xref: /openbmc/linux/mm/swapfile.c (revision e5c86679)
1 /*
2  *  linux/mm/swapfile.c
3  *
4  *  Copyright (C) 1991, 1992, 1993, 1994  Linus Torvalds
5  *  Swap reorganised 29.12.95, Stephen Tweedie
6  */
7 
8 #include <linux/mm.h>
9 #include <linux/sched/mm.h>
10 #include <linux/sched/task.h>
11 #include <linux/hugetlb.h>
12 #include <linux/mman.h>
13 #include <linux/slab.h>
14 #include <linux/kernel_stat.h>
15 #include <linux/swap.h>
16 #include <linux/vmalloc.h>
17 #include <linux/pagemap.h>
18 #include <linux/namei.h>
19 #include <linux/shmem_fs.h>
20 #include <linux/blkdev.h>
21 #include <linux/random.h>
22 #include <linux/writeback.h>
23 #include <linux/proc_fs.h>
24 #include <linux/seq_file.h>
25 #include <linux/init.h>
26 #include <linux/ksm.h>
27 #include <linux/rmap.h>
28 #include <linux/security.h>
29 #include <linux/backing-dev.h>
30 #include <linux/mutex.h>
31 #include <linux/capability.h>
32 #include <linux/syscalls.h>
33 #include <linux/memcontrol.h>
34 #include <linux/poll.h>
35 #include <linux/oom.h>
36 #include <linux/frontswap.h>
37 #include <linux/swapfile.h>
38 #include <linux/export.h>
39 #include <linux/swap_slots.h>
40 
41 #include <asm/pgtable.h>
42 #include <asm/tlbflush.h>
43 #include <linux/swapops.h>
44 #include <linux/swap_cgroup.h>
45 
46 static bool swap_count_continued(struct swap_info_struct *, pgoff_t,
47 				 unsigned char);
48 static void free_swap_count_continuations(struct swap_info_struct *);
49 static sector_t map_swap_entry(swp_entry_t, struct block_device**);
50 
51 DEFINE_SPINLOCK(swap_lock);
52 static unsigned int nr_swapfiles;
53 atomic_long_t nr_swap_pages;
54 /*
55  * Some modules use swappable objects and may try to swap them out under
56  * memory pressure (via the shrinker). Before doing so, they may wish to
57  * check to see if any swap space is available.
58  */
59 EXPORT_SYMBOL_GPL(nr_swap_pages);
60 /* protected with swap_lock. reading in vm_swap_full() doesn't need lock */
61 long total_swap_pages;
62 static int least_priority;
63 
64 static const char Bad_file[] = "Bad swap file entry ";
65 static const char Unused_file[] = "Unused swap file entry ";
66 static const char Bad_offset[] = "Bad swap offset entry ";
67 static const char Unused_offset[] = "Unused swap offset entry ";
68 
69 /*
70  * all active swap_info_structs
71  * protected with swap_lock, and ordered by priority.
72  */
73 PLIST_HEAD(swap_active_head);
74 
75 /*
76  * all available (active, not full) swap_info_structs
77  * protected with swap_avail_lock, ordered by priority.
78  * This is used by get_swap_page() instead of swap_active_head
79  * because swap_active_head includes all swap_info_structs,
80  * but get_swap_page() doesn't need to look at full ones.
81  * This uses its own lock instead of swap_lock because when a
82  * swap_info_struct changes between not-full/full, it needs to
83  * add/remove itself to/from this list, but the swap_info_struct->lock
84  * is held and the locking order requires swap_lock to be taken
85  * before any swap_info_struct->lock.
86  */
87 static PLIST_HEAD(swap_avail_head);
88 static DEFINE_SPINLOCK(swap_avail_lock);
89 
90 struct swap_info_struct *swap_info[MAX_SWAPFILES];
91 
92 static DEFINE_MUTEX(swapon_mutex);
93 
94 static DECLARE_WAIT_QUEUE_HEAD(proc_poll_wait);
95 /* Activity counter to indicate that a swapon or swapoff has occurred */
96 static atomic_t proc_poll_event = ATOMIC_INIT(0);
97 
98 static inline unsigned char swap_count(unsigned char ent)
99 {
100 	return ent & ~SWAP_HAS_CACHE;	/* may include SWAP_HAS_CONT flag */
101 }
102 
103 /* returns 1 if swap entry is freed */
104 static int
105 __try_to_reclaim_swap(struct swap_info_struct *si, unsigned long offset)
106 {
107 	swp_entry_t entry = swp_entry(si->type, offset);
108 	struct page *page;
109 	int ret = 0;
110 
111 	page = find_get_page(swap_address_space(entry), swp_offset(entry));
112 	if (!page)
113 		return 0;
114 	/*
115 	 * This function is called from scan_swap_map() and it's called
116 	 * by vmscan.c at reclaiming pages. So, we hold a lock on a page, here.
117 	 * We have to use trylock for avoiding deadlock. This is a special
118 	 * case and you should use try_to_free_swap() with explicit lock_page()
119 	 * in usual operations.
120 	 */
121 	if (trylock_page(page)) {
122 		ret = try_to_free_swap(page);
123 		unlock_page(page);
124 	}
125 	put_page(page);
126 	return ret;
127 }
128 
129 /*
130  * swapon tell device that all the old swap contents can be discarded,
131  * to allow the swap device to optimize its wear-levelling.
132  */
133 static int discard_swap(struct swap_info_struct *si)
134 {
135 	struct swap_extent *se;
136 	sector_t start_block;
137 	sector_t nr_blocks;
138 	int err = 0;
139 
140 	/* Do not discard the swap header page! */
141 	se = &si->first_swap_extent;
142 	start_block = (se->start_block + 1) << (PAGE_SHIFT - 9);
143 	nr_blocks = ((sector_t)se->nr_pages - 1) << (PAGE_SHIFT - 9);
144 	if (nr_blocks) {
145 		err = blkdev_issue_discard(si->bdev, start_block,
146 				nr_blocks, GFP_KERNEL, 0);
147 		if (err)
148 			return err;
149 		cond_resched();
150 	}
151 
152 	list_for_each_entry(se, &si->first_swap_extent.list, list) {
153 		start_block = se->start_block << (PAGE_SHIFT - 9);
154 		nr_blocks = (sector_t)se->nr_pages << (PAGE_SHIFT - 9);
155 
156 		err = blkdev_issue_discard(si->bdev, start_block,
157 				nr_blocks, GFP_KERNEL, 0);
158 		if (err)
159 			break;
160 
161 		cond_resched();
162 	}
163 	return err;		/* That will often be -EOPNOTSUPP */
164 }
165 
166 /*
167  * swap allocation tell device that a cluster of swap can now be discarded,
168  * to allow the swap device to optimize its wear-levelling.
169  */
170 static void discard_swap_cluster(struct swap_info_struct *si,
171 				 pgoff_t start_page, pgoff_t nr_pages)
172 {
173 	struct swap_extent *se = si->curr_swap_extent;
174 	int found_extent = 0;
175 
176 	while (nr_pages) {
177 		if (se->start_page <= start_page &&
178 		    start_page < se->start_page + se->nr_pages) {
179 			pgoff_t offset = start_page - se->start_page;
180 			sector_t start_block = se->start_block + offset;
181 			sector_t nr_blocks = se->nr_pages - offset;
182 
183 			if (nr_blocks > nr_pages)
184 				nr_blocks = nr_pages;
185 			start_page += nr_blocks;
186 			nr_pages -= nr_blocks;
187 
188 			if (!found_extent++)
189 				si->curr_swap_extent = se;
190 
191 			start_block <<= PAGE_SHIFT - 9;
192 			nr_blocks <<= PAGE_SHIFT - 9;
193 			if (blkdev_issue_discard(si->bdev, start_block,
194 				    nr_blocks, GFP_NOIO, 0))
195 				break;
196 		}
197 
198 		se = list_next_entry(se, list);
199 	}
200 }
201 
202 #define SWAPFILE_CLUSTER	256
203 #define LATENCY_LIMIT		256
204 
205 static inline void cluster_set_flag(struct swap_cluster_info *info,
206 	unsigned int flag)
207 {
208 	info->flags = flag;
209 }
210 
211 static inline unsigned int cluster_count(struct swap_cluster_info *info)
212 {
213 	return info->data;
214 }
215 
216 static inline void cluster_set_count(struct swap_cluster_info *info,
217 				     unsigned int c)
218 {
219 	info->data = c;
220 }
221 
222 static inline void cluster_set_count_flag(struct swap_cluster_info *info,
223 					 unsigned int c, unsigned int f)
224 {
225 	info->flags = f;
226 	info->data = c;
227 }
228 
229 static inline unsigned int cluster_next(struct swap_cluster_info *info)
230 {
231 	return info->data;
232 }
233 
234 static inline void cluster_set_next(struct swap_cluster_info *info,
235 				    unsigned int n)
236 {
237 	info->data = n;
238 }
239 
240 static inline void cluster_set_next_flag(struct swap_cluster_info *info,
241 					 unsigned int n, unsigned int f)
242 {
243 	info->flags = f;
244 	info->data = n;
245 }
246 
247 static inline bool cluster_is_free(struct swap_cluster_info *info)
248 {
249 	return info->flags & CLUSTER_FLAG_FREE;
250 }
251 
252 static inline bool cluster_is_null(struct swap_cluster_info *info)
253 {
254 	return info->flags & CLUSTER_FLAG_NEXT_NULL;
255 }
256 
257 static inline void cluster_set_null(struct swap_cluster_info *info)
258 {
259 	info->flags = CLUSTER_FLAG_NEXT_NULL;
260 	info->data = 0;
261 }
262 
263 static inline struct swap_cluster_info *lock_cluster(struct swap_info_struct *si,
264 						     unsigned long offset)
265 {
266 	struct swap_cluster_info *ci;
267 
268 	ci = si->cluster_info;
269 	if (ci) {
270 		ci += offset / SWAPFILE_CLUSTER;
271 		spin_lock(&ci->lock);
272 	}
273 	return ci;
274 }
275 
276 static inline void unlock_cluster(struct swap_cluster_info *ci)
277 {
278 	if (ci)
279 		spin_unlock(&ci->lock);
280 }
281 
282 static inline struct swap_cluster_info *lock_cluster_or_swap_info(
283 	struct swap_info_struct *si,
284 	unsigned long offset)
285 {
286 	struct swap_cluster_info *ci;
287 
288 	ci = lock_cluster(si, offset);
289 	if (!ci)
290 		spin_lock(&si->lock);
291 
292 	return ci;
293 }
294 
295 static inline void unlock_cluster_or_swap_info(struct swap_info_struct *si,
296 					       struct swap_cluster_info *ci)
297 {
298 	if (ci)
299 		unlock_cluster(ci);
300 	else
301 		spin_unlock(&si->lock);
302 }
303 
304 static inline bool cluster_list_empty(struct swap_cluster_list *list)
305 {
306 	return cluster_is_null(&list->head);
307 }
308 
309 static inline unsigned int cluster_list_first(struct swap_cluster_list *list)
310 {
311 	return cluster_next(&list->head);
312 }
313 
314 static void cluster_list_init(struct swap_cluster_list *list)
315 {
316 	cluster_set_null(&list->head);
317 	cluster_set_null(&list->tail);
318 }
319 
320 static void cluster_list_add_tail(struct swap_cluster_list *list,
321 				  struct swap_cluster_info *ci,
322 				  unsigned int idx)
323 {
324 	if (cluster_list_empty(list)) {
325 		cluster_set_next_flag(&list->head, idx, 0);
326 		cluster_set_next_flag(&list->tail, idx, 0);
327 	} else {
328 		struct swap_cluster_info *ci_tail;
329 		unsigned int tail = cluster_next(&list->tail);
330 
331 		/*
332 		 * Nested cluster lock, but both cluster locks are
333 		 * only acquired when we held swap_info_struct->lock
334 		 */
335 		ci_tail = ci + tail;
336 		spin_lock_nested(&ci_tail->lock, SINGLE_DEPTH_NESTING);
337 		cluster_set_next(ci_tail, idx);
338 		unlock_cluster(ci_tail);
339 		cluster_set_next_flag(&list->tail, idx, 0);
340 	}
341 }
342 
343 static unsigned int cluster_list_del_first(struct swap_cluster_list *list,
344 					   struct swap_cluster_info *ci)
345 {
346 	unsigned int idx;
347 
348 	idx = cluster_next(&list->head);
349 	if (cluster_next(&list->tail) == idx) {
350 		cluster_set_null(&list->head);
351 		cluster_set_null(&list->tail);
352 	} else
353 		cluster_set_next_flag(&list->head,
354 				      cluster_next(&ci[idx]), 0);
355 
356 	return idx;
357 }
358 
359 /* Add a cluster to discard list and schedule it to do discard */
360 static void swap_cluster_schedule_discard(struct swap_info_struct *si,
361 		unsigned int idx)
362 {
363 	/*
364 	 * If scan_swap_map() can't find a free cluster, it will check
365 	 * si->swap_map directly. To make sure the discarding cluster isn't
366 	 * taken by scan_swap_map(), mark the swap entries bad (occupied). It
367 	 * will be cleared after discard
368 	 */
369 	memset(si->swap_map + idx * SWAPFILE_CLUSTER,
370 			SWAP_MAP_BAD, SWAPFILE_CLUSTER);
371 
372 	cluster_list_add_tail(&si->discard_clusters, si->cluster_info, idx);
373 
374 	schedule_work(&si->discard_work);
375 }
376 
377 /*
378  * Doing discard actually. After a cluster discard is finished, the cluster
379  * will be added to free cluster list. caller should hold si->lock.
380 */
381 static void swap_do_scheduled_discard(struct swap_info_struct *si)
382 {
383 	struct swap_cluster_info *info, *ci;
384 	unsigned int idx;
385 
386 	info = si->cluster_info;
387 
388 	while (!cluster_list_empty(&si->discard_clusters)) {
389 		idx = cluster_list_del_first(&si->discard_clusters, info);
390 		spin_unlock(&si->lock);
391 
392 		discard_swap_cluster(si, idx * SWAPFILE_CLUSTER,
393 				SWAPFILE_CLUSTER);
394 
395 		spin_lock(&si->lock);
396 		ci = lock_cluster(si, idx * SWAPFILE_CLUSTER);
397 		cluster_set_flag(ci, CLUSTER_FLAG_FREE);
398 		unlock_cluster(ci);
399 		cluster_list_add_tail(&si->free_clusters, info, idx);
400 		ci = lock_cluster(si, idx * SWAPFILE_CLUSTER);
401 		memset(si->swap_map + idx * SWAPFILE_CLUSTER,
402 				0, SWAPFILE_CLUSTER);
403 		unlock_cluster(ci);
404 	}
405 }
406 
407 static void swap_discard_work(struct work_struct *work)
408 {
409 	struct swap_info_struct *si;
410 
411 	si = container_of(work, struct swap_info_struct, discard_work);
412 
413 	spin_lock(&si->lock);
414 	swap_do_scheduled_discard(si);
415 	spin_unlock(&si->lock);
416 }
417 
418 /*
419  * The cluster corresponding to page_nr will be used. The cluster will be
420  * removed from free cluster list and its usage counter will be increased.
421  */
422 static void inc_cluster_info_page(struct swap_info_struct *p,
423 	struct swap_cluster_info *cluster_info, unsigned long page_nr)
424 {
425 	unsigned long idx = page_nr / SWAPFILE_CLUSTER;
426 
427 	if (!cluster_info)
428 		return;
429 	if (cluster_is_free(&cluster_info[idx])) {
430 		VM_BUG_ON(cluster_list_first(&p->free_clusters) != idx);
431 		cluster_list_del_first(&p->free_clusters, cluster_info);
432 		cluster_set_count_flag(&cluster_info[idx], 0, 0);
433 	}
434 
435 	VM_BUG_ON(cluster_count(&cluster_info[idx]) >= SWAPFILE_CLUSTER);
436 	cluster_set_count(&cluster_info[idx],
437 		cluster_count(&cluster_info[idx]) + 1);
438 }
439 
440 /*
441  * The cluster corresponding to page_nr decreases one usage. If the usage
442  * counter becomes 0, which means no page in the cluster is in using, we can
443  * optionally discard the cluster and add it to free cluster list.
