se = list_entry(lh, struct swap_extent, list);
1305 		sis->curr_swap_extent = se;
1306 		BUG_ON(se == start_se);		/* It *must* be present */
1307 	}
1308 }
1309 
1310 #ifdef CONFIG_HIBERNATION
1311 /*
1312  * Get the (PAGE_SIZE) block corresponding to given offset on the swapdev
1313  * corresponding to given index in swap_info (swap type).
1314  */
1315 sector_t swapdev_block(int swap_type, pgoff_t offset)
1316 {
1317 	struct swap_info_struct *sis;
1318 
1319 	if (swap_type >= nr_swapfiles)
1320 		return 0;
1321 
1322 	sis = swap_info + swap_type;
1323 	return (sis->flags & SWP_WRITEOK) ? map_swap_page(sis, offset) : 0;
1324 }
1325 #endif /* CONFIG_HIBERNATION */
1326 
1327 /*
1328  * Free all of a swapdev's extent information
1329  */
1330 static void destroy_swap_extents(struct swap_info_struct *sis)
1331 {
1332 	while (!list_empty(&sis->extent_list)) {
1333 		struct swap_extent *se;
1334 
1335 		se = list_entry(sis->extent_list.next,
1336 				struct swap_extent, list);
1337 		list_del(&se->list);
1338 		kfree(se);
1339 	}
1340 }
1341 
1342 /*
1343  * Add a block range (and the corresponding page range) into this swapdev's
1344  * extent list.  The extent list is kept sorted in page order.
1345  *
1346  * This function rather assumes that it is called in ascending page order.
1347  */
1348 static int
1349 add_swap_extent(struct swap_info_struct *sis, unsigned long start_page,
1350 		unsigned long nr_pages, sector_t start_block)
1351 {
1352 	struct swap_extent *se;
1353 	struct swap_extent *new_se;
1354 	struct list_head *lh;
1355 
1356 	lh = sis->extent_list.prev;	/* The highest page extent */
1357 	if (lh != &sis->extent_list) {
1358 		se = list_entry(lh, struct swap_extent, list);
1359 		BUG_ON(se->start_page + se->nr_pages != start_page);
1360 		if (se->start_block + se->nr_pages == start_block) {
1361 			/* Merge it */
1362 			se->nr_pages += nr_pages;
1363 			return 0;
1364 		}
1365 	}
1366 
1367 	/*
1368 	 * No merge.  Insert a new extent, preserving ordering.
1369 	 */
1370 	new_se = kmalloc(sizeof(*se), GFP_KERNEL);
1371 	if (new_se == NULL)
1372 		return -ENOMEM;
1373 	new_se->start_page = start_page;
1374 	new_se->nr_pages = nr_pages;
1375 	new_se->start_block = start_block;
1376 
1377 	list_add_tail(&new_se->list, &sis->extent_list);
1378 	return 1;
1379 }
1380 
1381 /*
1382  * A `swap extent' is a simple thing which maps a contiguous range of pages
1383  * onto a contiguous range of disk blocks.  An ordered list of swap extents
1384  * is built at swapon time and is then used at swap_writepage/swap_readpage
1385  * time for locating where on disk a page belongs.
1386  *
1387  * If the swapfile is an S_ISBLK block device, a single extent is installed.
1388  * This is done so that the main operating code can treat S_ISBLK and S_ISREG
1389  * swap files identically.
1390  *
1391  * Whether the swapdev is an S_ISREG file or an S_ISBLK blockdev, the swap
1392  * extent list operates in PAGE_SIZE disk blocks.  Both S_ISREG and S_ISBLK
1393  * swapfiles are handled *identically* after swapon time.
1394  *
1395  * For S_ISREG swapfiles, setup_swap_extents() will walk all the file's blocks
1396  * and will parse them into an ordered extent list, in PAGE_SIZE chunks.  If
1397  * some stray blocks are found which do not fall within the PAGE_SIZE alignment
1398  * requirements, they are simply tossed out - we will never use those blocks
1399  * for swapping.
1400  *
1401  * For S_ISREG swapfiles we set S_SWAPFILE across the life of the swapon.  This
1402  * prevents root from shooting her foot off by ftruncating an in-use swapfile,
1403  * which will scribble on the fs.
1404  *
1405  * The amount of disk space which a single swap extent represents varies.
1406  * Typically it is in the 1-4 megabyte range.  So we can have hundreds of
1407  * extents in the list.  To avoid much list walking, we cache the previous
1408  * search location in `curr_swap_extent', and start new searches from there.
