xref: /openbmc/linux/mm/swapfile.c (revision e58e871b)
1 /*
2  *  linux/mm/swapfile.c
3  *
4  *  Copyright (C) 1991, 1992, 1993, 1994  Linus Torvalds
5  *  Swap reorganised 29.12.95, Stephen Tweedie
6  */
7 
8 #include <linux/mm.h>
9 #include <linux/sched/mm.h>
10 #include <linux/sched/task.h>
11 #include <linux/hugetlb.h>
12 #include <linux/mman.h>
13 #include <linux/slab.h>
14 #include <linux/kernel_stat.h>
15 #include <linux/swap.h>
16 #include <linux/vmalloc.h>
17 #include <linux/pagemap.h>
18 #include <linux/namei.h>
19 #include <linux/shmem_fs.h>
20 #include <linux/blkdev.h>
21 #include <linux/random.h>
22 #include <linux/writeback.h>
23 #include <linux/proc_fs.h>
24 #include <linux/seq_file.h>
25 #include <linux/init.h>
26 #include <linux/ksm.h>
27 #include <linux/rmap.h>
28 #include <linux/security.h>
29 #include <linux/backing-dev.h>
30 #include <linux/mutex.h>
31 #include <linux/capability.h>
32 #include <linux/syscalls.h>
33 #include <linux/memcontrol.h>
34 #include <linux/poll.h>
35 #include <linux/oom.h>
36 #include <linux/frontswap.h>
37 #include <linux/swapfile.h>
38 #include <linux/export.h>
39 #include <linux/swap_slots.h>
40 
41 #include <asm/pgtable.h>
42 #include <asm/tlbflush.h>
43 #include <linux/swapops.h>
44 #include <linux/swap_cgroup.h>
45 
46 static bool swap_count_continued(struct swap_info_struct *, pgoff_t,
47 				 unsigned char);
48 static void free_swap_count_continuations(struct swap_info_struct *);
49 static sector_t map_swap_entry(swp_entry_t, struct block_device**);
50 
51 DEFINE_SPINLOCK(swap_lock);
52 static unsigned int nr_swapfiles;
53 atomic_long_t nr_swap_pages;
54 /*
55  * Some modules use swappable objects and may try to swap them out under
56  * memory pressure (via the shrinker). Before doing so, they may wish to
57  * check to see if any swap space is available.
58  */
59 EXPORT_SYMBOL_GPL(nr_swap_pages);
60 /* protected with swap_lock. reading in vm_swap_full() doesn't need lock */
61 long total_swap_pages;
62 static int least_priority;
63 
64 static const char Bad_file[] = "Bad swap file entry ";
65 static const char Unused_file[] = "Unused swap file entry ";
66 static const char Bad_offset[] = "Bad swap offset entry ";
67 static const char Unused_offset[] = "Unused swap offset entry ";
68 
69 /*
70  * all active swap_info_structs
71  * protected with swap_lock, and ordered by priority.
72  */
73 PLIST_HEAD(swap_active_head);
74 
75 /*
76  * all available (active, not full) swap_info_structs
77  * protected with swap_avail_lock, ordered by priority.
78  * This is used by get_swap_page() instead of swap_active_head
79  * because swap_active_head includes all swap_info_structs,
80  * but get_swap_page() doesn't need to look at full ones.
81  * This uses its own lock instead of swap_lock because when a
82  * swap_info_struct changes between not-full/full, it needs to
83  * add/remove itself to/from this list, but the swap_info_struct->lock
84  * is held and the locking order requires swap_lock to be taken
85  * before any swap_info_struct->lock.
86  */
87 static PLIST_HEAD(swap_avail_head);
88 static DEFINE_SPINLOCK(swap_avail_lock);
89 
90 struct swap_info_struct *swap_info[MAX_SWAPFILES];
91 
92 static DEFINE_MUTEX(swapon_mutex);
93 
94 static DECLARE_WAIT_QUEUE_HEAD(proc_poll_wait);
95 /* Activity counter to indicate that a swapon or swapoff has occurred */
96 static atomic_t proc_poll_event = ATOMIC_INIT(0);
97 
98 static inline unsigned char swap_count(unsigned char ent)
99 {
100 	return ent & ~SWAP_HAS_CACHE;	/* may include SWAP_HAS_CONT flag */
101 }
102 
103 /* returns 1 if swap entry is freed */
104 static int
105 __try_to_reclaim_swap(struct swap_info_struct *si, unsigned long offset)
106 {
107 	swp_entry_t entry = swp_entry(si->type, offset);
108 	struct page *page;
109 	int ret = 0;
110 
111 	page = find_get_page(swap_address_space(entry), swp_offset(entry));
112 	if (!page)
113 		return 0;
114 	/*
115 	 * This function is called from scan_swap_map() and it's called
116 	 * by vmscan.c at reclaiming pages. So, we hold a lock on a page, here.
117 	 * We have to use trylock for avoiding deadlock. This is a special
118 	 * case and you should use try_to_free_swap() with explicit lock_page()
119 	 * in usual operations.
120 	 */
121 	if (trylock_page(page)) {
122 		ret = try_to_free_swap(page);
123 		unlock_page(page);
124 	}
125 	put_page(page);
126 	return ret;
127 }
128 
129 /*
130  * swapon tell device that all the old swap contents can be discarded,
131  * to allow the swap device to optimize its wear-levelling.
132  */
133 static int discard_swap(struct swap_info_struct *si)
134 {
135 	struct swap_extent *se;
136 	sector_t start_block;
137 	sector_t nr_blocks;
138 	int err = 0;
139 
140 	/* Do not discard the swap header page! */
141 	se = &si->first_swap_extent;
142 	start_block = (se->start_block + 1) << (PAGE_SHIFT - 9);
143 	nr_blocks = ((sector_t)se->nr_pages - 1) << (PAGE_SHIFT - 9);
144 	if (nr_blocks) {
145 		err = blkdev_issue_discard(si->bdev, start_block,
146 				nr_blocks, GFP_KERNEL, 0);
147 		if (err)
148 			return err;
149 		cond_resched();
150 	}
151 
152 	list_for_each_entry(se, &si->first_swap_extent.list, list) {
153 		start_block = se->start_block << (PAGE_SHIFT - 9);
154 		nr_blocks = (sector_t)se->nr_pages << (PAGE_SHIFT - 9);
155 
156 		err = blkdev_issue_discard(si->bdev, start_block,
157 				nr_blocks, GFP_KERNEL, 0);
158 		if (err)
159 			break;
160 
161 		cond_resched();
162 	}
163 	return err;		/* That will often be -EOPNOTSUPP */
164 }
165 
166 /*
167  * swap allocation tell device that a cluster of swap can now be discarded,
168  * to allow the swap device to optimize its wear-levelling.
169  */
170 static void discard_swap_cluster(struct swap_info_struct *si,
171 				 pgoff_t start_page, pgoff_t nr_pages)
172 {
173 	struct swap_extent *se = si->curr_swap_extent;
174 	int found_extent = 0;
175 
176 	while (nr_pages) {
177 		if (se->start_page <= start_page &&
178 		    start_page < se->start_page + se->nr_pages) {
179 			pgoff_t offset = start_page - se->start_page;
180 			sector_t start_block = se->start_block + offset;
181 			sector_t nr_blocks = se->nr_pages - offset;
182 
183 			if (nr_blocks > nr_pages)
184 				nr_blocks = nr_pages;
185 			start_page += nr_blocks;
186 			nr_pages -= nr_blocks;
187 
188 			if (!found_extent++)
189 				si->curr_swap_extent = se;
190 
191 			start_block <<= PAGE_SHIFT - 9;
192 			nr_blocks <<= PAGE_SHIFT - 9;
193 			if (blkdev_issue_discard(si->bdev, start_block,
194 				    nr_blocks, GFP_NOIO, 0))
195 				break;
196 		}
197 
198 		se = list_next_entry(se, list);
199 	}
200 }
201 
202 #define SWAPFILE_CLUSTER	256
203 #define LATENCY_LIMIT		256
204 
205 static inline void cluster_set_flag(struct swap_cluster_info *info,
206 	unsigned int flag)
207 {
208 	info->flags = flag;
209 }
210 
211 static inline unsigned int cluster_count(struct swap_cluster_info *info)
212 {
213 	return info->data;
214 }
215 
216 static inline void cluster_set_count(struct swap_cluster_info *info,
217 				     unsigned int c)
218 {
219 	info->data = c;
220 }
221 
222 static inline void cluster_set_count_flag(struct swap_cluster_info *info,
223 					 unsigned int c, unsigned int f)
224 {
225 	info->flags = f;
226 	info->data = c;
227 }
228 
229 static inline unsigned int cluster_next(struct swap_cluster_info *info)
230 {
231 	return info->data;
232 }
233 
234 static inline void cluster_set_next(struct swap_cluster_info *info,
235 				    unsigned int n)
236 {
237 	info->data = n;
238 }
239 
240 static inline void cluster_set_next_flag(struct swap_cluster_info *info,
241 					 unsigned int n, unsigned int f)
242 {
243 	info->flags = f;
244 	info->data = n;
245 }
246 
247 static inline bool cluster_is_free(struct swap_cluster_info *info)
248 {
249 	return info->flags & CLUSTER_FLAG_FREE;
250 }
251 
252 static inline bool cluster_is_null(struct swap_cluster_info *info)
253 {
254 	return info->flags & CLUSTER_FLAG_NEXT_NULL;
255 }
256 
257 static inline void cluster_set_null(struct swap_cluster_info *info)
258 {
259 	info->flags = CLUSTER_FLAG_NEXT_NULL;
260 	info->data = 0;
261 }
262 
263 static inline struct swap_cluster_info *lock_cluster(struct swap_info_struct *si,
264 						     unsigned long offset)
265 {
266 	struct swap_cluster_info *ci;
267 
268 	ci = si->cluster_info;
269 	if (ci) {
270 		ci += offset / SWAPFILE_CLUSTER;
271 		spin_lock(&ci->lock);
272 	}
273 	return ci;
274 }
275 
276 static inline void unlock_cluster(struct swap_cluster_info *ci)
277 {
278 	if (ci)
279 		spin_unlock(&ci->lock);
280 }
281 
282 static inline struct swap_cluster_info *lock_cluster_or_swap_info(
283 	struct swap_info_struct *si,
284 	unsigned long offset)
285 {
286 	struct swap_cluster_info *ci;
287 
288 	ci = lock_cluster(si, offset);
289 	if (!ci)
290 		spin_lock(&si->lock);
291 
292 	return ci;
293 }
294 
295 static inline void unlock_cluster_or_swap_info(struct swap_info_struct *si,
296 					       struct swap_cluster_info *ci)
297 {
298 	if (ci)
299 		unlock_cluster(ci);
300 	else
301 		spin_unlock(&si->lock);
302 }
303 
304 static inline bool cluster_list_empty(struct swap_cluster_list *list)
305 {
306 	return cluster_is_null(&list->head);
307 }
308 
309 static inline unsigned int cluster_list_first(struct swap_cluster_list *list)
310 {
311 	return cluster_next(&list->head);
312 }
313 
314 static void cluster_list_init(struct swap_cluster_list *list)
315 {
316 	cluster_set_null(&list->head);
317 	cluster_set_null(&list->tail);
318 }
319 
320 static void cluster_list_add_tail(struct swap_cluster_list *list,
321 				  struct swap_cluster_info *ci,
322 				  unsigned int idx)
323 {
324 	if (cluster_list_empty(list)) {
325 		cluster_set_next_flag(&list->head, idx, 0);
326 		cluster_set_next_flag(&list->tail, idx, 0);
327 	} else {
328 		struct swap_cluster_info *ci_tail;
329 		unsigned int tail = cluster_next(&list->tail);
330 
331 		/*
332 		 * Nested cluster lock, but both cluster locks are
333 		 * only acquired when we held swap_info_struct->lock
334 		 */
335 		ci_tail = ci + tail;
336 		spin_lock_nested(&ci_tail->lock, SINGLE_DEPTH_NESTING);
337 		cluster_set_next(ci_tail, idx);
338 		spin_unlock(&ci_tail->lock);
339 		cluster_set_next_flag(&list->tail, idx, 0);
340 	}
341 }
342 
343 static unsigned int cluster_list_del_first(struct swap_cluster_list *list,
344 					   struct swap_cluster_info *ci)
345 {
346 	unsigned int idx;
347 
348 	idx = cluster_next(&list->head);
349 	if (cluster_next(&list->tail) == idx) {
350 		cluster_set_null(&list->head);
351 		cluster_set_null(&list->tail);
352 	} else
353 		cluster_set_next_flag(&list->head,
354 				      cluster_next(&ci[idx]), 0);
355 
356 	return idx;
357 }
358 
359 /* Add a cluster to discard list and schedule it to do discard */
360 static void swap_cluster_schedule_discard(struct swap_info_struct *si,
361 		unsigned int idx)
362 {
363 	/*
364 	 * If scan_swap_map() can't find a free cluster, it will check
365 	 * si->swap_map directly. To make sure the discarding cluster isn't
366 	 * taken by scan_swap_map(), mark the swap entries bad (occupied). It
367 	 * will be cleared after discard
368 	 */
369 	memset(si->swap_map + idx * SWAPFILE_CLUSTER,
370 			SWAP_MAP_BAD, SWAPFILE_CLUSTER);
371 
372 	cluster_list_add_tail(&si->discard_clusters, si->cluster_info, idx);
373 
374 	schedule_work(&si->discard_work);
375 }
376 
377 /*
378  * Doing discard actually. After a cluster discard is finished, the cluster
379  * will be added to free cluster list. caller should hold si->lock.
380 */
381 static void swap_do_scheduled_discard(struct swap_info_struct *si)
382 {
383 	struct swap_cluster_info *info, *ci;
384 	unsigned int idx;
385 
386 	info = si->cluster_info;
387 
388 	while (!cluster_list_empty(&si->discard_clusters)) {
389 		idx = cluster_list_del_first(&si->discard_clusters, info);
390 		spin_unlock(&si->lock);
391 
392 		discard_swap_cluster(si, idx * SWAPFILE_CLUSTER,
393 				SWAPFILE_CLUSTER);
394 
395 		spin_lock(&si->lock);
396 		ci = lock_cluster(si, idx * SWAPFILE_CLUSTER);
397 		cluster_set_flag(ci, CLUSTER_FLAG_FREE);
398 		unlock_cluster(ci);
399 		cluster_list_add_tail(&si->free_clusters, info, idx);
400 		ci = lock_cluster(si, idx * SWAPFILE_CLUSTER);
401 		memset(si->swap_map + idx * SWAPFILE_CLUSTER,
402 				0, SWAPFILE_CLUSTER);
403 		unlock_cluster(ci);
404 	}
405 }
406 
407 static void swap_discard_work(struct work_struct *work)
408 {
409 	struct swap_info_struct *si;
410 
411 	si = container_of(work, struct swap_info_struct, discard_work);
412 
413 	spin_lock(&si->lock);
414 	swap_do_scheduled_discard(si);
415 	spin_unlock(&si->lock);
416 }
417 
418 /*
419  * The cluster corresponding to page_nr will be used. The cluster will be
420  * removed from free cluster list and its usage counter will be increased.
421  */
422 static void inc_cluster_info_page(struct swap_info_struct *p,
423 	struct swap_cluster_info *cluster_info, unsigned long page_nr)
424 {
425 	unsigned long idx = page_nr / SWAPFILE_CLUSTER;
426 
427 	if (!cluster_info)
428 		return;
429 	if (cluster_is_free(&cluster_info[idx])) {
430 		VM_BUG_ON(cluster_list_first(&p->free_clusters) != idx);
431 		cluster_list_del_first(&p->free_clusters, cluster_info);
432 		cluster_set_count_flag(&cluster_info[idx], 0, 0);
433 	}
434 
435 	VM_BUG_ON(cluster_count(&cluster_info[idx]) >= SWAPFILE_CLUSTER);
436 	cluster_set_count(&cluster_info[idx],
437 		cluster_count(&cluster_info[idx]) + 1);
438 }
439 
440 /*
441  * The cluster corresponding to page_nr decreases one usage. If the usage
442  * counter becomes 0, which means no page in the cluster is in using, we can
443  * optionally discard the cluster and add it to free cluster list.
