1 /* 2 * linux/mm/swapfile.c 3 * 4 * Copyright (C) 1991, 1992, 1993, 1994 Linus Torvalds 5 * Swap reorganised 29.12.95, Stephen Tweedie 6 */ 7 8 #include <linux/mm.h> 9 #include <linux/sched/mm.h> 10 #include <linux/sched/task.h> 11 #include <linux/hugetlb.h> 12 #include <linux/mman.h> 13 #include <linux/slab.h> 14 #include <linux/kernel_stat.h> 15 #include <linux/swap.h> 16 #include <linux/vmalloc.h> 17 #include <linux/pagemap.h> 18 #include <linux/namei.h> 19 #include <linux/shmem_fs.h> 20 #include <linux/blkdev.h> 21 #include <linux/random.h> 22 #include <linux/writeback.h> 23 #include <linux/proc_fs.h> 24 #include <linux/seq_file.h> 25 #include <linux/init.h> 26 #include <linux/ksm.h> 27 #include <linux/rmap.h> 28 #include <linux/security.h> 29 #include <linux/backing-dev.h> 30 #include <linux/mutex.h> 31 #include <linux/capability.h> 32 #include <linux/syscalls.h> 33 #include <linux/memcontrol.h> 34 #include <linux/poll.h> 35 #include <linux/oom.h> 36 #include <linux/frontswap.h> 37 #include <linux/swapfile.h> 38 #include <linux/export.h> 39 #include <linux/swap_slots.h> 40 #include <linux/sort.h> 41 42 #include <asm/pgtable.h> 43 #include <asm/tlbflush.h> 44 #include <linux/swapops.h> 45 #include <linux/swap_cgroup.h> 46 47 static bool swap_count_continued(struct swap_info_struct *, pgoff_t, 48 unsigned char); 49 static void free_swap_count_continuations(struct swap_info_struct *); 50 static sector_t map_swap_entry(swp_entry_t, struct block_device**); 51 52 DEFINE_SPINLOCK(swap_lock); 53 static unsigned int nr_swapfiles; 54 atomic_long_t nr_swap_pages; 55 /* 56 * Some modules use swappable objects and may try to swap them out under 57 * memory pressure (via the shrinker). Before doing so, they may wish to 58 * check to see if any swap space is available. 59 */ 60 EXPORT_SYMBOL_GPL(nr_swap_pages); 61 /* protected with swap_lock. reading in vm_swap_full() doesn't need lock */ 62 long total_swap_pages; 63 static int least_priority = -1; 64 65 static const char Bad_file[] = "Bad swap file entry "; 66 static const char Unused_file[] = "Unused swap file entry "; 67 static const char Bad_offset[] = "Bad swap offset entry "; 68 static const char Unused_offset[] = "Unused swap offset entry "; 69 70 /* 71 * all active swap_info_structs 72 * protected with swap_lock, and ordered by priority. 73 */ 74 PLIST_HEAD(swap_active_head); 75 76 /* 77 * all available (active, not full) swap_info_structs 78 * protected with swap_avail_lock, ordered by priority. 79 * This is used by get_swap_page() instead of swap_active_head 80 * because swap_active_head includes all swap_info_structs, 81 * but get_swap_page() doesn't need to look at full ones. 82 * This uses its own lock instead of swap_lock because when a 83 * swap_info_struct changes between not-full/full, it needs to 84 * add/remove itself to/from this list, but the swap_info_struct->lock 85 * is held and the locking order requires swap_lock to be taken 86 * before any swap_info_struct->lock. 87 */ 88 static struct plist_head *swap_avail_heads; 89 static DEFINE_SPINLOCK(swap_avail_lock); 90 91 struct swap_info_struct *swap_info[MAX_SWAPFILES]; 92 93 static DEFINE_MUTEX(swapon_mutex); 94 95 static DECLARE_WAIT_QUEUE_HEAD(proc_poll_wait); 96 /* Activity counter to indicate that a swapon or swapoff has occurred */ 97 static atomic_t proc_poll_event = ATOMIC_INIT(0); 98 99 atomic_t nr_rotate_swap = ATOMIC_INIT(0); 100 101 static inline unsigned char swap_count(unsigned char ent) 102 { 103 return ent & ~SWAP_HAS_CACHE; /* may include COUNT_CONTINUED flag */ 104 } 105 106 /* returns 1 if swap entry is freed */ 107 static int 108 __try_to_reclaim_swap(struct swap_info_struct *si, unsigned long offset) 109 { 110 swp_entry_t entry = swp_entry(si->type, offset); 111 struct page *page; 112 int ret = 0; 113 114 page = find_get_page(swap_address_space(entry), swp_offset(entry)); 115 if (!page) 116 return 0; 117 /* 118 * This function is called from scan_swap_map() and it's called 119 * by vmscan.c at reclaiming pages. So, we hold a lock on a page, here. 120 * We have to use trylock for avoiding deadlock. This is a special 121 * case and you should use try_to_free_swap() with explicit lock_page() 122 * in usual operations. 123 */ 124 if (trylock_page(page)) { 125 ret = try_to_free_swap(page); 126 unlock_page(page); 127 } 128 put_page(page); 129 return ret; 130 } 131 132 /* 133 * swapon tell device that all the old swap contents can be discarded, 134 * to allow the swap device to optimize its wear-levelling. 135 */ 136 static int discard_swap(struct swap_info_struct *si) 137 { 138 struct swap_extent *se; 139 sector_t start_block; 140 sector_t nr_blocks; 141 int err = 0; 142 143 /* Do not discard the swap header page! */ 144 se = &si->first_swap_extent; 145 start_block = (se->start_block + 1) << (PAGE_SHIFT - 9); 146 nr_blocks = ((sector_t)se->nr_pages - 1) << (PAGE_SHIFT - 9); 147 if (nr_blocks) { 148 err = blkdev_issue_discard(si->bdev, start_block, 149 nr_blocks, GFP_KERNEL, 0); 150 if (err) 151 return err; 152 cond_resched(); 153 } 154 155 list_for_each_entry(se, &si->first_swap_extent.list, list) { 156 start_block = se->start_block << (PAGE_SHIFT - 9); 157 nr_blocks = (sector_t)se->nr_pages << (PAGE_SHIFT - 9); 158 159 err = blkdev_issue_discard(si->bdev, start_block, 160 nr_blocks, GFP_KERNEL, 0); 161 if (err) 162 break; 163 164 cond_resched(); 165 } 166 return err; /* That will often be -EOPNOTSUPP */ 167 } 168 169 /* 170 * swap allocation tell device that a cluster of swap can now be discarded, 171 * to allow the swap device to optimize its wear-levelling. 172 */ 173 static void discard_swap_cluster(struct swap_info_struct *si, 174 pgoff_t start_page, pgoff_t nr_pages) 175 { 176 struct swap_extent *se = si->curr_swap_extent; 177 int found_extent = 0; 178 179 while (nr_pages) { 180 if (se->start_page <= start_page && 181 start_page < se->start_page + se->nr_pages) { 182 pgoff_t offset = start_page - se->start_page; 183 sector_t start_block = se->start_block + offset; 184 sector_t nr_blocks = se->nr_pages - offset; 185 186 if (nr_blocks > nr_pages) 187 nr_blocks = nr_pages; 188 start_page += nr_blocks; 189 nr_pages -= nr_blocks; 190 191 if (!found_extent++) 192 si->curr_swap_extent = se; 193 194 start_block <<= PAGE_SHIFT - 9; 195 nr_blocks <<= PAGE_SHIFT - 9; 196 if (blkdev_issue_discard(si->bdev, start_block, 197 nr_blocks, GFP_NOIO, 0)) 198 break; 199 } 200 201 se = list_next_entry(se, list); 202 } 203 } 204 205 #ifdef CONFIG_THP_SWAP 206 #define SWAPFILE_CLUSTER HPAGE_PMD_NR 207 208 #define swap_entry_size(size) (size) 209 #else 210 #define SWAPFILE_CLUSTER 256 211 212 /* 213 * Define swap_entry_size() as constant to let compiler to optimize 214 * out some code if !CONFIG_THP_SWAP 215 */ 216 #define swap_entry_size(size) 1 217 #endif 218 #define LATENCY_LIMIT 256 219 220 static inline void cluster_set_flag(struct swap_cluster_info *info, 221 unsigned int flag) 222 { 223 info->flags = flag; 224 } 225 226 static inline unsigned int cluster_count(struct swap_cluster_info *info) 227 { 228 return info->data; 229 } 230 231 static inline void cluster_set_count(struct swap_cluster_info *info, 232 unsigned int c) 233 { 234 info->data = c; 235 } 236 237 static inline void cluster_set_count_flag(struct swap_cluster_info *info, 238 unsigned int c, unsigned int f) 239 { 240 info->flags = f; 241 info->data = c; 242 } 243 244 static inline unsigned int cluster_next(struct swap_cluster_info *info) 245 { 246 return info->data; 247 } 248 249 static inline void cluster_set_next(struct swap_cluster_info *info, 250 unsigned int n) 251 { 252 info->data = n; 253 } 254 255 static inline void cluster_set_next_flag(struct swap_cluster_info *info, 256 unsigned int n, unsigned int f) 257 { 258 info->flags = f; 259 info->data = n; 260 } 261 262 static inline bool cluster_is_free(struct swap_cluster_info *info) 263 { 264 return info->flags & CLUSTER_FLAG_FREE; 265 } 266 267 static inline bool cluster_is_null(struct swap_cluster_info *info) 268 { 269 return info->flags & CLUSTER_FLAG_NEXT_NULL; 270 } 271 272 static inline void cluster_set_null(struct swap_cluster_info *info) 273 { 274 info->flags = CLUSTER_FLAG_NEXT_NULL; 275 info->data = 0; 276 } 277 278 static inline bool cluster_is_huge(struct swap_cluster_info *info) 279 { 280 if (IS_ENABLED(CONFIG_THP_SWAP)) 281 return info->flags & CLUSTER_FLAG_HUGE; 282 return false; 283 } 284 285 static inline void cluster_clear_huge(struct swap_cluster_info *info) 286 { 287 info->flags &= ~CLUSTER_FLAG_HUGE; 288 } 289 290 static inline struct swap_cluster_info *lock_cluster(struct swap_info_struct *si, 291 unsigned long offset) 292 { 293 struct swap_cluster_info *ci; 294 295 ci = si->cluster_info; 296 if (ci) { 297 ci += offset / SWAPFILE_CLUSTER; 298 spin_lock(&ci->lock); 299 } 300 return ci; 301 } 302 303 static inline void unlock_cluster(struct swap_cluster_info *ci) 304 { 305 if (ci) 306 spin_unlock(&ci->lock); 307 } 308 309 /* 310 * Determine the locking method in use for this device. Return 311 * swap_cluster_info if SSD-style cluster-based locking is in place. 