444  */
445 static void dec_cluster_info_page(struct swap_info_struct *p,
446 	struct swap_cluster_info *cluster_info, unsigned long page_nr)
447 {
448 	unsigned long idx = page_nr / SWAPFILE_CLUSTER;
449 
450 	if (!cluster_info)
451 		return;
452 
453 	VM_BUG_ON(cluster_count(&cluster_info[idx]) == 0);
454 	cluster_set_count(&cluster_info[idx],
455 		cluster_count(&cluster_info[idx]) - 1);
456 
457 	if (cluster_count(&cluster_info[idx]) == 0) {
458 		/*
459 		 * If the swap is discardable, prepare discard the cluster
460 		 * instead of free it immediately. The cluster will be freed
461 		 * after discard.
462 		 */
463 		if ((p->flags & (SWP_WRITEOK | SWP_PAGE_DISCARD)) ==
464 				 (SWP_WRITEOK | SWP_PAGE_DISCARD)) {
465 			swap_cluster_schedule_discard(p, idx);
466 			return;
467 		}
468 
469 		cluster_set_flag(&cluster_info[idx], CLUSTER_FLAG_FREE);
470 		cluster_list_add_tail(&p->free_clusters, cluster_info, idx);
471 	}
472 }
473 
474 /*
475  * It's possible scan_swap_map() uses a free cluster in the middle of free
476  * cluster list. Avoiding such abuse to avoid list corruption.
477  */
478 static bool
479 scan_swap_map_ssd_cluster_conflict(struct swap_info_struct *si,
480 	unsigned long offset)
481 {
482 	struct percpu_cluster *percpu_cluster;
483 	bool conflict;
484 
485 	offset /= SWAPFILE_CLUSTER;
486 	conflict = !cluster_list_empty(&si->free_clusters) &&
487 		offset != cluster_list_first(&si->free_clusters) &&
488 		cluster_is_free(&si->cluster_info[offset]);
489 
490 	if (!conflict)
491 		return false;
492 
493 	percpu_cluster = this_cpu_ptr(si->percpu_cluster);
494 	cluster_set_null(&percpu_cluster->index);
495 	return true;
496 }
497 
498 /*
499  * Try to get a swap entry from current cpu's swap entry pool (a cluster). This
500  * might involve allocating a new cluster for current CPU too.
501  */
502 static bool scan_swap_map_try_ssd_cluster(struct swap_info_struct *si,
503 	unsigned long *offset, unsigned long *scan_base)
504 {
505 	struct percpu_cluster *cluster;
506 	struct swap_cluster_info *ci;
507 	bool found_free;
508 	unsigned long tmp, max;
509 
510 new_cluster:
511 	cluster = this_cpu_ptr(si->percpu_cluster);
512 	if (cluster_is_null(&cluster->index)) {
513 		if (!cluster_list_empty(&si->free_clusters)) {
514 			cluster->index = si->free_clusters.head;
515 			cluster->next = cluster_next(&cluster->index) *
516 					SWAPFILE_CLUSTER;
517 		} else if (!cluster_list_empty(&si->discard_clusters)) {
518 			/*
519 			 * we don't have free cluster but have some clusters in
520 			 * discarding, do discard now and reclaim them
521 			 */
522 			swap_do_scheduled_discard(si);
523 			*scan_base = *offset = si->cluster_next;
524 			goto new_cluster;
525 		} else
526 			return false;
527 	}
528 
529 	found_free = false;
530 
531 	/*
532 	 * Other CPUs can use our cluster if they can't find a free cluster,
533 	 * check if there is still free entry in the cluster
534 	 */
535 	tmp = cluster->next;
536 	max = min_t(unsigned long, si->max,
537 		    (cluster_next(&cluster->index) + 1) * SWAPFILE_CLUSTER);
538 	if (tmp >= max) {
539 		cluster_set_null(&cluster->index);
540 		goto new_cluster;
541 	}
542 	ci = lock_cluster(si, tmp);
543 	while (tmp < max) {
544 		if (!si->swap_map[tmp]) {
545 			found_free = true;
546 			break;
547 		}
548 		tmp++;
549 	}
550 	unlock_cluster(ci);
551 	if (!found_free) {
552 		cluster_set_null(&cluster->index);
553 		goto new_cluster;
554 	}
555 	cluster->next = tmp + 1;
556 	*offset = tmp;
557 	*scan_base = tmp;
558 	return found_free;
559 }
560 
561 static int scan_swap_map_slots(struct swap_info_struct *si,
562 			       unsigned char usage, int nr,
563 			       swp_entry_t slots[])
564 {
565 	struct swap_cluster_info *ci;
566 	unsigned long offset;
567 	unsigned long scan_base;
568 	unsigned long last_in_cluster = 0;
569 	int latency_ration = LATENCY_LIMIT;
570 	int n_ret = 0;
571 
572 	if (nr > SWAP_BATCH)
573 		nr = SWAP_BATCH;
574 
575 	/*
576 	 * We try to cluster swap pages by allocating them sequentially
577 	 * in swap.  Once we've allocated SWAPFILE_CLUSTER pages this
578 	 * way, however, we resort to first-free allocation, starting
579 	 * a new cluster.  This prevents us from scattering swap pages
580 	 * all over the entire swap partition, so that we reduce
581 	 * overall disk seek times between swap pages.  -- sct
582 	 * But we do now try to find an empty cluster.  -Andrea
583 	 * And we let swap pages go all over an SSD partition.  Hugh
584 	 */
585 
586 	si->flags += SWP_SCANNING;
587 	scan_base = offset = si->cluster_next;
588 
589 	/* SSD algorithm */
590 	if (si->cluster_info) {
591 		if (scan_swap_map_try_ssd_cluster(si, &offset, &scan_base))
592 			goto checks;
593 		else
594 			goto scan;
595 	}
596 
597 	if (unlikely(!si->cluster_nr--)) {
598 		if (si->pages - si->inuse_pages < SWAPFILE_CLUSTER) {
599 			si->cluster_nr = SWAPFILE_CLUSTER - 1;
600 			goto checks;
601 		}
602 
603 		spin_unlock(&si->lock);
604 
605 		/*
606 		 * If seek is expensive, start searching for new cluster from
607 		 * start of partition, to minimize the span of allocated swap.
608 		 * If seek is cheap, that is the SWP_SOLIDSTATE si->cluster_info
609 		 * case, just handled by scan_swap_map_try_ssd_cluster() above.
610 		 */
611 		scan_base = offset = si->lowest_bit;
612 		last_in_cluster = offset + SWAPFILE_CLUSTER - 1;
613 
614 		/* Locate the first empty (unaligned) cluster */
615 		for (; last_in_cluster <= si->highest_bit; offset++) {
616 			if (si->swap_map[offset])
617 				last_in_cluster = offset + SWAPFILE_CLUSTER;
618 			else if (offset == last_in_cluster) {
619 				spin_lock(&si->lock);
620 				offset -= SWAPFILE_CLUSTER - 1;
621 				si->cluster_next = offset;
622 				si->cluster_nr = SWAPFILE_CLUSTER - 1;
623 				goto checks;
624 			}
625 			if (unlikely(--latency_ration < 0)) {
626 				cond_resched();
627 				latency_ration = LATENCY_LIMIT;
628 			}
629 		}
630 
631 		offset = scan_base;
632 		spin_lock(&si->lock);
633 		si->cluster_nr = SWAPFILE_CLUSTER - 1;
634 	}
635 
636 checks:
637 	if (si->cluster_info) {
638 		while (scan_swap_map_ssd_cluster_conflict(si, offset)) {
639 		/* take a break if we already got some slots */
640 			if (n_ret)
641 				goto done;
642 			if (!scan_swap_map_try_ssd_cluster(si, &offset,
643 							&scan_base))
644 				goto scan;
645 		}
646 	}
647 	if (!(si->flags & SWP_WRITEOK))
648 		goto no_page;
649 	if (!si->highest_bit)
650 		goto no_page;
651 	if (offset > si->highest_bit)
652 		scan_base = offset = si->lowest_bit;
653 
654 	ci = lock_cluster(si, offset);
655 	/* reuse swap entry of cache-only swap if not busy. */
656 	if (vm_swap_full() && si->swap_map[offset] == SWAP_HAS_CACHE) {
657 		int swap_was_freed;
658 		unlock_cluster(ci);
659 		spin_unlock(&si->lock);
660 		swap_was_freed = __try_to_reclaim_swap(si, offset);
661 		spin_lock(&si->lock);
662 		/* entry was freed successfully, try to use this again */
663 		if (swap_was_freed)
664 			goto checks;
665 		goto scan; /* check next one */
666 	}
667 
668 	if (si->swap_map[offset]) {
669 		unlock_cluster(ci);
670 		if (!n_ret)
671 			goto scan;
672 		else
673 			goto done;
674 	}
675 
676 	if (offset == si->lowest_bit)
677 		si->lowest_bit++;
678 	if (offset == si->highest_bit)
679 		si->highest_bit--;
680 	si->inuse_pages++;
681 	if (si->inuse_pages == si->pages) {
682 		si->lowest_bit = si->max;
683 		si->highest_bit = 0;
684 		spin_lock(&swap_avail_lock);
685 		plist_del(&si->avail_list, &swap_avail_head);
686 		spin_unlock(&swap_avail_lock);
687 	}
688 	si->swap_map[offset] = usage;
689 	inc_cluster_info_page(si, si->cluster_info, offset);
690 	unlock_cluster(ci);
691 	si->cluster_next = offset + 1;
692 	slots[n_ret++] = swp_entry(si->type, offset);
693 
694 	/* got enough slots or reach max slots? */
695 	if ((n_ret == nr) || (offset >= si->highest_bit))
696 		goto done;
697 
698 	/* search for next available slot */
699 
700 	/* time to take a break? */
701 	if (unlikely(--latency_ration < 0)) {
702 		if (n_ret)
703 			goto done;
704 		spin_unlock(&si->lock);
705 		cond_resched();
706 		spin_lock(&si->lock);
707 		latency_ration = LATENCY_LIMIT;
708 	}
709 
710 	/* try to get more slots in cluster */
711 	if (si->cluster_info) {
712 		if (scan_swap_map_try_ssd_cluster(si, &offset, &scan_base))
713 			goto checks;
714 		else
715 			goto done;
716 	}
717 	/* non-ssd case */
718 	++offset;
719 
720 	/* non-ssd case, still more slots in cluster? */
721 	if (si->cluster_nr && !si->swap_map[offset]) {
722 		--si->cluster_nr;
723 		goto checks;
724 	}
725 
726 done:
727 	si->flags -= SWP_SCANNING;
728 	return n_ret;
729 
730 scan:
731 	spin_unlock(&si->lock);
732 	while (++offset <= si->highest_bit) {
733 		if (!si->swap_map[offset]) {
734 			spin_lock(&si->lock);
735 			goto checks;
736 		}
737 		if (vm_swap_full() && si->swap_map[offset] == SWAP_HAS_CACHE) {
738 			spin_lock(&si->lock);
739 			goto checks;
740 		}
741 		if (unlikely(--latency_ration < 0)) {
742 			cond_resched();
743 			latency_ration = LATENCY_LIMIT;
744 		}
745 	}
746 	offset = si->lowest_bit;
747 	while (offset < scan_base) {
748 		if (!si->swap_map[offset]) {
749 			spin_lock(&si->lock);
750 			goto checks;
751 		}
752 		if (vm_swap_full() && si->swap_map[offset] == SWAP_HAS_CACHE) {
753 			spin_lock(&si->lock);
754 			goto checks;
755 		}
756 		if (unlikely(--latency_ration < 0)) {
757 			cond_resched();
758 			latency_ration = LATENCY_LIMIT;
759 		}
760 		offset++;
761 	}
762 	spin_lock(&si->lock);
763 
764 no_page:
765 	si->flags -= SWP_SCANNING;
766 	return n_ret;
767 }
768 
769 static unsigned long scan_swap_map(struct swap_info_struct *si,
770 				   unsigned char usage)
771 {
772 	swp_entry_t entry;
773 	int n_ret;
774 
775 	n_ret = scan_swap_map_slots(si, usage, 1, &entry);
776 
777 	if (n_ret)
778 		return swp_offset(entry);
779 	else
780 		return 0;
781 
782 }
783 
784 int get_swap_pages(int n_goal, swp_entry_t swp_entries[])
785 {
786 	struct swap_info_struct *si, *next;
787 	long avail_pgs;
788 	int n_ret = 0;
789 
790 	avail_pgs = atomic_long_read(&nr_swap_pages);
791 	if (avail_pgs <= 0)
792 		goto noswap;
793 
794 	if (n_goal > SWAP_BATCH)
795 		n_goal = SWAP_BATCH;
796 
797 	if (n_goal > avail_pgs)
798 		n_goal = avail_pgs;
799 
800 	atomic_long_sub(n_goal, &nr_swap_pages);
801 
802 	spin_lock(&swap_avail_lock);
803 
804 start_over:
805 	plist_for_each_entry_safe(si, next, &swap_avail_head, avail_list) {
806 		/* requeue si to after same-priority siblings */
807 		plist_requeue(&si->avail_list, &swap_avail_head);
808 		spin_unlock(&swap_avail_lock);
809 		spin_lock(&si->lock);
810 		if (!si->highest_bit || !(si->flags & SWP_WRITEOK)) {
811 			spin_lock(&swap_avail_lock);
812 			if (plist_node_empty(&si->avail_list)) {
813 				spin_unlock(&si->lock);
814 				goto nextsi;
815 			}
816 			WARN(!si->highest_bit,
817 			     "swap_info %d in list but !highest_bit\n",
818 			     si->type);
819 			WARN(!(si->flags & SWP_WRITEOK),
820 			     "swap_info %d in list but !SWP_WRITEOK\n",
821 			     si->type);
822 			plist_del(&si->avail_list, &swap_avail_head);
823 			spin_unlock(&si->lock);
824 			goto nextsi;
825 		}
826 		n_ret = scan_swap_map_slots(si, SWAP_HAS_CACHE,
827 					    n_goal, swp_entries);
828 		spin_unlock(&si->lock);
829 		if (n_ret)
830 			goto check_out;
831 		pr_debug("scan_swap_map of si %d failed to find offset\n",
832 			si->type);
833 
834 		spin_lock(&swap_avail_lock);
835 nextsi:
836 		/*
837 		 * if we got here, it's likely that si was almost full before,
838 		 * and since scan_swap_map() can drop the si->lock, multiple
839 		 * callers probably all tried to get a page from the same si
840 		 * and it filled up before we could get one; or, the si filled
841 		 * up between us dropping swap_avail_lock and taking si->lock.
842 		 * Since we dropped the swap_avail_lock, the swap_avail_head
843 		 * list may have been modified; so if next is still in the
844 		 * swap_avail_head list then try it, otherwise start over
845 		 * if we have not gotten any slots.