444  */
445 static void dec_cluster_info_page(struct swap_info_struct *p,
446 	struct swap_cluster_info *cluster_info, unsigned long page_nr)
447 {
448 	unsigned long idx = page_nr / SWAPFILE_CLUSTER;
449 
450 	if (!cluster_info)
451 		return;
452 
453 	VM_BUG_ON(cluster_count(&cluster_info[idx]) == 0);
454 	cluster_set_count(&cluster_info[idx],
455 		cluster_count(&cluster_info[idx]) - 1);
456 
457 	if (cluster_count(&cluster_info[idx]) == 0) {
458 		/*
459 		 * If the swap is discardable, prepare discard the cluster
460 		 * instead of free it immediately. The cluster will be freed
461 		 * after discard.
462 		 */
463 		if ((p->flags & (SWP_WRITEOK | SWP_PAGE_DISCARD)) ==
464 				 (SWP_WRITEOK | SWP_PAGE_DISCARD)) {
465 			swap_cluster_schedule_discard(p, idx);
466 			return;
467 		}
468 
469 		cluster_set_flag(&cluster_info[idx], CLUSTER_FLAG_FREE);
470 		cluster_list_add_tail(&p->free_clusters, cluster_info, idx);
471 	}
472 }
473 
474 /*
475  * It's possible scan_swap_map() uses a free cluster in the middle of free
476  * cluster list. Avoiding such abuse to avoid list corruption.
477  */
478 static bool
479 scan_swap_map_ssd_cluster_conflict(struct swap_info_struct *si,
480 	unsigned long offset)
481 {
482 	struct percpu_cluster *percpu_cluster;
483 	bool conflict;
484 
485 	offset /= SWAPFILE_CLUSTER;
486 	conflict = !cluster_list_empty(&si->free_clusters) &&
487 		offset != cluster_list_first(&si->free_clusters) &&
488 		cluster_is_free(&si->cluster_info[offset]);
489 
490 	if (!conflict)
491 		return false;
492 
493 	percpu_cluster = this_cpu_ptr(si->percpu_cluster);
494 	cluster_set_null(&percpu_cluster->index);
495 	return true;
496 }
497 
498 /*
499  * Try to get a swap entry from current cpu's swap entry pool (a cluster). This
500  * might involve allocating a new cluster for current CPU too.
501  */
502 static bool scan_swap_map_try_ssd_cluster(struct swap_info_struct *si,
503 	unsigned long *offset, unsigned long *scan_base)
504 {
505 	struct percpu_cluster *cluster;
506 	struct swap_cluster_info *ci;
507 	bool found_free;
508 	unsigned long tmp, max;
509 
510 new_cluster:
511 	cluster = this_cpu_ptr(si->percpu_cluster);
512 	if (cluster_is_null(&cluster->index)) {
513 		if (!cluster_list_empty(&si->free_clusters)) {
514 			cluster->index = si->free_clusters.head;
515 			cluster->next = cluster_next(&cluster->index) *
516 					SWAPFILE_CLUSTER;
517 		} else if (!cluster_list_empty(&si->discard_clusters)) {
518 			/*
519 			 * we don't have free cluster but have some clusters in
520 			 * discarding, do discard now and reclaim them
521 			 */
522 			swap_do_scheduled_discard(si);
523 			*scan_base = *offset = si->cluster_next;
524 			goto new_cluster;
525 		} else
526 			return false;
527 	}
528 
529 	found_free = false;
530 
531 	/*
532 	 * Other CPUs can use our cluster if they can't find a free cluster,
533 	 * check if there is still free entry in the cluster
534 	 */
535 	tmp = cluster->next;
536 	max = min_t(unsigned long, si->max,
537 		    (cluster_next(&cluster->index) + 1) * SWAPFILE_CLUSTER);
538 	if (tmp >= max) {
539 		cluster_set_null(&cluster->index);
540 		goto new_cluster;
541 	}
542 	ci = lock_cluster(si, tmp);
543 	while (tmp < max) {
544 		if (!si->swap_map[tmp]) {
545 			found_free = true;
546 			break;
547 		}
548 		tmp++;
549 	}
550 	unlock_cluster(ci);
551 	if (!found_free) {
552 		cluster_set_null(&cluster->index);
553 		goto new_cluster;
554 	}
555 	cluster->next = tmp + 1;
556 	*offset = tmp;
557 	*scan_base = tmp;
558 	return found_free;
559 }
560 
561 static int scan_swap_map_slots(struct swap_info_struct *si,
562 			       unsigned char usage, int nr,
563 			       swp_entry_t slots[])
564 {
565 	struct swap_cluster_info *ci;
566 	unsigned long offset;
567 	unsigned long scan_base;
568 	unsigned long last_in_cluster = 0;
569 	int latency_ration = LATENCY_LIMIT;
570 	int n_ret = 0;
571 
572 	if (nr > SWAP_BATCH)
573 		nr = SWAP_BATCH;
574 
575 	/*
576 	 * We try to cluster swap pages by allocating them sequentially
577 	 * in swap.  Once we've allocated SWAPFILE_CLUSTER pages this
578 	 * way, however, we resort to first-free allocation, starting
579 	 * a new cluster.  This prevents us from scattering swap pages
580 	 * all over the entire swap partition, so that we reduce
581 	 * overall disk seek times between swap pages.  -- sct
582 	 * But we do now try to find an empty cluster.  -Andrea
583 	 * And we let swap pages go all over an SSD partition.  Hugh
584 	 */
585 
586 	si->flags += SWP_SCANNING;
587 	scan_base = offset = si->cluster_next;
588 
589 	/* SSD algorithm */
590 	if (si->cluster_info) {
591 		if (scan_swap_map_try_ssd_cluster(si, &offset, &scan_base))
592 			goto checks;
593 		else
594 			goto scan;
595 	}
596 
597 	if (unlikely(!si->cluster_nr--)) {
598 		if (si->pages - si->inuse_pages < SWAPFILE_CLUSTER) {
599 			si->cluster_nr = SWAPFILE_CLUSTER - 1;
600 			goto checks;
601 		}
602 
603 		spin_unlock(&si->lock);
604 
605 		/*
606 		 * If seek is expensive, start searching for new cluster from
607 		 * start of partition, to minimize the span of allocated swap.
608 		 * If seek is cheap, that is the SWP_SOLIDSTATE si->cluster_info
609 		 * case, just handled by scan_swap_map_try_ssd_cluster() above.
610 		 */
611 		scan_base = offset = si->lowest_bit;
612 		last_in_cluster = offset + SWAPFILE_CLUSTER - 1;
613 
614 		/* Locate the first empty (unaligned) cluster */
615 		for (; last_in_cluster <= si->highest_bit; offset++) {
616 			if (si->swap_map[offset])
617 				last_in_cluster = offset + SWAPFILE_CLUSTER;
618 			else if (offset == last_in_cluster) {
619 				spin_lock(&si->lock);
620 				offset -= SWAPFILE_CLUSTER - 1;
621 				si->cluster_next = offset;
622 				si->cluster_nr = SWAPFILE_CLUSTER - 1;
623 				goto checks;
624 			}
625 			if (unlikely(--latency_ration < 0)) {
626 				cond_resched();
627 				latency_ration = LATENCY_LIMIT;
628 			}
629 		}
630 
631 		offset = scan_base;
632 		spin_lock(&si->lock);
633 		si->cluster_nr = SWAPFILE_CLUSTER - 1;
634 	}
635 
636 checks:
637 	if (si->cluster_info) {
638 		while (scan_swap_map_ssd_cluster_conflict(si, offset)) {
639 		/* take a break if we already got some slots */
640 			if (n_ret)
641 				goto done;
642 			if (!scan_swap_map_try_ssd_cluster(si, &offset,
643 							&scan_base))
644 				goto scan;
645 		}
646 	}
647 	if (!(si->flags & SWP_WRITEOK))
648 		goto no_page;
649 	if (!si->highest_bit)
650 		goto no_page;
651 	if (offset > si->highest_bit)
652 		scan_base = offset = si->lowest_bit;
653 
654 	ci = lock_cluster(si, offset);
655 	/* reuse swap entry of cache-only swap if not busy. */
656 	if (vm_swap_full() && si->swap_map[offset] == SWAP_HAS_CACHE) {
657 		int swap_was_freed;
658 		unlock_cluster(ci);
659 		spin_unlock(&si->lock);
660 		swap_was_freed = __try_to_reclaim_swap(si, offset);
661 		spin_lock(&si->lock);
662 		/* entry was freed successfully, try to use this again */
663 		if (swap_was_freed)
664 			goto checks;
665 		goto scan; /* check next one */
666 	}
667 
668 	if (si->swap_map[offset]) {
669 		unlock_cluster(ci);
670 		if (!n_ret)
671 			goto scan;
672 		else
673 			goto done;
674 	}
675 	si->swap_map[offset] = usage;
676 	inc_cluster_info_page(si, si->cluster_info, offset);
677 	unlock_cluster(ci);
678 
679 	if (offset == si->lowest_bit)
680 		si->lowest_bit++;
681 	if (offset == si->highest_bit)
682 		si->highest_bit--;
683 	si->inuse_pages++;
684 	if (si->inuse_pages == si->pages) {
685 		si->lowest_bit = si->max;
686 		si->highest_bit = 0;
687 		spin_lock(&swap_avail_lock);
688 		plist_del(&si->avail_list, &swap_avail_head);
689 		spin_unlock(&swap_avail_lock);
690 	}
691 	si->cluster_next = offset + 1;
692 	slots[n_ret++] = swp_entry(si->type, offset);
693 
694 	/* got enough slots or reach max slots? */
695 	if ((n_ret == nr) || (offset >= si->highest_bit))
696 		goto done;
697 
698 	/* search for next available slot */
699 
700 	/* time to take a break? */
701 	if (unlikely(--latency_ration < 0)) {
702 		if (n_ret)
703 			goto done;
704 		spin_unlock(&si->lock);
705 		cond_resched();
706 		spin_lock(&si->lock);
707 		latency_ration = LATENCY_LIMIT;
708 	}
709 
710 	/* try to get more slots in cluster */
711 	if (si->cluster_info) {
712 		if (scan_swap_map_try_ssd_cluster(si, &offset, &scan_base))
713 			goto checks;
714 		else
715 			goto done;
716 	}
717 	/* non-ssd case */
718 	++offset;
719 
720 	/* non-ssd case, still more slots in cluster? */
721 	if (si->cluster_nr && !si->swap_map[offset]) {
722 		--si->cluster_nr;
723 		goto checks;
724 	}
725 
726 done:
727 	si->flags -= SWP_SCANNING;
728 	return n_ret;
729 
730 scan:
731 	spin_unlock(&si->lock);
732 	while (++offset <= si->highest_bit) {
733 		if (!si->swap_map[offset]) {
734 			spin_lock(&si->lock);
735 			goto checks;
736 		}
737 		if (vm_swap_full() && si->swap_map[offset] == SWAP_HAS_CACHE) {
738 			spin_lock(&si->lock);
739 			goto checks;
740 		}
741 		if (unlikely(--latency_ration < 0)) {
742 			cond_resched();
743 			latency_ration = LATENCY_LIMIT;
744 		}
745 	}
746 	offset = si->lowest_bit;
747 	while (offset < scan_base) {
748 		if (!si->swap_map[offset]) {
749 			spin_lock(&si->lock);
750 			goto checks;
751 		}
752 		if (vm_swap_full() && si->swap_map[offset] == SWAP_HAS_CACHE) {
753 			spin_lock(&si->lock);
754 			goto checks;
755 		}
756 		if (unlikely(--latency_ration < 0)) {
757 			cond_resched();
758 			latency_ration = LATENCY_LIMIT;
759 		}
760 		offset++;
761 	}
762 	spin_lock(&si->lock);
763 
764 no_page:
765 	si->flags -= SWP_SCANNING;
766 	return n_ret;
767 }
768 
769 static unsigned long scan_swap_map(struct swap_info_struct *si,
770 				   unsigned char usage)
771 {
772 	swp_entry_t entry;
773 	int n_ret;
774 
775 	n_ret = scan_swap_map_slots(si, usage, 1, &entry);
776 
777 	if (n_ret)
778 		return swp_offset(entry);
779 	else
780 		return 0;
781 
782 }
783 
784 int get_swap_pages(int n_goal, swp_entry_t swp_entries[])
785 {
786 	struct swap_info_struct *si, *next;
787 	long avail_pgs;
788 	int n_ret = 0;
789 
790 	avail_pgs = atomic_long_read(&nr_swap_pages);
791 	if (avail_pgs <= 0)
792 		goto noswap;
793 
794 	if (n_goal > SWAP_BATCH)
795 		n_goal = SWAP_BATCH;
796 
797 	if (n_goal > avail_pgs)
798 		n_goal = avail_pgs;
799 
800 	atomic_long_sub(n_goal, &nr_swap_pages);
801 
802 	spin_lock(&swap_avail_lock);
803 
804 start_over:
805 	plist_for_each_entry_safe(si, next, &swap_avail_head, avail_list) {
806 		/* requeue si to after same-priority siblings */
807 		plist_requeue(&si->avail_list, &swap_avail_head);
808 		spin_unlock(&swap_avail_lock);
809 		spin_lock(&si->lock);
810 		if (!si->highest_bit || !(si->flags & SWP_WRITEOK)) {
811 			spin_lock(&swap_avail_lock);
812 			if (plist_node_empty(&si->avail_list)) {
813 				spin_unlock(&si->lock);
814 				goto nextsi;
815 			}
816 			WARN(!si->highest_bit,
817 			     "swap_info %d in list but !highest_bit\n",
818 			     si->type);
819 			WARN(!(si->flags & SWP_WRITEOK),
820 			     "swap_info %d in list but !SWP_WRITEOK\n",
821 			     si->type);
822 			plist_del(&si->avail_list, &swap_avail_head);
823 			spin_unlock(&si->lock);
824 			goto nextsi;
825 		}
826 		n_ret = scan_swap_map_slots(si, SWAP_HAS_CACHE,
827 					    n_goal, swp_entries);
828 		spin_unlock(&si->lock);
829 		if (n_ret)
830 			goto check_out;
831 		pr_debug("scan_swap_map of si %d failed to find offset\n",
832 			si->type);
833 
834 		spin_lock(&swap_avail_lock);
835 nextsi:
836 		/*
837 		 * if we got here, it's likely that si was almost full before,
838 		 * and since scan_swap_map() can drop the si->lock, multiple
839 		 * callers probably all tried to get a page from the same si
840 		 * and it filled up before we could get one; or, the si filled
841 		 * up between us dropping swap_avail_lock and taking si->lock.
842 		 * Since we dropped the swap_avail_lock, the swap_avail_head
843 		 * list may have been modified; so if next is still in the
844 		 * swap_avail_head list then try it, otherwise start over
845 		 * if we have not gotten any slots.