312 */ 313 static inline struct swap_cluster_info *lock_cluster_or_swap_info( 314 struct swap_info_struct *si, unsigned long offset) 315 { 316 struct swap_cluster_info *ci; 317 318 /* Try to use fine-grained SSD-style locking if available: */ 319 ci = lock_cluster(si, offset); 320 /* Otherwise, fall back to traditional, coarse locking: */ 321 if (!ci) 322 spin_lock(&si->lock); 323 324 return ci; 325 } 326 327 static inline void unlock_cluster_or_swap_info(struct swap_info_struct *si, 328 struct swap_cluster_info *ci) 329 { 330 if (ci) 331 unlock_cluster(ci); 332 else 333 spin_unlock(&si->lock); 334 } 335 336 static inline bool cluster_list_empty(struct swap_cluster_list *list) 337 { 338 return cluster_is_null(&list->head); 339 } 340 341 static inline unsigned int cluster_list_first(struct swap_cluster_list *list) 342 { 343 return cluster_next(&list->head); 344 } 345 346 static void cluster_list_init(struct swap_cluster_list *list) 347 { 348 cluster_set_null(&list->head); 349 cluster_set_null(&list->tail); 350 } 351 352 static void cluster_list_add_tail(struct swap_cluster_list *list, 353 struct swap_cluster_info *ci, 354 unsigned int idx) 355 { 356 if (cluster_list_empty(list)) { 357 cluster_set_next_flag(&list->head, idx, 0); 358 cluster_set_next_flag(&list->tail, idx, 0); 359 } else { 360 struct swap_cluster_info *ci_tail; 361 unsigned int tail = cluster_next(&list->tail); 362 363 /* 364 * Nested cluster lock, but both cluster locks are 365 * only acquired when we held swap_info_struct->lock 366 */ 367 ci_tail = ci + tail; 368 spin_lock_nested(&ci_tail->lock, SINGLE_DEPTH_NESTING); 369 cluster_set_next(ci_tail, idx); 370 spin_unlock(&ci_tail->lock); 371 cluster_set_next_flag(&list->tail, idx, 0); 372 } 373 } 374 375 static unsigned int cluster_list_del_first(struct swap_cluster_list *list, 376 struct swap_cluster_info *ci) 377 { 378 unsigned int idx; 379 380 idx = cluster_next(&list->head); 381 if (cluster_next(&list->tail) == idx) { 382 cluster_set_null(&list->head); 383 cluster_set_null(&list->tail); 384 } else 385 cluster_set_next_flag(&list->head, 386 cluster_next(&ci[idx]), 0); 387 388 return idx; 389 } 390 391 /* Add a cluster to discard list and schedule it to do discard */ 392 static void swap_cluster_schedule_discard(struct swap_info_struct *si, 393 unsigned int idx) 394 { 395 /* 396 * If scan_swap_map() can't find a free cluster, it will check 397 * si->swap_map directly. To make sure the discarding cluster isn't 398 * taken by scan_swap_map(), mark the swap entries bad (occupied). It 399 * will be cleared after discard 400 */ 401 memset(si->swap_map + idx * SWAPFILE_CLUSTER, 402 SWAP_MAP_BAD, SWAPFILE_CLUSTER); 403 404 cluster_list_add_tail(&si->discard_clusters, si->cluster_info, idx); 405 406 schedule_work(&si->discard_work); 407 } 408 409 static void __free_cluster(struct swap_info_struct *si, unsigned long idx) 410 { 411 struct swap_cluster_info *ci = si->cluster_info; 412 413 cluster_set_flag(ci + idx, CLUSTER_FLAG_FREE); 414 cluster_list_add_tail(&si->free_clusters, ci, idx); 415 } 416 417 /* 418 * Doing discard actually. After a cluster discard is finished, the cluster 419 * will be added to free cluster list. caller should hold si->lock. 420 */ 421 static void swap_do_scheduled_discard(struct swap_info_struct *si) 422 { 423 struct swap_cluster_info *info, *ci; 424 unsigned int idx; 425 426 info = si->cluster_info; 427 428 while (!cluster_list_empty(&si->discard_clusters)) { 429 idx = cluster_list_del_first(&si->discard_clusters, info); 430 spin_unlock(&si->lock); 431 432 discard_swap_cluster(si, idx * SWAPFILE_CLUSTER, 433 SWAPFILE_CLUSTER); 434 435 spin_lock(&si->lock); 436 ci = lock_cluster(si, idx * SWAPFILE_CLUSTER); 437 __free_cluster(si, idx); 438 memset(si->swap_map + idx * SWAPFILE_CLUSTER, 439 0, SWAPFILE_CLUSTER); 440 unlock_cluster(ci); 441 } 442 } 443 444 static void swap_discard_work(struct work_struct *work) 445 { 446 struct swap_info_struct *si; 447 448 si = container_of(work, struct swap_info_struct, discard_work); 449 450 spin_lock(&si->lock); 451 swap_do_scheduled_discard(si); 452 spin_unlock(&si->lock); 453 } 454 455 static void alloc_cluster(struct swap_info_struct *si, unsigned long idx) 456 { 457 struct swap_cluster_info *ci = si->cluster_info; 458 459 VM_BUG_ON(cluster_list_first(&si->free_clusters) != idx); 460 cluster_list_del_first(&si->free_clusters, ci); 461 cluster_set_count_flag(ci + idx, 0, 0); 462 } 463 464 static void free_cluster(struct swap_info_struct *si, unsigned long idx) 465 { 466 struct swap_cluster_info *ci = si->cluster_info + idx; 467 468 VM_BUG_ON(cluster_count(ci) != 0); 469 /* 470 * If the swap is discardable, prepare discard the cluster 471 * instead of free it immediately. The cluster will be freed 472 * after discard. 473 */ 474 if ((si->flags & (SWP_WRITEOK | SWP_PAGE_DISCARD)) == 475 (SWP_WRITEOK | SWP_PAGE_DISCARD)) { 476 swap_cluster_schedule_discard(si, idx); 477 return; 478 } 479 480 __free_cluster(si, idx); 481 } 482 483 /* 484 * The cluster corresponding to page_nr will be used. The cluster will be 485 * removed from free cluster list and its usage counter will be increased. 486 */ 487 static void inc_cluster_info_page(struct swap_info_struct *p, 488 struct swap_cluster_info *cluster_info, unsigned long page_nr) 489 { 490 unsigned long idx = page_nr / SWAPFILE_CLUSTER; 491 492 if (!cluster_info) 493 return; 494 if (cluster_is_free(&cluster_info[idx])) 495 alloc_cluster(p, idx); 496 497 VM_BUG_ON(cluster_count(&cluster_info[idx]) >= SWAPFILE_CLUSTER); 498 cluster_set_count(&cluster_info[idx], 499 cluster_count(&cluster_info[idx]) + 1); 500 } 501 502 /* 503 * The cluster corresponding to page_nr decreases one usage. If the usage 504 * counter becomes 0, which means no page in the cluster is in using, we can 505 * optionally discard the cluster and add it to free cluster list. 506 */ 507 static void dec_cluster_info_page(struct swap_info_struct *p, 508 struct swap_cluster_info *cluster_info, unsigned long page_nr) 509 { 510 unsigned long idx = page_nr / SWAPFILE_CLUSTER; 511 512 if (!cluster_info) 513 return; 514 515 VM_BUG_ON(cluster_count(&cluster_info[idx]) == 0); 516 cluster_set_count(&cluster_info[idx], 517 cluster_count(&cluster_info[idx]) - 1); 518 519 if (cluster_count(&cluster_info[idx]) == 0) 520 free_cluster(p, idx); 521 } 522 523 /* 524 * It's possible scan_swap_map() uses a free cluster in the middle of free 525 * cluster list. Avoiding such abuse to avoid list corruption. 526 */ 527 static bool 528 scan_swap_map_ssd_cluster_conflict(struct swap_info_struct *si, 529 unsigned long offset) 530 { 531 struct percpu_cluster *percpu_cluster; 532 bool conflict; 533 534 offset /= SWAPFILE_CLUSTER; 535 conflict = !cluster_list_empty(&si->free_clusters) && 536 offset != cluster_list_first(&si->free_clusters) && 537 cluster_is_free(&si->cluster_info[offset]); 538 539 if (!conflict) 540 return false; 541 542 percpu_cluster = this_cpu_ptr(si->percpu_cluster); 543 cluster_set_null(&percpu_cluster->index); 544 return true; 545 } 546 547 /* 548 * Try to get a swap entry from current cpu's swap entry pool (a cluster). This 549 * might involve allocating a new cluster for current CPU too. 550 */ 551 static bool scan_swap_map_try_ssd_cluster(struct swap_info_struct *si, 552 unsigned long *offset, unsigned long *scan_base) 553 { 554 struct percpu_cluster *cluster; 555 struct swap_cluster_info *ci; 556 bool found_free; 557 unsigned long tmp, max; 558 559 new_cluster: 560 cluster = this_cpu_ptr(si->percpu_cluster); 561 if (cluster_is_null(&cluster->index)) { 562 if (!cluster_list_empty(&si->free_clusters)) { 563 cluster->index = si->free_clusters.head; 564 cluster->next = cluster_next(&cluster->index) * 565 SWAPFILE_CLUSTER; 566 } else if (!cluster_list_empty(&si->discard_clusters)) { 567 /* 568 * we don't have free cluster but have some clusters in 569 * discarding, do discard now and reclaim them 570 */ 571 swap_do_scheduled_discard(si); 572 *scan_base = *offset = si->cluster_next; 573 goto new_cluster; 574 } else 575 return false; 576 } 577 578 found_free = false; 579 580 /* 581 * Other CPUs can use our cluster if they can't find a free cluster, 582 * check if there is still free entry in the cluster 583 */ 584 tmp = cluster->next; 585 max = min_t(unsigned long, si->max, 586 (cluster_next(&cluster->index) + 1) * SWAPFILE_CLUSTER); 587 if (tmp >= max) { 588 cluster_set_null(&cluster->index); 589 goto new_cluster; 590 } 591 ci = lock_cluster(si, tmp); 592 while (tmp < max) { 593 if (!si->swap_map[tmp]) { 594 found_free = true; 595 break; 596 } 597 tmp++; 598 } 599 unlock_cluster(ci); 600 if (!found_free) { 601 cluster_set_null(&cluster->index); 602 goto new_cluster; 603 } 604 cluster->next = tmp + 1; 605 *offset = tmp; 606 *scan_base = tmp; 607 return found_free; 608 } 609 610 static void __del_from_avail_list(struct swap_info_struct *p) 611 { 612 int nid; 613 614 for_each_node(nid) 615 plist_del(&p->avail_lists[nid], &swap_avail_heads[nid]); 616 } 617 618 static void del_from_avail_list(struct swap_info_struct *p) 619 { 620 spin_lock(&swap_avail_lock); 621 __del_from_avail_list(p); 622 spin_unlock(&swap_avail_lock); 623 } 624 625 static void swap_range_alloc(struct swap_info_struct *si, unsigned long offset, 626 unsigned int nr_entries) 627 { 628 unsigned int end = offset + nr_entries - 1; 629 630 if (offset == si->lowest_bit) 631 si->lowest_bit += nr_entries; 632 if (end == si->highest_bit) 633 si->highest_bit -= nr_entries; 634 si->inuse_pages += nr_entries; 635 if (si->inuse_pages == si->pages) { 636 si->lowest_bit = si->max; 637 si->highest_bit = 0; 638 del_from_avail_list(si); 639 } 640 } 641 642 static void add_to_avail_list(struct swap_info_struct *p) 643 { 644 int nid; 645 646 spin_lock(&swap_avail_lock); 647 for_each_node(nid) { 648 WARN_ON(!plist_node_empty(&p->avail_lists[nid])); 649 plist_add(&p->avail_lists[nid], &swap_avail_heads[nid]); 650 } 651 spin_unlock(&swap_avail_lock); 652 } 653 654 static void swap_range_free(struct swap_info_struct *si, unsigned long offset, 655 unsigned int nr_entries) 656 { 657 unsigned long end = offset + nr_entries - 1; 658 void (*swap_slot_free_notify)(struct block_device *, unsigned long); 659 660 if (offset < si->lowest_bit) 661 si->lowest_bit = offset; 662 if (end > si->highest_bit) { 663 bool was_full = !si->highest_bit; 664 665 si->highest_bit = end; 666 if (was_full && (si->flags & SWP_WRITEOK)) 667 add_to_avail_list(si); 668 } 669 atomic_long_add(nr_entries, &nr_swap_pages); 670 si->inuse_pages -= nr_entries; 671 if (si->flags & SWP_BLKDEV) 672 swap_slot_free_notify = 673 si->bdev->bd_disk->fops->swap_slot_free_notify; 674 else 675 swap_slot_free_notify = NULL; 676 while (offset <= end) { 677 frontswap_invalidate_page(si->type, offset); 678 if (swap_slot_free_notify) 679 swap_slot_free_notify(si->bdev, offset); 680 offset++; 681 } 682 } 683 684 static int scan_swap_map_slots(struct swap_info_struct *si, 685 unsigned char usage, int nr, 686 swp_entry_t slots[]) 687 { 688 struct swap_cluster_info *ci; 689 unsigned long offset; 690 unsigned long scan_base; 691 unsigned long last_in_cluster = 0; 692 int latency_ration = LATENCY_LIMIT; 693 int n_ret = 0; 694 695 if (nr > SWAP_BATCH) 696 nr = SWAP_BATCH; 697 698 /* 699 * We try to cluster swap pages by allocating them sequentially 700 * in swap. Once we've allocated SWAPFILE_CLUSTER pages this 701 * way, however, we resort to first-free allocation, starting 702 * a new cluster. This prevents us from scattering swap pages 703 * all over the entire swap partition, so that we reduce 704 * overall disk seek times between swap pages. -- sct 705 * But we do now try to find an empty cluster. -Andrea 706 * And we let swap pages go all over an SSD partition. Hugh 707 */ 708 709 si->flags += SWP_SCANNING; 710 scan_base = offset = si->cluster_next; 711 712 /* SSD algorithm */ 713 if (si->cluster_info) { 714 if (scan_swap_map_try_ssd_cluster(si, &offset, &scan_base)) 715 goto checks; 716 else 717 goto scan; 718 } 719 720 if (unlikely(!si->cluster_nr--)) { 721 if (si->pages - si->inuse_pages < SWAPFILE_CLUSTER) { 722 si->cluster_nr = SWAPFILE_CLUSTER - 1; 723 goto checks; 724 } 725 726 spin_unlock(&si->lock); 727 728 /* 729 * If seek is expensive, start searching for new cluster from 730 * start of partition, to minimize the span of allocated swap. 731 * If seek is cheap, that is the SWP_SOLIDSTATE si->cluster_info 732 * case, just handled by scan_swap_map_try_ssd_cluster() above. 