846 		 */
847 		if (plist_node_empty(&next->avail_list))
848 			goto start_over;
849 	}
850 
851 	spin_unlock(&swap_avail_lock);
852 
853 check_out:
854 	if (n_ret < n_goal)
855 		atomic_long_add((long) (n_goal-n_ret), &nr_swap_pages);
856 noswap:
857 	return n_ret;
858 }
859 
860 /* The only caller of this function is now suspend routine */
861 swp_entry_t get_swap_page_of_type(int type)
862 {
863 	struct swap_info_struct *si;
864 	pgoff_t offset;
865 
866 	si = swap_info[type];
867 	spin_lock(&si->lock);
868 	if (si && (si->flags & SWP_WRITEOK)) {
869 		atomic_long_dec(&nr_swap_pages);
870 		/* This is called for allocating swap entry, not cache */
871 		offset = scan_swap_map(si, 1);
872 		if (offset) {
873 			spin_unlock(&si->lock);
874 			return swp_entry(type, offset);
875 		}
876 		atomic_long_inc(&nr_swap_pages);
877 	}
878 	spin_unlock(&si->lock);
879 	return (swp_entry_t) {0};
880 }
881 
882 static struct swap_info_struct *__swap_info_get(swp_entry_t entry)
883 {
884 	struct swap_info_struct *p;
885 	unsigned long offset, type;
886 
887 	if (!entry.val)
888 		goto out;
889 	type = swp_type(entry);
890 	if (type >= nr_swapfiles)
891 		goto bad_nofile;
892 	p = swap_info[type];
893 	if (!(p->flags & SWP_USED))
894 		goto bad_device;
895 	offset = swp_offset(entry);
896 	if (offset >= p->max)
897 		goto bad_offset;
898 	return p;
899 
900 bad_offset:
901 	pr_err("swap_info_get: %s%08lx\n", Bad_offset, entry.val);
902 	goto out;
903 bad_device:
904 	pr_err("swap_info_get: %s%08lx\n", Unused_file, entry.val);
905 	goto out;
906 bad_nofile:
907 	pr_err("swap_info_get: %s%08lx\n", Bad_file, entry.val);
908 out:
909 	return NULL;
910 }
911 
912 static struct swap_info_struct *_swap_info_get(swp_entry_t entry)
913 {
914 	struct swap_info_struct *p;
915 
916 	p = __swap_info_get(entry);
917 	if (!p)
918 		goto out;
919 	if (!p->swap_map[swp_offset(entry)])
920 		goto bad_free;
921 	return p;
922 
923 bad_free:
924 	pr_err("swap_info_get: %s%08lx\n", Unused_offset, entry.val);
925 	goto out;
926 out:
927 	return NULL;
928 }
929 
930 static struct swap_info_struct *swap_info_get(swp_entry_t entry)
931 {
932 	struct swap_info_struct *p;
933 
934 	p = _swap_info_get(entry);
935 	if (p)
936 		spin_lock(&p->lock);
937 	return p;
938 }
939 
940 static struct swap_info_struct *swap_info_get_cont(swp_entry_t entry,
941 					struct swap_info_struct *q)
942 {
943 	struct swap_info_struct *p;
944 
945 	p = _swap_info_get(entry);
946 
947 	if (p != q) {
948 		if (q != NULL)
949 			spin_unlock(&q->lock);
950 		if (p != NULL)
951 			spin_lock(&p->lock);
952 	}
953 	return p;
954 }
955 
956 static unsigned char __swap_entry_free(struct swap_info_struct *p,
957 				       swp_entry_t entry, unsigned char usage)
958 {
959 	struct swap_cluster_info *ci;
960 	unsigned long offset = swp_offset(entry);
961 	unsigned char count;
962 	unsigned char has_cache;
963 
964 	ci = lock_cluster_or_swap_info(p, offset);
965 
966 	count = p->swap_map[offset];
967 
968 	has_cache = count & SWAP_HAS_CACHE;
969 	count &= ~SWAP_HAS_CACHE;
970 
971 	if (usage == SWAP_HAS_CACHE) {
972 		VM_BUG_ON(!has_cache);
973 		has_cache = 0;
974 	} else if (count == SWAP_MAP_SHMEM) {
975 		/*
976 		 * Or we could insist on shmem.c using a special
977 		 * swap_shmem_free() and free_shmem_swap_and_cache()...
978 		 */
979 		count = 0;
980 	} else if ((count & ~COUNT_CONTINUED) <= SWAP_MAP_MAX) {
981 		if (count == COUNT_CONTINUED) {
982 			if (swap_count_continued(p, offset, count))
983 				count = SWAP_MAP_MAX | COUNT_CONTINUED;
984 			else
985 				count = SWAP_MAP_MAX;
986 		} else
987 			count--;
988 	}
989 
990 	usage = count | has_cache;
991 	p->swap_map[offset] = usage ? : SWAP_HAS_CACHE;
992 
993 	unlock_cluster_or_swap_info(p, ci);
994 
995 	return usage;
996 }
997 
998 static void swap_entry_free(struct swap_info_struct *p, swp_entry_t entry)
999 {
1000 	struct swap_cluster_info *ci;
1001 	unsigned long offset = swp_offset(entry);
1002 	unsigned char count;
1003 
1004 	ci = lock_cluster(p, offset);
1005 	count = p->swap_map[offset];
1006 	VM_BUG_ON(count != SWAP_HAS_CACHE);
1007 	p->swap_map[offset] = 0;
1008 	dec_cluster_info_page(p, p->cluster_info, offset);
1009 	unlock_cluster(ci);
1010 
1011 	mem_cgroup_uncharge_swap(entry);
1012 	if (offset < p->lowest_bit)
1013 		p->lowest_bit = offset;
1014 	if (offset > p->highest_bit) {
1015 		bool was_full = !p->highest_bit;
1016 
1017 		p->highest_bit = offset;
1018 		if (was_full && (p->flags & SWP_WRITEOK)) {
1019 			spin_lock(&swap_avail_lock);
1020 			WARN_ON(!plist_node_empty(&p->avail_list));
1021 			if (plist_node_empty(&p->avail_list))
1022 				plist_add(&p->avail_list,
1023 					  &swap_avail_head);
1024 			spin_unlock(&swap_avail_lock);
1025 		}
1026 	}
1027 	atomic_long_inc(&nr_swap_pages);
1028 	p->inuse_pages--;
1029 	frontswap_invalidate_page(p->type, offset);
1030 	if (p->flags & SWP_BLKDEV) {
1031 		struct gendisk *disk = p->bdev->bd_disk;
1032 
1033 		if (disk->fops->swap_slot_free_notify)
1034 			disk->fops->swap_slot_free_notify(p->bdev,
1035 							  offset);
1036 	}
1037 }
1038 
1039 /*
1040  * Caller has made sure that the swap device corresponding to entry
1041  * is still around or has not been recycled.
1042  */
1043 void swap_free(swp_entry_t entry)
1044 {
1045 	struct swap_info_struct *p;
1046 
1047 	p = _swap_info_get(entry);
1048 	if (p) {
1049 		if (!__swap_entry_free(p, entry, 1))
1050 			free_swap_slot(entry);
1051 	}
1052 }
1053 
1054 /*
1055  * Called after dropping swapcache to decrease refcnt to swap entries.
1056  */
1057 void swapcache_free(swp_entry_t entry)
1058 {
1059 	struct swap_info_struct *p;
1060 
1061 	p = _swap_info_get(entry);
1062 	if (p) {
1063 		if (!__swap_entry_free(p, entry, SWAP_HAS_CACHE))
1064 			free_swap_slot(entry);
1065 	}
1066 }
1067 
1068 void swapcache_free_entries(swp_entry_t *entries, int n)
1069 {
1070 	struct swap_info_struct *p, *prev;
1071 	int i;
1072 
1073 	if (n <= 0)
1074 		return;
1075 
1076 	prev = NULL;
1077 	p = NULL;
1078 	for (i = 0; i < n; ++i) {
1079 		p = swap_info_get_cont(entries[i], prev);
1080 		if (p)
1081 			swap_entry_free(p, entries[i]);
1082 		else
1083 			break;
1084 		prev = p;
1085 	}
1086 	if (p)
1087 		spin_unlock(&p->lock);
1088 }
1089 
1090 /*
1091  * How many references to page are currently swapped out?
1092  * This does not give an exact answer when swap count is continued,
1093  * but does include the high COUNT_CONTINUED flag to allow for that.
1094  */
1095 int page_swapcount(struct page *page)
1096 {
1097 	int count = 0;
1098 	struct swap_info_struct *p;
1099 	struct swap_cluster_info *ci;
1100 	swp_entry_t entry;
1101 	unsigned long offset;
1102 
1103 	entry.val = page_private(page);
1104 	p = _swap_info_get(entry);
1105 	if (p) {
1106 		offset = swp_offset(entry);
1107 		ci = lock_cluster_or_swap_info(p, offset);
1108 		count = swap_count(p->swap_map[offset]);
1109 		unlock_cluster_or_swap_info(p, ci);
1110 	}
1111 	return count;
1112 }
1113 
1114 /*
1115  * How many references to @entry are currently swapped out?
1116  * This does not give an exact answer when swap count is continued,
1117  * but does include the high COUNT_CONTINUED flag to allow for that.
1118  */
1119 int __swp_swapcount(swp_entry_t entry)
1120 {
1121 	int count = 0;
1122 	pgoff_t offset;
1123 	struct swap_info_struct *si;
1124 	struct swap_cluster_info *ci;
1125 
1126 	si = __swap_info_get(entry);
1127 	if (si) {
1128 		offset = swp_offset(entry);
1129 		ci = lock_cluster_or_swap_info(si, offset);
1130 		count = swap_count(si->swap_map[offset]);
1131 		unlock_cluster_or_swap_info(si, ci);
1132 	}
1133 	return count;
1134 }
1135 
1136 /*
1137  * How many references to @entry are currently swapped out?
1138  * This considers COUNT_CONTINUED so it returns exact answer.
1139  */
1140 int swp_swapcount(swp_entry_t entry)
1141 {
1142 	int count, tmp_count, n;
1143 	struct swap_info_struct *p;
1144 	struct swap_cluster_info *ci;
1145 	struct page *page;
1146 	pgoff_t offset;
1147 	unsigned char *map;
1148 
1149 	p = _swap_info_get(entry);
1150 	if (!p)
1151 		return 0;
1152 
1153 	offset = swp_offset(entry);
1154 
1155 	ci = lock_cluster_or_swap_info(p, offset);
1156 
1157 	count = swap_count(p->swap_map[offset]);
1158 	if (!(count & COUNT_CONTINUED))
1159 		goto out;
1160 
1161 	count &= ~COUNT_CONTINUED;
1162 	n = SWAP_MAP_MAX + 1;
1163 
1164 	page = vmalloc_to_page(p->swap_map + offset);
1165 	offset &= ~PAGE_MASK;
1166 	VM_BUG_ON(page_private(page) != SWP_CONTINUED);
1167 
1168 	do {
1169 		page = list_next_entry(page, lru);
1170 		map = kmap_atomic(page);
1171 		tmp_count = map[offset];
1172 		kunmap_atomic(map);
1173 
1174 		count += (tmp_count & ~COUNT_CONTINUED) * n;
1175 		n *= (SWAP_CONT_MAX + 1);
1176 	} while (tmp_count & COUNT_CONTINUED);
1177 out:
1178 	unlock_cluster_or_swap_info(p, ci);
1179 	return count;
1180 }
1181 
1182 /*
1183  * We can write to an anon page without COW if there are no other references
1184  * to it.  And as a side-effect, free up its swap: because the old content
1185  * on disk will never be read, and seeking back there to write new content
1186  * later would only waste time away from clustering.
1187  *
1188  * NOTE: total_mapcount should not be relied upon by the caller if
1189  * reuse_swap_page() returns false, but it may be always overwritten
1190  * (see the other implementation for CONFIG_SWAP=n).
1191  */
1192 bool reuse_swap_page(struct page *page, int *total_mapcount)
1193 {
1194 	int count;
1195 
1196 	VM_BUG_ON_PAGE(!PageLocked(page), page);
1197 	if (unlikely(PageKsm(page)))
1198 		return false;
1199 	count = page_trans_huge_mapcount(page, total_mapcount);
1200 	if (count <= 1 && PageSwapCache(page)) {
1201 		count += page_swapcount(page);
1202 		if (count != 1)
1203 			goto out;
1204 		if (!PageWriteback(page)) {
1205 			delete_from_swap_cache(page);
1206 			SetPageDirty(page);
1207 		} else {
1208 			swp_entry_t entry;
1209 			struct swap_info_struct *p;
1210 
1211 			entry.val = page_private(page);
1212 			p = swap_info_get(entry);
1213 			if (p->flags & SWP_STABLE_WRITES) {
1214 				spin_unlock(&p->lock);
1215 				return false;
1216 			}
1217 			spin_unlock(&p->lock);
1218 		}
1219 	}
1220 out:
1221 	return count <= 1;
1222 }
1223 
1224 /*
1225  * If swap is getting full, or if there are no more mappings of this page,
1226  * then try_to_free_swap is called to free its swap space.
1227  */
1228 int try_to_free_swap(struct page *page)
1229 {
1230 	VM_BUG_ON_PAGE(!PageLocked(page), page);
1231 
1232 	if (!PageSwapCache(page))
1233 		return 0;
1234 	if (PageWriteback(page))
1235 		return 0;
1236 	if (page_swapcount(page))
1237 		return 0;
1238 
1239 	/*
1240 	 * Once hibernation has begun to create its image of memory,
1241 	 * there's a danger that one of the calls to try_to_free_swap()
1242 	 * - most probably a call from __try_to_reclaim_swap() while
1243 	 * hibernation is allocating its own swap pages for the image,
1244 	 * but conceivably even a call from memory reclaim - will free
1245 	 * the swap from a page which has already been recorded in the
1246 	 * image as a clean swapcache page, and then reuse its swap for
1247 	 * another page of the image.  On waking from hibernation, the
1248 	 * original page might be freed under memory pressure, then
1249 	 * later read back in from swap, now with the wrong data.
1250 	 *
1251 	 * Hibernation suspends storage while it is writing the image
1252 	 * to disk so check that here.
1253 	 */
1254 	if (pm_suspended_storage())
1255 		return 0;
1256 
1257 	delete_from_swap_cache(page);
1258 	SetPageDirty(page);
1259 	return 1;
1260 }
1261 
1262 /*
1263  * Free the swap entry like above, but also try to
1264  * free the page cache entry if it is the last user.
1265  */
1266 int free_swap_and_cache(swp_entry_t entry)
1267 {
1268 	struct swap_info_struct *p;
1269 	struct page *page = NULL;
1270 	unsigned char count;
1271 
1272 	if (non_swap_entry(entry))
1273 		return 1;
1274 
1275 	p = _swap_info_get(entry);
1276 	if (p) {
1277 		count = __swap_entry_free(p, entry, 1);
1278 		if (count == SWAP_HAS_CACHE) {
1279 			page = find_get_page(swap_address_space(entry),
1280 					     swp_offset(entry));
1281 			if (page && !trylock_page(page)) {
1282 				put_page(page);
1283 				page = NULL;
1284 			}
1285 		} else if (!count)
1286 			free_swap_slot(entry);
1287 	}
1288 	if (page) {
1289 		/*
1290 		 * Not mapped elsewhere, or swap space full? Free it!
1291 		 * Also recheck PageSwapCache now page is locked (above).
1292 		 */
1293 		if (PageSwapCache(page) && !PageWriteback(page) &&
1294 		    (!page_mapped(page) || mem_cgroup_swap_full(page))) {
1295 			delete_from_swap_cache(page);
1296 			SetPageDirty(page);
1297 		}
1298 		unlock_page(page);
1299 		put_page(page);
1300 	}
1301 	return p != NULL;
1302 }
1303 
1304 #ifdef CONFIG_HIBERNATION
1305 /*
1306  * Find the swap type that corresponds to given device (if any).
1307  *
1308  * @offset - number of the PAGE_SIZE-sized block of the device, starting
1309  * from 0, in which the swap header is expected to be located.