846 		 */
847 		if (plist_node_empty(&next->avail_list))
848 			goto start_over;
849 	}
850 
851 	spin_unlock(&swap_avail_lock);
852 
853 check_out:
854 	if (n_ret < n_goal)
855 		atomic_long_add((long) (n_goal-n_ret), &nr_swap_pages);
856 noswap:
857 	return n_ret;
858 }
859 
860 /* The only caller of this function is now suspend routine */
861 swp_entry_t get_swap_page_of_type(int type)
862 {
863 	struct swap_info_struct *si;
864 	pgoff_t offset;
865 
866 	si = swap_info[type];
867 	spin_lock(&si->lock);
868 	if (si && (si->flags & SWP_WRITEOK)) {
869 		atomic_long_dec(&nr_swap_pages);
870 		/* This is called for allocating swap entry, not cache */
871 		offset = scan_swap_map(si, 1);
872 		if (offset) {
873 			spin_unlock(&si->lock);
874 			return swp_entry(type, offset);
875 		}
876 		atomic_long_inc(&nr_swap_pages);
877 	}
878 	spin_unlock(&si->lock);
879 	return (swp_entry_t) {0};
880 }
881 
882 static struct swap_info_struct *__swap_info_get(swp_entry_t entry)
883 {
884 	struct swap_info_struct *p;
885 	unsigned long offset, type;
886 
887 	if (!entry.val)
888 		goto out;
889 	type = swp_type(entry);
890 	if (type >= nr_swapfiles)
891 		goto bad_nofile;
892 	p = swap_info[type];
893 	if (!(p->flags & SWP_USED))
894 		goto bad_device;
895 	offset = swp_offset(entry);
896 	if (offset >= p->max)
897 		goto bad_offset;
898 	return p;
899 
900 bad_offset:
901 	pr_err("swap_info_get: %s%08lx\n", Bad_offset, entry.val);
902 	goto out;
903 bad_device:
904 	pr_err("swap_info_get: %s%08lx\n", Unused_file, entry.val);
905 	goto out;
906 bad_nofile:
907 	pr_err("swap_info_get: %s%08lx\n", Bad_file, entry.val);
908 out:
909 	return NULL;
910 }
911 
912 static struct swap_info_struct *_swap_info_get(swp_entry_t entry)
913 {
914 	struct swap_info_struct *p;
915 
916 	p = __swap_info_get(entry);
917 	if (!p)
918 		goto out;
919 	if (!p->swap_map[swp_offset(entry)])
920 		goto bad_free;
921 	return p;
922 
923 bad_free:
924 	pr_err("swap_info_get: %s%08lx\n", Unused_offset, entry.val);
925 	goto out;
926 out:
927 	return NULL;
928 }
929 
930 static struct swap_info_struct *swap_info_get(swp_entry_t entry)
931 {
932 	struct swap_info_struct *p;
933 
934 	p = _swap_info_get(entry);
935 	if (p)
936 		spin_lock(&p->lock);
937 	return p;
938 }
939 
940 static struct swap_info_struct *swap_info_get_cont(swp_entry_t entry,
941 					struct swap_info_struct *q)
942 {
943 	struct swap_info_struct *p;
944 
945 	p = _swap_info_get(entry);
946 
947 	if (p != q) {
948 		if (q != NULL)
949 			spin_unlock(&q->lock);
950 		if (p != NULL)
951 			spin_lock(&p->lock);
952 	}
953 	return p;
954 }
955 
956 static unsigned char __swap_entry_free(struct swap_info_struct *p,
957 				       swp_entry_t entry, unsigned char usage)
958 {
959 	struct swap_cluster_info *ci;
960 	unsigned long offset = swp_offset(entry);
961 	unsigned char count;
962 	unsigned char has_cache;
963 
964 	ci = lock_cluster_or_swap_info(p, offset);
965 
966 	count = p->swap_map[offset];
967 
968 	has_cache = count & SWAP_HAS_CACHE;
969 	count &= ~SWAP_HAS_CACHE;
970 
971 	if (usage == SWAP_HAS_CACHE) {
972 		VM_BUG_ON(!has_cache);
973 		has_cache = 0;
974 	} else if (count == SWAP_MAP_SHMEM) {
975 		/*
976 		 * Or we could insist on shmem.c using a special
977 		 * swap_shmem_free() and free_shmem_swap_and_cache()...
978 		 */
979 		count = 0;
980 	} else if ((count & ~COUNT_CONTINUED) <= SWAP_MAP_MAX) {
981 		if (count == COUNT_CONTINUED) {
982 			if (swap_count_continued(p, offset, count))
983 				count = SWAP_MAP_MAX | COUNT_CONTINUED;
984 			else
985 				count = SWAP_MAP_MAX;
986 		} else
987 			count--;
988 	}
989 
990 	usage = count | has_cache;
991 	p->swap_map[offset] = usage ? : SWAP_HAS_CACHE;
992 
993 	unlock_cluster_or_swap_info(p, ci);
994 
995 	return usage;
996 }
997 
998 static void swap_entry_free(struct swap_info_struct *p, swp_entry_t entry)
999 {
1000 	struct swap_cluster_info *ci;
1001 	unsigned long offset = swp_offset(entry);
1002 	unsigned char count;
1003 
1004 	ci = lock_cluster(p, offset);
1005 	count = p->swap_map[offset];
1006 	VM_BUG_ON(count != SWAP_HAS_CACHE);
1007 	p->swap_map[offset] = 0;
1008 	dec_cluster_info_page(p, p->cluster_info, offset);
1009 	unlock_cluster(ci);
1010 
1011 	mem_cgroup_uncharge_swap(entry);
1012 	if (offset < p->lowest_bit)
1013 		p->lowest_bit = offset;
1014 	if (offset > p->highest_bit) {
1015 		bool was_full = !p->highest_bit;
1016 
1017 		p->highest_bit = offset;
1018 		if (was_full && (p->flags & SWP_WRITEOK)) {
1019 			spin_lock(&swap_avail_lock);
1020 			WARN_ON(!plist_node_empty(&p->avail_list));
1021 			if (plist_node_empty(&p->avail_list))
1022 				plist_add(&p->avail_list,
1023 					  &swap_avail_head);
1024 			spin_unlock(&swap_avail_lock);
1025 		}
1026 	}
1027 	atomic_long_inc(&nr_swap_pages);
1028 	p->inuse_pages--;
1029 	frontswap_invalidate_page(p->type, offset);
1030 	if (p->flags & SWP_BLKDEV) {
1031 		struct gendisk *disk = p->bdev->bd_disk;
1032 
1033 		if (disk->fops->swap_slot_free_notify)
1034 			disk->fops->swap_slot_free_notify(p->bdev,
1035 							  offset);
1036 	}
1037 }
1038 
1039 /*
1040  * Caller has made sure that the swap device corresponding to entry
1041  * is still around or has not been recycled.
1042  */
1043 void swap_free(swp_entry_t entry)
1044 {
1045 	struct swap_info_struct *p;
1046 
1047 	p = _swap_info_get(entry);
1048 	if (p) {
1049 		if (!__swap_entry_free(p, entry, 1))
1050 			free_swap_slot(entry);
1051 	}
1052 }
1053 
1054 /*
1055  * Called after dropping swapcache to decrease refcnt to swap entries.
1056  */
1057 void swapcache_free(swp_entry_t entry)
1058 {
1059 	struct swap_info_struct *p;
1060 
1061 	p = _swap_info_get(entry);
1062 	if (p) {
1063 		if (!__swap_entry_free(p, entry, SWAP_HAS_CACHE))
1064 			free_swap_slot(entry);
1065 	}
1066 }
1067 
1068 void swapcache_free_entries(swp_entry_t *entries, int n)
1069 {
1070 	struct swap_info_struct *p, *prev;
1071 	int i;
1072 
1073 	if (n <= 0)
1074 		return;
1075 
1076 	prev = NULL;
1077 	p = NULL;
1078 	for (i = 0; i < n; ++i) {
1079 		p = swap_info_get_cont(entries[i], prev);
1080 		if (p)
1081 			swap_entry_free(p, entries[i]);
1082 		prev = p;
1083 	}
1084 	if (p)
1085 		spin_unlock(&p->lock);
1086 }
1087 
1088 /*
1089  * How many references to page are currently swapped out?
1090  * This does not give an exact answer when swap count is continued,
1091  * but does include the high COUNT_CONTINUED flag to allow for that.
1092  */
1093 int page_swapcount(struct page *page)
1094 {
1095 	int count = 0;
1096 	struct swap_info_struct *p;
1097 	struct swap_cluster_info *ci;
1098 	swp_entry_t entry;
1099 	unsigned long offset;
1100 
1101 	entry.val = page_private(page);
1102 	p = _swap_info_get(entry);
1103 	if (p) {
1104 		offset = swp_offset(entry);
1105 		ci = lock_cluster_or_swap_info(p, offset);
1106 		count = swap_count(p->swap_map[offset]);
1107 		unlock_cluster_or_swap_info(p, ci);
1108 	}
1109 	return count;
1110 }
1111 
1112 static int swap_swapcount(struct swap_info_struct *si, swp_entry_t entry)
1113 {
1114 	int count = 0;
1115 	pgoff_t offset = swp_offset(entry);
1116 	struct swap_cluster_info *ci;
1117 
1118 	ci = lock_cluster_or_swap_info(si, offset);
1119 	count = swap_count(si->swap_map[offset]);
1120 	unlock_cluster_or_swap_info(si, ci);
1121 	return count;
1122 }
1123 
1124 /*
1125  * How many references to @entry are currently swapped out?
1126  * This does not give an exact answer when swap count is continued,
1127  * but does include the high COUNT_CONTINUED flag to allow for that.
1128  */
1129 int __swp_swapcount(swp_entry_t entry)
1130 {
1131 	int count = 0;
1132 	struct swap_info_struct *si;
1133 
1134 	si = __swap_info_get(entry);
1135 	if (si)
1136 		count = swap_swapcount(si, entry);
1137 	return count;
1138 }
1139 
1140 /*
1141  * How many references to @entry are currently swapped out?
1142  * This considers COUNT_CONTINUED so it returns exact answer.
1143  */
1144 int swp_swapcount(swp_entry_t entry)
1145 {
1146 	int count, tmp_count, n;
1147 	struct swap_info_struct *p;
1148 	struct swap_cluster_info *ci;
1149 	struct page *page;
1150 	pgoff_t offset;
1151 	unsigned char *map;
1152 
1153 	p = _swap_info_get(entry);
1154 	if (!p)
1155 		return 0;
1156 
1157 	offset = swp_offset(entry);
1158 
1159 	ci = lock_cluster_or_swap_info(p, offset);
1160 
1161 	count = swap_count(p->swap_map[offset]);
1162 	if (!(count & COUNT_CONTINUED))
1163 		goto out;
1164 
1165 	count &= ~COUNT_CONTINUED;
1166 	n = SWAP_MAP_MAX + 1;
1167 
1168 	page = vmalloc_to_page(p->swap_map + offset);
1169 	offset &= ~PAGE_MASK;
1170 	VM_BUG_ON(page_private(page) != SWP_CONTINUED);
1171 
1172 	do {
1173 		page = list_next_entry(page, lru);
1174 		map = kmap_atomic(page);
1175 		tmp_count = map[offset];
1176 		kunmap_atomic(map);
1177 
1178 		count += (tmp_count & ~COUNT_CONTINUED) * n;
1179 		n *= (SWAP_CONT_MAX + 1);
1180 	} while (tmp_count & COUNT_CONTINUED);
1181 out:
1182 	unlock_cluster_or_swap_info(p, ci);
1183 	return count;
1184 }
1185 
1186 /*
1187  * We can write to an anon page without COW if there are no other references
1188  * to it.  And as a side-effect, free up its swap: because the old content
1189  * on disk will never be read, and seeking back there to write new content
1190  * later would only waste time away from clustering.
1191  *
1192  * NOTE: total_mapcount should not be relied upon by the caller if
1193  * reuse_swap_page() returns false, but it may be always overwritten
1194  * (see the other implementation for CONFIG_SWAP=n).
1195  */
1196 bool reuse_swap_page(struct page *page, int *total_mapcount)
1197 {
1198 	int count;
1199 
1200 	VM_BUG_ON_PAGE(!PageLocked(page), page);
1201 	if (unlikely(PageKsm(page)))
1202 		return false;
1203 	count = page_trans_huge_mapcount(page, total_mapcount);
1204 	if (count <= 1 && PageSwapCache(page)) {
1205 		count += page_swapcount(page);
1206 		if (count != 1)
1207 			goto out;
1208 		if (!PageWriteback(page)) {
1209 			delete_from_swap_cache(page);
1210 			SetPageDirty(page);
1211 		} else {
1212 			swp_entry_t entry;
1213 			struct swap_info_struct *p;
1214 
1215 			entry.val = page_private(page);
1216 			p = swap_info_get(entry);
1217 			if (p->flags & SWP_STABLE_WRITES) {
1218 				spin_unlock(&p->lock);
1219 				return false;
1220 			}
1221 			spin_unlock(&p->lock);
1222 		}
1223 	}
1224 out:
1225 	return count <= 1;
1226 }
1227 
1228 /*
1229  * If swap is getting full, or if there are no more mappings of this page,
1230  * then try_to_free_swap is called to free its swap space.
1231  */
1232 int try_to_free_swap(struct page *page)
1233 {
1234 	VM_BUG_ON_PAGE(!PageLocked(page), page);
1235 
1236 	if (!PageSwapCache(page))
1237 		return 0;
1238 	if (PageWriteback(page))
1239 		return 0;
1240 	if (page_swapcount(page))
1241 		return 0;
1242 
1243 	/*
1244 	 * Once hibernation has begun to create its image of memory,
1245 	 * there's a danger that one of the calls to try_to_free_swap()
1246 	 * - most probably a call from __try_to_reclaim_swap() while
1247 	 * hibernation is allocating its own swap pages for the image,
1248 	 * but conceivably even a call from memory reclaim - will free
1249 	 * the swap from a page which has already been recorded in the
1250 	 * image as a clean swapcache page, and then reuse its swap for
1251 	 * another page of the image.  On waking from hibernation, the
1252 	 * original page might be freed under memory pressure, then
1253 	 * later read back in from swap, now with the wrong data.
1254 	 *
1255 	 * Hibernation suspends storage while it is writing the image
1256 	 * to disk so check that here.
1257 	 */
1258 	if (pm_suspended_storage())
1259 		return 0;
1260 
1261 	delete_from_swap_cache(page);
1262 	SetPageDirty(page);
1263 	return 1;
1264 }
1265 
1266 /*
1267  * Free the swap entry like above, but also try to
1268  * free the page cache entry if it is the last user.
1269  */
1270 int free_swap_and_cache(swp_entry_t entry)
1271 {
1272 	struct swap_info_struct *p;
1273 	struct page *page = NULL;
1274 	unsigned char count;
1275 
1276 	if (non_swap_entry(entry))
1277 		return 1;
1278 
1279 	p = _swap_info_get(entry);
1280 	if (p) {
1281 		count = __swap_entry_free(p, entry, 1);
1282 		if (count == SWAP_HAS_CACHE) {
1283 			page = find_get_page(swap_address_space(entry),
1284 					     swp_offset(entry));
1285 			if (page && !trylock_page(page)) {
1286 				put_page(page);
1287 				page = NULL;
1288 			}
1289 		} else if (!count)
1290 			free_swap_slot(entry);
1291 	}
1292 	if (page) {
1293 		/*
1294 		 * Not mapped elsewhere, or swap space full? Free it!
1295 		 * Also recheck PageSwapCache now page is locked (above).
1296 		 */
1297 		if (PageSwapCache(page) && !PageWriteback(page) &&
1298 		    (!page_mapped(page) || mem_cgroup_swap_full(page)) &&
1299 		    !swap_swapcount(p, entry)) {
1300 			delete_from_swap_cache(page);
1301 			SetPageDirty(page);
1302 		}
1303 		unlock_page(page);
1304 		put_page(page);
1305 	}
1306 	return p != NULL;
1307 }
1308 
1309 #ifdef CONFIG_HIBERNATION
1310 /*
1311  * Find the swap type that corresponds to given device (if any).