733 */ 734 scan_base = offset = si->lowest_bit; 735 last_in_cluster = offset + SWAPFILE_CLUSTER - 1; 736 737 /* Locate the first empty (unaligned) cluster */ 738 for (; last_in_cluster <= si->highest_bit; offset++) { 739 if (si->swap_map[offset]) 740 last_in_cluster = offset + SWAPFILE_CLUSTER; 741 else if (offset == last_in_cluster) { 742 spin_lock(&si->lock); 743 offset -= SWAPFILE_CLUSTER - 1; 744 si->cluster_next = offset; 745 si->cluster_nr = SWAPFILE_CLUSTER - 1; 746 goto checks; 747 } 748 if (unlikely(--latency_ration < 0)) { 749 cond_resched(); 750 latency_ration = LATENCY_LIMIT; 751 } 752 } 753 754 offset = scan_base; 755 spin_lock(&si->lock); 756 si->cluster_nr = SWAPFILE_CLUSTER - 1; 757 } 758 759 checks: 760 if (si->cluster_info) { 761 while (scan_swap_map_ssd_cluster_conflict(si, offset)) { 762 /* take a break if we already got some slots */ 763 if (n_ret) 764 goto done; 765 if (!scan_swap_map_try_ssd_cluster(si, &offset, 766 &scan_base)) 767 goto scan; 768 } 769 } 770 if (!(si->flags & SWP_WRITEOK)) 771 goto no_page; 772 if (!si->highest_bit) 773 goto no_page; 774 if (offset > si->highest_bit) 775 scan_base = offset = si->lowest_bit; 776 777 ci = lock_cluster(si, offset); 778 /* reuse swap entry of cache-only swap if not busy. */ 779 if (vm_swap_full() && si->swap_map[offset] == SWAP_HAS_CACHE) { 780 int swap_was_freed; 781 unlock_cluster(ci); 782 spin_unlock(&si->lock); 783 swap_was_freed = __try_to_reclaim_swap(si, offset); 784 spin_lock(&si->lock); 785 /* entry was freed successfully, try to use this again */ 786 if (swap_was_freed) 787 goto checks; 788 goto scan; /* check next one */ 789 } 790 791 if (si->swap_map[offset]) { 792 unlock_cluster(ci); 793 if (!n_ret) 794 goto scan; 795 else 796 goto done; 797 } 798 si->swap_map[offset] = usage; 799 inc_cluster_info_page(si, si->cluster_info, offset); 800 unlock_cluster(ci); 801 802 swap_range_alloc(si, offset, 1); 803 si->cluster_next = offset + 1; 804 slots[n_ret++] = swp_entry(si->type, offset); 805 806 /* got enough slots or reach max slots? */ 807 if ((n_ret == nr) || (offset >= si->highest_bit)) 808 goto done; 809 810 /* search for next available slot */ 811 812 /* time to take a break? */ 813 if (unlikely(--latency_ration < 0)) { 814 if (n_ret) 815 goto done; 816 spin_unlock(&si->lock); 817 cond_resched(); 818 spin_lock(&si->lock); 819 latency_ration = LATENCY_LIMIT; 820 } 821 822 /* try to get more slots in cluster */ 823 if (si->cluster_info) { 824 if (scan_swap_map_try_ssd_cluster(si, &offset, &scan_base)) 825 goto checks; 826 else 827 goto done; 828 } 829 /* non-ssd case */ 830 ++offset; 831 832 /* non-ssd case, still more slots in cluster? */ 833 if (si->cluster_nr && !si->swap_map[offset]) { 834 --si->cluster_nr; 835 goto checks; 836 } 837 838 done: 839 si->flags -= SWP_SCANNING; 840 return n_ret; 841 842 scan: 843 spin_unlock(&si->lock); 844 while (++offset <= si->highest_bit) { 845 if (!si->swap_map[offset]) { 846 spin_lock(&si->lock); 847 goto checks; 848 } 849 if (vm_swap_full() && si->swap_map[offset] == SWAP_HAS_CACHE) { 850 spin_lock(&si->lock); 851 goto checks; 852 } 853 if (unlikely(--latency_ration < 0)) { 854 cond_resched(); 855 latency_ration = LATENCY_LIMIT; 856 } 857 } 858 offset = si->lowest_bit; 859 while (offset < scan_base) { 860 if (!si->swap_map[offset]) { 861 spin_lock(&si->lock); 862 goto checks; 863 } 864 if (vm_swap_full() && si->swap_map[offset] == SWAP_HAS_CACHE) { 865 spin_lock(&si->lock); 866 goto checks; 867 } 868 if (unlikely(--latency_ration < 0)) { 869 cond_resched(); 870 latency_ration = LATENCY_LIMIT; 871 } 872 offset++; 873 } 874 spin_lock(&si->lock); 875 876 no_page: 877 si->flags -= SWP_SCANNING; 878 return n_ret; 879 } 880 881 static int swap_alloc_cluster(struct swap_info_struct *si, swp_entry_t *slot) 882 { 883 unsigned long idx; 884 struct swap_cluster_info *ci; 885 unsigned long offset, i; 886 unsigned char *map; 887 888 /* 889 * Should not even be attempting cluster allocations when huge 890 * page swap is disabled. Warn and fail the allocation. 891 */ 892 if (!IS_ENABLED(CONFIG_THP_SWAP)) { 893 VM_WARN_ON_ONCE(1); 894 return 0; 895 } 896 897 if (cluster_list_empty(&si->free_clusters)) 898 return 0; 899 900 idx = cluster_list_first(&si->free_clusters); 901 offset = idx * SWAPFILE_CLUSTER; 902 ci = lock_cluster(si, offset); 903 alloc_cluster(si, idx); 904 cluster_set_count_flag(ci, SWAPFILE_CLUSTER, CLUSTER_FLAG_HUGE); 905 906 map = si->swap_map + offset; 907 for (i = 0; i < SWAPFILE_CLUSTER; i++) 908 map[i] = SWAP_HAS_CACHE; 909 unlock_cluster(ci); 910 swap_range_alloc(si, offset, SWAPFILE_CLUSTER); 911 *slot = swp_entry(si->type, offset); 912 913 return 1; 914 } 915 916 static void swap_free_cluster(struct swap_info_struct *si, unsigned long idx) 917 { 918 unsigned long offset = idx * SWAPFILE_CLUSTER; 919 struct swap_cluster_info *ci; 920 921 ci = lock_cluster(si, offset); 922 cluster_set_count_flag(ci, 0, 0); 923 free_cluster(si, idx); 924 unlock_cluster(ci); 925 swap_range_free(si, offset, SWAPFILE_CLUSTER); 926 } 927 928 static unsigned long scan_swap_map(struct swap_info_struct *si, 929 unsigned char usage) 930 { 931 swp_entry_t entry; 932 int n_ret; 933 934 n_ret = scan_swap_map_slots(si, usage, 1, &entry); 935 936 if (n_ret) 937 return swp_offset(entry); 938 else 939 return 0; 940 941 } 942 943 int get_swap_pages(int n_goal, swp_entry_t swp_entries[], int entry_size) 944 { 945 unsigned long size = swap_entry_size(entry_size); 946 struct swap_info_struct *si, *next; 947 long avail_pgs; 948 int n_ret = 0; 949 int node; 950 951 /* Only single cluster request supported */ 952 WARN_ON_ONCE(n_goal > 1 && size == SWAPFILE_CLUSTER); 953 954 avail_pgs = atomic_long_read(&nr_swap_pages) / size; 955 if (avail_pgs <= 0) 956 goto noswap; 957 958 if (n_goal > SWAP_BATCH) 959 n_goal = SWAP_BATCH; 960 961 if (n_goal > avail_pgs) 962 n_goal = avail_pgs; 963 964 atomic_long_sub(n_goal * size, &nr_swap_pages); 965 966 spin_lock(&swap_avail_lock); 967 968 start_over: 969 node = numa_node_id(); 970 plist_for_each_entry_safe(si, next, &swap_avail_heads[node], avail_lists[node]) { 971 /* requeue si to after same-priority siblings */ 972 plist_requeue(&si->avail_lists[node], &swap_avail_heads[node]); 973 spin_unlock(&swap_avail_lock); 974 spin_lock(&si->lock); 975 if (!si->highest_bit || !(si->flags & SWP_WRITEOK)) { 976 spin_lock(&swap_avail_lock); 977 if (plist_node_empty(&si->avail_lists[node])) { 978 spin_unlock(&si->lock); 979 goto nextsi; 980 } 981 WARN(!si->highest_bit, 982 "swap_info %d in list but !highest_bit\n", 983 si->type); 984 WARN(!(si->flags & SWP_WRITEOK), 985 "swap_info %d in list but !SWP_WRITEOK\n", 986 si->type); 987 __del_from_avail_list(si); 988 spin_unlock(&si->lock); 989 goto nextsi; 990 } 991 if (size == SWAPFILE_CLUSTER) { 992 if (!(si->flags & SWP_FILE)) 993 n_ret = swap_alloc_cluster(si, swp_entries); 994 } else 995 n_ret = scan_swap_map_slots(si, SWAP_HAS_CACHE, 996 n_goal, swp_entries); 997 spin_unlock(&si->lock); 998 if (n_ret || size == SWAPFILE_CLUSTER) 999 goto check_out; 1000 pr_debug("scan_swap_map of si %d failed to find offset\n", 1001 si->type); 1002 1003 spin_lock(&swap_avail_lock); 1004 nextsi: 1005 /* 1006 * if we got here, it's likely that si was almost full before, 1007 * and since scan_swap_map() can drop the si->lock, multiple 1008 * callers probably all tried to get a page from the same si 1009 * and it filled up before we could get one; or, the si filled 1010 * up between us dropping swap_avail_lock and taking si->lock. 1011 * Since we dropped the swap_avail_lock, the swap_avail_head 1012 * list may have been modified; so if next is still in the 1013 * swap_avail_head list then try it, otherwise start over 1014 * if we have not gotten any slots. 1015 */ 1016 if (plist_node_empty(&next->avail_lists[node])) 1017 goto start_over; 1018 } 1019 1020 spin_unlock(&swap_avail_lock); 1021 1022 check_out: 1023 if (n_ret < n_goal) 1024 atomic_long_add((long)(n_goal - n_ret) * size, 1025 &nr_swap_pages); 1026 noswap: 1027 return n_ret; 1028 } 1029 1030 /* The only caller of this function is now suspend routine */ 1031 swp_entry_t get_swap_page_of_type(int type) 1032 { 1033 struct swap_info_struct *si; 1034 pgoff_t offset; 1035 1036 si = swap_info[type]; 1037 spin_lock(&si->lock); 1038 if (si && (si->flags & SWP_WRITEOK)) { 1039 atomic_long_dec(&nr_swap_pages); 1040 /* This is called for allocating swap entry, not cache */ 1041 offset = scan_swap_map(si, 1); 1042 if (offset) { 1043 spin_unlock(&si->lock); 1044 return swp_entry(type, offset); 1045 } 1046 atomic_long_inc(&nr_swap_pages); 1047 } 1048 spin_unlock(&si->lock); 1049 return (swp_entry_t) {0}; 1050 } 1051 1052 static struct swap_info_struct *__swap_info_get(swp_entry_t entry) 1053 { 1054 struct swap_info_struct *p; 1055 unsigned long offset, type; 1056 1057 if (!entry.val) 1058 goto out; 1059 type = swp_type(entry); 1060 if (type >= nr_swapfiles) 1061 goto bad_nofile; 1062 p = swap_info[type]; 1063 if (!(p->flags & SWP_USED)) 1064 goto bad_device; 1065 offset = swp_offset(entry); 1066 if (offset >= p->max) 1067 goto bad_offset; 1068 return p; 1069 1070 bad_offset: 1071 pr_err("swap_info_get: %s%08lx\n", Bad_offset, entry.val); 1072 goto out; 1073 bad_device: 1074 pr_err("swap_info_get: %s%08lx\n", Unused_file, entry.val); 1075 goto out; 1076 bad_nofile: 1077 pr_err("swap_info_get: %s%08lx\n", Bad_file, entry.val); 1078 out: 1079 return NULL; 1080 } 1081 1082 static struct swap_info_struct *_swap_info_get(swp_entry_t entry) 1083 { 1084 struct swap_info_struct *p; 1085 1086 p = __swap_info_get(entry); 1087 if (!p) 1088 goto out; 1089 if (!p->swap_map[swp_offset(entry)]) 1090 goto bad_free; 1091 return p; 1092 1093 bad_free: 1094 pr_err("swap_info_get: %s%08lx\n", Unused_offset, entry.val); 1095 goto out; 1096 out: 1097 return NULL; 1098 } 1099 1100 static struct swap_info_struct *swap_info_get(swp_entry_t entry) 1101 { 1102 struct swap_info_struct *p; 1103 1104 p = _swap_info_get(entry); 1105 if (p) 1106 spin_lock(&p->lock); 1107 return p; 1108 } 1109 1110 static struct swap_info_struct *swap_info_get_cont(swp_entry_t entry, 1111 struct swap_info_struct *q) 1112 { 1113 struct swap_info_struct *p; 1114 1115 p = _swap_info_get(entry); 1116 1117 if (p != q) { 1118 if (q != NULL) 1119 spin_unlock(&q->lock); 1120 if (p != NULL) 1121 spin_lock(&p->lock); 1122 } 1123 return p; 1124 } 1125 1126 static unsigned char __swap_entry_free_locked(struct swap_info_struct *p, 1127 unsigned long offset, 1128 unsigned char usage) 1129 { 1130 unsigned char count; 1131 unsigned char has_cache; 1132 1133 count = p->swap_map[offset]; 1134 1135 has_cache = count & SWAP_HAS_CACHE; 1136 count &= ~SWAP_HAS_CACHE; 1137 1138 if (usage == SWAP_HAS_CACHE) { 1139 VM_BUG_ON(!has_cache); 1140 has_cache = 0; 1141 } else if (count == SWAP_MAP_SHMEM) { 1142 /* 1143 * Or we could insist on shmem.c using a special 1144 * swap_shmem_free() and free_shmem_swap_and_cache()... 