1409  * This is extremely effective.  The average number of iterations in
1410  * map_swap_page() has been measured at about 0.3 per page.  - akpm.
1411  */
1412 static int setup_swap_extents(struct swap_info_struct *sis, sector_t *span)
1413 {
1414 	struct inode *inode;
1415 	unsigned blocks_per_page;
1416 	unsigned long page_no;
1417 	unsigned blkbits;
1418 	sector_t probe_block;
1419 	sector_t last_block;
1420 	sector_t lowest_block = -1;
1421 	sector_t highest_block = 0;
1422 	int nr_extents = 0;
1423 	int ret;
1424 
1425 	inode = sis->swap_file->f_mapping->host;
1426 	if (S_ISBLK(inode->i_mode)) {
1427 		ret = add_swap_extent(sis, 0, sis->max, 0);
1428 		*span = sis->pages;
1429 		goto done;
1430 	}
1431 
1432 	blkbits = inode->i_blkbits;
1433 	blocks_per_page = PAGE_SIZE >> blkbits;
1434 
1435 	/*
1436 	 * Map all the blocks into the extent list.  This code doesn't try
1437 	 * to be very smart.
1438 	 */
1439 	probe_block = 0;
1440 	page_no = 0;
1441 	last_block = i_size_read(inode) >> blkbits;
1442 	while ((probe_block + blocks_per_page) <= last_block &&
1443 			page_no < sis->max) {
1444 		unsigned block_in_page;
1445 		sector_t first_block;
1446 
1447 		first_block = bmap(inode, probe_block);
1448 		if (first_block == 0)
1449 			goto bad_bmap;
1450 
1451 		/*
1452 		 * It must be PAGE_SIZE aligned on-disk
1453 		 */
1454 		if (first_block & (blocks_per_page - 1)) {
1455 			probe_block++;
1456 			goto reprobe;
1457 		}
1458 
1459 		for (block_in_page = 1; block_in_page < blocks_per_page;
1460 					block_in_page++) {
1461 			sector_t block;
1462 
1463 			block = bmap(inode, probe_block + block_in_page);
1464 			if (block == 0)
1465 				goto bad_bmap;
1466 			if (block != first_block + block_in_page) {
1467 				/* Discontiguity */
1468 				probe_block++;
1469 				goto reprobe;
1470 			}
1471 		}
1472 
1473 		first_block >>= (PAGE_SHIFT - blkbits);
1474 		if (page_no) {	/* exclude the header page */
1475 			if (first_block < lowest_block)
1476 				lowest_block = first_block;
1477 			if (first_block > highest_block)
1478 				highest_block = first_block;
1479 		}
1480 
1481 		/*
1482 		 * We found a PAGE_SIZE-length, PAGE_SIZE-aligned run of blocks
1483 		 */
1484 		ret = add_swap_extent(sis, page_no, 1, first_block);
1485 		if (ret < 0)
1486 			goto out;
1487 		nr_extents += ret;
1488 		page_no++;
1489 		probe_block += blocks_per_page;
1490 reprobe:
1491 		continue;
1492 	}
1493 	ret = nr_extents;
1494 	*span = 1 + highest_block - lowest_block;
1495 	if (page_no == 0)
1496 		page_no = 1;	/* force Empty message */
1497 	sis->max = page_no;
1498 	sis->pages = page_no - 1;
1499 	sis->highest_bit = page_no - 1;
1500 done:
1501 	sis->curr_swap_extent = list_entry(sis->extent_list.prev,
1502 					struct swap_extent, list);
1503 	goto out;
1504 bad_bmap:
1505 	printk(KERN_ERR "swapon: swapfile has holes\n");
1506 	ret = -EINVAL;
1507 out:
1508 	return ret;
1509 }
1510 
1511 SYSCALL_DEFINE1(swapoff, const char __user *, specialfile)
1512 {
1513 	struct swap_info_struct * p = NULL;
1514 	unsigned short *swap_map;
1515 	struct file *swap_file, *victim;
1516 	struct address_space *mapping;
1517 	struct inode *inode;
1518 	char * pathname;