1312  *
1313  * @offset - number of the PAGE_SIZE-sized block of the device, starting
1314  * from 0, in which the swap header is expected to be located.
1315  *
1316  * This is needed for the suspend to disk (aka swsusp).
1317  */
1318 int swap_type_of(dev_t device, sector_t offset, struct block_device **bdev_p)
1319 {
1320 	struct block_device *bdev = NULL;
1321 	int type;
1322 
1323 	if (device)
1324 		bdev = bdget(device);
1325 
1326 	spin_lock(&swap_lock);
1327 	for (type = 0; type < nr_swapfiles; type++) {
1328 		struct swap_info_struct *sis = swap_info[type];
1329 
1330 		if (!(sis->flags & SWP_WRITEOK))
1331 			continue;
1332 
1333 		if (!bdev) {
1334 			if (bdev_p)
1335 				*bdev_p = bdgrab(sis->bdev);
1336 
1337 			spin_unlock(&swap_lock);
1338 			return type;
1339 		}
1340 		if (bdev == sis->bdev) {
1341 			struct swap_extent *se = &sis->first_swap_extent;
1342 
1343 			if (se->start_block == offset) {
1344 				if (bdev_p)
1345 					*bdev_p = bdgrab(sis->bdev);
1346 
1347 				spin_unlock(&swap_lock);
1348 				bdput(bdev);
1349 				return type;
1350 			}
1351 		}
1352 	}
1353 	spin_unlock(&swap_lock);
1354 	if (bdev)
1355 		bdput(bdev);
1356 
1357 	return -ENODEV;
1358 }
1359 
1360 /*
1361  * Get the (PAGE_SIZE) block corresponding to given offset on the swapdev
1362  * corresponding to given index in swap_info (swap type).
1363  */
1364 sector_t swapdev_block(int type, pgoff_t offset)
1365 {
1366 	struct block_device *bdev;
1367 
1368 	if ((unsigned int)type >= nr_swapfiles)
1369 		return 0;
1370 	if (!(swap_info[type]->flags & SWP_WRITEOK))
1371 		return 0;
1372 	return map_swap_entry(swp_entry(type, offset), &bdev);
1373 }
1374 
1375 /*
1376  * Return either the total number of swap pages of given type, or the number
1377  * of free pages of that type (depending on @free)
1378  *
1379  * This is needed for software suspend
1380  */
1381 unsigned int count_swap_pages(int type, int free)
1382 {
1383 	unsigned int n = 0;
1384 
1385 	spin_lock(&swap_lock);
1386 	if ((unsigned int)type < nr_swapfiles) {
1387 		struct swap_info_struct *sis = swap_info[type];
1388 
1389 		spin_lock(&sis->lock);
1390 		if (sis->flags & SWP_WRITEOK) {
1391 			n = sis->pages;
1392 			if (free)
1393 				n -= sis->inuse_pages;
1394 		}
1395 		spin_unlock(&sis->lock);
1396 	}
1397 	spin_unlock(&swap_lock);
1398 	return n;
1399 }
1400 #endif /* CONFIG_HIBERNATION */
1401 
1402 static inline int pte_same_as_swp(pte_t pte, pte_t swp_pte)
1403 {
1404 	return pte_same(pte_swp_clear_soft_dirty(pte), swp_pte);
1405 }
1406 
1407 /*
1408  * No need to decide whether this PTE shares the swap entry with others,
1409  * just let do_wp_page work it out if a write is requested later - to
1410  * force COW, vm_page_prot omits write permission from any private vma.
1411  */
1412 static int unuse_pte(struct vm_area_struct *vma, pmd_t *pmd,
1413 		unsigned long addr, swp_entry_t entry, struct page *page)
1414 {
1415 	struct page *swapcache;
1416 	struct mem_cgroup *memcg;
1417 	spinlock_t *ptl;
1418 	pte_t *pte;
1419 	int ret = 1;
1420 
1421 	swapcache = page;
1422 	page = ksm_might_need_to_copy(page, vma, addr);
1423 	if (unlikely(!page))
1424 		return -ENOMEM;
1425 
1426 	if (mem_cgroup_try_charge(page, vma->vm_mm, GFP_KERNEL,
1427 				&memcg, false)) {
1428 		ret = -ENOMEM;
1429 		goto out_nolock;
1430 	}
1431 
1432 	pte = pte_offset_map_lock(vma->vm_mm, pmd, addr, &ptl);
1433 	if (unlikely(!pte_same_as_swp(*pte, swp_entry_to_pte(entry)))) {
1434 		mem_cgroup_cancel_charge(page, memcg, false);
1435 		ret = 0;
1436 		goto out;
1437 	}
1438 
1439 	dec_mm_counter(vma->vm_mm, MM_SWAPENTS);
1440 	inc_mm_counter(vma->vm_mm, MM_ANONPAGES);
1441 	get_page(page);
1442 	set_pte_at(vma->vm_mm, addr, pte,
1443 		   pte_mkold(mk_pte(page, vma->vm_page_prot)));
1444 	if (page == swapcache) {
1445 		page_add_anon_rmap(page, vma, addr, false);
1446 		mem_cgroup_commit_charge(page, memcg, true, false);
1447 	} else { /* ksm created a completely new copy */
1448 		page_add_new_anon_rmap(page, vma, addr, false);
1449 		mem_cgroup_commit_charge(page, memcg, false, false);
1450 		lru_cache_add_active_or_unevictable(page, vma);
1451 	}
1452 	swap_free(entry);
1453 	/*
1454 	 * Move the page to the active list so it is not
1455 	 * immediately swapped out again after swapon.
1456 	 */
1457 	activate_page(page);
1458 out:
1459 	pte_unmap_unlock(pte, ptl);
1460 out_nolock:
1461 	if (page != swapcache) {
1462 		unlock_page(page);
1463 		put_page(page);
1464 	}
1465 	return ret;
1466 }
1467 
1468 static int unuse_pte_range(struct vm_area_struct *vma, pmd_t *pmd,
1469 				unsigned long addr, unsigned long end,
1470 				swp_entry_t entry, struct page *page)
1471 {
1472 	pte_t swp_pte = swp_entry_to_pte(entry);
1473 	pte_t *pte;
1474 	int ret = 0;
1475 
1476 	/*
1477 	 * We don't actually need pte lock while scanning for swp_pte: since
1478 	 * we hold page lock and mmap_sem, swp_pte cannot be inserted into the
1479 	 * page table while we're scanning; though it could get zapped, and on
1480 	 * some architectures (e.g. x86_32 with PAE) we might catch a glimpse
1481 	 * of unmatched parts which look like swp_pte, so unuse_pte must
1482 	 * recheck under pte lock.  Scanning without pte lock lets it be
1483 	 * preemptable whenever CONFIG_PREEMPT but not CONFIG_HIGHPTE.
1484 	 */
1485 	pte = pte_offset_map(pmd, addr);
1486 	do {
1487 		/*
1488 		 * swapoff spends a _lot_ of time in this loop!
1489 		 * Test inline before going to call unuse_pte.
1490 		 */
1491 		if (unlikely(pte_same_as_swp(*pte, swp_pte))) {
1492 			pte_unmap(pte);
1493 			ret = unuse_pte(vma, pmd, addr, entry, page);
1494 			if (ret)
1495 				goto out;
1496 			pte = pte_offset_map(pmd, addr);
1497 		}
1498 	} while (pte++, addr += PAGE_SIZE, addr != end);
1499 	pte_unmap(pte - 1);
1500 out:
1501 	return ret;
1502 }
1503 
1504 static inline int unuse_pmd_range(struct vm_area_struct *vma, pud_t *pud,
1505 				unsigned long addr, unsigned long end,
1506 				swp_entry_t entry, struct page *page)
1507 {
1508 	pmd_t *pmd;
1509 	unsigned long next;
1510 	int ret;
1511 
1512 	pmd = pmd_offset(pud, addr);
1513 	do {
1514 		cond_resched();
1515 		next = pmd_addr_end(addr, end);
1516 		if (pmd_none_or_trans_huge_or_clear_bad(pmd))
1517 			continue;
1518 		ret = unuse_pte_range(vma, pmd, addr, next, entry, page);
1519 		if (ret)
1520 			return ret;
1521 	} while (pmd++, addr = next, addr != end);
1522 	return 0;
1523 }
1524 
1525 static inline int unuse_pud_range(struct vm_area_struct *vma, p4d_t *p4d,
1526 				unsigned long addr, unsigned long end,
1527 				swp_entry_t entry, struct page *page)
1528 {
1529 	pud_t *pud;
1530 	unsigned long next;
1531 	int ret;
1532 
1533 	pud = pud_offset(p4d, addr);
1534 	do {
1535 		next = pud_addr_end(addr, end);
1536 		if (pud_none_or_clear_bad(pud))
1537 			continue;
1538 		ret = unuse_pmd_range(vma, pud, addr, next, entry, page);
1539 		if (ret)
1540 			return ret;
1541 	} while (pud++, addr = next, addr != end);
1542 	return 0;
1543 }
1544 
1545 static inline int unuse_p4d_range(struct vm_area_struct *vma, pgd_t *pgd,
1546 				unsigned long addr, unsigned long end,
1547 				swp_entry_t entry, struct page *page)
1548 {
1549 	p4d_t *p4d;
1550 	unsigned long next;
1551 	int ret;
1552 
1553 	p4d = p4d_offset(pgd, addr);
1554 	do {
1555 		next = p4d_addr_end(addr, end);
1556 		if (p4d_none_or_clear_bad(p4d))
1557 			continue;
1558 		ret = unuse_pud_range(vma, p4d, addr, next, entry, page);
1559 		if (ret)
1560 			return ret;
1561 	} while (p4d++, addr = next, addr != end);
1562 	return 0;
1563 }
1564 
1565 static int unuse_vma(struct vm_area_struct *vma,
1566 				swp_entry_t entry, struct page *page)
1567 {
1568 	pgd_t *pgd;
1569 	unsigned long addr, end, next;
1570 	int ret;
1571 
1572 	if (page_anon_vma(page)) {
1573 		addr = page_address_in_vma(page, vma);
1574 		if (addr == -EFAULT)
1575 			return 0;
1576 		else
1577 			end = addr + PAGE_SIZE;
1578 	} else {
1579 		addr = vma->vm_start;
1580 		end = vma->vm_end;
1581 	}
1582 
1583 	pgd = pgd_offset(vma->vm_mm, addr);
1584 	do {
1585 		next = pgd_addr_end(addr, end);
1586 		if (pgd_none_or_clear_bad(pgd))
1587 			continue;
1588 		ret = unuse_p4d_range(vma, pgd, addr, next, entry, page);
1589 		if (ret)
1590 			return ret;
1591 	} while (pgd++, addr = next, addr != end);
1592 	return 0;
1593 }
1594 
1595 static int unuse_mm(struct mm_struct *mm,
1596 				swp_entry_t entry, struct page *page)
1597 {
1598 	struct vm_area_struct *vma;
1599 	int ret = 0;
1600 
1601 	if (!down_read_trylock(&mm->mmap_sem)) {
1602 		/*
1603 		 * Activate page so shrink_inactive_list is unlikely to unmap
1604 		 * its ptes while lock is dropped, so swapoff can make progress.
1605 		 */
1606 		activate_page(page);
1607 		unlock_page(page);
1608 		down_read(&mm->mmap_sem);
1609 		lock_page(page);
1610 	}
1611 	for (vma = mm->mmap; vma; vma = vma->vm_next) {
1612 		if (vma->anon_vma && (ret = unuse_vma(vma, entry, page)))
1613 			break;
1614 		cond_resched();
1615 	}
1616 	up_read(&mm->mmap_sem);
1617 	return (ret < 0)? ret: 0;
1618 }
1619 
1620 /*
1621  * Scan swap_map (or frontswap_map if frontswap parameter is true)
1622  * from current position to next entry still in use.
1623  * Recycle to start on reaching the end, returning 0 when empty.
1624  */
1625 static unsigned int find_next_to_unuse(struct swap_info_struct *si,
1626 					unsigned int prev, bool frontswap)
1627 {
1628 	unsigned int max = si->max;
1629 	unsigned int i = prev;
1630 	unsigned char count;
1631 
1632 	/*
1633 	 * No need for swap_lock here: we're just looking
1634 	 * for whether an entry is in use, not modifying it; false
1635 	 * hits are okay, and sys_swapoff() has already prevented new
1636 	 * allocations from this area (while holding swap_lock).
1637 	 */
1638 	for (;;) {
1639 		if (++i >= max) {
1640 			if (!prev) {
1641 				i = 0;
1642 				break;
1643 			}
1644 			/*
1645 			 * No entries in use at top of swap_map,
1646 			 * loop back to start and recheck there.
1647 			 */
1648 			max = prev + 1;
1649 			prev = 0;
1650 			i = 1;
1651 		}
1652 		count = READ_ONCE(si->swap_map[i]);
1653 		if (count && swap_count(count) != SWAP_MAP_BAD)
1654 			if (!frontswap || frontswap_test(si, i))
1655 				break;
1656 		if ((i % LATENCY_LIMIT) == 0)
1657 			cond_resched();
1658 	}
1659 	return i;
1660 }
1661 
1662 /*
1663  * We completely avoid races by reading each swap page in advance,
1664  * and then search for the process using it.  All the necessary
1665  * page table adjustments can then be made atomically.
1666  *
1667  * if the boolean frontswap is true, only unuse pages_to_unuse pages;
1668  * pages_to_unuse==0 means all pages; ignored if frontswap is false
1669  */
1670 int try_to_unuse(unsigned int type, bool frontswap,
1671 		 unsigned long pages_to_unuse)
1672 {
1673 	struct swap_info_struct *si = swap_info[type];
1674 	struct mm_struct *start_mm;
1675 	volatile unsigned char *swap_map; /* swap_map is accessed without
1676 					   * locking. Mark it as volatile
1677 					   * to prevent compiler doing
1678 					   * something odd.
1679 					   */
1680 	unsigned char swcount;
1681 	struct page *page;
1682 	swp_entry_t entry;
1683 	unsigned int i = 0;
1684 	int retval = 0;
1685 
1686 	/*
1687 	 * When searching mms for an entry, a good strategy is to
1688 	 * start at the first mm we freed the previous entry from
1689 	 * (though actually we don't notice whether we or coincidence
1690 	 * freed the entry).  Initialize this start_mm with a hold.
1691 	 *
1692 	 * A simpler strategy would be to start at the last mm we
1693 	 * freed the previous entry from; but that would take less
1694 	 * advantage of mmlist ordering, which clusters forked mms
1695 	 * together, child after parent.  If we race with dup_mmap(), we
1696 	 * prefer to resolve parent before child, lest we miss entries
1697 	 * duplicated after we scanned child: using last mm would invert
1698 	 * that.
1699 	 */
1700 	start_mm = &init_mm;
1701 	mmget(&init_mm);
1702 
1703 	/*
1704 	 * Keep on scanning until all entries have gone.  Usually,
1705 	 * one pass through swap_map is enough, but not necessarily:
1706 	 * there are races when an instance of an entry might be missed.
1707 	 */
1708 	while ((i = find_next_to_unuse(si, i, frontswap)) != 0) {
1709 		if (signal_pending(current)) {
1710 			retval = -EINTR;
1711 			break;
1712 		}
1713 
1714 		/*
1715 		 * Get a page for the entry, using the existing swap
1716 		 * cache page if there is one.  Otherwise, get a clean
1717 		 * page and read the swap into it.
1718 		 */
1719 		swap_map = &si->swap_map[i];
1720 		entry = swp_entry(type, i);
1721 		page = read_swap_cache_async(entry,
1722 					GFP_HIGHUSER_MOVABLE, NULL, 0);
1723 		if (!page) {
1724 			/*
1725 			 * Either swap_duplicate() failed because entry
1726 			 * has been freed independently, and will not be
1727 			 * reused since sys_swapoff() already disabled
1728 			 * allocation from here, or alloc_page() failed.