1145 */ 1146 count = 0; 1147 } else if ((count & ~COUNT_CONTINUED) <= SWAP_MAP_MAX) { 1148 if (count == COUNT_CONTINUED) { 1149 if (swap_count_continued(p, offset, count)) 1150 count = SWAP_MAP_MAX | COUNT_CONTINUED; 1151 else 1152 count = SWAP_MAP_MAX; 1153 } else 1154 count--; 1155 } 1156 1157 usage = count | has_cache; 1158 p->swap_map[offset] = usage ? : SWAP_HAS_CACHE; 1159 1160 return usage; 1161 } 1162 1163 static unsigned char __swap_entry_free(struct swap_info_struct *p, 1164 swp_entry_t entry, unsigned char usage) 1165 { 1166 struct swap_cluster_info *ci; 1167 unsigned long offset = swp_offset(entry); 1168 1169 ci = lock_cluster_or_swap_info(p, offset); 1170 usage = __swap_entry_free_locked(p, offset, usage); 1171 unlock_cluster_or_swap_info(p, ci); 1172 1173 return usage; 1174 } 1175 1176 static void swap_entry_free(struct swap_info_struct *p, swp_entry_t entry) 1177 { 1178 struct swap_cluster_info *ci; 1179 unsigned long offset = swp_offset(entry); 1180 unsigned char count; 1181 1182 ci = lock_cluster(p, offset); 1183 count = p->swap_map[offset]; 1184 VM_BUG_ON(count != SWAP_HAS_CACHE); 1185 p->swap_map[offset] = 0; 1186 dec_cluster_info_page(p, p->cluster_info, offset); 1187 unlock_cluster(ci); 1188 1189 mem_cgroup_uncharge_swap(entry, 1); 1190 swap_range_free(p, offset, 1); 1191 } 1192 1193 /* 1194 * Caller has made sure that the swap device corresponding to entry 1195 * is still around or has not been recycled. 1196 */ 1197 void swap_free(swp_entry_t entry) 1198 { 1199 struct swap_info_struct *p; 1200 1201 p = _swap_info_get(entry); 1202 if (p) { 1203 if (!__swap_entry_free(p, entry, 1)) 1204 free_swap_slot(entry); 1205 } 1206 } 1207 1208 /* 1209 * Called after dropping swapcache to decrease refcnt to swap entries. 1210 */ 1211 void put_swap_page(struct page *page, swp_entry_t entry) 1212 { 1213 unsigned long offset = swp_offset(entry); 1214 unsigned long idx = offset / SWAPFILE_CLUSTER; 1215 struct swap_cluster_info *ci; 1216 struct swap_info_struct *si; 1217 unsigned char *map; 1218 unsigned int i, free_entries = 0; 1219 unsigned char val; 1220 int size = swap_entry_size(hpage_nr_pages(page)); 1221 1222 si = _swap_info_get(entry); 1223 if (!si) 1224 return; 1225 1226 ci = lock_cluster_or_swap_info(si, offset); 1227 if (size == SWAPFILE_CLUSTER) { 1228 VM_BUG_ON(!cluster_is_huge(ci)); 1229 map = si->swap_map + offset; 1230 for (i = 0; i < SWAPFILE_CLUSTER; i++) { 1231 val = map[i]; 1232 VM_BUG_ON(!(val & SWAP_HAS_CACHE)); 1233 if (val == SWAP_HAS_CACHE) 1234 free_entries++; 1235 } 1236 cluster_clear_huge(ci); 1237 if (free_entries == SWAPFILE_CLUSTER) { 1238 unlock_cluster_or_swap_info(si, ci); 1239 spin_lock(&si->lock); 1240 ci = lock_cluster(si, offset); 1241 memset(map, 0, SWAPFILE_CLUSTER); 1242 unlock_cluster(ci); 1243 mem_cgroup_uncharge_swap(entry, SWAPFILE_CLUSTER); 1244 swap_free_cluster(si, idx); 1245 spin_unlock(&si->lock); 1246 return; 1247 } 1248 } 1249 for (i = 0; i < size; i++, entry.val++) { 1250 if (!__swap_entry_free_locked(si, offset + i, SWAP_HAS_CACHE)) { 1251 unlock_cluster_or_swap_info(si, ci); 1252 free_swap_slot(entry); 1253 if (i == size - 1) 1254 return; 1255 lock_cluster_or_swap_info(si, offset); 1256 } 1257 } 1258 unlock_cluster_or_swap_info(si, ci); 1259 } 1260 1261 #ifdef CONFIG_THP_SWAP 1262 int split_swap_cluster(swp_entry_t entry) 1263 { 1264 struct swap_info_struct *si; 1265 struct swap_cluster_info *ci; 1266 unsigned long offset = swp_offset(entry); 1267 1268 si = _swap_info_get(entry); 1269 if (!si) 1270 return -EBUSY; 1271 ci = lock_cluster(si, offset); 1272 cluster_clear_huge(ci); 1273 unlock_cluster(ci); 1274 return 0; 1275 } 1276 #endif 1277 1278 static int swp_entry_cmp(const void *ent1, const void *ent2) 1279 { 1280 const swp_entry_t *e1 = ent1, *e2 = ent2; 1281 1282 return (int)swp_type(*e1) - (int)swp_type(*e2); 1283 } 1284 1285 void swapcache_free_entries(swp_entry_t *entries, int n) 1286 { 1287 struct swap_info_struct *p, *prev; 1288 int i; 1289 1290 if (n <= 0) 1291 return; 1292 1293 prev = NULL; 1294 p = NULL; 1295 1296 /* 1297 * Sort swap entries by swap device, so each lock is only taken once. 1298 * nr_swapfiles isn't absolutely correct, but the overhead of sort() is 1299 * so low that it isn't necessary to optimize further. 1300 */ 1301 if (nr_swapfiles > 1) 1302 sort(entries, n, sizeof(entries[0]), swp_entry_cmp, NULL); 1303 for (i = 0; i < n; ++i) { 1304 p = swap_info_get_cont(entries[i], prev); 1305 if (p) 1306 swap_entry_free(p, entries[i]); 1307 prev = p; 1308 } 1309 if (p) 1310 spin_unlock(&p->lock); 1311 } 1312 1313 /* 1314 * How many references to page are currently swapped out? 1315 * This does not give an exact answer when swap count is continued, 1316 * but does include the high COUNT_CONTINUED flag to allow for that. 1317 */ 1318 int page_swapcount(struct page *page) 1319 { 1320 int count = 0; 1321 struct swap_info_struct *p; 1322 struct swap_cluster_info *ci; 1323 swp_entry_t entry; 1324 unsigned long offset; 1325 1326 entry.val = page_private(page); 1327 p = _swap_info_get(entry); 1328 if (p) { 1329 offset = swp_offset(entry); 1330 ci = lock_cluster_or_swap_info(p, offset); 1331 count = swap_count(p->swap_map[offset]); 1332 unlock_cluster_or_swap_info(p, ci); 1333 } 1334 return count; 1335 } 1336 1337 int __swap_count(struct swap_info_struct *si, swp_entry_t entry) 1338 { 1339 pgoff_t offset = swp_offset(entry); 1340 1341 return swap_count(si->swap_map[offset]); 1342 } 1343 1344 static int swap_swapcount(struct swap_info_struct *si, swp_entry_t entry) 1345 { 1346 int count = 0; 1347 pgoff_t offset = swp_offset(entry); 1348 struct swap_cluster_info *ci; 1349 1350 ci = lock_cluster_or_swap_info(si, offset); 1351 count = swap_count(si->swap_map[offset]); 1352 unlock_cluster_or_swap_info(si, ci); 1353 return count; 1354 } 1355 1356 /* 1357 * How many references to @entry are currently swapped out? 1358 * This does not give an exact answer when swap count is continued, 1359 * but does include the high COUNT_CONTINUED flag to allow for that. 1360 */ 1361 int __swp_swapcount(swp_entry_t entry) 1362 { 1363 int count = 0; 1364 struct swap_info_struct *si; 1365 1366 si = __swap_info_get(entry); 1367 if (si) 1368 count = swap_swapcount(si, entry); 1369 return count; 1370 } 1371 1372 /* 1373 * How many references to @entry are currently swapped out? 1374 * This considers COUNT_CONTINUED so it returns exact answer. 1375 */ 1376 int swp_swapcount(swp_entry_t entry) 1377 { 1378 int count, tmp_count, n; 1379 struct swap_info_struct *p; 1380 struct swap_cluster_info *ci; 1381 struct page *page; 1382 pgoff_t offset; 1383 unsigned char *map; 1384 1385 p = _swap_info_get(entry); 1386 if (!p) 1387 return 0; 1388 1389 offset = swp_offset(entry); 1390 1391 ci = lock_cluster_or_swap_info(p, offset); 1392 1393 count = swap_count(p->swap_map[offset]); 1394 if (!(count & COUNT_CONTINUED)) 1395 goto out; 1396 1397 count &= ~COUNT_CONTINUED; 1398 n = SWAP_MAP_MAX + 1; 1399 1400 page = vmalloc_to_page(p->swap_map + offset); 1401 offset &= ~PAGE_MASK; 1402 VM_BUG_ON(page_private(page) != SWP_CONTINUED); 1403 1404 do { 1405 page = list_next_entry(page, lru); 1406 map = kmap_atomic(page); 1407 tmp_count = map[offset]; 1408 kunmap_atomic(map); 1409 1410 count += (tmp_count & ~COUNT_CONTINUED) * n; 1411 n *= (SWAP_CONT_MAX + 1); 1412 } while (tmp_count & COUNT_CONTINUED); 1413 out: 1414 unlock_cluster_or_swap_info(p, ci); 1415 return count; 1416 } 1417 1418 static bool swap_page_trans_huge_swapped(struct swap_info_struct *si, 1419 swp_entry_t entry) 1420 { 1421 struct swap_cluster_info *ci; 1422 unsigned char *map = si->swap_map; 1423 unsigned long roffset = swp_offset(entry); 1424 unsigned long offset = round_down(roffset, SWAPFILE_CLUSTER); 1425 int i; 1426 bool ret = false; 1427 1428 ci = lock_cluster_or_swap_info(si, offset); 1429 if (!ci || !cluster_is_huge(ci)) { 1430 if (swap_count(map[roffset])) 1431 ret = true; 1432 goto unlock_out; 1433 } 1434 for (i = 0; i < SWAPFILE_CLUSTER; i++) { 1435 if (swap_count(map[offset + i])) { 1436 ret = true; 1437 break; 1438 } 1439 } 1440 unlock_out: 1441 unlock_cluster_or_swap_info(si, ci); 1442 return ret; 1443 } 1444 1445 static bool page_swapped(struct page *page) 1446 { 1447 swp_entry_t entry; 1448 struct swap_info_struct *si; 1449 1450 if (!IS_ENABLED(CONFIG_THP_SWAP) || likely(!PageTransCompound(page))) 1451 return page_swapcount(page) != 0; 1452 1453 page = compound_head(page); 1454 entry.val = page_private(page); 1455 si = _swap_info_get(entry); 1456 if (si) 1457 return swap_page_trans_huge_swapped(si, entry); 1458 return false; 1459 } 1460 1461 static int page_trans_huge_map_swapcount(struct page *page, int *total_mapcount, 1462 int *total_swapcount) 1463 { 1464 int i, map_swapcount, _total_mapcount, _total_swapcount; 1465 unsigned long offset = 0; 1466 struct swap_info_struct *si; 1467 struct swap_cluster_info *ci = NULL; 1468 unsigned char *map = NULL; 1469 int mapcount, swapcount = 0; 1470 1471 /* hugetlbfs shouldn't call it */ 1472 VM_BUG_ON_PAGE(PageHuge(page), page); 1473 1474 if (!IS_ENABLED(CONFIG_THP_SWAP) || likely(!PageTransCompound(page))) { 1475 mapcount = page_trans_huge_mapcount(page, total_mapcount); 1476 if (PageSwapCache(page)) 1477 swapcount = page_swapcount(page); 1478 if (total_swapcount) 1479 *total_swapcount = swapcount; 1480 return mapcount + swapcount; 1481 } 1482 1483 page = compound_head(page); 1484 1485 _total_mapcount = _total_swapcount = map_swapcount = 0; 1486 if (PageSwapCache(page)) { 1487 swp_entry_t entry; 1488 1489 entry.val = page_private(page); 1490 si = _swap_info_get(entry); 1491 if (si) { 1492 map = si->swap_map; 1493 offset = swp_offset(entry); 1494 } 1495 } 1496 if (map) 1497 ci = lock_cluster(si, offset); 1498 for (i = 0; i < HPAGE_PMD_NR; i++) { 1499 mapcount = atomic_read(&page[i]._mapcount) + 1; 1500 _total_mapcount += mapcount; 1501 if (map) { 1502 swapcount = swap_count(map[offset + i]); 1503 _total_swapcount += swapcount; 1504 } 1505 map_swapcount = max(map_swapcount, mapcount + swapcount); 1506 } 1507 unlock_cluster(ci); 1508 if (PageDoubleMap(page)) { 1509 map_swapcount -= 1; 1510 _total_mapcount -= HPAGE_PMD_NR; 1511 } 1512 mapcount = compound_mapcount(page); 1513 map_swapcount += mapcount; 1514 _total_mapcount += mapcount; 1515 if (total_mapcount) 1516 *total_mapcount = _total_mapcount; 1517 if (total_swapcount) 1518 *total_swapcount = _total_swapcount; 1519 1520 return map_swapcount; 1521 } 1522 1523 /* 1524 * We can write to an anon page without COW if there are no other references 1525 * to it. And as a side-effect, free up its swap: because the old content 1526 * on disk will never be read, and seeking back there to write new content 1527 * later would only waste time away from clustering. 