1519 	int i, type, prev;
1520 	int err;
1521 
1522 	if (!capable(CAP_SYS_ADMIN))
1523 		return -EPERM;
1524 
1525 	pathname = getname(specialfile);
1526 	err = PTR_ERR(pathname);
1527 	if (IS_ERR(pathname))
1528 		goto out;
1529 
1530 	victim = filp_open(pathname, O_RDWR|O_LARGEFILE, 0);
1531 	putname(pathname);
1532 	err = PTR_ERR(victim);
1533 	if (IS_ERR(victim))
1534 		goto out;
1535 
1536 	mapping = victim->f_mapping;
1537 	prev = -1;
1538 	spin_lock(&swap_lock);
1539 	for (type = swap_list.head; type >= 0; type = swap_info[type].next) {
1540 		p = swap_info + type;
1541 		if (p->flags & SWP_WRITEOK) {
1542 			if (p->swap_file->f_mapping == mapping)
1543 				break;
1544 		}
1545 		prev = type;
1546 	}
1547 	if (type < 0) {
1548 		err = -EINVAL;
1549 		spin_unlock(&swap_lock);
1550 		goto out_dput;
1551 	}
1552 	if (!security_vm_enough_memory(p->pages))
1553 		vm_unacct_memory(p->pages);
1554 	else {
1555 		err = -ENOMEM;
1556 		spin_unlock(&swap_lock);
1557 		goto out_dput;
1558 	}
1559 	if (prev < 0) {
1560 		swap_list.head = p->next;
1561 	} else {
1562 		swap_info[prev].next = p->next;
1563 	}
1564 	if (type == swap_list.next) {
1565 		/* just pick something that's safe... */
1566 		swap_list.next = swap_list.head;
1567 	}
1568 	if (p->prio < 0) {
1569 		for (i = p->next; i >= 0; i = swap_info[i].next)
1570 			swap_info[i].prio = p->prio--;
1571 		least_priority++;
1572 	}
1573 	nr_swap_pages -= p->pages;
1574 	total_swap_pages -= p->pages;
1575 	p->flags &= ~SWP_WRITEOK;
1576 	spin_unlock(&swap_lock);
1577 
1578 	current->flags |= PF_OOM_ORIGIN;
1579 	err = try_to_unuse(type);
1580 	current->flags &= ~PF_OOM_ORIGIN;
1581 
1582 	if (err) {
1583 		/* re-insert swap space back into swap_list */
1584 		spin_lock(&swap_lock);
1585 		if (p->prio < 0)
1586 			p->prio = --least_priority;
1587 		prev = -1;
1588 		for (i = swap_list.head; i >= 0; i = swap_info[i].next) {
1589 			if (p->prio >= swap_info[i].prio)
1590 				break;
1591 			prev = i;
1592 		}
1593 		p->next = i;
1594 		if (prev < 0)
1595 			swap_list.head = swap_list.next = p - swap_info;
1596 		else
1597 			swap_info[prev].next = p - swap_info;
1598 		nr_swap_pages += p->pages;
1599 		total_swap_pages += p->pages;
1600 		p->flags |= SWP_WRITEOK;
1601 		spin_unlock(&swap_lock);
1602 		goto out_dput;
1603 	}
1604 
1605 	/* wait for any unplug function to finish */
1606 	down_write(&swap_unplug_sem);
1607 	up_write(&swap_unplug_sem);
1608 
1609 	destroy_swap_extents(p);
1610 	mutex_lock(&swapon_mutex);
1611 	spin_lock(&swap_lock);
1612 	drain_mmlist();
1613 
1614 	/* wait for anyone still in scan_swap_map */
1615 	p->highest_bit = 0;		/* cuts scans short */
1616 	while (p->flags >= SWP_SCANNING) {
1617 		spin_unlock(&swap_lock);
1618 		schedule_timeout_uninterruptible(1);
1619 		spin_lock(&swap_lock);
1620 	}
1621 
1622 	swap_file = p->swap_file;
1623 	p->swap_file = NULL;
1624 	p->max = 0;
1625 	swap_map = p->swap_map;
1626 	p->swap_map = NULL;
1627 	p->flags = 0;
1628 	spin_unlock(&swap_lock);
1629 	mutex_unlock(&swapon_mutex);
1630 	vfree(swap_map);
1631 	/* Destroy swap account informatin */
1632 	swap_cgroup_swapoff(type);
1633 
1634 	inode = mapping->host;