1310  *
1311  * This is needed for the suspend to disk (aka swsusp).
1312  */
1313 int swap_type_of(dev_t device, sector_t offset, struct block_device **bdev_p)
1314 {
1315 	struct block_device *bdev = NULL;
1316 	int type;
1317 
1318 	if (device)
1319 		bdev = bdget(device);
1320 
1321 	spin_lock(&swap_lock);
1322 	for (type = 0; type < nr_swapfiles; type++) {
1323 		struct swap_info_struct *sis = swap_info[type];
1324 
1325 		if (!(sis->flags & SWP_WRITEOK))
1326 			continue;
1327 
1328 		if (!bdev) {
1329 			if (bdev_p)
1330 				*bdev_p = bdgrab(sis->bdev);
1331 
1332 			spin_unlock(&swap_lock);
1333 			return type;
1334 		}
1335 		if (bdev == sis->bdev) {
1336 			struct swap_extent *se = &sis->first_swap_extent;
1337 
1338 			if (se->start_block == offset) {
1339 				if (bdev_p)
1340 					*bdev_p = bdgrab(sis->bdev);
1341 
1342 				spin_unlock(&swap_lock);
1343 				bdput(bdev);
1344 				return type;
1345 			}
1346 		}
1347 	}
1348 	spin_unlock(&swap_lock);
1349 	if (bdev)
1350 		bdput(bdev);
1351 
1352 	return -ENODEV;
1353 }
1354 
1355 /*
1356  * Get the (PAGE_SIZE) block corresponding to given offset on the swapdev
1357  * corresponding to given index in swap_info (swap type).
1358  */
1359 sector_t swapdev_block(int type, pgoff_t offset)
1360 {
1361 	struct block_device *bdev;
1362 
1363 	if ((unsigned int)type >= nr_swapfiles)
1364 		return 0;
1365 	if (!(swap_info[type]->flags & SWP_WRITEOK))
1366 		return 0;
1367 	return map_swap_entry(swp_entry(type, offset), &bdev);
1368 }
1369 
1370 /*
1371  * Return either the total number of swap pages of given type, or the number
1372  * of free pages of that type (depending on @free)
1373  *
1374  * This is needed for software suspend
1375  */
1376 unsigned int count_swap_pages(int type, int free)
1377 {
1378 	unsigned int n = 0;
1379 
1380 	spin_lock(&swap_lock);
1381 	if ((unsigned int)type < nr_swapfiles) {
1382 		struct swap_info_struct *sis = swap_info[type];
1383 
1384 		spin_lock(&sis->lock);
1385 		if (sis->flags & SWP_WRITEOK) {
1386 			n = sis->pages;
1387 			if (free)
1388 				n -= sis->inuse_pages;
1389 		}
1390 		spin_unlock(&sis->lock);
1391 	}
1392 	spin_unlock(&swap_lock);
1393 	return n;
1394 }
1395 #endif /* CONFIG_HIBERNATION */
1396 
1397 static inline int pte_same_as_swp(pte_t pte, pte_t swp_pte)
1398 {
1399 	return pte_same(pte_swp_clear_soft_dirty(pte), swp_pte);
1400 }
1401 
1402 /*
1403  * No need to decide whether this PTE shares the swap entry with others,
1404  * just let do_wp_page work it out if a write is requested later - to
1405  * force COW, vm_page_prot omits write permission from any private vma.
1406  */
1407 static int unuse_pte(struct vm_area_struct *vma, pmd_t *pmd,
1408 		unsigned long addr, swp_entry_t entry, struct page *page)
1409 {
1410 	struct page *swapcache;
1411 	struct mem_cgroup *memcg;
1412 	spinlock_t *ptl;
1413 	pte_t *pte;
1414 	int ret = 1;
1415 
1416 	swapcache = page;
1417 	page = ksm_might_need_to_copy(page, vma, addr);
1418 	if (unlikely(!page))
1419 		return -ENOMEM;
1420 
1421 	if (mem_cgroup_try_charge(page, vma->vm_mm, GFP_KERNEL,
1422 				&memcg, false)) {
1423 		ret = -ENOMEM;
1424 		goto out_nolock;
1425 	}
1426 
1427 	pte = pte_offset_map_lock(vma->vm_mm, pmd, addr, &ptl);
1428 	if (unlikely(!pte_same_as_swp(*pte, swp_entry_to_pte(entry)))) {
1429 		mem_cgroup_cancel_charge(page, memcg, false);
1430 		ret = 0;
1431 		goto out;
1432 	}
1433 
1434 	dec_mm_counter(vma->vm_mm, MM_SWAPENTS);
1435 	inc_mm_counter(vma->vm_mm, MM_ANONPAGES);
1436 	get_page(page);
1437 	set_pte_at(vma->vm_mm, addr, pte,
1438 		   pte_mkold(mk_pte(page, vma->vm_page_prot)));
1439 	if (page == swapcache) {
1440 		page_add_anon_rmap(page, vma, addr, false);
1441 		mem_cgroup_commit_charge(page, memcg, true, false);
1442 	} else { /* ksm created a completely new copy */
1443 		page_add_new_anon_rmap(page, vma, addr, false);
1444 		mem_cgroup_commit_charge(page, memcg, false, false);
1445 		lru_cache_add_active_or_unevictable(page, vma);
1446 	}
1447 	swap_free(entry);
1448 	/*
1449 	 * Move the page to the active list so it is not
1450 	 * immediately swapped out again after swapon.
1451 	 */
1452 	activate_page(page);
1453 out:
1454 	pte_unmap_unlock(pte, ptl);
1455 out_nolock:
1456 	if (page != swapcache) {
1457 		unlock_page(page);
1458 		put_page(page);
1459 	}
1460 	return ret;
1461 }
1462 
1463 static int unuse_pte_range(struct vm_area_struct *vma, pmd_t *pmd,
1464 				unsigned long addr, unsigned long end,
1465 				swp_entry_t entry, struct page *page)
1466 {
1467 	pte_t swp_pte = swp_entry_to_pte(entry);
1468 	pte_t *pte;
1469 	int ret = 0;
1470 
1471 	/*
1472 	 * We don't actually need pte lock while scanning for swp_pte: since
1473 	 * we hold page lock and mmap_sem, swp_pte cannot be inserted into the
1474 	 * page table while we're scanning; though it could get zapped, and on
1475 	 * some architectures (e.g. x86_32 with PAE) we might catch a glimpse
1476 	 * of unmatched parts which look like swp_pte, so unuse_pte must
1477 	 * recheck under pte lock.  Scanning without pte lock lets it be
1478 	 * preemptable whenever CONFIG_PREEMPT but not CONFIG_HIGHPTE.
1479 	 */
1480 	pte = pte_offset_map(pmd, addr);
1481 	do {
1482 		/*
1483 		 * swapoff spends a _lot_ of time in this loop!
1484 		 * Test inline before going to call unuse_pte.
1485 		 */
1486 		if (unlikely(pte_same_as_swp(*pte, swp_pte))) {
1487 			pte_unmap(pte);
1488 			ret = unuse_pte(vma, pmd, addr, entry, page);
1489 			if (ret)
1490 				goto out;
1491 			pte = pte_offset_map(pmd, addr);
1492 		}
1493 	} while (pte++, addr += PAGE_SIZE, addr != end);
1494 	pte_unmap(pte - 1);
1495 out:
1496 	return ret;
1497 }
1498 
1499 static inline int unuse_pmd_range(struct vm_area_struct *vma, pud_t *pud,
1500 				unsigned long addr, unsigned long end,
1501 				swp_entry_t entry, struct page *page)
1502 {
1503 	pmd_t *pmd;
1504 	unsigned long next;
1505 	int ret;
1506 
1507 	pmd = pmd_offset(pud, addr);
1508 	do {
1509 		cond_resched();
1510 		next = pmd_addr_end(addr, end);
1511 		if (pmd_none_or_trans_huge_or_clear_bad(pmd))
1512 			continue;
1513 		ret = unuse_pte_range(vma, pmd, addr, next, entry, page);
1514 		if (ret)
1515 			return ret;
1516 	} while (pmd++, addr = next, addr != end);
1517 	return 0;
1518 }
1519 
1520 static inline int unuse_pud_range(struct vm_area_struct *vma, p4d_t *p4d,
1521 				unsigned long addr, unsigned long end,
1522 				swp_entry_t entry, struct page *page)
1523 {
1524 	pud_t *pud;
1525 	unsigned long next;
1526 	int ret;
1527 
1528 	pud = pud_offset(p4d, addr);
1529 	do {
1530 		next = pud_addr_end(addr, end);
1531 		if (pud_none_or_clear_bad(pud))
1532 			continue;
1533 		ret = unuse_pmd_range(vma, pud, addr, next, entry, page);
1534 		if (ret)
1535 			return ret;
1536 	} while (pud++, addr = next, addr != end);
1537 	return 0;
1538 }
1539 
1540 static inline int unuse_p4d_range(struct vm_area_struct *vma, pgd_t *pgd,
1541 				unsigned long addr, unsigned long end,
1542 				swp_entry_t entry, struct page *page)
1543 {
1544 	p4d_t *p4d;
1545 	unsigned long next;
1546 	int ret;
1547 
1548 	p4d = p4d_offset(pgd, addr);
1549 	do {
1550 		next = p4d_addr_end(addr, end);
1551 		if (p4d_none_or_clear_bad(p4d))
1552 			continue;
1553 		ret = unuse_pud_range(vma, p4d, addr, next, entry, page);
1554 		if (ret)
1555 			return ret;
1556 	} while (p4d++, addr = next, addr != end);
1557 	return 0;
1558 }
1559 
1560 static int unuse_vma(struct vm_area_struct *vma,
1561 				swp_entry_t entry, struct page *page)
1562 {
1563 	pgd_t *pgd;
1564 	unsigned long addr, end, next;
1565 	int ret;
1566 
1567 	if (page_anon_vma(page)) {
1568 		addr = page_address_in_vma(page, vma);
1569 		if (addr == -EFAULT)
1570 			return 0;
1571 		else
1572 			end = addr + PAGE_SIZE;
1573 	} else {
1574 		addr = vma->vm_start;
1575 		end = vma->vm_end;
1576 	}
1577 
1578 	pgd = pgd_offset(vma->vm_mm, addr);
1579 	do {
1580 		next = pgd_addr_end(addr, end);
1581 		if (pgd_none_or_clear_bad(pgd))
1582 			continue;
1583 		ret = unuse_p4d_range(vma, pgd, addr, next, entry, page);
1584 		if (ret)
1585 			return ret;
1586 	} while (pgd++, addr = next, addr != end);
1587 	return 0;
1588 }
1589 
1590 static int unuse_mm(struct mm_struct *mm,
1591 				swp_entry_t entry, struct page *page)
1592 {
1593 	struct vm_area_struct *vma;
1594 	int ret = 0;
1595 
1596 	if (!down_read_trylock(&mm->mmap_sem)) {
1597 		/*
1598 		 * Activate page so shrink_inactive_list is unlikely to unmap
1599 		 * its ptes while lock is dropped, so swapoff can make progress.
1600 		 */
1601 		activate_page(page);
1602 		unlock_page(page);
1603 		down_read(&mm->mmap_sem);
1604 		lock_page(page);
1605 	}
1606 	for (vma = mm->mmap; vma; vma = vma->vm_next) {
1607 		if (vma->anon_vma && (ret = unuse_vma(vma, entry, page)))
1608 			break;
1609 		cond_resched();
1610 	}
1611 	up_read(&mm->mmap_sem);
1612 	return (ret < 0)? ret: 0;
1613 }
1614 
1615 /*
1616  * Scan swap_map (or frontswap_map if frontswap parameter is true)
1617  * from current position to next entry still in use.
1618  * Recycle to start on reaching the end, returning 0 when empty.
1619  */
1620 static unsigned int find_next_to_unuse(struct swap_info_struct *si,
1621 					unsigned int prev, bool frontswap)
1622 {
1623 	unsigned int max = si->max;
1624 	unsigned int i = prev;
1625 	unsigned char count;
1626 
1627 	/*
1628 	 * No need for swap_lock here: we're just looking
1629 	 * for whether an entry is in use, not modifying it; false
1630 	 * hits are okay, and sys_swapoff() has already prevented new
1631 	 * allocations from this area (while holding swap_lock).
1632 	 */
1633 	for (;;) {
1634 		if (++i >= max) {
1635 			if (!prev) {
1636 				i = 0;
1637 				break;
1638 			}
1639 			/*
1640 			 * No entries in use at top of swap_map,
1641 			 * loop back to start and recheck there.
1642 			 */
1643 			max = prev + 1;
1644 			prev = 0;
1645 			i = 1;
1646 		}
1647 		count = READ_ONCE(si->swap_map[i]);
1648 		if (count && swap_count(count) != SWAP_MAP_BAD)
1649 			if (!frontswap || frontswap_test(si, i))
1650 				break;
1651 		if ((i % LATENCY_LIMIT) == 0)
1652 			cond_resched();
1653 	}
1654 	return i;
1655 }
1656 
1657 /*
1658  * We completely avoid races by reading each swap page in advance,
1659  * and then search for the process using it.  All the necessary
1660  * page table adjustments can then be made atomically.
1661  *
1662  * if the boolean frontswap is true, only unuse pages_to_unuse pages;
1663  * pages_to_unuse==0 means all pages; ignored if frontswap is false
1664  */
1665 int try_to_unuse(unsigned int type, bool frontswap,
1666 		 unsigned long pages_to_unuse)
1667 {
1668 	struct swap_info_struct *si = swap_info[type];
1669 	struct mm_struct *start_mm;
1670 	volatile unsigned char *swap_map; /* swap_map is accessed without
1671 					   * locking. Mark it as volatile
1672 					   * to prevent compiler doing
1673 					   * something odd.
1674 					   */
1675 	unsigned char swcount;
1676 	struct page *page;
1677 	swp_entry_t entry;
1678 	unsigned int i = 0;
1679 	int retval = 0;
1680 
1681 	/*
1682 	 * When searching mms for an entry, a good strategy is to
1683 	 * start at the first mm we freed the previous entry from
1684 	 * (though actually we don't notice whether we or coincidence
1685 	 * freed the entry).  Initialize this start_mm with a hold.
1686 	 *
1687 	 * A simpler strategy would be to start at the last mm we
1688 	 * freed the previous entry from; but that would take less
1689 	 * advantage of mmlist ordering, which clusters forked mms
1690 	 * together, child after parent.  If we race with dup_mmap(), we
1691 	 * prefer to resolve parent before child, lest we miss entries
1692 	 * duplicated after we scanned child: using last mm would invert
1693 	 * that.
1694 	 */
1695 	start_mm = &init_mm;
1696 	mmget(&init_mm);
1697 
1698 	/*
1699 	 * Keep on scanning until all entries have gone.  Usually,
1700 	 * one pass through swap_map is enough, but not necessarily:
1701 	 * there are races when an instance of an entry might be missed.
1702 	 */
1703 	while ((i = find_next_to_unuse(si, i, frontswap)) != 0) {
1704 		if (signal_pending(current)) {
1705 			retval = -EINTR;
1706 			break;
1707 		}
1708 
1709 		/*
1710 		 * Get a page for the entry, using the existing swap
1711 		 * cache page if there is one.  Otherwise, get a clean
1712 		 * page and read the swap into it.
1713 		 */
1714 		swap_map = &si->swap_map[i];
1715 		entry = swp_entry(type, i);
1716 		page = read_swap_cache_async(entry,
1717 					GFP_HIGHUSER_MOVABLE, NULL, 0);
1718 		if (!page) {
1719 			/*
1720 			 * Either swap_duplicate() failed because entry
1721 			 * has been freed independently, and will not be
1722 			 * reused since sys_swapoff() already disabled
1723 			 * allocation from here, or alloc_page() failed.