1528 * 1529 * NOTE: total_map_swapcount should not be relied upon by the caller if 1530 * reuse_swap_page() returns false, but it may be always overwritten 1531 * (see the other implementation for CONFIG_SWAP=n). 1532 */ 1533 bool reuse_swap_page(struct page *page, int *total_map_swapcount) 1534 { 1535 int count, total_mapcount, total_swapcount; 1536 1537 VM_BUG_ON_PAGE(!PageLocked(page), page); 1538 if (unlikely(PageKsm(page))) 1539 return false; 1540 count = page_trans_huge_map_swapcount(page, &total_mapcount, 1541 &total_swapcount); 1542 if (total_map_swapcount) 1543 *total_map_swapcount = total_mapcount + total_swapcount; 1544 if (count == 1 && PageSwapCache(page) && 1545 (likely(!PageTransCompound(page)) || 1546 /* The remaining swap count will be freed soon */ 1547 total_swapcount == page_swapcount(page))) { 1548 if (!PageWriteback(page)) { 1549 page = compound_head(page); 1550 delete_from_swap_cache(page); 1551 SetPageDirty(page); 1552 } else { 1553 swp_entry_t entry; 1554 struct swap_info_struct *p; 1555 1556 entry.val = page_private(page); 1557 p = swap_info_get(entry); 1558 if (p->flags & SWP_STABLE_WRITES) { 1559 spin_unlock(&p->lock); 1560 return false; 1561 } 1562 spin_unlock(&p->lock); 1563 } 1564 } 1565 1566 return count <= 1; 1567 } 1568 1569 /* 1570 * If swap is getting full, or if there are no more mappings of this page, 1571 * then try_to_free_swap is called to free its swap space. 1572 */ 1573 int try_to_free_swap(struct page *page) 1574 { 1575 VM_BUG_ON_PAGE(!PageLocked(page), page); 1576 1577 if (!PageSwapCache(page)) 1578 return 0; 1579 if (PageWriteback(page)) 1580 return 0; 1581 if (page_swapped(page)) 1582 return 0; 1583 1584 /* 1585 * Once hibernation has begun to create its image of memory, 1586 * there's a danger that one of the calls to try_to_free_swap() 1587 * - most probably a call from __try_to_reclaim_swap() while 1588 * hibernation is allocating its own swap pages for the image, 1589 * but conceivably even a call from memory reclaim - will free 1590 * the swap from a page which has already been recorded in the 1591 * image as a clean swapcache page, and then reuse its swap for 1592 * another page of the image. On waking from hibernation, the 1593 * original page might be freed under memory pressure, then 1594 * later read back in from swap, now with the wrong data. 1595 * 1596 * Hibernation suspends storage while it is writing the image 1597 * to disk so check that here. 1598 */ 1599 if (pm_suspended_storage()) 1600 return 0; 1601 1602 page = compound_head(page); 1603 delete_from_swap_cache(page); 1604 SetPageDirty(page); 1605 return 1; 1606 } 1607 1608 /* 1609 * Free the swap entry like above, but also try to 1610 * free the page cache entry if it is the last user. 1611 */ 1612 int free_swap_and_cache(swp_entry_t entry) 1613 { 1614 struct swap_info_struct *p; 1615 struct page *page = NULL; 1616 unsigned char count; 1617 1618 if (non_swap_entry(entry)) 1619 return 1; 1620 1621 p = _swap_info_get(entry); 1622 if (p) { 1623 count = __swap_entry_free(p, entry, 1); 1624 if (count == SWAP_HAS_CACHE && 1625 !swap_page_trans_huge_swapped(p, entry)) { 1626 page = find_get_page(swap_address_space(entry), 1627 swp_offset(entry)); 1628 if (page && !trylock_page(page)) { 1629 put_page(page); 1630 page = NULL; 1631 } 1632 } else if (!count) 1633 free_swap_slot(entry); 1634 } 1635 if (page) { 1636 /* 1637 * Not mapped elsewhere, or swap space full? Free it! 1638 * Also recheck PageSwapCache now page is locked (above). 1639 */ 1640 if (PageSwapCache(page) && !PageWriteback(page) && 1641 (!page_mapped(page) || mem_cgroup_swap_full(page)) && 1642 !swap_page_trans_huge_swapped(p, entry)) { 1643 page = compound_head(page); 1644 delete_from_swap_cache(page); 1645 SetPageDirty(page); 1646 } 1647 unlock_page(page); 1648 put_page(page); 1649 } 1650 return p != NULL; 1651 } 1652 1653 #ifdef CONFIG_HIBERNATION 1654 /* 1655 * Find the swap type that corresponds to given device (if any). 1656 * 1657 * @offset - number of the PAGE_SIZE-sized block of the device, starting 1658 * from 0, in which the swap header is expected to be located. 1659 * 1660 * This is needed for the suspend to disk (aka swsusp). 1661 */ 1662 int swap_type_of(dev_t device, sector_t offset, struct block_device **bdev_p) 1663 { 1664 struct block_device *bdev = NULL; 1665 int type; 1666 1667 if (device) 1668 bdev = bdget(device); 1669 1670 spin_lock(&swap_lock); 1671 for (type = 0; type < nr_swapfiles; type++) { 1672 struct swap_info_struct *sis = swap_info[type]; 1673 1674 if (!(sis->flags & SWP_WRITEOK)) 1675 continue; 1676 1677 if (!bdev) { 1678 if (bdev_p) 1679 *bdev_p = bdgrab(sis->bdev); 1680 1681 spin_unlock(&swap_lock); 1682 return type; 1683 } 1684 if (bdev == sis->bdev) { 1685 struct swap_extent *se = &sis->first_swap_extent; 1686 1687 if (se->start_block == offset) { 1688 if (bdev_p) 1689 *bdev_p = bdgrab(sis->bdev); 1690 1691 spin_unlock(&swap_lock); 1692 bdput(bdev); 1693 return type; 1694 } 1695 } 1696 } 1697 spin_unlock(&swap_lock); 1698 if (bdev) 1699 bdput(bdev); 1700 1701 return -ENODEV; 1702 } 1703 1704 /* 1705 * Get the (PAGE_SIZE) block corresponding to given offset on the swapdev 1706 * corresponding to given index in swap_info (swap type). 1707 */ 1708 sector_t swapdev_block(int type, pgoff_t offset) 1709 { 1710 struct block_device *bdev; 1711 1712 if ((unsigned int)type >= nr_swapfiles) 1713 return 0; 1714 if (!(swap_info[type]->flags & SWP_WRITEOK)) 1715 return 0; 1716 return map_swap_entry(swp_entry(type, offset), &bdev); 1717 } 1718 1719 /* 1720 * Return either the total number of swap pages of given type, or the number 1721 * of free pages of that type (depending on @free) 1722 * 1723 * This is needed for software suspend 1724 */ 1725 unsigned int count_swap_pages(int type, int free) 1726 { 1727 unsigned int n = 0; 1728 1729 spin_lock(&swap_lock); 1730 if ((unsigned int)type < nr_swapfiles) { 1731 struct swap_info_struct *sis = swap_info[type]; 1732 1733 spin_lock(&sis->lock); 1734 if (sis->flags & SWP_WRITEOK) { 1735 n = sis->pages; 1736 if (free) 1737 n -= sis->inuse_pages; 1738 } 1739 spin_unlock(&sis->lock); 1740 } 1741 spin_unlock(&swap_lock); 1742 return n; 1743 } 1744 #endif /* CONFIG_HIBERNATION */ 1745 1746 static inline int pte_same_as_swp(pte_t pte, pte_t swp_pte) 1747 { 1748 return pte_same(pte_swp_clear_soft_dirty(pte), swp_pte); 1749 } 1750 1751 /* 1752 * No need to decide whether this PTE shares the swap entry with others, 1753 * just let do_wp_page work it out if a write is requested later - to 1754 * force COW, vm_page_prot omits write permission from any private vma. 1755 */ 1756 static int unuse_pte(struct vm_area_struct *vma, pmd_t *pmd, 1757 unsigned long addr, swp_entry_t entry, struct page *page) 1758 { 1759 struct page *swapcache; 1760 struct mem_cgroup *memcg; 1761 spinlock_t *ptl; 1762 pte_t *pte; 1763 int ret = 1; 1764 1765 swapcache = page; 1766 page = ksm_might_need_to_copy(page, vma, addr); 1767 if (unlikely(!page)) 1768 return -ENOMEM; 1769 1770 if (mem_cgroup_try_charge(page, vma->vm_mm, GFP_KERNEL, 1771 &memcg, false)) { 1772 ret = -ENOMEM; 1773 goto out_nolock; 1774 } 1775 1776 pte = pte_offset_map_lock(vma->vm_mm, pmd, addr, &ptl); 1777 if (unlikely(!pte_same_as_swp(*pte, swp_entry_to_pte(entry)))) { 1778 mem_cgroup_cancel_charge(page, memcg, false); 1779 ret = 0; 1780 goto out; 1781 } 1782 1783 dec_mm_counter(vma->vm_mm, MM_SWAPENTS); 1784 inc_mm_counter(vma->vm_mm, MM_ANONPAGES); 1785 get_page(page); 1786 set_pte_at(vma->vm_mm, addr, pte, 1787 pte_mkold(mk_pte(page, vma->vm_page_prot))); 1788 if (page == swapcache) { 1789 page_add_anon_rmap(page, vma, addr, false); 1790 mem_cgroup_commit_charge(page, memcg, true, false); 1791 } else { /* ksm created a completely new copy */ 1792 page_add_new_anon_rmap(page, vma, addr, false); 1793 mem_cgroup_commit_charge(page, memcg, false, false); 1794 lru_cache_add_active_or_unevictable(page, vma); 1795 } 1796 swap_free(entry); 1797 /* 1798 * Move the page to the active list so it is not 1799 * immediately swapped out again after swapon. 1800 */ 1801 activate_page(page); 1802 out: 1803 pte_unmap_unlock(pte, ptl); 1804 out_nolock: 1805 if (page != swapcache) { 1806 unlock_page(page); 1807 put_page(page); 1808 } 1809 return ret; 1810 } 1811 1812 static int unuse_pte_range(struct vm_area_struct *vma, pmd_t *pmd, 1813 unsigned long addr, unsigned long end, 1814 swp_entry_t entry, struct page *page) 1815 { 1816 pte_t swp_pte = swp_entry_to_pte(entry); 1817 pte_t *pte; 1818 int ret = 0; 1819 1820 /* 1821 * We don't actually need pte lock while scanning for swp_pte: since 1822 * we hold page lock and mmap_sem, swp_pte cannot be inserted into the 1823 * page table while we're scanning; though it could get zapped, and on 1824 * some architectures (e.g. x86_32 with PAE) we might catch a glimpse 1825 * of unmatched parts which look like swp_pte, so unuse_pte must 1826 * recheck under pte lock. Scanning without pte lock lets it be 1827 * preemptable whenever CONFIG_PREEMPT but not CONFIG_HIGHPTE. 