1635 	if (S_ISBLK(inode->i_mode)) {
1636 		struct block_device *bdev = I_BDEV(inode);
1637 		set_blocksize(bdev, p->old_block_size);
1638 		bd_release(bdev);
1639 	} else {
1640 		mutex_lock(&inode->i_mutex);
1641 		inode->i_flags &= ~S_SWAPFILE;
1642 		mutex_unlock(&inode->i_mutex);
1643 	}
1644 	filp_close(swap_file, NULL);
1645 	err = 0;
1646 
1647 out_dput:
1648 	filp_close(victim, NULL);
1649 out:
1650 	return err;
1651 }
1652 
1653 #ifdef CONFIG_PROC_FS
1654 /* iterator */
1655 static void *swap_start(struct seq_file *swap, loff_t *pos)
1656 {
1657 	struct swap_info_struct *ptr = swap_info;
1658 	int i;
1659 	loff_t l = *pos;
1660 
1661 	mutex_lock(&swapon_mutex);
1662 
1663 	if (!l)
1664 		return SEQ_START_TOKEN;
1665 
1666 	for (i = 0; i < nr_swapfiles; i++, ptr++) {
1667 		if (!(ptr->flags & SWP_USED) || !ptr->swap_map)
1668 			continue;
1669 		if (!--l)
1670 			return ptr;
1671 	}
1672 
1673 	return NULL;
1674 }
1675 
1676 static void *swap_next(struct seq_file *swap, void *v, loff_t *pos)
1677 {
1678 	struct swap_info_struct *ptr;
1679 	struct swap_info_struct *endptr = swap_info + nr_swapfiles;
1680 
1681 	if (v == SEQ_START_TOKEN)
1682 		ptr = swap_info;
1683 	else {
1684 		ptr = v;
1685 		ptr++;
1686 	}
1687 
1688 	for (; ptr < endptr; ptr++) {
1689 		if (!(ptr->flags & SWP_USED) || !ptr->swap_map)
1690 			continue;
1691 		++*pos;
1692 		return ptr;
1693 	}
1694 
1695 	return NULL;
1696 }
1697 
1698 static void swap_stop(struct seq_file *swap, void *v)
1699 {
1700 	mutex_unlock(&swapon_mutex);
1701 }
1702 
1703 static int swap_show(struct seq_file *swap, void *v)
1704 {
1705 	struct swap_info_struct *ptr = v;
1706 	struct file *file;
1707 	int len;
1708 
1709 	if (ptr == SEQ_START_TOKEN) {
1710 		seq_puts(swap,"Filename\t\t\t\tType\t\tSize\tUsed\tPriority\n");
1711 		return 0;
1712 	}
1713 
1714 	file = ptr->swap_file;
1715 	len = seq_path(swap, &file->f_path, " \t\n\\");
1716 	seq_printf(swap, "%*s%s\t%u\t%u\t%d\n",
1717 			len < 40 ? 40 - len : 1, " ",
1718 			S_ISBLK(file->f_path.dentry->d_inode->i_mode) ?
1719 				"partition" : "file\t",
1720 			ptr->pages << (PAGE_SHIFT - 10),
1721 			ptr->inuse_pages << (PAGE_SHIFT - 10),
1722 			ptr->prio);
1723 	return 0;
1724 }
1725 
1726 static const struct seq_operations swaps_op = {
1727 	.start =	swap_start,
1728 	.next =		swap_next,
1729 	.stop =		swap_stop,
1730 	.show =		swap_show
1731 };
1732 
1733 static int swaps_open(struct inode *inode, struct file *file)
1734 {
1735 	return seq_open(file, &swaps_op);
1736 }
1737 
1738 static const struct file_operations proc_swaps_operations = {
1739 	.open		= swaps_open,
1740 	.read		= seq_read,
1741 	.llseek		= seq_lseek,
1742 	.release	= seq_release,
1743 };
1744 
1745 static int __init procswaps_init(void)
1746 {
1747 	proc_create("swaps", 0, NULL, &proc_swaps_operations);
1748 	return 0;
1749 }
1750 __initcall(procswaps_init);
1751 #endif /* CONFIG_PROC_FS */
1752 
1753 #ifdef MAX_SWAPFILES_CHECK
1754 static int __init max_swapfiles_check(void)
1755 {
1756 	MAX_SWAPFILES_CHECK();
1757 	return 0;
1758 }
1759 late_initcall(max_swapfiles_check);
1760 #endif
1761 
1762 /*
1763  * Written 01/25/92 by Simmule Turner, heavily changed by Linus.