1724 			 */
1725 			swcount = *swap_map;
1726 			/*
1727 			 * We don't hold lock here, so the swap entry could be
1728 			 * SWAP_MAP_BAD (when the cluster is discarding).
1729 			 * Instead of fail out, We can just skip the swap
1730 			 * entry because swapoff will wait for discarding
1731 			 * finish anyway.
1732 			 */
1733 			if (!swcount || swcount == SWAP_MAP_BAD)
1734 				continue;
1735 			retval = -ENOMEM;
1736 			break;
1737 		}
1738 
1739 		/*
1740 		 * Don't hold on to start_mm if it looks like exiting.
1741 		 */
1742 		if (atomic_read(&start_mm->mm_users) == 1) {
1743 			mmput(start_mm);
1744 			start_mm = &init_mm;
1745 			mmget(&init_mm);
1746 		}
1747 
1748 		/*
1749 		 * Wait for and lock page.  When do_swap_page races with
1750 		 * try_to_unuse, do_swap_page can handle the fault much
1751 		 * faster than try_to_unuse can locate the entry.  This
1752 		 * apparently redundant "wait_on_page_locked" lets try_to_unuse
1753 		 * defer to do_swap_page in such a case - in some tests,
1754 		 * do_swap_page and try_to_unuse repeatedly compete.
1755 		 */
1756 		wait_on_page_locked(page);
1757 		wait_on_page_writeback(page);
1758 		lock_page(page);
1759 		wait_on_page_writeback(page);
1760 
1761 		/*
1762 		 * Remove all references to entry.
1763 		 */
1764 		swcount = *swap_map;
1765 		if (swap_count(swcount) == SWAP_MAP_SHMEM) {
1766 			retval = shmem_unuse(entry, page);
1767 			/* page has already been unlocked and released */
1768 			if (retval < 0)
1769 				break;
1770 			continue;
1771 		}
1772 		if (swap_count(swcount) && start_mm != &init_mm)
1773 			retval = unuse_mm(start_mm, entry, page);
1774 
1775 		if (swap_count(*swap_map)) {
1776 			int set_start_mm = (*swap_map >= swcount);
1777 			struct list_head *p = &start_mm->mmlist;
1778 			struct mm_struct *new_start_mm = start_mm;
1779 			struct mm_struct *prev_mm = start_mm;
1780 			struct mm_struct *mm;
1781 
1782 			mmget(new_start_mm);
1783 			mmget(prev_mm);
1784 			spin_lock(&mmlist_lock);
1785 			while (swap_count(*swap_map) && !retval &&
1786 					(p = p->next) != &start_mm->mmlist) {
1787 				mm = list_entry(p, struct mm_struct, mmlist);
1788 				if (!mmget_not_zero(mm))
1789 					continue;
1790 				spin_unlock(&mmlist_lock);
1791 				mmput(prev_mm);
1792 				prev_mm = mm;
1793 
1794 				cond_resched();
1795 
1796 				swcount = *swap_map;
1797 				if (!swap_count(swcount)) /* any usage ? */
1798 					;
1799 				else if (mm == &init_mm)
1800 					set_start_mm = 1;
1801 				else
1802 					retval = unuse_mm(mm, entry, page);
1803 
1804 				if (set_start_mm && *swap_map < swcount) {
1805 					mmput(new_start_mm);
1806 					mmget(mm);
1807 					new_start_mm = mm;
1808 					set_start_mm = 0;
1809 				}
1810 				spin_lock(&mmlist_lock);
1811 			}
1812 			spin_unlock(&mmlist_lock);
1813 			mmput(prev_mm);
1814 			mmput(start_mm);
1815 			start_mm = new_start_mm;
1816 		}
1817 		if (retval) {
1818 			unlock_page(page);
1819 			put_page(page);
1820 			break;
1821 		}
1822 
1823 		/*
1824 		 * If a reference remains (rare), we would like to leave
1825 		 * the page in the swap cache; but try_to_unmap could
1826 		 * then re-duplicate the entry once we drop page lock,
1827 		 * so we might loop indefinitely; also, that page could
1828 		 * not be swapped out to other storage meanwhile.  So:
1829 		 * delete from cache even if there's another reference,
1830 		 * after ensuring that the data has been saved to disk -
1831 		 * since if the reference remains (rarer), it will be
1832 		 * read from disk into another page.  Splitting into two
1833 		 * pages would be incorrect if swap supported "shared
1834 		 * private" pages, but they are handled by tmpfs files.
1835 		 *
1836 		 * Given how unuse_vma() targets one particular offset
1837 		 * in an anon_vma, once the anon_vma has been determined,
1838 		 * this splitting happens to be just what is needed to
1839 		 * handle where KSM pages have been swapped out: re-reading
1840 		 * is unnecessarily slow, but we can fix that later on.
1841 		 */
1842 		if (swap_count(*swap_map) &&
1843 		     PageDirty(page) && PageSwapCache(page)) {
1844 			struct writeback_control wbc = {
1845 				.sync_mode = WB_SYNC_NONE,
1846 			};
1847 
1848 			swap_writepage(page, &wbc);
1849 			lock_page(page);
1850 			wait_on_page_writeback(page);
1851 		}
1852 
1853 		/*
1854 		 * It is conceivable that a racing task removed this page from
1855 		 * swap cache just before we acquired the page lock at the top,
1856 		 * or while we dropped it in unuse_mm().  The page might even
1857 		 * be back in swap cache on another swap area: that we must not
1858 		 * delete, since it may not have been written out to swap yet.
1859 		 */
1860 		if (PageSwapCache(page) &&
1861 		    likely(page_private(page) == entry.val))
1862 			delete_from_swap_cache(page);
1863 
1864 		/*
1865 		 * So we could skip searching mms once swap count went
1866 		 * to 1, we did not mark any present ptes as dirty: must
1867 		 * mark page dirty so shrink_page_list will preserve it.
1868 		 */
1869 		SetPageDirty(page);
1870 		unlock_page(page);
1871 		put_page(page);
1872 
1873 		/*
1874 		 * Make sure that we aren't completely killing
1875 		 * interactive performance.
1876 		 */
1877 		cond_resched();
1878 		if (frontswap && pages_to_unuse > 0) {
1879 			if (!--pages_to_unuse)
1880 				break;
1881 		}
1882 	}
1883 
1884 	mmput(start_mm);
1885 	return retval;
1886 }
1887 
1888 /*
1889  * After a successful try_to_unuse, if no swap is now in use, we know
1890  * we can empty the mmlist.  swap_lock must be held on entry and exit.
1891  * Note that mmlist_lock nests inside swap_lock, and an mm must be
1892  * added to the mmlist just after page_duplicate - before would be racy.
1893  */
1894 static void drain_mmlist(void)
1895 {
1896 	struct list_head *p, *next;
1897 	unsigned int type;
1898 
1899 	for (type = 0; type < nr_swapfiles; type++)
1900 		if (swap_info[type]->inuse_pages)
1901 			return;
1902 	spin_lock(&mmlist_lock);
1903 	list_for_each_safe(p, next, &init_mm.mmlist)
1904 		list_del_init(p);
1905 	spin_unlock(&mmlist_lock);
1906 }
1907 
1908 /*
1909  * Use this swapdev's extent info to locate the (PAGE_SIZE) block which
1910  * corresponds to page offset for the specified swap entry.
1911  * Note that the type of this function is sector_t, but it returns page offset
1912  * into the bdev, not sector offset.
1913  */
1914 static sector_t map_swap_entry(swp_entry_t entry, struct block_device **bdev)
1915 {
1916 	struct swap_info_struct *sis;
1917 	struct swap_extent *start_se;
1918 	struct swap_extent *se;
1919 	pgoff_t offset;
1920 
1921 	sis = swap_info[swp_type(entry)];
1922 	*bdev = sis->bdev;
1923 
1924 	offset = swp_offset(entry);
1925 	start_se = sis->curr_swap_extent;
1926 	se = start_se;
1927 
1928 	for ( ; ; ) {
1929 		if (se->start_page <= offset &&
1930 				offset < (se->start_page + se->nr_pages)) {
1931 			return se->start_block + (offset - se->start_page);
1932 		}
1933 		se = list_next_entry(se, list);
1934 		sis->curr_swap_extent = se;
1935 		BUG_ON(se == start_se);		/* It *must* be present */
1936 	}
1937 }
1938 
1939 /*
1940  * Returns the page offset into bdev for the specified page's swap entry.
1941  */
1942 sector_t map_swap_page(struct page *page, struct block_device **bdev)
1943 {
1944 	swp_entry_t entry;
1945 	entry.val = page_private(page);
1946 	return map_swap_entry(entry, bdev);
1947 }
1948 
1949 /*
1950  * Free all of a swapdev's extent information
1951  */
1952 static void destroy_swap_extents(struct swap_info_struct *sis)
1953 {
1954 	while (!list_empty(&sis->first_swap_extent.list)) {
1955 		struct swap_extent *se;
1956 
1957 		se = list_first_entry(&sis->first_swap_extent.list,
1958 				struct swap_extent, list);
1959 		list_del(&se->list);
1960 		kfree(se);
1961 	}
1962 
1963 	if (sis->flags & SWP_FILE) {
1964 		struct file *swap_file = sis->swap_file;
1965 		struct address_space *mapping = swap_file->f_mapping;
1966 
1967 		sis->flags &= ~SWP_FILE;
1968 		mapping->a_ops->swap_deactivate(swap_file);
1969 	}
1970 }
1971 
1972 /*
1973  * Add a block range (and the corresponding page range) into this swapdev's
1974  * extent list.  The extent list is kept sorted in page order.
1975  *
1976  * This function rather assumes that it is called in ascending page order.
1977  */
1978 int
1979 add_swap_extent(struct swap_info_struct *sis, unsigned long start_page,
1980 		unsigned long nr_pages, sector_t start_block)
1981 {
1982 	struct swap_extent *se;
1983 	struct swap_extent *new_se;
1984 	struct list_head *lh;
1985 
1986 	if (start_page == 0) {
1987 		se = &sis->first_swap_extent;
1988 		sis->curr_swap_extent = se;
1989 		se->start_page = 0;
1990 		se->nr_pages = nr_pages;
1991 		se->start_block = start_block;
1992 		return 1;
1993 	} else {
1994 		lh = sis->first_swap_extent.list.prev;	/* Highest extent */
1995 		se = list_entry(lh, struct swap_extent, list);
1996 		BUG_ON(se->start_page + se->nr_pages != start_page);
1997 		if (se->start_block + se->nr_pages == start_block) {
1998 			/* Merge it */
1999 			se->nr_pages += nr_pages;
2000 			return 0;
2001 		}
2002 	}
2003 
2004 	/*
2005 	 * No merge.  Insert a new extent, preserving ordering.
2006 	 */
2007 	new_se = kmalloc(sizeof(*se), GFP_KERNEL);
2008 	if (new_se == NULL)
2009 		return -ENOMEM;
2010 	new_se->start_page = start_page;
2011 	new_se->nr_pages = nr_pages;
2012 	new_se->start_block = start_block;
2013 
2014 	list_add_tail(&new_se->list, &sis->first_swap_extent.list);
2015 	return 1;
2016 }
2017 
2018 /*
2019  * A `swap extent' is a simple thing which maps a contiguous range of pages
2020  * onto a contiguous range of disk blocks.  An ordered list of swap extents
2021  * is built at swapon time and is then used at swap_writepage/swap_readpage
2022  * time for locating where on disk a page belongs.
2023  *
2024  * If the swapfile is an S_ISBLK block device, a single extent is installed.
2025  * This is done so that the main operating code can treat S_ISBLK and S_ISREG
2026  * swap files identically.
2027  *
2028  * Whether the swapdev is an S_ISREG file or an S_ISBLK blockdev, the swap
2029  * extent list operates in PAGE_SIZE disk blocks.  Both S_ISREG and S_ISBLK
2030  * swapfiles are handled *identically* after swapon time.
2031  *
2032  * For S_ISREG swapfiles, setup_swap_extents() will walk all the file's blocks
2033  * and will parse them into an ordered extent list, in PAGE_SIZE chunks.  If
2034  * some stray blocks are found which do not fall within the PAGE_SIZE alignment
2035  * requirements, they are simply tossed out - we will never use those blocks
2036  * for swapping.
2037  *
2038  * For S_ISREG swapfiles we set S_SWAPFILE across the life of the swapon.  This
2039  * prevents root from shooting her foot off by ftruncating an in-use swapfile,
2040  * which will scribble on the fs.
2041  *
2042  * The amount of disk space which a single swap extent represents varies.
2043  * Typically it is in the 1-4 megabyte range.  So we can have hundreds of
2044  * extents in the list.  To avoid much list walking, we cache the previous
2045  * search location in `curr_swap_extent', and start new searches from there.
2046  * This is extremely effective.  The average number of iterations in
2047  * map_swap_page() has been measured at about 0.3 per page.  - akpm.
2048  */
2049 static int setup_swap_extents(struct swap_info_struct *sis, sector_t *span)
2050 {
2051 	struct file *swap_file = sis->swap_file;
2052 	struct address_space *mapping = swap_file->f_mapping;
2053 	struct inode *inode = mapping->host;
2054 	int ret;
2055 
2056 	if (S_ISBLK(inode->i_mode)) {
2057 		ret = add_swap_extent(sis, 0, sis->max, 0);
2058 		*span = sis->pages;
2059 		return ret;
2060 	}
2061 
2062 	if (mapping->a_ops->swap_activate) {
2063 		ret = mapping->a_ops->swap_activate(sis, swap_file, span);
2064 		if (!ret) {
2065 			sis->flags |= SWP_FILE;
2066 			ret = add_swap_extent(sis, 0, sis->max, 0);
2067 			*span = sis->pages;
2068 		}
2069 		return ret;
2070 	}
2071 
2072 	return generic_swapfile_activate(sis, swap_file, span);
2073 }
2074 
2075 static void _enable_swap_info(struct swap_info_struct *p, int prio,
2076 				unsigned char *swap_map,
2077 				struct swap_cluster_info *cluster_info)
2078 {
2079 	if (prio >= 0)
2080 		p->prio = prio;
2081 	else
2082 		p->prio = --least_priority;
2083 	/*
2084 	 * the plist prio is negated because plist ordering is
2085 	 * low-to-high, while swap ordering is high-to-low
2086 	 */
2087 	p->list.prio = -p->prio;
2088 	p->avail_list.prio = -p->prio;
2089 	p->swap_map = swap_map;
2090 	p->cluster_info = cluster_info;
2091 	p->flags |= SWP_WRITEOK;
2092 	atomic_long_add(p->pages, &nr_swap_pages);
2093 	total_swap_pages += p->pages;
2094 
2095 	assert_spin_locked(&swap_lock);
2096 	/*
2097 	 * both lists are plists, and thus priority ordered.
2098 	 * swap_active_head needs to be priority ordered for swapoff(),
2099 	 * which on removal of any swap_info_struct with an auto-assigned
2100 	 * (i.e. negative) priority increments the auto-assigned priority
2101 	 * of any lower-priority swap_info_structs.
2102 	 * swap_avail_head needs to be priority ordered for get_swap_page(),
2103 	 * which allocates swap pages from the highest available priority
2104 	 * swap_info_struct.