1828 */ 1829 pte = pte_offset_map(pmd, addr); 1830 do { 1831 /* 1832 * swapoff spends a _lot_ of time in this loop! 1833 * Test inline before going to call unuse_pte. 1834 */ 1835 if (unlikely(pte_same_as_swp(*pte, swp_pte))) { 1836 pte_unmap(pte); 1837 ret = unuse_pte(vma, pmd, addr, entry, page); 1838 if (ret) 1839 goto out; 1840 pte = pte_offset_map(pmd, addr); 1841 } 1842 } while (pte++, addr += PAGE_SIZE, addr != end); 1843 pte_unmap(pte - 1); 1844 out: 1845 return ret; 1846 } 1847 1848 static inline int unuse_pmd_range(struct vm_area_struct *vma, pud_t *pud, 1849 unsigned long addr, unsigned long end, 1850 swp_entry_t entry, struct page *page) 1851 { 1852 pmd_t *pmd; 1853 unsigned long next; 1854 int ret; 1855 1856 pmd = pmd_offset(pud, addr); 1857 do { 1858 cond_resched(); 1859 next = pmd_addr_end(addr, end); 1860 if (pmd_none_or_trans_huge_or_clear_bad(pmd)) 1861 continue; 1862 ret = unuse_pte_range(vma, pmd, addr, next, entry, page); 1863 if (ret) 1864 return ret; 1865 } while (pmd++, addr = next, addr != end); 1866 return 0; 1867 } 1868 1869 static inline int unuse_pud_range(struct vm_area_struct *vma, p4d_t *p4d, 1870 unsigned long addr, unsigned long end, 1871 swp_entry_t entry, struct page *page) 1872 { 1873 pud_t *pud; 1874 unsigned long next; 1875 int ret; 1876 1877 pud = pud_offset(p4d, addr); 1878 do { 1879 next = pud_addr_end(addr, end); 1880 if (pud_none_or_clear_bad(pud)) 1881 continue; 1882 ret = unuse_pmd_range(vma, pud, addr, next, entry, page); 1883 if (ret) 1884 return ret; 1885 } while (pud++, addr = next, addr != end); 1886 return 0; 1887 } 1888 1889 static inline int unuse_p4d_range(struct vm_area_struct *vma, pgd_t *pgd, 1890 unsigned long addr, unsigned long end, 1891 swp_entry_t entry, struct page *page) 1892 { 1893 p4d_t *p4d; 1894 unsigned long next; 1895 int ret; 1896 1897 p4d = p4d_offset(pgd, addr); 1898 do { 1899 next = p4d_addr_end(addr, end); 1900 if (p4d_none_or_clear_bad(p4d)) 1901 continue; 1902 ret = unuse_pud_range(vma, p4d, addr, next, entry, page); 1903 if (ret) 1904 return ret; 1905 } while (p4d++, addr = next, addr != end); 1906 return 0; 1907 } 1908 1909 static int unuse_vma(struct vm_area_struct *vma, 1910 swp_entry_t entry, struct page *page) 1911 { 1912 pgd_t *pgd; 1913 unsigned long addr, end, next; 1914 int ret; 1915 1916 if (page_anon_vma(page)) { 1917 addr = page_address_in_vma(page, vma); 1918 if (addr == -EFAULT) 1919 return 0; 1920 else 1921 end = addr + PAGE_SIZE; 1922 } else { 1923 addr = vma->vm_start; 1924 end = vma->vm_end; 1925 } 1926 1927 pgd = pgd_offset(vma->vm_mm, addr); 1928 do { 1929 next = pgd_addr_end(addr, end); 1930 if (pgd_none_or_clear_bad(pgd)) 1931 continue; 1932 ret = unuse_p4d_range(vma, pgd, addr, next, entry, page); 1933 if (ret) 1934 return ret; 1935 } while (pgd++, addr = next, addr != end); 1936 return 0; 1937 } 1938 1939 static int unuse_mm(struct mm_struct *mm, 1940 swp_entry_t entry, struct page *page) 1941 { 1942 struct vm_area_struct *vma; 1943 int ret = 0; 1944 1945 if (!down_read_trylock(&mm->mmap_sem)) { 1946 /* 1947 * Activate page so shrink_inactive_list is unlikely to unmap 1948 * its ptes while lock is dropped, so swapoff can make progress. 1949 */ 1950 activate_page(page); 1951 unlock_page(page); 1952 down_read(&mm->mmap_sem); 1953 lock_page(page); 1954 } 1955 for (vma = mm->mmap; vma; vma = vma->vm_next) { 1956 if (vma->anon_vma && (ret = unuse_vma(vma, entry, page))) 1957 break; 1958 cond_resched(); 1959 } 1960 up_read(&mm->mmap_sem); 1961 return (ret < 0)? ret: 0; 1962 } 1963 1964 /* 1965 * Scan swap_map (or frontswap_map if frontswap parameter is true) 1966 * from current position to next entry still in use. 1967 * Recycle to start on reaching the end, returning 0 when empty. 1968 */ 1969 static unsigned int find_next_to_unuse(struct swap_info_struct *si, 1970 unsigned int prev, bool frontswap) 1971 { 1972 unsigned int max = si->max; 1973 unsigned int i = prev; 1974 unsigned char count; 1975 1976 /* 1977 * No need for swap_lock here: we're just looking 1978 * for whether an entry is in use, not modifying it; false 1979 * hits are okay, and sys_swapoff() has already prevented new 1980 * allocations from this area (while holding swap_lock). 1981 */ 1982 for (;;) { 1983 if (++i >= max) { 1984 if (!prev) { 1985 i = 0; 1986 break; 1987 } 1988 /* 1989 * No entries in use at top of swap_map, 1990 * loop back to start and recheck there. 1991 */ 1992 max = prev + 1; 1993 prev = 0; 1994 i = 1; 1995 } 1996 count = READ_ONCE(si->swap_map[i]); 1997 if (count && swap_count(count) != SWAP_MAP_BAD) 1998 if (!frontswap || frontswap_test(si, i)) 1999 break; 2000 if ((i % LATENCY_LIMIT) == 0) 2001 cond_resched(); 2002 } 2003 return i; 2004 } 2005 2006 /* 2007 * We completely avoid races by reading each swap page in advance, 2008 * and then search for the process using it. All the necessary 2009 * page table adjustments can then be made atomically. 2010 * 2011 * if the boolean frontswap is true, only unuse pages_to_unuse pages; 2012 * pages_to_unuse==0 means all pages; ignored if frontswap is false 2013 */ 2014 int try_to_unuse(unsigned int type, bool frontswap, 2015 unsigned long pages_to_unuse) 2016 { 2017 struct swap_info_struct *si = swap_info[type]; 2018 struct mm_struct *start_mm; 2019 volatile unsigned char *swap_map; /* swap_map is accessed without 2020 * locking. Mark it as volatile 2021 * to prevent compiler doing 2022 * something odd. 2023 */ 2024 unsigned char swcount; 2025 struct page *page; 2026 swp_entry_t entry; 2027 unsigned int i = 0; 2028 int retval = 0; 2029 2030 /* 2031 * When searching mms for an entry, a good strategy is to 2032 * start at the first mm we freed the previous entry from 2033 * (though actually we don't notice whether we or coincidence 2034 * freed the entry). Initialize this start_mm with a hold. 2035 * 2036 * A simpler strategy would be to start at the last mm we 2037 * freed the previous entry from; but that would take less 2038 * advantage of mmlist ordering, which clusters forked mms 2039 * together, child after parent. If we race with dup_mmap(), we 2040 * prefer to resolve parent before child, lest we miss entries 2041 * duplicated after we scanned child: using last mm would invert 2042 * that. 2043 */ 2044 start_mm = &init_mm; 2045 mmget(&init_mm); 2046 2047 /* 2048 * Keep on scanning until all entries have gone. Usually, 2049 * one pass through swap_map is enough, but not necessarily: 2050 * there are races when an instance of an entry might be missed. 2051 */ 2052 while ((i = find_next_to_unuse(si, i, frontswap)) != 0) { 2053 if (signal_pending(current)) { 2054 retval = -EINTR; 2055 break; 2056 } 2057 2058 /* 2059 * Get a page for the entry, using the existing swap 2060 * cache page if there is one. Otherwise, get a clean 2061 * page and read the swap into it. 2062 */ 2063 swap_map = &si->swap_map[i]; 2064 entry = swp_entry(type, i); 2065 page = read_swap_cache_async(entry, 2066 GFP_HIGHUSER_MOVABLE, NULL, 0, false); 2067 if (!page) { 2068 /* 2069 * Either swap_duplicate() failed because entry 2070 * has been freed independently, and will not be 2071 * reused since sys_swapoff() already disabled 2072 * allocation from here, or alloc_page() failed. 2073 */ 2074 swcount = *swap_map; 2075 /* 2076 * We don't hold lock here, so the swap entry could be 2077 * SWAP_MAP_BAD (when the cluster is discarding). 2078 * Instead of fail out, We can just skip the swap 2079 * entry because swapoff will wait for discarding 2080 * finish anyway. 2081 */ 2082 if (!swcount || swcount == SWAP_MAP_BAD) 2083 continue; 2084 retval = -ENOMEM; 2085 break; 2086 } 2087 2088 /* 2089 * Don't hold on to start_mm if it looks like exiting. 2090 */ 2091 if (atomic_read(&start_mm->mm_users) == 1) { 2092 mmput(start_mm); 2093 start_mm = &init_mm; 2094 mmget(&init_mm); 2095 } 2096 2097 /* 2098 * Wait for and lock page. When do_swap_page races with 2099 * try_to_unuse, do_swap_page can handle the fault much 2100 * faster than try_to_unuse can locate the entry. This 2101 * apparently redundant "wait_on_page_locked" lets try_to_unuse 2102 * defer to do_swap_page in such a case - in some tests, 2103 * do_swap_page and try_to_unuse repeatedly compete. 2104 */ 2105 wait_on_page_locked(page); 2106 wait_on_page_writeback(page); 2107 lock_page(page); 2108 wait_on_page_writeback(page); 2109 2110 /* 2111 * Remove all references to entry. 2112 */ 2113 swcount = *swap_map; 2114 if (swap_count(swcount) == SWAP_MAP_SHMEM) { 2115 retval = shmem_unuse(entry, page); 2116 /* page has already been unlocked and released */ 2117 if (retval < 0) 2118 break; 2119 continue; 2120 } 2121 if (swap_count(swcount) && start_mm != &init_mm) 2122 retval = unuse_mm(start_mm, entry, page); 2123 2124 if (swap_count(*swap_map)) { 2125 int set_start_mm = (*swap_map >= swcount); 2126 struct list_head *p = &start_mm->mmlist; 2127 struct mm_struct *new_start_mm = start_mm; 2128 struct mm_struct *prev_mm = start_mm; 2129 struct mm_struct *mm; 2130 2131 mmget(new_start_mm); 2132 mmget(prev_mm); 2133 spin_lock(&mmlist_lock); 2134 while (swap_count(*swap_map) && !retval && 2135 (p = p->next) != &start_mm->mmlist) { 2136 mm = list_entry(p, struct mm_struct, mmlist); 2137 if (!mmget_not_zero(mm)) 2138 continue; 2139 spin_unlock(&mmlist_lock); 2140 mmput(prev_mm); 2141 prev_mm = mm; 2142 2143 cond_resched(); 2144 2145 swcount = *swap_map; 2146 if (!swap_count(swcount)) /* any usage ? */ 2147 ; 2148 else if (mm == &init_mm) 2149 set_start_mm = 1; 2150 else 2151 retval = unuse_mm(mm, entry, page); 2152 2153 if (set_start_mm && *swap_map < swcount) { 2154 mmput(new_start_mm); 2155 mmget(mm); 2156 new_start_mm = mm; 2157 set_start_mm = 0; 2158 } 2159 spin_lock(&mmlist_lock); 2160 } 2161 spin_unlock(&mmlist_lock); 2162 mmput(prev_mm); 2163 mmput(start_mm); 2164 start_mm = new_start_mm; 2165 } 2166 if (retval) { 2167 unlock_page(page); 2168 put_page(page); 2169 break; 2170 } 2171 2172 /* 2173 * If a reference remains (rare), we would like to leave 2174 * the page in the swap cache; but try_to_unmap could 2175 * then re-duplicate the entry once we drop page lock, 2176 * so we might loop indefinitely; also, that page could 2177 * not be swapped out to other storage meanwhile. So: 2178 * delete from cache even if there's another reference, 2179 * after ensuring that the data has been saved to disk - 2180 * since if the reference remains (rarer), it will be 2181 * read from disk into another page. Splitting into two 2182 * pages would be incorrect if swap supported "shared 2183 * private" pages, but they are handled by tmpfs files. 2184 * 2185 * Given how unuse_vma() targets one particular offset 2186 * in an anon_vma, once the anon_vma has been determined, 2187 * this splitting happens to be just what is needed to 2188 * handle where KSM pages have been swapped out: re-reading 2189 * is unnecessarily slow, but we can fix that later on. 2190 */ 2191 if (swap_count(*swap_map) && 2192 PageDirty(page) && PageSwapCache(page)) { 2193 struct writeback_control wbc = { 2194 .sync_mode = WB_SYNC_NONE, 2195 }; 2196 2197 swap_writepage(compound_head(page), &wbc); 2198 lock_page(page); 2199 wait_on_page_writeback(page); 2200 } 2201 2202 /* 2203 * It is conceivable that a racing task removed this page from 2204 * swap cache just before we acquired the page lock at the top, 2205 * or while we dropped it in unuse_mm(). The page might even 2206 * be back in swap cache on another swap area: that we must not 2207 * delete, since it may not have been written out to swap yet. 2208 */ 2209 if (PageSwapCache(page) && 2210 likely(page_private(page) == entry.val) && 2211 !page_swapped(page)) 2212 delete_from_swap_cache(compound_head(page)); 2213 2214 /* 2215 * So we could skip searching mms once swap count went 2216 * to 1, we did not mark any present ptes as dirty: must 2217 * mark page dirty so shrink_page_list will preserve it. 2218 */ 2219 SetPageDirty(page); 2220 unlock_page(page); 2221 put_page(page); 2222 2223 /* 2224 * Make sure that we aren't completely killing 2225 * interactive performance. 