1764  *
1765  * The swapon system call
1766  */
1767 SYSCALL_DEFINE2(swapon, const char __user *, specialfile, int, swap_flags)
1768 {
1769 	struct swap_info_struct * p;
1770 	char *name = NULL;
1771 	struct block_device *bdev = NULL;
1772 	struct file *swap_file = NULL;
1773 	struct address_space *mapping;
1774 	unsigned int type;
1775 	int i, prev;
1776 	int error;
1777 	union swap_header *swap_header = NULL;
1778 	unsigned int nr_good_pages = 0;
1779 	int nr_extents = 0;
1780 	sector_t span;
1781 	unsigned long maxpages = 1;
1782 	unsigned long swapfilepages;
1783 	unsigned short *swap_map = NULL;
1784 	struct page *page = NULL;
1785 	struct inode *inode = NULL;
1786 	int did_down = 0;
1787 
1788 	if (!capable(CAP_SYS_ADMIN))
1789 		return -EPERM;
1790 	spin_lock(&swap_lock);
1791 	p = swap_info;
1792 	for (type = 0 ; type < nr_swapfiles ; type++,p++)
1793 		if (!(p->flags & SWP_USED))
1794 			break;
1795 	error = -EPERM;
1796 	if (type >= MAX_SWAPFILES) {
1797 		spin_unlock(&swap_lock);
1798 		goto out;
1799 	}
1800 	if (type >= nr_swapfiles)
1801 		nr_swapfiles = type+1;
1802 	memset(p, 0, sizeof(*p));
1803 	INIT_LIST_HEAD(&p->extent_list);
1804 	p->flags = SWP_USED;
1805 	p->next = -1;
1806 	spin_unlock(&swap_lock);
1807 	name = getname(specialfile);
1808 	error = PTR_ERR(name);
1809 	if (IS_ERR(name)) {
1810 		name = NULL;
1811 		goto bad_swap_2;
1812 	}
1813 	swap_file = filp_open(name, O_RDWR|O_LARGEFILE, 0);
1814 	error = PTR_ERR(swap_file);
1815 	if (IS_ERR(swap_file)) {
1816 		swap_file = NULL;
1817 		goto bad_swap_2;
1818 	}
1819 
1820 	p->swap_file = swap_file;
1821 	mapping = swap_file->f_mapping;
1822 	inode = mapping->host;
1823 
1824 	error = -EBUSY;
1825 	for (i = 0; i < nr_swapfiles; i++) {
1826 		struct swap_info_struct *q = &swap_info[i];
1827 
1828 		if (i == type || !q->swap_file)
1829 			continue;
1830 		if (mapping == q->swap_file->f_mapping)
1831 			goto bad_swap;
1832 	}
1833 
1834 	error = -EINVAL;
1835 	if (S_ISBLK(inode->i_mode)) {
1836 		bdev = I_BDEV(inode);
1837 		error = bd_claim(bdev, sys_swapon);
1838 		if (error < 0) {
1839 			bdev = NULL;
1840 			error = -EINVAL;
1841 			goto bad_swap;
1842 		}
1843 		p->old_block_size = block_size(bdev);
1844 		error = set_blocksize(bdev, PAGE_SIZE);
1845 		if (error < 0)
1846 			goto bad_swap;
1847 		p->bdev = bdev;
1848 	} else if (S_ISREG(inode->i_mode)) {
1849 		p->bdev = inode->i_sb->s_bdev;
1850 		mutex_lock(&inode->i_mutex);
1851 		did_down = 1;
1852 		if (IS_SWAPFILE(inode)) {
1853 			error = -EBUSY;
1854 			goto bad_swap;
1855 		}
1856 	} else {
1857 		goto bad_swap;
1858 	}
1859 
1860 	swapfilepages = i_size_read(inode) >> PAGE_SHIFT;
1861 
1862 	/*
1863 	 * Read the swap header.