2105 	 */
2106 	plist_add(&p->list, &swap_active_head);
2107 	spin_lock(&swap_avail_lock);
2108 	plist_add(&p->avail_list, &swap_avail_head);
2109 	spin_unlock(&swap_avail_lock);
2110 }
2111 
2112 static void enable_swap_info(struct swap_info_struct *p, int prio,
2113 				unsigned char *swap_map,
2114 				struct swap_cluster_info *cluster_info,
2115 				unsigned long *frontswap_map)
2116 {
2117 	frontswap_init(p->type, frontswap_map);
2118 	spin_lock(&swap_lock);
2119 	spin_lock(&p->lock);
2120 	 _enable_swap_info(p, prio, swap_map, cluster_info);
2121 	spin_unlock(&p->lock);
2122 	spin_unlock(&swap_lock);
2123 }
2124 
2125 static void reinsert_swap_info(struct swap_info_struct *p)
2126 {
2127 	spin_lock(&swap_lock);
2128 	spin_lock(&p->lock);
2129 	_enable_swap_info(p, p->prio, p->swap_map, p->cluster_info);
2130 	spin_unlock(&p->lock);
2131 	spin_unlock(&swap_lock);
2132 }
2133 
2134 bool has_usable_swap(void)
2135 {
2136 	bool ret = true;
2137 
2138 	spin_lock(&swap_lock);
2139 	if (plist_head_empty(&swap_active_head))
2140 		ret = false;
2141 	spin_unlock(&swap_lock);
2142 	return ret;
2143 }
2144 
2145 SYSCALL_DEFINE1(swapoff, const char __user *, specialfile)
2146 {
2147 	struct swap_info_struct *p = NULL;
2148 	unsigned char *swap_map;
2149 	struct swap_cluster_info *cluster_info;
2150 	unsigned long *frontswap_map;
2151 	struct file *swap_file, *victim;
2152 	struct address_space *mapping;
2153 	struct inode *inode;
2154 	struct filename *pathname;
2155 	int err, found = 0;
2156 	unsigned int old_block_size;
2157 
2158 	if (!capable(CAP_SYS_ADMIN))
2159 		return -EPERM;
2160 
2161 	BUG_ON(!current->mm);
2162 
2163 	pathname = getname(specialfile);
2164 	if (IS_ERR(pathname))
2165 		return PTR_ERR(pathname);
2166 
2167 	victim = file_open_name(pathname, O_RDWR|O_LARGEFILE, 0);
2168 	err = PTR_ERR(victim);
2169 	if (IS_ERR(victim))
2170 		goto out;
2171 
2172 	mapping = victim->f_mapping;
2173 	spin_lock(&swap_lock);
2174 	plist_for_each_entry(p, &swap_active_head, list) {
2175 		if (p->flags & SWP_WRITEOK) {
2176 			if (p->swap_file->f_mapping == mapping) {
2177 				found = 1;
2178 				break;
2179 			}
2180 		}
2181 	}
2182 	if (!found) {
2183 		err = -EINVAL;
2184 		spin_unlock(&swap_lock);
2185 		goto out_dput;
2186 	}
2187 	if (!security_vm_enough_memory_mm(current->mm, p->pages))
2188 		vm_unacct_memory(p->pages);
2189 	else {
2190 		err = -ENOMEM;
2191 		spin_unlock(&swap_lock);
2192 		goto out_dput;
2193 	}
2194 	spin_lock(&swap_avail_lock);
2195 	plist_del(&p->avail_list, &swap_avail_head);
2196 	spin_unlock(&swap_avail_lock);
2197 	spin_lock(&p->lock);
2198 	if (p->prio < 0) {
2199 		struct swap_info_struct *si = p;
2200 
2201 		plist_for_each_entry_continue(si, &swap_active_head, list) {
2202 			si->prio++;
2203 			si->list.prio--;
2204 			si->avail_list.prio--;
2205 		}
2206 		least_priority++;
2207 	}
2208 	plist_del(&p->list, &swap_active_head);
2209 	atomic_long_sub(p->pages, &nr_swap_pages);
2210 	total_swap_pages -= p->pages;
2211 	p->flags &= ~SWP_WRITEOK;
2212 	spin_unlock(&p->lock);
2213 	spin_unlock(&swap_lock);
2214 
2215 	disable_swap_slots_cache_lock();
2216 
2217 	set_current_oom_origin();
2218 	err = try_to_unuse(p->type, false, 0); /* force unuse all pages */
2219 	clear_current_oom_origin();
2220 
2221 	if (err) {
2222 		/* re-insert swap space back into swap_list */
2223 		reinsert_swap_info(p);
2224 		reenable_swap_slots_cache_unlock();
2225 		goto out_dput;
2226 	}
2227 
2228 	reenable_swap_slots_cache_unlock();
2229 
2230 	flush_work(&p->discard_work);
2231 
2232 	destroy_swap_extents(p);
2233 	if (p->flags & SWP_CONTINUED)
2234 		free_swap_count_continuations(p);
2235 
2236 	mutex_lock(&swapon_mutex);
2237 	spin_lock(&swap_lock);
2238 	spin_lock(&p->lock);
2239 	drain_mmlist();
2240 
2241 	/* wait for anyone still in scan_swap_map */
2242 	p->highest_bit = 0;		/* cuts scans short */
2243 	while (p->flags >= SWP_SCANNING) {
2244 		spin_unlock(&p->lock);
2245 		spin_unlock(&swap_lock);
2246 		schedule_timeout_uninterruptible(1);
2247 		spin_lock(&swap_lock);
2248 		spin_lock(&p->lock);
2249 	}
2250 
2251 	swap_file = p->swap_file;
2252 	old_block_size = p->old_block_size;
2253 	p->swap_file = NULL;
2254 	p->max = 0;
2255 	swap_map = p->swap_map;
2256 	p->swap_map = NULL;
2257 	cluster_info = p->cluster_info;
2258 	p->cluster_info = NULL;
2259 	frontswap_map = frontswap_map_get(p);
2260 	spin_unlock(&p->lock);
2261 	spin_unlock(&swap_lock);
2262 	frontswap_invalidate_area(p->type);
2263 	frontswap_map_set(p, NULL);
2264 	mutex_unlock(&swapon_mutex);
2265 	free_percpu(p->percpu_cluster);
2266 	p->percpu_cluster = NULL;
2267 	vfree(swap_map);
2268 	vfree(cluster_info);
2269 	vfree(frontswap_map);
2270 	/* Destroy swap account information */
2271 	swap_cgroup_swapoff(p->type);
2272 	exit_swap_address_space(p->type);
2273 
2274 	inode = mapping->host;
2275 	if (S_ISBLK(inode->i_mode)) {
2276 		struct block_device *bdev = I_BDEV(inode);
2277 		set_blocksize(bdev, old_block_size);
2278 		blkdev_put(bdev, FMODE_READ | FMODE_WRITE | FMODE_EXCL);
2279 	} else {
2280 		inode_lock(inode);
2281 		inode->i_flags &= ~S_SWAPFILE;
2282 		inode_unlock(inode);
2283 	}
2284 	filp_close(swap_file, NULL);
2285 
2286 	/*
2287 	 * Clear the SWP_USED flag after all resources are freed so that swapon
2288 	 * can reuse this swap_info in alloc_swap_info() safely.  It is ok to
2289 	 * not hold p->lock after we cleared its SWP_WRITEOK.
2290 	 */
2291 	spin_lock(&swap_lock);
2292 	p->flags = 0;
2293 	spin_unlock(&swap_lock);
2294 
2295 	err = 0;
2296 	atomic_inc(&proc_poll_event);
2297 	wake_up_interruptible(&proc_poll_wait);
2298 
2299 out_dput:
2300 	filp_close(victim, NULL);
2301 out:
2302 	putname(pathname);
2303 	return err;
2304 }
2305 
2306 #ifdef CONFIG_PROC_FS
2307 static unsigned swaps_poll(struct file *file, poll_table *wait)
2308 {
2309 	struct seq_file *seq = file->private_data;
2310 
2311 	poll_wait(file, &proc_poll_wait, wait);
2312 
2313 	if (seq->poll_event != atomic_read(&proc_poll_event)) {
2314 		seq->poll_event = atomic_read(&proc_poll_event);
2315 		return POLLIN | POLLRDNORM | POLLERR | POLLPRI;
2316 	}
2317 
2318 	return POLLIN | POLLRDNORM;
2319 }
2320 
2321 /* iterator */
2322 static void *swap_start(struct seq_file *swap, loff_t *pos)
2323 {
2324 	struct swap_info_struct *si;
2325 	int type;
2326 	loff_t l = *pos;
2327 
2328 	mutex_lock(&swapon_mutex);
2329 
2330 	if (!l)
2331 		return SEQ_START_TOKEN;
2332 
2333 	for (type = 0; type < nr_swapfiles; type++) {
2334 		smp_rmb();	/* read nr_swapfiles before swap_info[type] */
2335 		si = swap_info[type];
2336 		if (!(si->flags & SWP_USED) || !si->swap_map)
2337 			continue;
2338 		if (!--l)
2339 			return si;
2340 	}
2341 
2342 	return NULL;
2343 }
2344 
2345 static void *swap_next(struct seq_file *swap, void *v, loff_t *pos)
2346 {
2347 	struct swap_info_struct *si = v;
2348 	int type;
2349 
2350 	if (v == SEQ_START_TOKEN)
2351 		type = 0;
2352 	else
2353 		type = si->type + 1;
2354 
2355 	for (; type < nr_swapfiles; type++) {
2356 		smp_rmb();	/* read nr_swapfiles before swap_info[type] */
2357 		si = swap_info[type];
2358 		if (!(si->flags & SWP_USED) || !si->swap_map)
2359 			continue;
2360 		++*pos;
2361 		return si;
2362 	}
2363 
2364 	return NULL;
2365 }
2366 
2367 static void swap_stop(struct seq_file *swap, void *v)
2368 {
2369 	mutex_unlock(&swapon_mutex);
2370 }
2371 
2372 static int swap_show(struct seq_file *swap, void *v)
2373 {
2374 	struct swap_info_struct *si = v;
2375 	struct file *file;
2376 	int len;
2377 
2378 	if (si == SEQ_START_TOKEN) {
2379 		seq_puts(swap,"Filename\t\t\t\tType\t\tSize\tUsed\tPriority\n");
2380 		return 0;
2381 	}
2382 
2383 	file = si->swap_file;
2384 	len = seq_file_path(swap, file, " \t\n\\");
2385 	seq_printf(swap, "%*s%s\t%u\t%u\t%d\n",
2386 			len < 40 ? 40 - len : 1, " ",
2387 			S_ISBLK(file_inode(file)->i_mode) ?
2388 				"partition" : "file\t",
2389 			si->pages << (PAGE_SHIFT - 10),
2390 			si->inuse_pages << (PAGE_SHIFT - 10),
2391 			si->prio);
2392 	return 0;
2393 }
2394 
2395 static const struct seq_operations swaps_op = {
2396 	.start =	swap_start,
2397 	.next =		swap_next,
2398 	.stop =		swap_stop,
2399 	.show =		swap_show
2400 };
2401 
2402 static int swaps_open(struct inode *inode, struct file *file)
2403 {
2404 	struct seq_file *seq;
2405 	int ret;
2406 
2407 	ret = seq_open(file, &swaps_op);
2408 	if (ret)
2409 		return ret;
2410 
2411 	seq = file->private_data;
2412 	seq->poll_event = atomic_read(&proc_poll_event);
2413 	return 0;
2414 }
2415 
2416 static const struct file_operations proc_swaps_operations = {
2417 	.open		= swaps_open,
2418 	.read		= seq_read,
2419 	.llseek		= seq_lseek,
2420 	.release	= seq_release,
2421 	.poll		= swaps_poll,
2422 };
2423 
2424 static int __init procswaps_init(void)
2425 {
2426 	proc_create("swaps", 0, NULL, &proc_swaps_operations);
2427 	return 0;
2428 }
2429 __initcall(procswaps_init);
2430 #endif /* CONFIG_PROC_FS */
2431 
2432 #ifdef MAX_SWAPFILES_CHECK
2433 static int __init max_swapfiles_check(void)
2434 {
2435 	MAX_SWAPFILES_CHECK();
2436 	return 0;
2437 }
2438 late_initcall(max_swapfiles_check);
2439 #endif
2440 
2441 static struct swap_info_struct *alloc_swap_info(void)
2442 {
2443 	struct swap_info_struct *p;
2444 	unsigned int type;
2445 
2446 	p = kzalloc(sizeof(*p), GFP_KERNEL);
2447 	if (!p)
2448 		return ERR_PTR(-ENOMEM);
2449 
2450 	spin_lock(&swap_lock);
2451 	for (type = 0; type < nr_swapfiles; type++) {
2452 		if (!(swap_info[type]->flags & SWP_USED))
2453 			break;
2454 	}
2455 	if (type >= MAX_SWAPFILES) {
2456 		spin_unlock(&swap_lock);
2457 		kfree(p);
2458 		return ERR_PTR(-EPERM);
2459 	}
2460 	if (type >= nr_swapfiles) {
2461 		p->type = type;
2462 		swap_info[type] = p;
2463 		/*
2464 		 * Write swap_info[type] before nr_swapfiles, in case a
2465 		 * racing procfs swap_start() or swap_next() is reading them.
2466 		 * (We never shrink nr_swapfiles, we never free this entry.)
2467 		 */
2468 		smp_wmb();
2469 		nr_swapfiles++;
2470 	} else {
2471 		kfree(p);
2472 		p = swap_info[type];
2473 		/*
2474 		 * Do not memset this entry: a racing procfs swap_next()
2475 		 * would be relying on p->type to remain valid.
2476 		 */
2477 	}
2478 	INIT_LIST_HEAD(&p->first_swap_extent.list);
2479 	plist_node_init(&p->list, 0);
2480 	plist_node_init(&p->avail_list, 0);
2481 	p->flags = SWP_USED;
2482 	spin_unlock(&swap_lock);
2483 	spin_lock_init(&p->lock);
2484 
2485 	return p;
2486 }
2487 
2488 static int claim_swapfile(struct swap_info_struct *p, struct inode *inode)
2489 {
2490 	int error;
2491 
2492 	if (S_ISBLK(inode->i_mode)) {
2493 		p->bdev = bdgrab(I_BDEV(inode));
2494 		error = blkdev_get(p->bdev,
2495 				   FMODE_READ | FMODE_WRITE | FMODE_EXCL, p);
2496 		if (error < 0) {
2497 			p->bdev = NULL;
2498 			return error;
2499 		}
2500 		p->old_block_size = block_size(p->bdev);
2501 		error = set_blocksize(p->bdev, PAGE_SIZE);
2502 		if (error < 0)
2503 			return error;
2504 		p->flags |= SWP_BLKDEV;
2505 	} else if (S_ISREG(inode->i_mode)) {
2506 		p->bdev = inode->i_sb->s_bdev;
2507 		inode_lock(inode);
2508 		if (IS_SWAPFILE(inode))
2509 			return -EBUSY;
2510 	} else
2511 		return -EINVAL;
2512 
2513 	return 0;
2514 }
2515 
2516 static unsigned long read_swap_header(struct swap_info_struct *p,
2517 					union swap_header *swap_header,
2518 					struct inode *inode)
2519 {
2520 	int i;
2521 	unsigned long maxpages;
2522 	unsigned long swapfilepages;
2523 	unsigned long last_page;
2524 
2525 	if (memcmp("SWAPSPACE2", swap_header->magic.magic, 10)) {
2526 		pr_err("Unable to find swap-space signature\n");
2527 		return 0;
2528 	}
2529 
2530 	/* swap partition endianess hack... */
2531 	if (swab32(swap_header->info.version) == 1) {
2532 		swab32s(&swap_header->info.version);
2533 		swab32s(&swap_header->info.last_page);
2534 		swab32s(&swap_header->info.nr_badpages);
2535 		if (swap_header->info.nr_badpages > MAX_SWAP_BADPAGES)
2536 			return 0;
2537 		for (i = 0; i < swap_header->info.nr_badpages; i++)
2538 			swab32s(&swap_header->info.badpages[i]);
2539 	}
2540 	/* Check the swap header's sub-version */
2541 	if (swap_header->info.version != 1) {
2542 		pr_warn("Unable to handle swap header version %d\n",
2543 			swap_header->info.version);
2544 		return 0;
2545 	}
2546 
2547 	p->lowest_bit  = 1;
2548 	p->cluster_next = 1;
2549 	p->cluster_nr = 0;
2550 
2551 	/*
2552 	 * Find out how many pages are allowed for a single swap
2553 	 * device. There are two limiting factors: 1) the number
2554 	 * of bits for the swap offset in the swp_entry_t type, and
2555 	 * 2) the number of bits in the swap pte as defined by the
2556 	 * different architectures. In order to find the
2557 	 * largest possible bit mask, a swap entry with swap type 0
2558 	 * and swap offset ~0UL is created, encoded to a swap pte,
2559 	 * decoded to a swp_entry_t again, and finally the swap
2560 	 * offset is extracted. This will mask all the bits from
2561 	 * the initial ~0UL mask that can't be encoded in either
2562 	 * the swp_entry_t or the architecture definition of a
2563 	 * swap pte.