1729 			 */
1730 			swcount = *swap_map;
1731 			/*
1732 			 * We don't hold lock here, so the swap entry could be
1733 			 * SWAP_MAP_BAD (when the cluster is discarding).
1734 			 * Instead of fail out, We can just skip the swap
1735 			 * entry because swapoff will wait for discarding
1736 			 * finish anyway.
1737 			 */
1738 			if (!swcount || swcount == SWAP_MAP_BAD)
1739 				continue;
1740 			retval = -ENOMEM;
1741 			break;
1742 		}
1743 
1744 		/*
1745 		 * Don't hold on to start_mm if it looks like exiting.
1746 		 */
1747 		if (atomic_read(&start_mm->mm_users) == 1) {
1748 			mmput(start_mm);
1749 			start_mm = &init_mm;
1750 			mmget(&init_mm);
1751 		}
1752 
1753 		/*
1754 		 * Wait for and lock page.  When do_swap_page races with
1755 		 * try_to_unuse, do_swap_page can handle the fault much
1756 		 * faster than try_to_unuse can locate the entry.  This
1757 		 * apparently redundant "wait_on_page_locked" lets try_to_unuse
1758 		 * defer to do_swap_page in such a case - in some tests,
1759 		 * do_swap_page and try_to_unuse repeatedly compete.
1760 		 */
1761 		wait_on_page_locked(page);
1762 		wait_on_page_writeback(page);
1763 		lock_page(page);
1764 		wait_on_page_writeback(page);
1765 
1766 		/*
1767 		 * Remove all references to entry.
1768 		 */
1769 		swcount = *swap_map;
1770 		if (swap_count(swcount) == SWAP_MAP_SHMEM) {
1771 			retval = shmem_unuse(entry, page);
1772 			/* page has already been unlocked and released */
1773 			if (retval < 0)
1774 				break;
1775 			continue;
1776 		}
1777 		if (swap_count(swcount) && start_mm != &init_mm)
1778 			retval = unuse_mm(start_mm, entry, page);
1779 
1780 		if (swap_count(*swap_map)) {
1781 			int set_start_mm = (*swap_map >= swcount);
1782 			struct list_head *p = &start_mm->mmlist;
1783 			struct mm_struct *new_start_mm = start_mm;
1784 			struct mm_struct *prev_mm = start_mm;
1785 			struct mm_struct *mm;
1786 
1787 			mmget(new_start_mm);
1788 			mmget(prev_mm);
1789 			spin_lock(&mmlist_lock);
1790 			while (swap_count(*swap_map) && !retval &&
1791 					(p = p->next) != &start_mm->mmlist) {
1792 				mm = list_entry(p, struct mm_struct, mmlist);
1793 				if (!mmget_not_zero(mm))
1794 					continue;
1795 				spin_unlock(&mmlist_lock);
1796 				mmput(prev_mm);
1797 				prev_mm = mm;
1798 
1799 				cond_resched();
1800 
1801 				swcount = *swap_map;
1802 				if (!swap_count(swcount)) /* any usage ? */
1803 					;
1804 				else if (mm == &init_mm)
1805 					set_start_mm = 1;
1806 				else
1807 					retval = unuse_mm(mm, entry, page);
1808 
1809 				if (set_start_mm && *swap_map < swcount) {
1810 					mmput(new_start_mm);
1811 					mmget(mm);
1812 					new_start_mm = mm;
1813 					set_start_mm = 0;
1814 				}
1815 				spin_lock(&mmlist_lock);
1816 			}
1817 			spin_unlock(&mmlist_lock);
1818 			mmput(prev_mm);
1819 			mmput(start_mm);
1820 			start_mm = new_start_mm;
1821 		}
1822 		if (retval) {
1823 			unlock_page(page);
1824 			put_page(page);
1825 			break;
1826 		}
1827 
1828 		/*
1829 		 * If a reference remains (rare), we would like to leave
1830 		 * the page in the swap cache; but try_to_unmap could
1831 		 * then re-duplicate the entry once we drop page lock,
1832 		 * so we might loop indefinitely; also, that page could
1833 		 * not be swapped out to other storage meanwhile.  So:
1834 		 * delete from cache even if there's another reference,
1835 		 * after ensuring that the data has been saved to disk -
1836 		 * since if the reference remains (rarer), it will be
1837 		 * read from disk into another page.  Splitting into two
1838 		 * pages would be incorrect if swap supported "shared
1839 		 * private" pages, but they are handled by tmpfs files.
1840 		 *
1841 		 * Given how unuse_vma() targets one particular offset
1842 		 * in an anon_vma, once the anon_vma has been determined,
1843 		 * this splitting happens to be just what is needed to
1844 		 * handle where KSM pages have been swapped out: re-reading
1845 		 * is unnecessarily slow, but we can fix that later on.
1846 		 */
1847 		if (swap_count(*swap_map) &&
1848 		     PageDirty(page) && PageSwapCache(page)) {
1849 			struct writeback_control wbc = {
1850 				.sync_mode = WB_SYNC_NONE,
1851 			};
1852 
1853 			swap_writepage(page, &wbc);
1854 			lock_page(page);
1855 			wait_on_page_writeback(page);
1856 		}
1857 
1858 		/*
1859 		 * It is conceivable that a racing task removed this page from
1860 		 * swap cache just before we acquired the page lock at the top,
1861 		 * or while we dropped it in unuse_mm().  The page might even
1862 		 * be back in swap cache on another swap area: that we must not
1863 		 * delete, since it may not have been written out to swap yet.
1864 		 */
1865 		if (PageSwapCache(page) &&
1866 		    likely(page_private(page) == entry.val))
1867 			delete_from_swap_cache(page);
1868 
1869 		/*
1870 		 * So we could skip searching mms once swap count went
1871 		 * to 1, we did not mark any present ptes as dirty: must
1872 		 * mark page dirty so shrink_page_list will preserve it.
1873 		 */
1874 		SetPageDirty(page);
1875 		unlock_page(page);
1876 		put_page(page);
1877 
1878 		/*
1879 		 * Make sure that we aren't completely killing
1880 		 * interactive performance.
1881 		 */
1882 		cond_resched();
1883 		if (frontswap && pages_to_unuse > 0) {
1884 			if (!--pages_to_unuse)
1885 				break;
1886 		}
1887 	}
1888 
1889 	mmput(start_mm);
1890 	return retval;
1891 }
1892 
1893 /*
1894  * After a successful try_to_unuse, if no swap is now in use, we know
1895  * we can empty the mmlist.  swap_lock must be held on entry and exit.
1896  * Note that mmlist_lock nests inside swap_lock, and an mm must be
1897  * added to the mmlist just after page_duplicate - before would be racy.
1898  */
1899 static void drain_mmlist(void)
1900 {
1901 	struct list_head *p, *next;
1902 	unsigned int type;
1903 
1904 	for (type = 0; type < nr_swapfiles; type++)
1905 		if (swap_info[type]->inuse_pages)
1906 			return;
1907 	spin_lock(&mmlist_lock);
1908 	list_for_each_safe(p, next, &init_mm.mmlist)
1909 		list_del_init(p);
1910 	spin_unlock(&mmlist_lock);
1911 }
1912 
1913 /*
1914  * Use this swapdev's extent info to locate the (PAGE_SIZE) block which
1915  * corresponds to page offset for the specified swap entry.
1916  * Note that the type of this function is sector_t, but it returns page offset
1917  * into the bdev, not sector offset.
1918  */
1919 static sector_t map_swap_entry(swp_entry_t entry, struct block_device **bdev)
1920 {
1921 	struct swap_info_struct *sis;
1922 	struct swap_extent *start_se;
1923 	struct swap_extent *se;
1924 	pgoff_t offset;
1925 
1926 	sis = swap_info[swp_type(entry)];
1927 	*bdev = sis->bdev;
1928 
1929 	offset = swp_offset(entry);
1930 	start_se = sis->curr_swap_extent;
1931 	se = start_se;
1932 
1933 	for ( ; ; ) {
1934 		if (se->start_page <= offset &&
1935 				offset < (se->start_page + se->nr_pages)) {
1936 			return se->start_block + (offset - se->start_page);
1937 		}
1938 		se = list_next_entry(se, list);
1939 		sis->curr_swap_extent = se;
1940 		BUG_ON(se == start_se);		/* It *must* be present */
1941 	}
1942 }
1943 
1944 /*
1945  * Returns the page offset into bdev for the specified page's swap entry.
1946  */
1947 sector_t map_swap_page(struct page *page, struct block_device **bdev)
1948 {
1949 	swp_entry_t entry;
1950 	entry.val = page_private(page);
1951 	return map_swap_entry(entry, bdev);
1952 }
1953 
1954 /*
1955  * Free all of a swapdev's extent information
1956  */
1957 static void destroy_swap_extents(struct swap_info_struct *sis)
1958 {
1959 	while (!list_empty(&sis->first_swap_extent.list)) {
1960 		struct swap_extent *se;
1961 
1962 		se = list_first_entry(&sis->first_swap_extent.list,
1963 				struct swap_extent, list);
1964 		list_del(&se->list);
1965 		kfree(se);
1966 	}
1967 
1968 	if (sis->flags & SWP_FILE) {
1969 		struct file *swap_file = sis->swap_file;
1970 		struct address_space *mapping = swap_file->f_mapping;
1971 
1972 		sis->flags &= ~SWP_FILE;
1973 		mapping->a_ops->swap_deactivate(swap_file);
1974 	}
1975 }
1976 
1977 /*
1978  * Add a block range (and the corresponding page range) into this swapdev's
1979  * extent list.  The extent list is kept sorted in page order.
1980  *
1981  * This function rather assumes that it is called in ascending page order.
1982  */
1983 int
1984 add_swap_extent(struct swap_info_struct *sis, unsigned long start_page,
1985 		unsigned long nr_pages, sector_t start_block)
1986 {
1987 	struct swap_extent *se;
1988 	struct swap_extent *new_se;
1989 	struct list_head *lh;
1990 
1991 	if (start_page == 0) {
1992 		se = &sis->first_swap_extent;
1993 		sis->curr_swap_extent = se;
1994 		se->start_page = 0;
1995 		se->nr_pages = nr_pages;
1996 		se->start_block = start_block;
1997 		return 1;
1998 	} else {
1999 		lh = sis->first_swap_extent.list.prev;	/* Highest extent */
2000 		se = list_entry(lh, struct swap_extent, list);
2001 		BUG_ON(se->start_page + se->nr_pages != start_page);
2002 		if (se->start_block + se->nr_pages == start_block) {
2003 			/* Merge it */
2004 			se->nr_pages += nr_pages;
2005 			return 0;
2006 		}
2007 	}
2008 
2009 	/*
2010 	 * No merge.  Insert a new extent, preserving ordering.
2011 	 */
2012 	new_se = kmalloc(sizeof(*se), GFP_KERNEL);
2013 	if (new_se == NULL)
2014 		return -ENOMEM;
2015 	new_se->start_page = start_page;
2016 	new_se->nr_pages = nr_pages;
2017 	new_se->start_block = start_block;
2018 
2019 	list_add_tail(&new_se->list, &sis->first_swap_extent.list);
2020 	return 1;
2021 }
2022 
2023 /*
2024  * A `swap extent' is a simple thing which maps a contiguous range of pages
2025  * onto a contiguous range of disk blocks.  An ordered list of swap extents
2026  * is built at swapon time and is then used at swap_writepage/swap_readpage
2027  * time for locating where on disk a page belongs.
2028  *
2029  * If the swapfile is an S_ISBLK block device, a single extent is installed.
2030  * This is done so that the main operating code can treat S_ISBLK and S_ISREG
2031  * swap files identically.
2032  *
2033  * Whether the swapdev is an S_ISREG file or an S_ISBLK blockdev, the swap
2034  * extent list operates in PAGE_SIZE disk blocks.  Both S_ISREG and S_ISBLK
2035  * swapfiles are handled *identically* after swapon time.
2036  *
2037  * For S_ISREG swapfiles, setup_swap_extents() will walk all the file's blocks
2038  * and will parse them into an ordered extent list, in PAGE_SIZE chunks.  If
2039  * some stray blocks are found which do not fall within the PAGE_SIZE alignment
2040  * requirements, they are simply tossed out - we will never use those blocks
2041  * for swapping.
2042  *
2043  * For S_ISREG swapfiles we set S_SWAPFILE across the life of the swapon.  This
2044  * prevents root from shooting her foot off by ftruncating an in-use swapfile,
2045  * which will scribble on the fs.
2046  *
2047  * The amount of disk space which a single swap extent represents varies.
2048  * Typically it is in the 1-4 megabyte range.  So we can have hundreds of
2049  * extents in the list.  To avoid much list walking, we cache the previous
2050  * search location in `curr_swap_extent', and start new searches from there.
2051  * This is extremely effective.  The average number of iterations in
2052  * map_swap_page() has been measured at about 0.3 per page.  - akpm.
2053  */
2054 static int setup_swap_extents(struct swap_info_struct *sis, sector_t *span)
2055 {
2056 	struct file *swap_file = sis->swap_file;
2057 	struct address_space *mapping = swap_file->f_mapping;
2058 	struct inode *inode = mapping->host;
2059 	int ret;
2060 
2061 	if (S_ISBLK(inode->i_mode)) {
2062 		ret = add_swap_extent(sis, 0, sis->max, 0);
2063 		*span = sis->pages;
2064 		return ret;
2065 	}
2066 
2067 	if (mapping->a_ops->swap_activate) {
2068 		ret = mapping->a_ops->swap_activate(sis, swap_file, span);
2069 		if (!ret) {
2070 			sis->flags |= SWP_FILE;
2071 			ret = add_swap_extent(sis, 0, sis->max, 0);
2072 			*span = sis->pages;
2073 		}
2074 		return ret;
2075 	}
2076 
2077 	return generic_swapfile_activate(sis, swap_file, span);
2078 }
2079 
2080 static void _enable_swap_info(struct swap_info_struct *p, int prio,
2081 				unsigned char *swap_map,
2082 				struct swap_cluster_info *cluster_info)
2083 {
2084 	if (prio >= 0)
2085 		p->prio = prio;
2086 	else
2087 		p->prio = --least_priority;
2088 	/*
2089 	 * the plist prio is negated because plist ordering is
2090 	 * low-to-high, while swap ordering is high-to-low
2091 	 */
2092 	p->list.prio = -p->prio;
2093 	p->avail_list.prio = -p->prio;
2094 	p->swap_map = swap_map;
2095 	p->cluster_info = cluster_info;
2096 	p->flags |= SWP_WRITEOK;
2097 	atomic_long_add(p->pages, &nr_swap_pages);
2098 	total_swap_pages += p->pages;
2099 
2100 	assert_spin_locked(&swap_lock);
2101 	/*
2102 	 * both lists are plists, and thus priority ordered.
2103 	 * swap_active_head needs to be priority ordered for swapoff(),
2104 	 * which on removal of any swap_info_struct with an auto-assigned
2105 	 * (i.e. negative) priority increments the auto-assigned priority
2106 	 * of any lower-priority swap_info_structs.
2107 	 * swap_avail_head needs to be priority ordered for get_swap_page(),
2108 	 * which allocates swap pages from the highest available priority
2109 	 * swap_info_struct.