1864 	 */
1865 	if (!mapping->a_ops->readpage) {
1866 		error = -EINVAL;
1867 		goto bad_swap;
1868 	}
1869 	page = read_mapping_page(mapping, 0, swap_file);
1870 	if (IS_ERR(page)) {
1871 		error = PTR_ERR(page);
1872 		goto bad_swap;
1873 	}
1874 	swap_header = kmap(page);
1875 
1876 	if (memcmp("SWAPSPACE2", swap_header->magic.magic, 10)) {
1877 		printk(KERN_ERR "Unable to find swap-space signature\n");
1878 		error = -EINVAL;
1879 		goto bad_swap;
1880 	}
1881 
1882 	/* swap partition endianess hack... */
1883 	if (swab32(swap_header->info.version) == 1) {
1884 		swab32s(&swap_header->info.version);
1885 		swab32s(&swap_header->info.last_page);
1886 		swab32s(&swap_header->info.nr_badpages);
1887 		for (i = 0; i < swap_header->info.nr_badpages; i++)
1888 			swab32s(&swap_header->info.badpages[i]);
1889 	}
1890 	/* Check the swap header's sub-version */
1891 	if (swap_header->info.version != 1) {
1892 		printk(KERN_WARNING
1893 		       "Unable to handle swap header version %d\n",
1894 		       swap_header->info.version);
1895 		error = -EINVAL;
1896 		goto bad_swap;
1897 	}
1898 
1899 	p->lowest_bit  = 1;
1900 	p->cluster_next = 1;
1901 
1902 	/*
1903 	 * Find out how many pages are allowed for a single swap
1904 	 * device. There are two limiting factors: 1) the number of
1905 	 * bits for the swap offset in the swp_entry_t type and
1906 	 * 2) the number of bits in the a swap pte as defined by
1907 	 * the different architectures. In order to find the
1908 	 * largest possible bit mask a swap entry with swap type 0
1909 	 * and swap offset ~0UL is created, encoded to a swap pte,
1910 	 * decoded to a swp_entry_t again and finally the swap
1911 	 * offset is extracted. This will mask all the bits from
1912 	 * the initial ~0UL mask that can't be encoded in either
1913 	 * the swp_entry_t or the architecture definition of a
1914 	 * swap pte.
1915 	 */
1916 	maxpages = swp_offset(pte_to_swp_entry(
1917 			swp_entry_to_pte(swp_entry(0, ~0UL)))) - 1;
1918 	if (maxpages > swap_header->info.last_page)
1919 		maxpages = swap_header->info.last_page;
1920 	p->highest_bit = maxpages - 1;
1921 
1922 	error = -EINVAL;
1923 	if (!maxpages)
1924 		goto bad_swap;
1925 	if (swapfilepages && maxpages > swapfilepages) {
1926 		printk(KERN_WARNING
1927 		       "Swap area shorter than signature indicates\n");
1928 		goto bad_swap;
1929 	}
1930 	if (swap_header->info.nr_badpages && S_ISREG(inode->i_mode))
1931 		goto bad_swap;
1932 	if (swap_header->info.nr_badpages > MAX_SWAP_BADPAGES)
1933 		goto bad_swap;
1934 
1935 	/* OK, set up the swap map and apply the bad block list */
1936 	swap_map = vmalloc(maxpages * sizeof(short));
1937 	if (!swap_map) {
1938 		error = -ENOMEM;
1939 		goto bad_swap;
1940 	}
1941 
1942 	memset(swap_map, 0, maxpages * sizeof(short));
1943 	for (i = 0; i < swap_header->info.nr_badpages; i++) {
1944 		int page_nr = swap_header->info.badpages[i];
1945 		if (page_nr <= 0 || page_nr >= swap_header->info.last_page) {
1946 			error = -EINVAL;
1947 			goto bad_swap;
1948 		}
1949 		swap_map[page_nr] = SWAP_MAP_BAD;
1950 	}
1951 
1952 	error = swap_cgroup_swapon(type, maxpages);
1953 	if (error)
1954 		goto bad_swap;
1955 
1956 	nr_good_pages = swap_header->info.last_page -
1957 			swap_header->info.nr_badpages -
1958 			1 /* header page */;
1959 
1960 	if (nr_good_pages) {