2564 	 */
2565 	maxpages = swp_offset(pte_to_swp_entry(
2566 			swp_entry_to_pte(swp_entry(0, ~0UL)))) + 1;
2567 	last_page = swap_header->info.last_page;
2568 	if (last_page > maxpages) {
2569 		pr_warn("Truncating oversized swap area, only using %luk out of %luk\n",
2570 			maxpages << (PAGE_SHIFT - 10),
2571 			last_page << (PAGE_SHIFT - 10));
2572 	}
2573 	if (maxpages > last_page) {
2574 		maxpages = last_page + 1;
2575 		/* p->max is an unsigned int: don't overflow it */
2576 		if ((unsigned int)maxpages == 0)
2577 			maxpages = UINT_MAX;
2578 	}
2579 	p->highest_bit = maxpages - 1;
2580 
2581 	if (!maxpages)
2582 		return 0;
2583 	swapfilepages = i_size_read(inode) >> PAGE_SHIFT;
2584 	if (swapfilepages && maxpages > swapfilepages) {
2585 		pr_warn("Swap area shorter than signature indicates\n");
2586 		return 0;
2587 	}
2588 	if (swap_header->info.nr_badpages && S_ISREG(inode->i_mode))
2589 		return 0;
2590 	if (swap_header->info.nr_badpages > MAX_SWAP_BADPAGES)
2591 		return 0;
2592 
2593 	return maxpages;
2594 }
2595 
2596 #define SWAP_CLUSTER_INFO_COLS						\
2597 	DIV_ROUND_UP(L1_CACHE_BYTES, sizeof(struct swap_cluster_info))
2598 #define SWAP_CLUSTER_SPACE_COLS						\
2599 	DIV_ROUND_UP(SWAP_ADDRESS_SPACE_PAGES, SWAPFILE_CLUSTER)
2600 #define SWAP_CLUSTER_COLS						\
2601 	max_t(unsigned int, SWAP_CLUSTER_INFO_COLS, SWAP_CLUSTER_SPACE_COLS)
2602 
2603 static int setup_swap_map_and_extents(struct swap_info_struct *p,
2604 					union swap_header *swap_header,
2605 					unsigned char *swap_map,
2606 					struct swap_cluster_info *cluster_info,
2607 					unsigned long maxpages,
2608 					sector_t *span)
2609 {
2610 	unsigned int j, k;
2611 	unsigned int nr_good_pages;
2612 	int nr_extents;
2613 	unsigned long nr_clusters = DIV_ROUND_UP(maxpages, SWAPFILE_CLUSTER);
2614 	unsigned long col = p->cluster_next / SWAPFILE_CLUSTER % SWAP_CLUSTER_COLS;
2615 	unsigned long i, idx;
2616 
2617 	nr_good_pages = maxpages - 1;	/* omit header page */
2618 
2619 	cluster_list_init(&p->free_clusters);
2620 	cluster_list_init(&p->discard_clusters);
2621 
2622 	for (i = 0; i < swap_header->info.nr_badpages; i++) {
2623 		unsigned int page_nr = swap_header->info.badpages[i];
2624 		if (page_nr == 0 || page_nr > swap_header->info.last_page)
2625 			return -EINVAL;
2626 		if (page_nr < maxpages) {
2627 			swap_map[page_nr] = SWAP_MAP_BAD;
2628 			nr_good_pages--;
2629 			/*
2630 			 * Haven't marked the cluster free yet, no list
2631 			 * operation involved
2632 			 */
2633 			inc_cluster_info_page(p, cluster_info, page_nr);
2634 		}
2635 	}
2636 
2637 	/* Haven't marked the cluster free yet, no list operation involved */
2638 	for (i = maxpages; i < round_up(maxpages, SWAPFILE_CLUSTER); i++)
2639 		inc_cluster_info_page(p, cluster_info, i);
2640 
2641 	if (nr_good_pages) {
2642 		swap_map[0] = SWAP_MAP_BAD;
2643 		/*
2644 		 * Not mark the cluster free yet, no list
2645 		 * operation involved
2646 		 */
2647 		inc_cluster_info_page(p, cluster_info, 0);
2648 		p->max = maxpages;
2649 		p->pages = nr_good_pages;
2650 		nr_extents = setup_swap_extents(p, span);
2651 		if (nr_extents < 0)
2652 			return nr_extents;
2653 		nr_good_pages = p->pages;
2654 	}
2655 	if (!nr_good_pages) {
2656 		pr_warn("Empty swap-file\n");
2657 		return -EINVAL;
2658 	}
2659 
2660 	if (!cluster_info)
2661 		return nr_extents;
2662 
2663 
2664 	/*
2665 	 * Reduce false cache line sharing between cluster_info and
2666 	 * sharing same address space.
2667 	 */
2668 	for (k = 0; k < SWAP_CLUSTER_COLS; k++) {
2669 		j = (k + col) % SWAP_CLUSTER_COLS;
2670 		for (i = 0; i < DIV_ROUND_UP(nr_clusters, SWAP_CLUSTER_COLS); i++) {
2671 			idx = i * SWAP_CLUSTER_COLS + j;
2672 			if (idx >= nr_clusters)
2673 				continue;
2674 			if (cluster_count(&cluster_info[idx]))
2675 				continue;
2676 			cluster_set_flag(&cluster_info[idx], CLUSTER_FLAG_FREE);
2677 			cluster_list_add_tail(&p->free_clusters, cluster_info,
2678 					      idx);
2679 		}
2680 	}
2681 	return nr_extents;
2682 }
2683 
2684 /*
2685  * Helper to sys_swapon determining if a given swap
2686  * backing device queue supports DISCARD operations.
2687  */
2688 static bool swap_discardable(struct swap_info_struct *si)
2689 {
2690 	struct request_queue *q = bdev_get_queue(si->bdev);
2691 
2692 	if (!q || !blk_queue_discard(q))
2693 		return false;
2694 
2695 	return true;
2696 }
2697 
2698 SYSCALL_DEFINE2(swapon, const char __user *, specialfile, int, swap_flags)
2699 {
2700 	struct swap_info_struct *p;
2701 	struct filename *name;
2702 	struct file *swap_file = NULL;
2703 	struct address_space *mapping;
2704 	int prio;
2705 	int error;
2706 	union swap_header *swap_header;
2707 	int nr_extents;
2708 	sector_t span;
2709 	unsigned long maxpages;
2710 	unsigned char *swap_map = NULL;
2711 	struct swap_cluster_info *cluster_info = NULL;
2712 	unsigned long *frontswap_map = NULL;
2713 	struct page *page = NULL;
2714 	struct inode *inode = NULL;
2715 
2716 	if (swap_flags & ~SWAP_FLAGS_VALID)
2717 		return -EINVAL;
2718 
2719 	if (!capable(CAP_SYS_ADMIN))
2720 		return -EPERM;
2721 
2722 	p = alloc_swap_info();
2723 	if (IS_ERR(p))
2724 		return PTR_ERR(p);
2725 
2726 	INIT_WORK(&p->discard_work, swap_discard_work);
2727 
2728 	name = getname(specialfile);
2729 	if (IS_ERR(name)) {
2730 		error = PTR_ERR(name);
2731 		name = NULL;
2732 		goto bad_swap;
2733 	}
2734 	swap_file = file_open_name(name, O_RDWR|O_LARGEFILE, 0);
2735 	if (IS_ERR(swap_file)) {
2736 		error = PTR_ERR(swap_file);
2737 		swap_file = NULL;
2738 		goto bad_swap;
2739 	}
2740 
2741 	p->swap_file = swap_file;
2742 	mapping = swap_file->f_mapping;
2743 	inode = mapping->host;
2744 
2745 	/* If S_ISREG(inode->i_mode) will do inode_lock(inode); */
2746 	error = claim_swapfile(p, inode);
2747 	if (unlikely(error))
2748 		goto bad_swap;
2749 
2750 	/*
2751 	 * Read the swap header.
2752 	 */
2753 	if (!mapping->a_ops->readpage) {
2754 		error = -EINVAL;
2755 		goto bad_swap;
2756 	}
2757 	page = read_mapping_page(mapping, 0, swap_file);
2758 	if (IS_ERR(page)) {
2759 		error = PTR_ERR(page);
2760 		goto bad_swap;
2761 	}
2762 	swap_header = kmap(page);
2763 
2764 	maxpages = read_swap_header(p, swap_header, inode);
2765 	if (unlikely(!maxpages)) {
2766 		error = -EINVAL;
2767 		goto bad_swap;
2768 	}
2769 
2770 	/* OK, set up the swap map and apply the bad block list */
2771 	swap_map = vzalloc(maxpages);
2772 	if (!swap_map) {
2773 		error = -ENOMEM;
2774 		goto bad_swap;
2775 	}
2776 
2777 	if (bdi_cap_stable_pages_required(inode_to_bdi(inode)))
2778 		p->flags |= SWP_STABLE_WRITES;
2779 
2780 	if (p->bdev && blk_queue_nonrot(bdev_get_queue(p->bdev))) {
2781 		int cpu;
2782 		unsigned long ci, nr_cluster;
2783 
2784 		p->flags |= SWP_SOLIDSTATE;
2785 		/*
2786 		 * select a random position to start with to help wear leveling
2787 		 * SSD
2788 		 */
2789 		p->cluster_next = 1 + (prandom_u32() % p->highest_bit);
2790 		nr_cluster = DIV_ROUND_UP(maxpages, SWAPFILE_CLUSTER);
2791 
2792 		cluster_info = vzalloc(nr_cluster * sizeof(*cluster_info));
2793 		if (!cluster_info) {
2794 			error = -ENOMEM;
2795 			goto bad_swap;
2796 		}
2797 
2798 		for (ci = 0; ci < nr_cluster; ci++)
2799 			spin_lock_init(&((cluster_info + ci)->lock));
2800 
2801 		p->percpu_cluster = alloc_percpu(struct percpu_cluster);
2802 		if (!p->percpu_cluster) {
2803 			error = -ENOMEM;
2804 			goto bad_swap;
2805 		}
2806 		for_each_possible_cpu(cpu) {
2807 			struct percpu_cluster *cluster;
2808 			cluster = per_cpu_ptr(p->percpu_cluster, cpu);
2809 			cluster_set_null(&cluster->index);
2810 		}
2811 	}
2812 
2813 	error = swap_cgroup_swapon(p->type, maxpages);
2814 	if (error)
2815 		goto bad_swap;
2816 
2817 	nr_extents = setup_swap_map_and_extents(p, swap_header, swap_map,
2818 		cluster_info, maxpages, &span);
2819 	if (unlikely(nr_extents < 0)) {
2820 		error = nr_extents;
2821 		goto bad_swap;
2822 	}
2823 	/* frontswap enabled? set up bit-per-page map for frontswap */
2824 	if (IS_ENABLED(CONFIG_FRONTSWAP))
2825 		frontswap_map = vzalloc(BITS_TO_LONGS(maxpages) * sizeof(long));
2826 
2827 	if (p->bdev &&(swap_flags & SWAP_FLAG_DISCARD) && swap_discardable(p)) {
2828 		/*
2829 		 * When discard is enabled for swap with no particular
2830 		 * policy flagged, we set all swap discard flags here in
2831 		 * order to sustain backward compatibility with older
2832 		 * swapon(8) releases.
2833 		 */
2834 		p->flags |= (SWP_DISCARDABLE | SWP_AREA_DISCARD |
2835 			     SWP_PAGE_DISCARD);
2836 
2837 		/*
2838 		 * By flagging sys_swapon, a sysadmin can tell us to
2839 		 * either do single-time area discards only, or to just
2840 		 * perform discards for released swap page-clusters.
2841 		 * Now it's time to adjust the p->flags accordingly.
2842 		 */
2843 		if (swap_flags & SWAP_FLAG_DISCARD_ONCE)
2844 			p->flags &= ~SWP_PAGE_DISCARD;
2845 		else if (swap_flags & SWAP_FLAG_DISCARD_PAGES)
2846 			p->flags &= ~SWP_AREA_DISCARD;
2847 
2848 		/* issue a swapon-time discard if it's still required */
2849 		if (p->flags & SWP_AREA_DISCARD) {
2850 			int err = discard_swap(p);
2851 			if (unlikely(err))
2852 				pr_err("swapon: discard_swap(%p): %d\n",
2853 					p, err);
2854 		}
2855 	}
2856 
2857 	error = init_swap_address_space(p->type, maxpages);
2858 	if (error)
2859 		goto bad_swap;
2860 
2861 	mutex_lock(&swapon_mutex);
2862 	prio = -1;
2863 	if (swap_flags & SWAP_FLAG_PREFER)
2864 		prio =
2865 		  (swap_flags & SWAP_FLAG_PRIO_MASK) >> SWAP_FLAG_PRIO_SHIFT;
2866 	enable_swap_info(p, prio, swap_map, cluster_info, frontswap_map);
2867 
2868 	pr_info("Adding %uk swap on %s.  Priority:%d extents:%d across:%lluk %s%s%s%s%s\n",
2869 		p->pages<<(PAGE_SHIFT-10), name->name, p->prio,
2870 		nr_extents, (unsigned long long)span<<(PAGE_SHIFT-10),
2871 		(p->flags & SWP_SOLIDSTATE) ? "SS" : "",
2872 		(p->flags & SWP_DISCARDABLE) ? "D" : "",
2873 		(p->flags & SWP_AREA_DISCARD) ? "s" : "",
2874 		(p->flags & SWP_PAGE_DISCARD) ? "c" : "",
2875 		(frontswap_map) ? "FS" : "");
2876 
2877 	mutex_unlock(&swapon_mutex);
2878 	atomic_inc(&proc_poll_event);
2879 	wake_up_interruptible(&proc_poll_wait);
2880 
2881 	if (S_ISREG(inode->i_mode))
2882 		inode->i_flags |= S_SWAPFILE;
2883 	error = 0;
2884 	goto out;
2885 bad_swap:
2886 	free_percpu(p->percpu_cluster);
2887 	p->percpu_cluster = NULL;
2888 	if (inode && S_ISBLK(inode->i_mode) && p->bdev) {
2889 		set_blocksize(p->bdev, p->old_block_size);
2890 		blkdev_put(p->bdev, FMODE_READ | FMODE_WRITE | FMODE_EXCL);
2891 	}
2892 	destroy_swap_extents(p);
2893 	swap_cgroup_swapoff(p->type);
2894 	spin_lock(&swap_lock);
2895 	p->swap_file = NULL;
2896 	p->flags = 0;
2897 	spin_unlock(&swap_lock);
2898 	vfree(swap_map);
2899 	vfree(cluster_info);
2900 	if (swap_file) {
2901 		if (inode && S_ISREG(inode->i_mode)) {
2902 			inode_unlock(inode);
2903 			inode = NULL;
2904 		}
2905 		filp_close(swap_file, NULL);
2906 	}
2907 out:
2908 	if (page && !IS_ERR(page)) {
2909 		kunmap(page);
2910 		put_page(page);
2911 	}
2912 	if (name)
2913 		putname(name);
2914 	if (inode && S_ISREG(inode->i_mode))
2915 		inode_unlock(inode);
2916 	if (!error)
2917 		enable_swap_slots_cache();
2918 	return error;
2919 }
2920 
2921 void si_swapinfo(struct sysinfo *val)
2922 {
2923 	unsigned int type;
2924 	unsigned long nr_to_be_unused = 0;
2925 
2926 	spin_lock(&swap_lock);
2927 	for (type = 0; type < nr_swapfiles; type++) {
2928 		struct swap_info_struct *si = swap_info[type];
2929 
2930 		if ((si->flags & SWP_USED) && !(si->flags & SWP_WRITEOK))
2931 			nr_to_be_unused += si->inuse_pages;
2932 	}
2933 	val->freeswap = atomic_long_read(&nr_swap_pages) + nr_to_be_unused;
2934 	val->totalswap = total_swap_pages + nr_to_be_unused;
2935 	spin_unlock(&swap_lock);
2936 }
2937 
2938 /*
2939  * Verify that a swap entry is valid and increment its swap map count.