2110 	 */
2111 	plist_add(&p->list, &swap_active_head);
2112 	spin_lock(&swap_avail_lock);
2113 	plist_add(&p->avail_list, &swap_avail_head);
2114 	spin_unlock(&swap_avail_lock);
2115 }
2116 
2117 static void enable_swap_info(struct swap_info_struct *p, int prio,
2118 				unsigned char *swap_map,
2119 				struct swap_cluster_info *cluster_info,
2120 				unsigned long *frontswap_map)
2121 {
2122 	frontswap_init(p->type, frontswap_map);
2123 	spin_lock(&swap_lock);
2124 	spin_lock(&p->lock);
2125 	 _enable_swap_info(p, prio, swap_map, cluster_info);
2126 	spin_unlock(&p->lock);
2127 	spin_unlock(&swap_lock);
2128 }
2129 
2130 static void reinsert_swap_info(struct swap_info_struct *p)
2131 {
2132 	spin_lock(&swap_lock);
2133 	spin_lock(&p->lock);
2134 	_enable_swap_info(p, p->prio, p->swap_map, p->cluster_info);
2135 	spin_unlock(&p->lock);
2136 	spin_unlock(&swap_lock);
2137 }
2138 
2139 bool has_usable_swap(void)
2140 {
2141 	bool ret = true;
2142 
2143 	spin_lock(&swap_lock);
2144 	if (plist_head_empty(&swap_active_head))
2145 		ret = false;
2146 	spin_unlock(&swap_lock);
2147 	return ret;
2148 }
2149 
2150 SYSCALL_DEFINE1(swapoff, const char __user *, specialfile)
2151 {
2152 	struct swap_info_struct *p = NULL;
2153 	unsigned char *swap_map;
2154 	struct swap_cluster_info *cluster_info;
2155 	unsigned long *frontswap_map;
2156 	struct file *swap_file, *victim;
2157 	struct address_space *mapping;
2158 	struct inode *inode;
2159 	struct filename *pathname;
2160 	int err, found = 0;
2161 	unsigned int old_block_size;
2162 
2163 	if (!capable(CAP_SYS_ADMIN))
2164 		return -EPERM;
2165 
2166 	BUG_ON(!current->mm);
2167 
2168 	pathname = getname(specialfile);
2169 	if (IS_ERR(pathname))
2170 		return PTR_ERR(pathname);
2171 
2172 	victim = file_open_name(pathname, O_RDWR|O_LARGEFILE, 0);
2173 	err = PTR_ERR(victim);
2174 	if (IS_ERR(victim))
2175 		goto out;
2176 
2177 	mapping = victim->f_mapping;
2178 	spin_lock(&swap_lock);
2179 	plist_for_each_entry(p, &swap_active_head, list) {
2180 		if (p->flags & SWP_WRITEOK) {
2181 			if (p->swap_file->f_mapping == mapping) {
2182 				found = 1;
2183 				break;
2184 			}
2185 		}
2186 	}
2187 	if (!found) {
2188 		err = -EINVAL;
2189 		spin_unlock(&swap_lock);
2190 		goto out_dput;
2191 	}
2192 	if (!security_vm_enough_memory_mm(current->mm, p->pages))
2193 		vm_unacct_memory(p->pages);
2194 	else {
2195 		err = -ENOMEM;
2196 		spin_unlock(&swap_lock);
2197 		goto out_dput;
2198 	}
2199 	spin_lock(&swap_avail_lock);
2200 	plist_del(&p->avail_list, &swap_avail_head);
2201 	spin_unlock(&swap_avail_lock);
2202 	spin_lock(&p->lock);
2203 	if (p->prio < 0) {
2204 		struct swap_info_struct *si = p;
2205 
2206 		plist_for_each_entry_continue(si, &swap_active_head, list) {
2207 			si->prio++;
2208 			si->list.prio--;
2209 			si->avail_list.prio--;
2210 		}
2211 		least_priority++;
2212 	}
2213 	plist_del(&p->list, &swap_active_head);
2214 	atomic_long_sub(p->pages, &nr_swap_pages);
2215 	total_swap_pages -= p->pages;
2216 	p->flags &= ~SWP_WRITEOK;
2217 	spin_unlock(&p->lock);
2218 	spin_unlock(&swap_lock);
2219 
2220 	disable_swap_slots_cache_lock();
2221 
2222 	set_current_oom_origin();
2223 	err = try_to_unuse(p->type, false, 0); /* force unuse all pages */
2224 	clear_current_oom_origin();
2225 
2226 	if (err) {
2227 		/* re-insert swap space back into swap_list */
2228 		reinsert_swap_info(p);
2229 		reenable_swap_slots_cache_unlock();
2230 		goto out_dput;
2231 	}
2232 
2233 	reenable_swap_slots_cache_unlock();
2234 
2235 	flush_work(&p->discard_work);
2236 
2237 	destroy_swap_extents(p);
2238 	if (p->flags & SWP_CONTINUED)
2239 		free_swap_count_continuations(p);
2240 
2241 	mutex_lock(&swapon_mutex);
2242 	spin_lock(&swap_lock);
2243 	spin_lock(&p->lock);
2244 	drain_mmlist();
2245 
2246 	/* wait for anyone still in scan_swap_map */
2247 	p->highest_bit = 0;		/* cuts scans short */
2248 	while (p->flags >= SWP_SCANNING) {
2249 		spin_unlock(&p->lock);
2250 		spin_unlock(&swap_lock);
2251 		schedule_timeout_uninterruptible(1);
2252 		spin_lock(&swap_lock);
2253 		spin_lock(&p->lock);
2254 	}
2255 
2256 	swap_file = p->swap_file;
2257 	old_block_size = p->old_block_size;
2258 	p->swap_file = NULL;
2259 	p->max = 0;
2260 	swap_map = p->swap_map;
2261 	p->swap_map = NULL;
2262 	cluster_info = p->cluster_info;
2263 	p->cluster_info = NULL;
2264 	frontswap_map = frontswap_map_get(p);
2265 	spin_unlock(&p->lock);
2266 	spin_unlock(&swap_lock);
2267 	frontswap_invalidate_area(p->type);
2268 	frontswap_map_set(p, NULL);
2269 	mutex_unlock(&swapon_mutex);
2270 	free_percpu(p->percpu_cluster);
2271 	p->percpu_cluster = NULL;
2272 	vfree(swap_map);
2273 	kvfree(cluster_info);
2274 	kvfree(frontswap_map);
2275 	/* Destroy swap account information */
2276 	swap_cgroup_swapoff(p->type);
2277 	exit_swap_address_space(p->type);
2278 
2279 	inode = mapping->host;
2280 	if (S_ISBLK(inode->i_mode)) {
2281 		struct block_device *bdev = I_BDEV(inode);
2282 		set_blocksize(bdev, old_block_size);
2283 		blkdev_put(bdev, FMODE_READ | FMODE_WRITE | FMODE_EXCL);
2284 	} else {
2285 		inode_lock(inode);
2286 		inode->i_flags &= ~S_SWAPFILE;
2287 		inode_unlock(inode);
2288 	}
2289 	filp_close(swap_file, NULL);
2290 
2291 	/*
2292 	 * Clear the SWP_USED flag after all resources are freed so that swapon
2293 	 * can reuse this swap_info in alloc_swap_info() safely.  It is ok to
2294 	 * not hold p->lock after we cleared its SWP_WRITEOK.
2295 	 */
2296 	spin_lock(&swap_lock);
2297 	p->flags = 0;
2298 	spin_unlock(&swap_lock);
2299 
2300 	err = 0;
2301 	atomic_inc(&proc_poll_event);
2302 	wake_up_interruptible(&proc_poll_wait);
2303 
2304 out_dput:
2305 	filp_close(victim, NULL);
2306 out:
2307 	putname(pathname);
2308 	return err;
2309 }
2310 
2311 #ifdef CONFIG_PROC_FS
2312 static unsigned swaps_poll(struct file *file, poll_table *wait)
2313 {
2314 	struct seq_file *seq = file->private_data;
2315 
2316 	poll_wait(file, &proc_poll_wait, wait);
2317 
2318 	if (seq->poll_event != atomic_read(&proc_poll_event)) {
2319 		seq->poll_event = atomic_read(&proc_poll_event);
2320 		return POLLIN | POLLRDNORM | POLLERR | POLLPRI;
2321 	}
2322 
2323 	return POLLIN | POLLRDNORM;
2324 }
2325 
2326 /* iterator */
2327 static void *swap_start(struct seq_file *swap, loff_t *pos)
2328 {
2329 	struct swap_info_struct *si;
2330 	int type;
2331 	loff_t l = *pos;
2332 
2333 	mutex_lock(&swapon_mutex);
2334 
2335 	if (!l)
2336 		return SEQ_START_TOKEN;
2337 
2338 	for (type = 0; type < nr_swapfiles; type++) {
2339 		smp_rmb();	/* read nr_swapfiles before swap_info[type] */
2340 		si = swap_info[type];
2341 		if (!(si->flags & SWP_USED) || !si->swap_map)
2342 			continue;
2343 		if (!--l)
2344 			return si;
2345 	}
2346 
2347 	return NULL;
2348 }
2349 
2350 static void *swap_next(struct seq_file *swap, void *v, loff_t *pos)
2351 {
2352 	struct swap_info_struct *si = v;
2353 	int type;
2354 
2355 	if (v == SEQ_START_TOKEN)
2356 		type = 0;
2357 	else
2358 		type = si->type + 1;
2359 
2360 	for (; type < nr_swapfiles; type++) {
2361 		smp_rmb();	/* read nr_swapfiles before swap_info[type] */
2362 		si = swap_info[type];
2363 		if (!(si->flags & SWP_USED) || !si->swap_map)
2364 			continue;
2365 		++*pos;
2366 		return si;
2367 	}
2368 
2369 	return NULL;
2370 }
2371 
2372 static void swap_stop(struct seq_file *swap, void *v)
2373 {
2374 	mutex_unlock(&swapon_mutex);
2375 }
2376 
2377 static int swap_show(struct seq_file *swap, void *v)
2378 {
2379 	struct swap_info_struct *si = v;
2380 	struct file *file;
2381 	int len;
2382 
2383 	if (si == SEQ_START_TOKEN) {
2384 		seq_puts(swap,"Filename\t\t\t\tType\t\tSize\tUsed\tPriority\n");
2385 		return 0;
2386 	}
2387 
2388 	file = si->swap_file;
2389 	len = seq_file_path(swap, file, " \t\n\\");
2390 	seq_printf(swap, "%*s%s\t%u\t%u\t%d\n",
2391 			len < 40 ? 40 - len : 1, " ",
2392 			S_ISBLK(file_inode(file)->i_mode) ?
2393 				"partition" : "file\t",
2394 			si->pages << (PAGE_SHIFT - 10),
2395 			si->inuse_pages << (PAGE_SHIFT - 10),
2396 			si->prio);
2397 	return 0;
2398 }
2399 
2400 static const struct seq_operations swaps_op = {
2401 	.start =	swap_start,
2402 	.next =		swap_next,
2403 	.stop =		swap_stop,
2404 	.show =		swap_show
2405 };
2406 
2407 static int swaps_open(struct inode *inode, struct file *file)
2408 {
2409 	struct seq_file *seq;
2410 	int ret;
2411 
2412 	ret = seq_open(file, &swaps_op);
2413 	if (ret)
2414 		return ret;
2415 
2416 	seq = file->private_data;
2417 	seq->poll_event = atomic_read(&proc_poll_event);
2418 	return 0;
2419 }
2420 
2421 static const struct file_operations proc_swaps_operations = {
2422 	.open		= swaps_open,
2423 	.read		= seq_read,
2424 	.llseek		= seq_lseek,
2425 	.release	= seq_release,
2426 	.poll		= swaps_poll,
2427 };
2428 
2429 static int __init procswaps_init(void)
2430 {
2431 	proc_create("swaps", 0, NULL, &proc_swaps_operations);
2432 	return 0;
2433 }
2434 __initcall(procswaps_init);
2435 #endif /* CONFIG_PROC_FS */
2436 
2437 #ifdef MAX_SWAPFILES_CHECK
2438 static int __init max_swapfiles_check(void)
2439 {
2440 	MAX_SWAPFILES_CHECK();
2441 	return 0;
2442 }
2443 late_initcall(max_swapfiles_check);
2444 #endif
2445 
2446 static struct swap_info_struct *alloc_swap_info(void)
2447 {
2448 	struct swap_info_struct *p;
2449 	unsigned int type;
2450 
2451 	p = kzalloc(sizeof(*p), GFP_KERNEL);
2452 	if (!p)
2453 		return ERR_PTR(-ENOMEM);
2454 
2455 	spin_lock(&swap_lock);
2456 	for (type = 0; type < nr_swapfiles; type++) {
2457 		if (!(swap_info[type]->flags & SWP_USED))
2458 			break;
2459 	}
2460 	if (type >= MAX_SWAPFILES) {
2461 		spin_unlock(&swap_lock);
2462 		kfree(p);
2463 		return ERR_PTR(-EPERM);
2464 	}
2465 	if (type >= nr_swapfiles) {
2466 		p->type = type;
2467 		swap_info[type] = p;
2468 		/*
2469 		 * Write swap_info[type] before nr_swapfiles, in case a
2470 		 * racing procfs swap_start() or swap_next() is reading them.
2471 		 * (We never shrink nr_swapfiles, we never free this entry.)
2472 		 */
2473 		smp_wmb();
2474 		nr_swapfiles++;
2475 	} else {
2476 		kfree(p);
2477 		p = swap_info[type];
2478 		/*
2479 		 * Do not memset this entry: a racing procfs swap_next()
2480 		 * would be relying on p->type to remain valid.
2481 		 */
2482 	}
2483 	INIT_LIST_HEAD(&p->first_swap_extent.list);
2484 	plist_node_init(&p->list, 0);
2485 	plist_node_init(&p->avail_list, 0);
2486 	p->flags = SWP_USED;
2487 	spin_unlock(&swap_lock);
2488 	spin_lock_init(&p->lock);
2489 
2490 	return p;
2491 }
2492 
2493 static int claim_swapfile(struct swap_info_struct *p, struct inode *inode)
2494 {
2495 	int error;
2496 
2497 	if (S_ISBLK(inode->i_mode)) {
2498 		p->bdev = bdgrab(I_BDEV(inode));
2499 		error = blkdev_get(p->bdev,
2500 				   FMODE_READ | FMODE_WRITE | FMODE_EXCL, p);
2501 		if (error < 0) {
2502 			p->bdev = NULL;
2503 			return error;
2504 		}
2505 		p->old_block_size = block_size(p->bdev);
2506 		error = set_blocksize(p->bdev, PAGE_SIZE);
2507 		if (error < 0)
2508 			return error;
2509 		p->flags |= SWP_BLKDEV;
2510 	} else if (S_ISREG(inode->i_mode)) {
2511 		p->bdev = inode->i_sb->s_bdev;
2512 		inode_lock(inode);
2513 		if (IS_SWAPFILE(inode))
2514 			return -EBUSY;
2515 	} else
2516 		return -EINVAL;
2517 
2518 	return 0;
2519 }
2520 
2521 static unsigned long read_swap_header(struct swap_info_struct *p,
2522 					union swap_header *swap_header,
2523 					struct inode *inode)
2524 {
2525 	int i;
2526 	unsigned long maxpages;
2527 	unsigned long swapfilepages;
2528 	unsigned long last_page;
2529 
2530 	if (memcmp("SWAPSPACE2", swap_header->magic.magic, 10)) {
2531 		pr_err("Unable to find swap-space signature\n");
2532 		return 0;
2533 	}
2534 
2535 	/* swap partition endianess hack... */
2536 	if (swab32(swap_header->info.version) == 1) {
2537 		swab32s(&swap_header->info.version);
2538 		swab32s(&swap_header->info.last_page);
2539 		swab32s(&swap_header->info.nr_badpages);
2540 		if (swap_header->info.nr_badpages > MAX_SWAP_BADPAGES)
2541 			return 0;
2542 		for (i = 0; i < swap_header->info.nr_badpages; i++)
2543 			swab32s(&swap_header->info.badpages[i]);
2544 	}
2545 	/* Check the swap header's sub-version */
2546 	if (swap_header->info.version != 1) {
2547 		pr_warn("Unable to handle swap header version %d\n",
2548 			swap_header->info.version);
2549 		return 0;
2550 	}
2551 
2552 	p->lowest_bit  = 1;
2553 	p->cluster_next = 1;
2554 	p->cluster_nr = 0;
2555 
2556 	/*
2557 	 * Find out how many pages are allowed for a single swap
2558 	 * device. There are two limiting factors: 1) the number
2559 	 * of bits for the swap offset in the swp_entry_t type, and
2560 	 * 2) the number of bits in the swap pte as defined by the
2561 	 * different architectures. In order to find the
2562 	 * largest possible bit mask, a swap entry with swap type 0
2563 	 * and swap offset ~0UL is created, encoded to a swap pte,
2564 	 * decoded to a swp_entry_t again, and finally the swap
2565 	 * offset is extracted. This will mask all the bits from
2566 	 * the initial ~0UL mask that can't be encoded in either
2567 	 * the swp_entry_t or the architecture definition of a
2568 	 * swap pte.