1961 		swap_map[0] = SWAP_MAP_BAD;
1962 		p->max = maxpages;
1963 		p->pages = nr_good_pages;
1964 		nr_extents = setup_swap_extents(p, &span);
1965 		if (nr_extents < 0) {
1966 			error = nr_extents;
1967 			goto bad_swap;
1968 		}
1969 		nr_good_pages = p->pages;
1970 	}
1971 	if (!nr_good_pages) {
1972 		printk(KERN_WARNING "Empty swap-file\n");
1973 		error = -EINVAL;
1974 		goto bad_swap;
1975 	}
1976 
1977 	if (p->bdev) {
1978 		if (blk_queue_nonrot(bdev_get_queue(p->bdev))) {
1979 			p->flags |= SWP_SOLIDSTATE;
1980 			p->cluster_next = 1 + (random32() % p->highest_bit);
1981 		}
1982 		if (discard_swap(p) == 0)
1983 			p->flags |= SWP_DISCARDABLE;
1984 	}
1985 
1986 	mutex_lock(&swapon_mutex);
1987 	spin_lock(&swap_lock);
1988 	if (swap_flags & SWAP_FLAG_PREFER)
1989 		p->prio =
1990 		  (swap_flags & SWAP_FLAG_PRIO_MASK) >> SWAP_FLAG_PRIO_SHIFT;
1991 	else
1992 		p->prio = --least_priority;
1993 	p->swap_map = swap_map;
1994 	p->flags |= SWP_WRITEOK;
1995 	nr_swap_pages += nr_good_pages;
1996 	total_swap_pages += nr_good_pages;
1997 
1998 	printk(KERN_INFO "Adding %uk swap on %s.  "
1999 			"Priority:%d extents:%d across:%lluk %s%s\n",
2000 		nr_good_pages<<(PAGE_SHIFT-10), name, p->prio,
2001 		nr_extents, (unsigned long long)span<<(PAGE_SHIFT-10),
2002 		(p->flags & SWP_SOLIDSTATE) ? "SS" : "",
2003 		(p->flags & SWP_DISCARDABLE) ? "D" : "");
2004 
2005 	/* insert swap space into swap_list: */
2006 	prev = -1;
2007 	for (i = swap_list.head; i >= 0; i = swap_info[i].next) {
2008 		if (p->prio >= swap_info[i].prio) {
2009 			break;
2010 		}
2011 		prev = i;
2012 	}
2013 	p->next = i;
2014 	if (prev < 0) {
2015 		swap_list.head = swap_list.next = p - swap_info;
2016 	} else {
2017 		swap_info[prev].next = p - swap_info;
2018 	}
2019 	spin_unlock(&swap_lock);
2020 	mutex_unlock(&swapon_mutex);
2021 	error = 0;
2022 	goto out;
2023 bad_swap:
2024 	if (bdev) {
2025 		set_blocksize(bdev, p->old_block_size);
2026 		bd_release(bdev);
2027 	}
2028 	destroy_swap_extents(p);
2029 	swap_cgroup_swapoff(type);
2030 bad_swap_2:
2031 	spin_lock(&swap_lock);
2032 	p->swap_file = NULL;
2033 	p->flags = 0;
2034 	spin_unlock(&swap_lock);
2035 	vfree(swap_map);
2036 	if (swap_file)
2037 		filp_close(swap_file, NULL);
2038 out:
2039 	if (page && !IS_ERR(page)) {
2040 		kunmap(page);
2041 		page_cache_release(page);
2042 	}
2043 	if (name)
2044 		putname(name);
2045 	if (did_down) {
2046 		if (!error)
2047 			inode->i_flags |= S_SWAPFILE;
2048 		mutex_unlock(&inode->i_mutex);
2049 	}
2050 	return error;
2051 }
2052 
2053 void si_swapinfo(struct sysinfo *val)
2054 {
2055 	unsigned int i;
2056 	unsigned long nr_to_be_unused = 0;
2057 
2058 	spin_lock(&swap_lock);
2059 	for (i = 0; i < nr_swapfiles; i++) {
2060 		if (!(swap_info[i].flags & SWP_USED) ||
2061 		     (swap_info[i].flags & SWP_WRITEOK))
2062 			continue;
2063 		nr_to_be_unused += swap_info[i].inuse_pages;
2064 	}
2065 	val->freeswap = nr_swap_pages + nr_to_be_unused;
2066 	val->totalswap = total_swap_pages + nr_to_be_unused;
2067 	spin_unlock(&swap_lock);
2068 }
2069 
2070 /*
2071  * Verify that a swap entry is valid and increment its swap map count.
2072  *
2073  * Note: if swap_map[] reaches SWAP_MAP_MAX the entries are treated as
2074  * "permanent", but will be reclaimed by the next swapoff.
2075  * Returns error code in following case.