2226 */ 2227 cond_resched(); 2228 if (frontswap && pages_to_unuse > 0) { 2229 if (!--pages_to_unuse) 2230 break; 2231 } 2232 } 2233 2234 mmput(start_mm); 2235 return retval; 2236 } 2237 2238 /* 2239 * After a successful try_to_unuse, if no swap is now in use, we know 2240 * we can empty the mmlist. swap_lock must be held on entry and exit. 2241 * Note that mmlist_lock nests inside swap_lock, and an mm must be 2242 * added to the mmlist just after page_duplicate - before would be racy. 2243 */ 2244 static void drain_mmlist(void) 2245 { 2246 struct list_head *p, *next; 2247 unsigned int type; 2248 2249 for (type = 0; type < nr_swapfiles; type++) 2250 if (swap_info[type]->inuse_pages) 2251 return; 2252 spin_lock(&mmlist_lock); 2253 list_for_each_safe(p, next, &init_mm.mmlist) 2254 list_del_init(p); 2255 spin_unlock(&mmlist_lock); 2256 } 2257 2258 /* 2259 * Use this swapdev's extent info to locate the (PAGE_SIZE) block which 2260 * corresponds to page offset for the specified swap entry. 2261 * Note that the type of this function is sector_t, but it returns page offset 2262 * into the bdev, not sector offset. 2263 */ 2264 static sector_t map_swap_entry(swp_entry_t entry, struct block_device **bdev) 2265 { 2266 struct swap_info_struct *sis; 2267 struct swap_extent *start_se; 2268 struct swap_extent *se; 2269 pgoff_t offset; 2270 2271 sis = swap_info[swp_type(entry)]; 2272 *bdev = sis->bdev; 2273 2274 offset = swp_offset(entry); 2275 start_se = sis->curr_swap_extent; 2276 se = start_se; 2277 2278 for ( ; ; ) { 2279 if (se->start_page <= offset && 2280 offset < (se->start_page + se->nr_pages)) { 2281 return se->start_block + (offset - se->start_page); 2282 } 2283 se = list_next_entry(se, list); 2284 sis->curr_swap_extent = se; 2285 BUG_ON(se == start_se); /* It *must* be present */ 2286 } 2287 } 2288 2289 /* 2290 * Returns the page offset into bdev for the specified page's swap entry. 2291 */ 2292 sector_t map_swap_page(struct page *page, struct block_device **bdev) 2293 { 2294 swp_entry_t entry; 2295 entry.val = page_private(page); 2296 return map_swap_entry(entry, bdev); 2297 } 2298 2299 /* 2300 * Free all of a swapdev's extent information 2301 */ 2302 static void destroy_swap_extents(struct swap_info_struct *sis) 2303 { 2304 while (!list_empty(&sis->first_swap_extent.list)) { 2305 struct swap_extent *se; 2306 2307 se = list_first_entry(&sis->first_swap_extent.list, 2308 struct swap_extent, list); 2309 list_del(&se->list); 2310 kfree(se); 2311 } 2312 2313 if (sis->flags & SWP_FILE) { 2314 struct file *swap_file = sis->swap_file; 2315 struct address_space *mapping = swap_file->f_mapping; 2316 2317 sis->flags &= ~SWP_FILE; 2318 mapping->a_ops->swap_deactivate(swap_file); 2319 } 2320 } 2321 2322 /* 2323 * Add a block range (and the corresponding page range) into this swapdev's 2324 * extent list. The extent list is kept sorted in page order. 2325 * 2326 * This function rather assumes that it is called in ascending page order. 2327 */ 2328 int 2329 add_swap_extent(struct swap_info_struct *sis, unsigned long start_page, 2330 unsigned long nr_pages, sector_t start_block) 2331 { 2332 struct swap_extent *se; 2333 struct swap_extent *new_se; 2334 struct list_head *lh; 2335 2336 if (start_page == 0) { 2337 se = &sis->first_swap_extent; 2338 sis->curr_swap_extent = se; 2339 se->start_page = 0; 2340 se->nr_pages = nr_pages; 2341 se->start_block = start_block; 2342 return 1; 2343 } else { 2344 lh = sis->first_swap_extent.list.prev; /* Highest extent */ 2345 se = list_entry(lh, struct swap_extent, list); 2346 BUG_ON(se->start_page + se->nr_pages != start_page); 2347 if (se->start_block + se->nr_pages == start_block) { 2348 /* Merge it */ 2349 se->nr_pages += nr_pages; 2350 return 0; 2351 } 2352 } 2353 2354 /* 2355 * No merge. Insert a new extent, preserving ordering. 2356 */ 2357 new_se = kmalloc(sizeof(*se), GFP_KERNEL); 2358 if (new_se == NULL) 2359 return -ENOMEM; 2360 new_se->start_page = start_page; 2361 new_se->nr_pages = nr_pages; 2362 new_se->start_block = start_block; 2363 2364 list_add_tail(&new_se->list, &sis->first_swap_extent.list); 2365 return 1; 2366 } 2367 2368 /* 2369 * A `swap extent' is a simple thing which maps a contiguous range of pages 2370 * onto a contiguous range of disk blocks. An ordered list of swap extents 2371 * is built at swapon time and is then used at swap_writepage/swap_readpage 2372 * time for locating where on disk a page belongs. 2373 * 2374 * If the swapfile is an S_ISBLK block device, a single extent is installed. 2375 * This is done so that the main operating code can treat S_ISBLK and S_ISREG 2376 * swap files identically. 2377 * 2378 * Whether the swapdev is an S_ISREG file or an S_ISBLK blockdev, the swap 2379 * extent list operates in PAGE_SIZE disk blocks. Both S_ISREG and S_ISBLK 2380 * swapfiles are handled *identically* after swapon time. 2381 * 2382 * For S_ISREG swapfiles, setup_swap_extents() will walk all the file's blocks 2383 * and will parse them into an ordered extent list, in PAGE_SIZE chunks. If 2384 * some stray blocks are found which do not fall within the PAGE_SIZE alignment 2385 * requirements, they are simply tossed out - we will never use those blocks 2386 * for swapping. 2387 * 2388 * For S_ISREG swapfiles we set S_SWAPFILE across the life of the swapon. This 2389 * prevents root from shooting her foot off by ftruncating an in-use swapfile, 2390 * which will scribble on the fs. 2391 * 2392 * The amount of disk space which a single swap extent represents varies. 2393 * Typically it is in the 1-4 megabyte range. So we can have hundreds of 2394 * extents in the list. To avoid much list walking, we cache the previous 2395 * search location in `curr_swap_extent', and start new searches from there. 2396 * This is extremely effective. The average number of iterations in 2397 * map_swap_page() has been measured at about 0.3 per page. - akpm. 2398 */ 2399 static int setup_swap_extents(struct swap_info_struct *sis, sector_t *span) 2400 { 2401 struct file *swap_file = sis->swap_file; 2402 struct address_space *mapping = swap_file->f_mapping; 2403 struct inode *inode = mapping->host; 2404 int ret; 2405 2406 if (S_ISBLK(inode->i_mode)) { 2407 ret = add_swap_extent(sis, 0, sis->max, 0); 2408 *span = sis->pages; 2409 return ret; 2410 } 2411 2412 if (mapping->a_ops->swap_activate) { 2413 ret = mapping->a_ops->swap_activate(sis, swap_file, span); 2414 if (!ret) { 2415 sis->flags |= SWP_FILE; 2416 ret = add_swap_extent(sis, 0, sis->max, 0); 2417 *span = sis->pages; 2418 } 2419 return ret; 2420 } 2421 2422 return generic_swapfile_activate(sis, swap_file, span); 2423 } 2424 2425 static int swap_node(struct swap_info_struct *p) 2426 { 2427 struct block_device *bdev; 2428 2429 if (p->bdev) 2430 bdev = p->bdev; 2431 else 2432 bdev = p->swap_file->f_inode->i_sb->s_bdev; 2433 2434 return bdev ? bdev->bd_disk->node_id : NUMA_NO_NODE; 2435 } 2436 2437 static void _enable_swap_info(struct swap_info_struct *p, int prio, 2438 unsigned char *swap_map, 2439 struct swap_cluster_info *cluster_info) 2440 { 2441 int i; 2442 2443 if (prio >= 0) 2444 p->prio = prio; 2445 else 2446 p->prio = --least_priority; 2447 /* 2448 * the plist prio is negated because plist ordering is 2449 * low-to-high, while swap ordering is high-to-low 2450 */ 2451 p->list.prio = -p->prio; 2452 for_each_node(i) { 2453 if (p->prio >= 0) 2454 p->avail_lists[i].prio = -p->prio; 2455 else { 2456 if (swap_node(p) == i) 2457 p->avail_lists[i].prio = 1; 2458 else 2459 p->avail_lists[i].prio = -p->prio; 2460 } 2461 } 2462 p->swap_map = swap_map; 2463 p->cluster_info = cluster_info; 2464 p->flags |= SWP_WRITEOK; 2465 atomic_long_add(p->pages, &nr_swap_pages); 2466 total_swap_pages += p->pages; 2467 2468 assert_spin_locked(&swap_lock); 2469 /* 2470 * both lists are plists, and thus priority ordered. 2471 * swap_active_head needs to be priority ordered for swapoff(), 2472 * which on removal of any swap_info_struct with an auto-assigned 2473 * (i.e. negative) priority increments the auto-assigned priority 2474 * of any lower-priority swap_info_structs. 2475 * swap_avail_head needs to be priority ordered for get_swap_page(), 2476 * which allocates swap pages from the highest available priority 2477 * swap_info_struct. 2478 */ 2479 plist_add(&p->list, &swap_active_head); 2480 add_to_avail_list(p); 2481 } 2482 2483 static void enable_swap_info(struct swap_info_struct *p, int prio, 2484 unsigned char *swap_map, 2485 struct swap_cluster_info *cluster_info, 2486 unsigned long *frontswap_map) 2487 { 2488 frontswap_init(p->type, frontswap_map); 2489 spin_lock(&swap_lock); 2490 spin_lock(&p->lock); 2491 _enable_swap_info(p, prio, swap_map, cluster_info); 2492 spin_unlock(&p->lock); 2493 spin_unlock(&swap_lock); 2494 } 2495 2496 static void reinsert_swap_info(struct swap_info_struct *p) 2497 { 2498 spin_lock(&swap_lock); 2499 spin_lock(&p->lock); 2500 _enable_swap_info(p, p->prio, p->swap_map, p->cluster_info); 2501 spin_unlock(&p->lock); 2502 spin_unlock(&swap_lock); 2503 } 2504 2505 bool has_usable_swap(void) 2506 { 2507 bool ret = true; 2508 2509 spin_lock(&swap_lock); 2510 if (plist_head_empty(&swap_active_head)) 2511 ret = false; 2512 spin_unlock(&swap_lock); 2513 return ret; 2514 } 2515 2516 SYSCALL_DEFINE1(swapoff, const char __user *, specialfile) 2517 { 2518 struct swap_info_struct *p = NULL; 2519 unsigned char *swap_map; 2520 struct swap_cluster_info *cluster_info; 2521 unsigned long *frontswap_map; 2522 struct file *swap_file, *victim; 2523 struct address_space *mapping; 2524 struct inode *inode; 2525 struct filename *pathname; 2526 int err, found = 0; 2527 unsigned int old_block_size; 2528 2529 if (!capable(CAP_SYS_ADMIN)) 2530 return -EPERM; 2531 2532 BUG_ON(!current->mm); 2533 2534 pathname = getname(specialfile); 2535 if (IS_ERR(pathname)) 2536 return PTR_ERR(pathname); 2537 2538 victim = file_open_name(pathname, O_RDWR|O_LARGEFILE, 0); 2539 err = PTR_ERR(victim); 2540 if (IS_ERR(victim)) 2541 goto out; 2542 2543 mapping = victim->f_mapping; 2544 spin_lock(&swap_lock); 2545 plist_for_each_entry(p, &swap_active_head, list) { 2546 if (p->flags & SWP_WRITEOK) { 2547 if (p->swap_file->f_mapping == mapping) { 2548 found = 1; 2549 break; 2550 } 2551 } 2552 } 2553 if (!found) { 2554 err = -EINVAL; 2555 spin_unlock(&swap_lock); 2556 goto out_dput; 2557 } 2558 if (!security_vm_enough_memory_mm(current->mm, p->pages)) 2559 vm_unacct_memory(p->pages); 2560 else { 2561 err = -ENOMEM; 2562 spin_unlock(&swap_lock); 2563 