2940  *
2941  * Returns error code in following case.
2942  * - success -> 0
2943  * - swp_entry is invalid -> EINVAL
2944  * - swp_entry is migration entry -> EINVAL
2945  * - swap-cache reference is requested but there is already one. -> EEXIST
2946  * - swap-cache reference is requested but the entry is not used. -> ENOENT
2947  * - swap-mapped reference requested but needs continued swap count. -> ENOMEM
2948  */
2949 static int __swap_duplicate(swp_entry_t entry, unsigned char usage)
2950 {
2951 	struct swap_info_struct *p;
2952 	struct swap_cluster_info *ci;
2953 	unsigned long offset, type;
2954 	unsigned char count;
2955 	unsigned char has_cache;
2956 	int err = -EINVAL;
2957 
2958 	if (non_swap_entry(entry))
2959 		goto out;
2960 
2961 	type = swp_type(entry);
2962 	if (type >= nr_swapfiles)
2963 		goto bad_file;
2964 	p = swap_info[type];
2965 	offset = swp_offset(entry);
2966 	if (unlikely(offset >= p->max))
2967 		goto out;
2968 
2969 	ci = lock_cluster_or_swap_info(p, offset);
2970 
2971 	count = p->swap_map[offset];
2972 
2973 	/*
2974 	 * swapin_readahead() doesn't check if a swap entry is valid, so the
2975 	 * swap entry could be SWAP_MAP_BAD. Check here with lock held.
2976 	 */
2977 	if (unlikely(swap_count(count) == SWAP_MAP_BAD)) {
2978 		err = -ENOENT;
2979 		goto unlock_out;
2980 	}
2981 
2982 	has_cache = count & SWAP_HAS_CACHE;
2983 	count &= ~SWAP_HAS_CACHE;
2984 	err = 0;
2985 
2986 	if (usage == SWAP_HAS_CACHE) {
2987 
2988 		/* set SWAP_HAS_CACHE if there is no cache and entry is used */
2989 		if (!has_cache && count)
2990 			has_cache = SWAP_HAS_CACHE;
2991 		else if (has_cache)		/* someone else added cache */
2992 			err = -EEXIST;
2993 		else				/* no users remaining */
2994 			err = -ENOENT;
2995 
2996 	} else if (count || has_cache) {
2997 
2998 		if ((count & ~COUNT_CONTINUED) < SWAP_MAP_MAX)
2999 			count += usage;
3000 		else if ((count & ~COUNT_CONTINUED) > SWAP_MAP_MAX)
3001 			err = -EINVAL;
3002 		else if (swap_count_continued(p, offset, count))
3003 			count = COUNT_CONTINUED;
3004 		else
3005 			err = -ENOMEM;
3006 	} else
3007 		err = -ENOENT;			/* unused swap entry */
3008 
3009 	p->swap_map[offset] = count | has_cache;
3010 
3011 unlock_out:
3012 	unlock_cluster_or_swap_info(p, ci);
3013 out:
3014 	return err;
3015 
3016 bad_file:
3017 	pr_err("swap_dup: %s%08lx\n", Bad_file, entry.val);
3018 	goto out;
3019 }
3020 
3021 /*
3022  * Help swapoff by noting that swap entry belongs to shmem/tmpfs
3023  * (in which case its reference count is never incremented).
3024  */
3025 void swap_shmem_alloc(swp_entry_t entry)
3026 {
3027 	__swap_duplicate(entry, SWAP_MAP_SHMEM);
3028 }
3029 
3030 /*
3031  * Increase reference count of swap entry by 1.
3032  * Returns 0 for success, or -ENOMEM if a swap_count_continuation is required
3033  * but could not be atomically allocated.  Returns 0, just as if it succeeded,
3034  * if __swap_duplicate() fails for another reason (-EINVAL or -ENOENT), which
3035  * might occur if a page table entry has got corrupted.
3036  */
3037 int swap_duplicate(swp_entry_t entry)
3038 {
3039 	int err = 0;
3040 
3041 	while (!err && __swap_duplicate(entry, 1) == -ENOMEM)
3042 		err = add_swap_count_continuation(entry, GFP_ATOMIC);
3043 	return err;
3044 }
3045 
3046 /*
3047  * @entry: swap entry for which we allocate swap cache.
3048  *
3049  * Called when allocating swap cache for existing swap entry,
3050  * This can return error codes. Returns 0 at success.
3051  * -EBUSY means there is a swap cache.
3052  * Note: return code is different from swap_duplicate().
3053  */
3054 int swapcache_prepare(swp_entry_t entry)
3055 {
3056 	return __swap_duplicate(entry, SWAP_HAS_CACHE);
3057 }
3058 
3059 struct swap_info_struct *page_swap_info(struct page *page)
3060 {
3061 	swp_entry_t swap = { .val = page_private(page) };
3062 	return swap_info[swp_type(swap)];
3063 }
3064 
3065 /*
3066  * out-of-line __page_file_ methods to avoid include hell.
3067  */
3068 struct address_space *__page_file_mapping(struct page *page)
3069 {
3070 	VM_BUG_ON_PAGE(!PageSwapCache(page), page);
3071 	return page_swap_info(page)->swap_file->f_mapping;
3072 }
3073 EXPORT_SYMBOL_GPL(__page_file_mapping);
3074 
3075 pgoff_t __page_file_index(struct page *page)
3076 {
3077 	swp_entry_t swap = { .val = page_private(page) };
3078 	VM_BUG_ON_PAGE(!PageSwapCache(page), page);
3079 	return swp_offset(swap);
3080 }
3081 EXPORT_SYMBOL_GPL(__page_file_index);
3082 
3083 /*
3084  * add_swap_count_continuation - called when a swap count is duplicated
3085  * beyond SWAP_MAP_MAX, it allocates a new page and links that to the entry's
3086  * page of the original vmalloc'ed swap_map, to hold the continuation count
3087  * (for that entry and for its neighbouring PAGE_SIZE swap entries).  Called
3088  * again when count is duplicated beyond SWAP_MAP_MAX * SWAP_CONT_MAX, etc.
3089  *
3090  * These continuation pages are seldom referenced: the common paths all work
3091  * on the original swap_map, only referring to a continuation page when the
3092  * low "digit" of a count is incremented or decremented through SWAP_MAP_MAX.
3093  *
3094  * add_swap_count_continuation(, GFP_ATOMIC) can be called while holding
3095  * page table locks; if it fails, add_swap_count_continuation(, GFP_KERNEL)
3096  * can be called after dropping locks.
3097  */
3098 int add_swap_count_continuation(swp_entry_t entry, gfp_t gfp_mask)
3099 {
3100 	struct swap_info_struct *si;
3101 	struct swap_cluster_info *ci;
3102 	struct page *head;
3103 	struct page *page;
3104 	struct page *list_page;
3105 	pgoff_t offset;
3106 	unsigned char count;
3107 
3108 	/*
3109 	 * When debugging, it's easier to use __GFP_ZERO here; but it's better
3110 	 * for latency not to zero a page while GFP_ATOMIC and holding locks.
3111 	 */
3112 	page = alloc_page(gfp_mask | __GFP_HIGHMEM);
3113 
3114 	si = swap_info_get(entry);
3115 	if (!si) {
3116 		/*
3117 		 * An acceptable race has occurred since the failing
3118 		 * __swap_duplicate(): the swap entry has been freed,
3119 		 * perhaps even the whole swap_map cleared for swapoff.
3120 		 */
3121 		goto outer;
3122 	}
3123 
3124 	offset = swp_offset(entry);
3125 
3126 	ci = lock_cluster(si, offset);
3127 
3128 	count = si->swap_map[offset] & ~SWAP_HAS_CACHE;
3129 
3130 	if ((count & ~COUNT_CONTINUED) != SWAP_MAP_MAX) {
3131 		/*
3132 		 * The higher the swap count, the more likely it is that tasks
3133 		 * will race to add swap count continuation: we need to avoid
3134 		 * over-provisioning.
3135 		 */
3136 		goto out;
3137 	}
3138 
3139 	if (!page) {
3140 		unlock_cluster(ci);
3141 		spin_unlock(&si->lock);
3142 		return -ENOMEM;
3143 	}
3144 
3145 	/*
3146 	 * We are fortunate that although vmalloc_to_page uses pte_offset_map,
3147 	 * no architecture is using highmem pages for kernel page tables: so it
3148 	 * will not corrupt the GFP_ATOMIC caller's atomic page table kmaps.
3149 	 */
3150 	head = vmalloc_to_page(si->swap_map + offset);
3151 	offset &= ~PAGE_MASK;
3152 
3153 	/*
3154 	 * Page allocation does not initialize the page's lru field,
3155 	 * but it does always reset its private field.
3156 	 */
3157 	if (!page_private(head)) {
3158 		BUG_ON(count & COUNT_CONTINUED);
3159 		INIT_LIST_HEAD(&head->lru);
3160 		set_page_private(head, SWP_CONTINUED);
3161 		si->flags |= SWP_CONTINUED;
3162 	}
3163 
3164 	list_for_each_entry(list_page, &head->lru, lru) {
3165 		unsigned char *map;
3166 
3167 		/*
3168 		 * If the previous map said no continuation, but we've found
3169 		 * a continuation page, free our allocation and use this one.
3170 		 */
3171 		if (!(count & COUNT_CONTINUED))
3172 			goto out;
3173 
3174 		map = kmap_atomic(list_page) + offset;
3175 		count = *map;
3176 		kunmap_atomic(map);
3177 
3178 		/*
3179 		 * If this continuation count now has some space in it,
3180 		 * free our allocation and use this one.
3181 		 */
3182 		if ((count & ~COUNT_CONTINUED) != SWAP_CONT_MAX)
3183 			goto out;
3184 	}
3185 
3186 	list_add_tail(&page->lru, &head->lru);
3187 	page = NULL;			/* now it's attached, don't free it */
3188 out:
3189 	unlock_cluster(ci);
3190 	spin_unlock(&si->lock);
3191 outer:
3192 	if (page)
3193 		__free_page(page);
3194 	return 0;
3195 }
3196 
3197 /*
3198  * swap_count_continued - when the original swap_map count is incremented
3199  * from SWAP_MAP_MAX, check if there is already a continuation page to carry
3200  * into, carry if so, or else fail until a new continuation page is allocated;
3201  * when the original swap_map count is decremented from 0 with continuation,
3202  * borrow from the continuation and report whether it still holds more.
3203  * Called while __swap_duplicate() or swap_entry_free() holds swap or cluster
3204  * lock.
3205  */
3206 static bool swap_count_continued(struct swap_info_struct *si,
3207 				 pgoff_t offset, unsigned char count)
3208 {
3209 	struct page *head;
3210 	struct page *page;
3211 	unsigned char *map;
3212 
3213 	head = vmalloc_to_page(si->swap_map + offset);
3214 	if (page_private(head) != SWP_CONTINUED) {
3215 		BUG_ON(count & COUNT_CONTINUED);
3216 		return false;		/* need to add count continuation */
3217 	}
3218 
3219 	offset &= ~PAGE_MASK;
3220 	page = list_entry(head->lru.next, struct page, lru);
3221 	map = kmap_atomic(page) + offset;
3222 
3223 	if (count == SWAP_MAP_MAX)	/* initial increment from swap_map */
3224 		goto init_map;		/* jump over SWAP_CONT_MAX checks */
3225 
3226 	if (count == (SWAP_MAP_MAX | COUNT_CONTINUED)) { /* incrementing */
3227 		/*
3228 		 * Think of how you add 1 to 999
3229 		 */
3230 		while (*map == (SWAP_CONT_MAX | COUNT_CONTINUED)) {
3231 			kunmap_atomic(map);
3232 			page = list_entry(page->lru.next, struct page, lru);
3233 			BUG_ON(page == head);
3234 			map = kmap_atomic(page) + offset;
3235 		}
3236 		if (*map == SWAP_CONT_MAX) {
3237 			kunmap_atomic(map);
3238 			page = list_entry(page->lru.next, struct page, lru);
3239 			if (page == head)
3240 				return false;	/* add count continuation */
3241 			map = kmap_atomic(page) + offset;
3242 init_map:		*map = 0;		/* we didn't zero the page */
3243 		}
3244 		*map += 1;
3245 		kunmap_atomic(map);
3246 		page = list_entry(page->lru.prev, struct page, lru);
3247 		while (page != head) {
3248 			map = kmap_atomic(page) + offset;
3249 			*map = COUNT_CONTINUED;
3250 			kunmap_atomic(map);
3251 			page = list_entry(page->lru.prev, struct page, lru);
3252 		}
3253 		return true;			/* incremented */
3254 
3255 	} else {				/* decrementing */
3256 		/*
3257 		 * Think of how you subtract 1 from 1000
3258 		 */
3259 		BUG_ON(count != COUNT_CONTINUED);
3260 		while (*map == COUNT_CONTINUED) {
3261 			kunmap_atomic(map);
3262 			page = list_entry(page->lru.next, struct page, lru);
3263 			BUG_ON(page == head);
3264 			map = kmap_atomic(page) + offset;
3265 		}
3266 		BUG_ON(*map == 0);
3267 		*map -= 1;
3268 		if (*map == 0)
3269 			count = 0;
3270 		kunmap_atomic(map);
3271 		page = list_entry(page->lru.prev, struct page, lru);
3272 		while (page != head) {
3273 			map = kmap_atomic(page) + offset;
3274 			*map = SWAP_CONT_MAX | count;
3275 			count = COUNT_CONTINUED;
3276 			kunmap_atomic(map);
3277 			page = list_entry(page->lru.prev, struct page, lru);
3278 		}
3279 		return count == COUNT_CONTINUED;
3280 	}
3281 }
3282 
3283 /*
3284  * free_swap_count_continuations - swapoff free all the continuation pages
3285  * appended to the swap_map, after swap_map is quiesced, before vfree'ing it.
3286  */
3287 static void free_swap_count_continuations(struct swap_info_struct *si)
3288 {
3289 	pgoff_t offset;
3290 
3291 	for (offset = 0; offset < si->max; offset += PAGE_SIZE) {
3292 		struct page *head;
3293 		head = vmalloc_to_page(si->swap_map + offset);
3294 		if (page_private(head)) {
3295 			struct page *page, *next;
3296 
3297 			list_for_each_entry_safe(page, next, &head->lru, lru) {
3298 				list_del(&page->lru);
3299 				__free_page(page);
3300 			}
3301 		}
3302 	}
3303 }
3304