2076  * - success -> 0
2077  * - swp_entry is invalid -> EINVAL
2078  * - swp_entry is migration entry -> EINVAL
2079  * - swap-cache reference is requested but there is already one. -> EEXIST
2080  * - swap-cache reference is requested but the entry is not used. -> ENOENT
2081  */
2082 static int __swap_duplicate(swp_entry_t entry, bool cache)
2083 {
2084 	struct swap_info_struct * p;
2085 	unsigned long offset, type;
2086 	int result = -EINVAL;
2087 	int count;
2088 	bool has_cache;
2089 
2090 	if (non_swap_entry(entry))
2091 		return -EINVAL;
2092 
2093 	type = swp_type(entry);
2094 	if (type >= nr_swapfiles)
2095 		goto bad_file;
2096 	p = type + swap_info;
2097 	offset = swp_offset(entry);
2098 
2099 	spin_lock(&swap_lock);
2100 
2101 	if (unlikely(offset >= p->max))
2102 		goto unlock_out;
2103 
2104 	count = swap_count(p->swap_map[offset]);
2105 	has_cache = swap_has_cache(p->swap_map[offset]);
2106 
2107 	if (cache == SWAP_CACHE) { /* called for swapcache/swapin-readahead */
2108 
2109 		/* set SWAP_HAS_CACHE if there is no cache and entry is used */
2110 		if (!has_cache && count) {
2111 			p->swap_map[offset] = encode_swapmap(count, true);
2112 			result = 0;
2113 		} else if (has_cache) /* someone added cache */
2114 			result = -EEXIST;
2115 		else if (!count) /* no users */
2116 			result = -ENOENT;
2117 
2118 	} else if (count || has_cache) {
2119 		if (count < SWAP_MAP_MAX - 1) {
2120 			p->swap_map[offset] = encode_swapmap(count + 1,
2121 							     has_cache);
2122 			result = 0;
2123 		} else if (count <= SWAP_MAP_MAX) {
2124 			if (swap_overflow++ < 5)
2125 				printk(KERN_WARNING
2126 				       "swap_dup: swap entry overflow\n");
2127 			p->swap_map[offset] = encode_swapmap(SWAP_MAP_MAX,
2128 							      has_cache);
2129 			result = 0;
2130 		}
2131 	} else
2132 		result = -ENOENT; /* unused swap entry */
2133 unlock_out:
2134 	spin_unlock(&swap_lock);
2135 out:
2136 	return result;
2137 
2138 bad_file:
2139 	printk(KERN_ERR "swap_dup: %s%08lx\n", Bad_file, entry.val);
2140 	goto out;
2141 }
2142 /*
2143  * increase reference count of swap entry by 1.
2144  */
2145 void swap_duplicate(swp_entry_t entry)
2146 {
2147 	__swap_duplicate(entry, SWAP_MAP);
2148 }
2149 
2150 /*
2151  * @entry: swap entry for which we allocate swap cache.
2152  *
2153  * Called when allocating swap cache for exising swap entry,
2154  * This can return error codes. Returns 0 at success.
2155  * -EBUSY means there is a swap cache.
2156  * Note: return code is different from swap_duplicate().
2157  */
2158 int swapcache_prepare(swp_entry_t entry)
2159 {
2160 	return __swap_duplicate(entry, SWAP_CACHE);
2161 }
2162 
2163 
2164 struct swap_info_struct *
2165 get_swap_info_struct(unsigned type)
2166 {
2167 	return &swap_info[type];
2168 }
2169 
2170 /*
2171  * swap_lock prevents swap_map being freed. Don't grab an extra
2172  * reference on the swaphandle, it doesn't matter if it becomes unused.
2173  */
2174 int valid_swaphandles(swp_entry_t entry, unsigned long *offset)
2175 {
2176 	struct swap_info_struct *si;
2177 	int our_page_cluster = page_cluster;
2178 	pgoff_t target, toff;
2179 	pgoff_t base, end;
2180 	int nr_pages = 0;
2181 
2182 	if (!our_page_cluster)	/* no readahead */
2183 		return 0;
2184 
2185 	si = &swap_info[swp_type(entry)];
2186 	target = swp_offset(entry);
2187 	base = (target >> our_page_cluster) << our_page_cluster;
2188 	end = base + (1 << our_page_cluster);
2189 	if (!base)		/* first page is swap header */
2190 		base++;
2191 
2192 	spin_lock(&swap_lock);
2193 	if (end > si->max)	/* don't go beyond end of map */
2194 		end = si->max;
2195 
2196 	/* Count contiguous allocated slots above our target */
2197 	for (toff = target; ++toff < end; nr_pages++) {
2198 		/* Don't read in free or bad pages */
2199 		if (!si->swap_map[toff])
2200 			break;
2201 		if (swap_count(si->swap_map[toff]) == SWAP_MAP_BAD)
2202 			break;
2203 	}
2204 	/* Count contiguous allocated slots below our target */
2205 	for (toff = target; --toff >= base; nr_pages++) {
2206 		/* Don't read in free or bad pages */
2207 		if (!si->swap_map[toff])
2208 			break;
2209 		if (swap_count(si->swap_map[toff]) == SWAP_MAP_BAD)
2210 			break;
2211 	}
2212 	spin_unlock(&swap_lock);
2213 
2214 	/*
2215 	 * Indicate starting offset, and return number of pages to get:
2216 	 * if only 1, say 0, since there's then no readahead to be done.
2217 	 */
2218 	*offset = ++toff;
2219 	return nr_pages? ++nr_pages: 0;
2220 }
2221