2569 	 */
2570 	maxpages = swp_offset(pte_to_swp_entry(
2571 			swp_entry_to_pte(swp_entry(0, ~0UL)))) + 1;
2572 	last_page = swap_header->info.last_page;
2573 	if (last_page > maxpages) {
2574 		pr_warn("Truncating oversized swap area, only using %luk out of %luk\n",
2575 			maxpages << (PAGE_SHIFT - 10),
2576 			last_page << (PAGE_SHIFT - 10));
2577 	}
2578 	if (maxpages > last_page) {
2579 		maxpages = last_page + 1;
2580 		/* p->max is an unsigned int: don't overflow it */
2581 		if ((unsigned int)maxpages == 0)
2582 			maxpages = UINT_MAX;
2583 	}
2584 	p->highest_bit = maxpages - 1;
2585 
2586 	if (!maxpages)
2587 		return 0;
2588 	swapfilepages = i_size_read(inode) >> PAGE_SHIFT;
2589 	if (swapfilepages && maxpages > swapfilepages) {
2590 		pr_warn("Swap area shorter than signature indicates\n");
2591 		return 0;
2592 	}
2593 	if (swap_header->info.nr_badpages && S_ISREG(inode->i_mode))
2594 		return 0;
2595 	if (swap_header->info.nr_badpages > MAX_SWAP_BADPAGES)
2596 		return 0;
2597 
2598 	return maxpages;
2599 }
2600 
2601 #define SWAP_CLUSTER_INFO_COLS						\
2602 	DIV_ROUND_UP(L1_CACHE_BYTES, sizeof(struct swap_cluster_info))
2603 #define SWAP_CLUSTER_SPACE_COLS						\
2604 	DIV_ROUND_UP(SWAP_ADDRESS_SPACE_PAGES, SWAPFILE_CLUSTER)
2605 #define SWAP_CLUSTER_COLS						\
2606 	max_t(unsigned int, SWAP_CLUSTER_INFO_COLS, SWAP_CLUSTER_SPACE_COLS)
2607 
2608 static int setup_swap_map_and_extents(struct swap_info_struct *p,
2609 					union swap_header *swap_header,
2610 					unsigned char *swap_map,
2611 					struct swap_cluster_info *cluster_info,
2612 					unsigned long maxpages,
2613 					sector_t *span)
2614 {
2615 	unsigned int j, k;
2616 	unsigned int nr_good_pages;
2617 	int nr_extents;
2618 	unsigned long nr_clusters = DIV_ROUND_UP(maxpages, SWAPFILE_CLUSTER);
2619 	unsigned long col = p->cluster_next / SWAPFILE_CLUSTER % SWAP_CLUSTER_COLS;
2620 	unsigned long i, idx;
2621 
2622 	nr_good_pages = maxpages - 1;	/* omit header page */
2623 
2624 	cluster_list_init(&p->free_clusters);
2625 	cluster_list_init(&p->discard_clusters);
2626 
2627 	for (i = 0; i < swap_header->info.nr_badpages; i++) {
2628 		unsigned int page_nr = swap_header->info.badpages[i];
2629 		if (page_nr == 0 || page_nr > swap_header->info.last_page)
2630 			return -EINVAL;
2631 		if (page_nr < maxpages) {
2632 			swap_map[page_nr] = SWAP_MAP_BAD;
2633 			nr_good_pages--;
2634 			/*
2635 			 * Haven't marked the cluster free yet, no list
2636 			 * operation involved
2637 			 */
2638 			inc_cluster_info_page(p, cluster_info, page_nr);
2639 		}
2640 	}
2641 
2642 	/* Haven't marked the cluster free yet, no list operation involved */
2643 	for (i = maxpages; i < round_up(maxpages, SWAPFILE_CLUSTER); i++)
2644 		inc_cluster_info_page(p, cluster_info, i);
2645 
2646 	if (nr_good_pages) {
2647 		swap_map[0] = SWAP_MAP_BAD;
2648 		/*
2649 		 * Not mark the cluster free yet, no list
2650 		 * operation involved
2651 		 */
2652 		inc_cluster_info_page(p, cluster_info, 0);
2653 		p->max = maxpages;
2654 		p->pages = nr_good_pages;
2655 		nr_extents = setup_swap_extents(p, span);
2656 		if (nr_extents < 0)
2657 			return nr_extents;
2658 		nr_good_pages = p->pages;
2659 	}
2660 	if (!nr_good_pages) {
2661 		pr_warn("Empty swap-file\n");
2662 		return -EINVAL;
2663 	}
2664 
2665 	if (!cluster_info)
2666 		return nr_extents;
2667 
2668 
2669 	/*
2670 	 * Reduce false cache line sharing between cluster_info and
2671 	 * sharing same address space.
2672 	 */
2673 	for (k = 0; k < SWAP_CLUSTER_COLS; k++) {
2674 		j = (k + col) % SWAP_CLUSTER_COLS;
2675 		for (i = 0; i < DIV_ROUND_UP(nr_clusters, SWAP_CLUSTER_COLS); i++) {
2676 			idx = i * SWAP_CLUSTER_COLS + j;
2677 			if (idx >= nr_clusters)
2678 				continue;
2679 			if (cluster_count(&cluster_info[idx]))
2680 				continue;
2681 			cluster_set_flag(&cluster_info[idx], CLUSTER_FLAG_FREE);
2682 			cluster_list_add_tail(&p->free_clusters, cluster_info,
2683 					      idx);
2684 		}
2685 	}
2686 	return nr_extents;
2687 }
2688 
2689 /*
2690  * Helper to sys_swapon determining if a given swap
2691  * backing device queue supports DISCARD operations.
2692  */
2693 static bool swap_discardable(struct swap_info_struct *si)
2694 {
2695 	struct request_queue *q = bdev_get_queue(si->bdev);
2696 
2697 	if (!q || !blk_queue_discard(q))
2698 		return false;
2699 
2700 	return true;
2701 }
2702 
2703 SYSCALL_DEFINE2(swapon, const char __user *, specialfile, int, swap_flags)
2704 {
2705 	struct swap_info_struct *p;
2706 	struct filename *name;
2707 	struct file *swap_file = NULL;
2708 	struct address_space *mapping;
2709 	int prio;
2710 	int error;
2711 	union swap_header *swap_header;
2712 	int nr_extents;
2713 	sector_t span;
2714 	unsigned long maxpages;
2715 	unsigned char *swap_map = NULL;
2716 	struct swap_cluster_info *cluster_info = NULL;
2717 	unsigned long *frontswap_map = NULL;
2718 	struct page *page = NULL;
2719 	struct inode *inode = NULL;
2720 
2721 	if (swap_flags & ~SWAP_FLAGS_VALID)
2722 		return -EINVAL;
2723 
2724 	if (!capable(CAP_SYS_ADMIN))
2725 		return -EPERM;
2726 
2727 	p = alloc_swap_info();
2728 	if (IS_ERR(p))
2729 		return PTR_ERR(p);
2730 
2731 	INIT_WORK(&p->discard_work, swap_discard_work);
2732 
2733 	name = getname(specialfile);
2734 	if (IS_ERR(name)) {
2735 		error = PTR_ERR(name);
2736 		name = NULL;
2737 		goto bad_swap;
2738 	}
2739 	swap_file = file_open_name(name, O_RDWR|O_LARGEFILE, 0);
2740 	if (IS_ERR(swap_file)) {
2741 		error = PTR_ERR(swap_file);
2742 		swap_file = NULL;
2743 		goto bad_swap;
2744 	}
2745 
2746 	p->swap_file = swap_file;
2747 	mapping = swap_file->f_mapping;
2748 	inode = mapping->host;
2749 
2750 	/* If S_ISREG(inode->i_mode) will do inode_lock(inode); */
2751 	error = claim_swapfile(p, inode);
2752 	if (unlikely(error))
2753 		goto bad_swap;
2754 
2755 	/*
2756 	 * Read the swap header.
2757 	 */
2758 	if (!mapping->a_ops->readpage) {
2759 		error = -EINVAL;
2760 		goto bad_swap;
2761 	}
2762 	page = read_mapping_page(mapping, 0, swap_file);
2763 	if (IS_ERR(page)) {
2764 		error = PTR_ERR(page);
2765 		goto bad_swap;
2766 	}
2767 	swap_header = kmap(page);
2768 
2769 	maxpages = read_swap_header(p, swap_header, inode);
2770 	if (unlikely(!maxpages)) {
2771 		error = -EINVAL;
2772 		goto bad_swap;
2773 	}
2774 
2775 	/* OK, set up the swap map and apply the bad block list */
2776 	swap_map = vzalloc(maxpages);
2777 	if (!swap_map) {
2778 		error = -ENOMEM;
2779 		goto bad_swap;
2780 	}
2781 
2782 	if (bdi_cap_stable_pages_required(inode_to_bdi(inode)))
2783 		p->flags |= SWP_STABLE_WRITES;
2784 
2785 	if (p->bdev && blk_queue_nonrot(bdev_get_queue(p->bdev))) {
2786 		int cpu;
2787 		unsigned long ci, nr_cluster;
2788 
2789 		p->flags |= SWP_SOLIDSTATE;
2790 		/*
2791 		 * select a random position to start with to help wear leveling
2792 		 * SSD
2793 		 */
2794 		p->cluster_next = 1 + (prandom_u32() % p->highest_bit);
2795 		nr_cluster = DIV_ROUND_UP(maxpages, SWAPFILE_CLUSTER);
2796 
2797 		cluster_info = kvzalloc(nr_cluster * sizeof(*cluster_info),
2798 					GFP_KERNEL);
2799 		if (!cluster_info) {
2800 			error = -ENOMEM;
2801 			goto bad_swap;
2802 		}
2803 
2804 		for (ci = 0; ci < nr_cluster; ci++)
2805 			spin_lock_init(&((cluster_info + ci)->lock));
2806 
2807 		p->percpu_cluster = alloc_percpu(struct percpu_cluster);
2808 		if (!p->percpu_cluster) {
2809 			error = -ENOMEM;
2810 			goto bad_swap;
2811 		}
2812 		for_each_possible_cpu(cpu) {
2813 			struct percpu_cluster *cluster;
2814 			cluster = per_cpu_ptr(p->percpu_cluster, cpu);
2815 			cluster_set_null(&cluster->index);
2816 		}
2817 	}
2818 
2819 	error = swap_cgroup_swapon(p->type, maxpages);
2820 	if (error)
2821 		goto bad_swap;
2822 
2823 	nr_extents = setup_swap_map_and_extents(p, swap_header, swap_map,
2824 		cluster_info, maxpages, &span);
2825 	if (unlikely(nr_extents < 0)) {
2826 		error = nr_extents;
2827 		goto bad_swap;
2828 	}
2829 	/* frontswap enabled? set up bit-per-page map for frontswap */
2830 	if (IS_ENABLED(CONFIG_FRONTSWAP))
2831 		frontswap_map = kvzalloc(BITS_TO_LONGS(maxpages) * sizeof(long),
2832 					 GFP_KERNEL);
2833 
2834 	if (p->bdev &&(swap_flags & SWAP_FLAG_DISCARD) && swap_discardable(p)) {
2835 		/*
2836 		 * When discard is enabled for swap with no particular
2837 		 * policy flagged, we set all swap discard flags here in
2838 		 * order to sustain backward compatibility with older
2839 		 * swapon(8) releases.
2840 		 */
2841 		p->flags |= (SWP_DISCARDABLE | SWP_AREA_DISCARD |
2842 			     SWP_PAGE_DISCARD);
2843 
2844 		/*
2845 		 * By flagging sys_swapon, a sysadmin can tell us to
2846 		 * either do single-time area discards only, or to just
2847 		 * perform discards for released swap page-clusters.
2848 		 * Now it's time to adjust the p->flags accordingly.
2849 		 */
2850 		if (swap_flags & SWAP_FLAG_DISCARD_ONCE)
2851 			p->flags &= ~SWP_PAGE_DISCARD;
2852 		else if (swap_flags & SWAP_FLAG_DISCARD_PAGES)
2853 			p->flags &= ~SWP_AREA_DISCARD;
2854 
2855 		/* issue a swapon-time discard if it's still required */
2856 		if (p->flags & SWP_AREA_DISCARD) {
2857 			int err = discard_swap(p);
2858 			if (unlikely(err))
2859 				pr_err("swapon: discard_swap(%p): %d\n",
2860 					p, err);
2861 		}
2862 	}
2863 
2864 	error = init_swap_address_space(p->type, maxpages);
2865 	if (error)
2866 		goto bad_swap;
2867 
2868 	mutex_lock(&swapon_mutex);
2869 	prio = -1;
2870 	if (swap_flags & SWAP_FLAG_PREFER)
2871 		prio =
2872 		  (swap_flags & SWAP_FLAG_PRIO_MASK) >> SWAP_FLAG_PRIO_SHIFT;
2873 	enable_swap_info(p, prio, swap_map, cluster_info, frontswap_map);
2874 
2875 	pr_info("Adding %uk swap on %s.  Priority:%d extents:%d across:%lluk %s%s%s%s%s\n",
2876 		p->pages<<(PAGE_SHIFT-10), name->name, p->prio,
2877 		nr_extents, (unsigned long long)span<<(PAGE_SHIFT-10),
2878 		(p->flags & SWP_SOLIDSTATE) ? "SS" : "",
2879 		(p->flags & SWP_DISCARDABLE) ? "D" : "",
2880 		(p->flags & SWP_AREA_DISCARD) ? "s" : "",
2881 		(p->flags & SWP_PAGE_DISCARD) ? "c" : "",
2882 		(frontswap_map) ? "FS" : "");
2883 
2884 	mutex_unlock(&swapon_mutex);
2885 	atomic_inc(&proc_poll_event);
2886 	wake_up_interruptible(&proc_poll_wait);
2887 
2888 	if (S_ISREG(inode->i_mode))
2889 		inode->i_flags |= S_SWAPFILE;
2890 	error = 0;
2891 	goto out;
2892 bad_swap:
2893 	free_percpu(p->percpu_cluster);
2894 	p->percpu_cluster = NULL;
2895 	if (inode && S_ISBLK(inode->i_mode) && p->bdev) {
2896 		set_blocksize(p->bdev, p->old_block_size);
2897 		blkdev_put(p->bdev, FMODE_READ | FMODE_WRITE | FMODE_EXCL);
2898 	}
2899 	destroy_swap_extents(p);
2900 	swap_cgroup_swapoff(p->type);
2901 	spin_lock(&swap_lock);
2902 	p->swap_file = NULL;
2903 	p->flags = 0;
2904 	spin_unlock(&swap_lock);
2905 	vfree(swap_map);
2906 	vfree(cluster_info);
2907 	if (swap_file) {
2908 		if (inode && S_ISREG(inode->i_mode)) {
2909 			inode_unlock(inode);
2910 			inode = NULL;
2911 		}
2912 		filp_close(swap_file, NULL);
2913 	}
2914 out:
2915 	if (page && !IS_ERR(page)) {
2916 		kunmap(page);
2917 		put_page(page);
2918 	}
2919 	if (name)
2920 		putname(name);
2921 	if (inode && S_ISREG(inode->i_mode))
2922 		inode_unlock(inode);
2923 	if (!error)
2924 		enable_swap_slots_cache();
2925 	return error;
2926 }
2927 
2928 void si_swapinfo(struct sysinfo *val)
2929 {
2930 	unsigned int type;
2931 	unsigned long nr_to_be_unused = 0;
2932 
2933 	spin_lock(&swap_lock);
2934 	for (type = 0; type < nr_swapfiles; type++) {
2935 		struct swap_info_struct *si = swap_info[type];
2936 
2937 		if ((si->flags & SWP_USED) && !(si->flags & SWP_WRITEOK))
2938 			nr_to_be_unused += si->inuse_pages;
2939 	}
2940 	val->freeswap = atomic_long_read(&nr_swap_pages) + nr_to_be_unused;
2941 	val->totalswap = total_swap_pages + nr_to_be_unused;
2942 	spin_unlock(&swap_lock);
2943 }
2944 
2945 /*
2946  * Verify that a swap entry is valid and increment its swap map count.
2947  *
2948  * Returns error code in following case.
2949  * - success -> 0
2950  * - swp_entry is invalid -> EINVAL
2951  * - swp_entry is migration entry -> EINVAL
2952  * - swap-cache reference is requested but there is already one. -> EEXIST
2953  * - swap-cache reference is requested but the entry is not used. -> ENOENT
2954  * - swap-mapped reference requested but needs continued swap count. -> ENOMEM
2955  */
2956 static int __swap_duplicate(swp_entry_t entry, unsigned char usage)
2957 {
2958 	struct swap_info_struct *p;
2959 	struct swap_cluster_info *ci;
2960 	unsigned long offset, type;
2961 	unsigned char count;
2962 	unsigned char has_cache;
2963 	int err = -EINVAL;
2964 
2965 	if (non_swap_entry(entry))
2966 		goto out;
2967 
2968 	type = swp_type(entry);
2969 	if (type >= nr_swapfiles)
2970 		goto bad_file;
2971 	p = swap_info[type];
2972 	offset = swp_offset(entry);
2973 	if (unlikely(offset >= p->max))
2974 		goto out;
2975 
2976 	ci = lock_cluster_or_swap_info(p, offset);
2977 
2978 	count = p->swap_map[offset];
2979 
2980 	/*
2981 	 * swapin_readahead() doesn't check if a swap entry is valid, so the
2982 	 * swap entry could be SWAP_MAP_BAD. Check here with lock held.
2983 	 */
2984 	if (unlikely(swap_count(count) == SWAP_MAP_BAD)) {
2985 		err = -ENOENT;
2986 		goto unlock_out;
2987 	}
2988 
2989 	has_cache = count & SWAP_HAS_CACHE;
2990 	count &= ~SWAP_HAS_CACHE;
2991 	err = 0;
2992 
2993 	if (usage == SWAP_HAS_CACHE) {
2994 
2995 		/* set SWAP_HAS_CACHE if there is no cache and entry is used */
2996 		if (!has_cache && count)
2997 			has_cache = SWAP_HAS_CACHE;
2998 		else if (has_cache)		/* someone else added cache */
2999 			err = -EEXIST;
3000 		else				/* no users remaining */
3001 			err = -ENOENT;
3002 
3003 	} else if (count || has_cache) {
3004 
3005 		if ((count & ~COUNT_CONTINUED) < SWAP_MAP_MAX)
3006 			count += usage;
3007 		else if ((count & ~COUNT_CONTINUED) > SWAP_MAP_MAX)
3008 			err = -EINVAL;
3009 		else if (swap_count_continued(p, offset, count))
3010 			count = COUNT_CONTINUED;
3011 		else
3012 			err = -ENOMEM;
3013 	} else
3014 		err = -ENOENT;			/* unused swap entry */
3015 
3016 	p->swap_map[offset] = count | has_cache;
3017 
3018 unlock_out:
3019 	unlock_cluster_or_swap_info(p, ci);
3020 out:
3021 	return err;
3022 
3023 bad_file:
3024 	pr_err("swap_dup: %s%08lx\n", Bad_file, entry.val);
3025 	goto out;
3026 }
3027 
3028 /*
3029  * Help swapoff by noting that swap entry belongs to shmem/tmpfs
3030  * (in which case its reference count is never incremented).
3031  */
3032 void swap_shmem_alloc(swp_entry_t entry)
3033 {
3034 	__swap_duplicate(entry, SWAP_MAP_SHMEM);
3035 }
3036 
3037 /*
3038  * Increase reference count of swap entry by 1.
3039  * Returns 0 for success, or -ENOMEM if a swap_count_continuation is required
3040  * but could not be atomically allocated.  Returns 0, just as if it succeeded,
3041  * if __swap_duplicate() fails for another reason (-EINVAL or -ENOENT), which
3042  * might occur if a page table entry has got corrupted.
3043  */
3044 int swap_duplicate(swp_entry_t entry)
3045 {
3046 	int err = 0;
3047 
3048 	while (!err && __swap_duplicate(entry, 1) == -ENOMEM)
3049 		err = add_swap_count_continuation(entry, GFP_ATOMIC);
3050 	return err;
3051 }
3052 
3053 /*
3054  * @entry: swap entry for which we allocate swap cache.
3055  *
3056  * Called when allocating swap cache for existing swap entry,
3057  * This can return error codes. Returns 0 at success.
3058  * -EBUSY means there is a swap cache.
3059  * Note: return code is different from swap_duplicate().
3060  */
3061 int swapcache_prepare(swp_entry_t entry)
3062 {
3063 	return __swap_duplicate(entry, SWAP_HAS_CACHE);
3064 }
3065 
3066 struct swap_info_struct *page_swap_info(struct page *page)
3067 {
3068 	swp_entry_t swap = { .val = page_private(page) };
3069 	return swap_info[swp_type(swap)];
3070 }
3071 
3072 /*
3073  * out-of-line __page_file_ methods to avoid include hell.
3074  */
3075 struct address_space *__page_file_mapping(struct page *page)
3076 {
3077 	VM_BUG_ON_PAGE(!PageSwapCache(page), page);
3078 	return page_swap_info(page)->swap_file->f_mapping;
3079 }
3080 EXPORT_SYMBOL_GPL(__page_file_mapping);
3081 
3082 pgoff_t __page_file_index(struct page *page)
3083 {
3084 	swp_entry_t swap = { .val = page_private(page) };
3085 	VM_BUG_ON_PAGE(!PageSwapCache(page), page);
3086 	return swp_offset(swap);
3087 }
3088 EXPORT_SYMBOL_GPL(__page_file_index);
3089 
3090 /*
3091  * add_swap_count_continuation - called when a swap count is duplicated
3092  * beyond SWAP_MAP_MAX, it allocates a new page and links that to the entry's
3093  * page of the original vmalloc'ed swap_map, to hold the continuation count
3094  * (for that entry and for its neighbouring PAGE_SIZE swap entries).  Called
3095  * again when count is duplicated beyond SWAP_MAP_MAX * SWAP_CONT_MAX, etc.
3096  *
3097  * These continuation pages are seldom referenced: the common paths all work
3098  * on the original swap_map, only referring to a continuation page when the
3099  * low "digit" of a count is incremented or decremented through SWAP_MAP_MAX.
3100  *
3101  * add_swap_count_continuation(, GFP_ATOMIC) can be called while holding
3102  * page table locks; if it fails, add_swap_count_continuation(, GFP_KERNEL)
3103  * can be called after dropping locks.
3104  */
3105 int add_swap_count_continuation(swp_entry_t entry, gfp_t gfp_mask)
3106 {
3107 	struct swap_info_struct *si;
3108 	struct swap_cluster_info *ci;
3109 	struct page *head;
3110 	struct page *page;
3111 	struct page *list_page;
3112 	pgoff_t offset;
3113 	unsigned char count;
3114 
3115 	/*
3116 	 * When debugging, it's easier to use __GFP_ZERO here; but it's better
3117 	 * for latency not to zero a page while GFP_ATOMIC and holding locks.
3118 	 */
3119 	page = alloc_page(gfp_mask | __GFP_HIGHMEM);
3120 
3121 	si = swap_info_get(entry);
3122 	if (!si) {
3123 		/*
3124 		 * An acceptable race has occurred since the failing
3125 		 * __swap_duplicate(): the swap entry has been freed,
3126 		 * perhaps even the whole swap_map cleared for swapoff.
3127 		 */
3128 		goto outer;
3129 	}
3130 
3131 	offset = swp_offset(entry);
3132 
3133 	ci = lock_cluster(si, offset);
3134 
3135 	count = si->swap_map[offset] & ~SWAP_HAS_CACHE;
3136 
3137 	if ((count & ~COUNT_CONTINUED) != SWAP_MAP_MAX) {
3138 		/*
3139 		 * The higher the swap count, the more likely it is that tasks
3140 		 * will race to add swap count continuation: we need to avoid
3141 		 * over-provisioning.
3142 		 */
3143 		goto out;
3144 	}
3145 
3146 	if (!page) {
3147 		unlock_cluster(ci);
3148 		spin_unlock(&si->lock);
3149 		return -ENOMEM;
3150 	}
3151 
3152 	/*
3153 	 * We are fortunate that although vmalloc_to_page uses pte_offset_map,
3154 	 * no architecture is using highmem pages for kernel page tables: so it
3155 	 * will not corrupt the GFP_ATOMIC caller's atomic page table kmaps.
3156 	 */
3157 	head = vmalloc_to_page(si->swap_map + offset);
3158 	offset &= ~PAGE_MASK;
3159 
3160 	/*
3161 	 * Page allocation does not initialize the page's lru field,
3162 	 * but it does always reset its private field.
3163 	 */
3164 	if (!page_private(head)) {
3165 		BUG_ON(count & COUNT_CONTINUED);
3166 		INIT_LIST_HEAD(&head->lru);
3167 		set_page_private(head, SWP_CONTINUED);
3168 		si->flags |= SWP_CONTINUED;
3169 	}
3170 
3171 	list_for_each_entry(list_page, &head->lru, lru) {
3172 		unsigned char *map;
3173 
3174 		/*
3175 		 * If the previous map said no continuation, but we've found
3176 		 * a continuation page, free our allocation and use this one.
3177 		 */
3178 		if (!(count & COUNT_CONTINUED))
3179 			goto out;
3180 
3181 		map = kmap_atomic(list_page) + offset;
3182 		count = *map;
3183 		kunmap_atomic(map);
3184 
3185 		/*
3186 		 * If this continuation count now has some space in it,
3187 		 * free our allocation and use this one.
3188 		 */
3189 		if ((count & ~COUNT_CONTINUED) != SWAP_CONT_MAX)
3190 			goto out;
3191 	}
3192 
3193 	list_add_tail(&page->lru, &head->lru);
3194 	page = NULL;			/* now it's attached, don't free it */
3195 out:
3196 	unlock_cluster(ci);
3197 	spin_unlock(&si->lock);
3198 outer:
3199 	if (page)
3200 		__free_page(page);
3201 	return 0;
3202 }
3203 
3204 /*
3205  * swap_count_continued - when the original swap_map count is incremented
3206  * from SWAP_MAP_MAX, check if there is already a continuation page to carry
3207  * into, carry if so, or else fail until a new continuation page is allocated;
3208  * when the original swap_map count is decremented from 0 with continuation,
3209  * borrow from the continuation and report whether it still holds more.
3210  * Called while __swap_duplicate() or swap_entry_free() holds swap or cluster
3211  * lock.
3212  */
3213 static bool swap_count_continued(struct swap_info_struct *si,
3214 				 pgoff_t offset, unsigned char count)
3215 {
3216 	struct page *head;
3217 	struct page *page;
3218 	unsigned char *map;
3219 
3220 	head = vmalloc_to_page(si->swap_map + offset);
3221 	if (page_private(head) != SWP_CONTINUED) {
3222 		BUG_ON(count & COUNT_CONTINUED);
3223 		return false;		/* need to add count continuation */
3224 	}
3225 
3226 	offset &= ~PAGE_MASK;
3227 	page = list_entry(head->lru.next, struct page, lru);
3228 	map = kmap_atomic(page) + offset;
3229 
3230 	if (count == SWAP_MAP_MAX)	/* initial increment from swap_map */
3231 		goto init_map;		/* jump over SWAP_CONT_MAX checks */
3232 
3233 	if (count == (SWAP_MAP_MAX | COUNT_CONTINUED)) { /* incrementing */
3234 		/*
3235 		 * Think of how you add 1 to 999
3236 		 */
3237 		while (*map == (SWAP_CONT_MAX | COUNT_CONTINUED)) {
3238 			kunmap_atomic(map);
3239 			page = list_entry(page->lru.next, struct page, lru);
3240 			BUG_ON(page == head);
3241 			map = kmap_atomic(page) + offset;
3242 		}
3243 		if (*map == SWAP_CONT_MAX) {
3244 			kunmap_atomic(map);
3245 			page = list_entry(page->lru.next, struct page, lru);
3246 			if (page == head)
3247 				return false;	/* add count continuation */
3248 			map = kmap_atomic(page) + offset;
3249 init_map:		*map = 0;		/* we didn't zero the page */
3250 		}
3251 		*map += 1;
3252 		kunmap_atomic(map);
3253 		page = list_entry(page->lru.prev, struct page, lru);
3254 		while (page != head) {
3255 			map = kmap_atomic(page) + offset;
3256 			*map = COUNT_CONTINUED;
3257 			kunmap_atomic(map);
3258 			page = list_entry(page->lru.prev, struct page, lru);
3259 		}
3260 		return true;			/* incremented */
3261 
3262 	} else {				/* decrementing */
3263 		/*
3264 		 * Think of how you subtract 1 from 1000
3265 		 */
3266 		BUG_ON(count != COUNT_CONTINUED);
3267 		while (*map == COUNT_CONTINUED) {
3268 			kunmap_atomic(map);
3269 			page = list_entry(page->lru.next, struct page, lru);
3270 			BUG_ON(page == head);
3271 			map = kmap_atomic(page) + offset;
3272 		}
3273 		BUG_ON(*map == 0);
3274 		*map -= 1;
3275 		if (*map == 0)
3276 			count = 0;
3277 		kunmap_atomic(map);
3278 		page = list_entry(page->lru.prev, struct page, lru);
3279 		while (page != head) {
3280 			map = kmap_atomic(page) + offset;
3281 			*map = SWAP_CONT_MAX | count;
3282 			count = COUNT_CONTINUED;
3283 			kunmap_atomic(map);
3284 			page = list_entry(page->lru.prev, struct page, lru);
3285 		}
3286 		return count == COUNT_CONTINUED;
3287 	}
3288 }
3289 
3290 /*
3291  * free_swap_count_continuations - swapoff free all the continuation pages
3292  * appended to the swap_map, after swap_map is quiesced, before vfree'ing it.
3293  */
3294 static void free_swap_count_continuations(struct swap_info_struct *si)
3295 {
3296 	pgoff_t offset;
3297 
3298 	for (offset = 0; offset < si->max; offset += PAGE_SIZE) {
3299 		struct page *head;
3300 		head = vmalloc_to_page(si->swap_map + offset);
3301 		if (page_private(head)) {
3302 			struct page *page, *next;
3303 
3304 			list_for_each_entry_safe(page, next, &head->lru, lru) {
3305 				list_del(&page->lru);
3306 				__free_page(page);
3307 			}
3308 		}
3309 	}
3310 }
3311