goto out_dput; 2564 } 2565 del_from_avail_list(p); 2566 spin_lock(&p->lock); 2567 if (p->prio < 0) { 2568 struct swap_info_struct *si = p; 2569 int nid; 2570 2571 plist_for_each_entry_continue(si, &swap_active_head, list) { 2572 si->prio++; 2573 si->list.prio--; 2574 for_each_node(nid) { 2575 if (si->avail_lists[nid].prio != 1) 2576 si->avail_lists[nid].prio--; 2577 } 2578 } 2579 least_priority++; 2580 } 2581 plist_del(&p->list, &swap_active_head); 2582 atomic_long_sub(p->pages, &nr_swap_pages); 2583 total_swap_pages -= p->pages; 2584 p->flags &= ~SWP_WRITEOK; 2585 spin_unlock(&p->lock); 2586 spin_unlock(&swap_lock); 2587 2588 disable_swap_slots_cache_lock(); 2589 2590 set_current_oom_origin(); 2591 err = try_to_unuse(p->type, false, 0); /* force unuse all pages */ 2592 clear_current_oom_origin(); 2593 2594 if (err) { 2595 /* re-insert swap space back into swap_list */ 2596 reinsert_swap_info(p); 2597 reenable_swap_slots_cache_unlock(); 2598 goto out_dput; 2599 } 2600 2601 reenable_swap_slots_cache_unlock(); 2602 2603 flush_work(&p->discard_work); 2604 2605 destroy_swap_extents(p); 2606 if (p->flags & SWP_CONTINUED) 2607 free_swap_count_continuations(p); 2608 2609 if (!p->bdev || !blk_queue_nonrot(bdev_get_queue(p->bdev))) 2610 atomic_dec(&nr_rotate_swap); 2611 2612 mutex_lock(&swapon_mutex); 2613 spin_lock(&swap_lock); 2614 spin_lock(&p->lock); 2615 drain_mmlist(); 2616 2617 /* wait for anyone still in scan_swap_map */ 2618 p->highest_bit = 0; /* cuts scans short */ 2619 while (p->flags >= SWP_SCANNING) { 2620 spin_unlock(&p->lock); 2621 spin_unlock(&swap_lock); 2622 schedule_timeout_uninterruptible(1); 2623 spin_lock(&swap_lock); 2624 spin_lock(&p->lock); 2625 } 2626 2627 swap_file = p->swap_file; 2628 old_block_size = p->old_block_size; 2629 p->swap_file = NULL; 2630 p->max = 0; 2631 swap_map = p->swap_map; 2632 p->swap_map = NULL; 2633 cluster_info = p->cluster_info; 2634 p->cluster_info = NULL; 2635 frontswap_map = frontswap_map_get(p); 2636 spin_unlock(&p->lock); 2637 spin_unlock(&swap_lock); 2638 frontswap_invalidate_area(p->type); 2639 frontswap_map_set(p, NULL); 2640 mutex_unlock(&swapon_mutex); 2641 free_percpu(p->percpu_cluster); 2642 p->percpu_cluster = NULL; 2643 vfree(swap_map); 2644 kvfree(cluster_info); 2645 kvfree(frontswap_map); 2646 /* Destroy swap account information */ 2647 swap_cgroup_swapoff(p->type); 2648 exit_swap_address_space(p->type); 2649 2650 inode = mapping->host; 2651 if (S_ISBLK(inode->i_mode)) { 2652 struct block_device *bdev = I_BDEV(inode); 2653 set_blocksize(bdev, old_block_size); 2654 blkdev_put(bdev, FMODE_READ | FMODE_WRITE | FMODE_EXCL); 2655 } else { 2656 inode_lock(inode); 2657 inode->i_flags &= ~S_SWAPFILE; 2658 inode_unlock(inode); 2659 } 2660 filp_close(swap_file, NULL); 2661 2662 /* 2663 * Clear the SWP_USED flag after all resources are freed so that swapon 2664 * can reuse this swap_info in alloc_swap_info() safely. It is ok to 2665 * not hold p->lock after we cleared its SWP_WRITEOK. 2666 */ 2667 spin_lock(&swap_lock); 2668 p->flags = 0; 2669 spin_unlock(&swap_lock); 2670 2671 err = 0; 2672 atomic_inc(&proc_poll_event); 2673 wake_up_interruptible(&proc_poll_wait); 2674 2675 out_dput: 2676 filp_close(victim, NULL); 2677 out: 2678 putname(pathname); 2679 return err; 2680 } 2681 2682 #ifdef CONFIG_PROC_FS 2683 static __poll_t swaps_poll(struct file *file, poll_table *wait) 2684 { 2685 struct seq_file *seq = file->private_data; 2686 2687 poll_wait(file, &proc_poll_wait, wait); 2688 2689 if (seq->poll_event != atomic_read(&proc_poll_event)) { 2690 seq->poll_event = atomic_read(&proc_poll_event); 2691 return EPOLLIN | EPOLLRDNORM | EPOLLERR | EPOLLPRI; 2692 } 2693 2694 return EPOLLIN | EPOLLRDNORM; 2695 } 2696 2697 /* iterator */ 2698 static void *swap_start(struct seq_file *swap, loff_t *pos) 2699 { 2700 struct swap_info_struct *si; 2701 int type; 2702 loff_t l = *pos; 2703 2704 mutex_lock(&swapon_mutex); 2705 2706 if (!l) 2707 return SEQ_START_TOKEN; 2708 2709 for (type = 0; type < nr_swapfiles; type++) { 2710 smp_rmb(); /* read nr_swapfiles before swap_info[type] */ 2711 si = swap_info[type]; 2712 if (!(si->flags & SWP_USED) || !si->swap_map) 2713 continue; 2714 if (!--l) 2715 return si; 2716 } 2717 2718 return NULL; 2719 } 2720 2721 static void *swap_next(struct seq_file *swap, void *v, loff_t *pos) 2722 { 2723 struct swap_info_struct *si = v; 2724 int type; 2725 2726 if (v == SEQ_START_TOKEN) 2727 type = 0; 2728 else 2729 type = si->type + 1; 2730 2731 for (; type < nr_swapfiles; type++) { 2732 smp_rmb(); /* read nr_swapfiles before swap_info[type] */ 2733 si = swap_info[type]; 2734 if (!(si->flags & SWP_USED) || !si->swap_map) 2735 continue; 2736 ++*pos; 2737 return si; 2738 } 2739 2740 return NULL; 2741 } 2742 2743 static void swap_stop(struct seq_file *swap, void *v) 2744 { 2745 mutex_unlock(&swapon_mutex); 2746 } 2747 2748 static int swap_show(struct seq_file *swap, void *v) 2749 { 2750 struct swap_info_struct *si = v; 2751 struct file *file; 2752 int len; 2753 2754 if (si == SEQ_START_TOKEN) { 2755 seq_puts(swap,"Filename\t\t\t\tType\t\tSize\tUsed\tPriority\n"); 2756 return 0; 2757 } 2758 2759 file = si->swap_file; 2760 len = seq_file_path(swap, file, " \t\n\\"); 2761 seq_printf(swap, "%*s%s\t%u\t%u\t%d\n", 2762 len < 40 ? 40 - len : 1, " ", 2763 S_ISBLK(file_inode(file)->i_mode) ? 2764 "partition" : "file\t", 2765 si->pages << (PAGE_SHIFT - 10), 2766 si->inuse_pages << (PAGE_SHIFT - 10), 2767 si->prio); 2768 return 0; 2769 } 2770 2771 static const struct seq_operations swaps_op = { 2772 .start = swap_start, 2773 .next = swap_next, 2774 .stop = swap_stop, 2775 .show = swap_show 2776 }; 2777 2778 static int swaps_open(struct inode *inode, struct file *file) 2779 { 2780 struct seq_file *seq; 2781 int ret; 2782 2783 ret = seq_open(file, &swaps_op); 2784 if (ret) 2785 return ret; 2786 2787 seq = file->private_data; 2788 seq->poll_event = atomic_read(&proc_poll_event); 2789 return 0; 2790 } 2791 2792 static const struct file_operations proc_swaps_operations = { 2793 .open = swaps_open, 2794 .read = seq_read, 2795 .llseek = seq_lseek, 2796 .release = seq_release, 2797 .poll = swaps_poll, 2798 }; 2799 2800 static int __init procswaps_init(void) 2801 { 2802 proc_create("swaps", 0, NULL, &proc_swaps_operations); 2803 return 0; 2804 } 2805 __initcall(procswaps_init); 2806 #endif /* CONFIG_PROC_FS */ 2807 2808 #ifdef MAX_SWAPFILES_CHECK 2809 static int __init max_swapfiles_check(void) 2810 { 2811 MAX_SWAPFILES_CHECK(); 2812 return 0; 2813 } 2814 late_initcall(max_swapfiles_check); 2815 #endif 2816 2817 static struct swap_info_struct *alloc_swap_info(void) 2818 { 2819 struct swap_info_struct *p; 2820 unsigned int type; 2821 int i; 2822 2823 p = kzalloc(sizeof(*p), GFP_KERNEL); 2824 if (!p) 2825 return ERR_PTR(-ENOMEM); 2826 2827 spin_lock(&swap_lock); 2828 for (type = 0; type < nr_swapfiles; type++) { 2829 if (!(swap_info[type]->flags & SWP_USED)) 2830 break; 2831 } 2832 if (type >= MAX_SWAPFILES) { 2833 spin_unlock(&swap_lock); 2834 kfree(p); 2835 return ERR_PTR(-EPERM); 2836 } 2837 if (type >= nr_swapfiles) { 2838 p->type = type; 2839 swap_info[type] = p; 2840 /* 2841 * Write swap_info[type] before nr_swapfiles, in case a 2842 * racing procfs swap_start() or swap_next() is reading them. 2843 * (We never shrink nr_swapfiles, we never free this entry.) 2844 */ 2845 smp_wmb(); 2846 nr_swapfiles++; 2847 } else { 2848 kfree(p); 2849 p = swap_info[type]; 2850 /* 2851 * Do not memset this entry: a racing procfs swap_next() 2852 * would be relying on p->type to remain valid. 2853 */ 2854 } 2855 INIT_LIST_HEAD(&p->first_swap_extent.list); 2856 plist_node_init(&p->list, 0); 2857 for_each_node(i) 2858 plist_node_init(&p->avail_lists[i], 0); 2859 p->flags = SWP_USED; 2860 spin_unlock(&swap_lock); 2861 spin_lock_init(&p->lock); 2862 spin_lock_init(&p->cont_lock); 2863 2864 return p; 2865 } 2866 2867 static int claim_swapfile(struct swap_info_struct *p, struct inode *inode) 2868 { 2869 int error; 2870 2871 if (S_ISBLK(inode->i_mode)) { 2872 p->bdev = bdgrab(I_BDEV(inode)); 2873 error = blkdev_get(p->bdev, 2874 FMODE_READ | FMODE_WRITE | FMODE_EXCL, p); 2875 if (error < 0) { 2876 p->bdev = NULL; 2877 return error; 2878 } 2879 p->old_block_size = block_size(p->bdev); 2880 error = set_blocksize(p->bdev, PAGE_SIZE); 2881 if (error < 0) 2882 return error; 2883 p->flags |= SWP_BLKDEV; 2884 } else if (S_ISREG(inode->i_mode)) { 2885 p->bdev = inode->i_sb->s_bdev; 2886 inode_lock(inode); 2887 if (IS_SWAPFILE(inode)) 2888 return -EBUSY; 2889 } else 2890 return -EINVAL; 2891 2892 return 0; 2893 } 2894 2895 2896 /* 2897 * Find out how many pages are allowed for a single swap device. There 2898 * are two limiting factors: 2899 * 1) the number of bits for the swap offset in the swp_entry_t type, and 2900 * 2) the number of bits in the swap pte, as defined by the different 2901 * architectures. 2902 * 2903 * In order to find the largest possible bit mask, a swap entry with 2904 * swap type 0 and swap offset ~0UL is created, encoded to a swap pte, 2905 * decoded to a swp_entry_t again, and finally the swap offset is 2906 * extracted. 2907 * 2908 * This will mask all the bits from the initial ~0UL mask that can't 2909 * be encoded in either the swp_entry_t or the architecture definition 2910 * of a swap pte. 2911 */ 2912 unsigned long generic_max_swapfile_size(void) 2913 { 2914 return swp_offset(pte_to_swp_entry( 2915 swp_entry_to_pte(swp_entry(0, ~0UL)))) + 1; 2916 } 2917 2918 /* Can be overridden by an architecture for additional checks. */ 2919 __weak unsigned long max_swapfile_size(void) 2920 { 2921 return generic_max_swapfile_size(); 2922 } 2923 2924 static unsigned long read_swap_header(struct swap_info_struct *p, 2925 union swap_header *swap_header, 2926 struct inode *inode) 2927 { 2928 int i; 2929 unsigned long maxpages; 2930 unsigned long swapfilepages; 2931 unsigned long last_page; 2932 2933 if (memcmp("SWAPSPACE2", swap_header->magic.magic, 10)) { 2934 pr_err("Unable to find swap-space signature\n"); 2935 return 0; 2936 } 2937 2938 /* swap partition endianess hack... */ 2939 if (swab32(swap_header->info.version) == 1) { 2940 swab32s(&swap_header->info.version); 2941 swab32s(&swap_header->info.last_page); 2942 swab32s(&swap_header->info.nr_badpages); 2943 if (swap_header->info.nr_badpages > MAX_SWAP_BADPAGES) 2944 return 0; 2945 for (i = 0; i < swap_header->info.nr_badpages; i++) 2946 swab32s(&swap_header->info.badpages[i]); 2947 } 2948 /* Check the swap header's sub-version */ 2949 if (swap_header->info.version != 1) { 2950 pr_warn("Unable to handle swap header version %d\n", 2951 swap_header->info.version); 2952 return 0; 2953 } 2954 2955 p->lowest_bit = 1; 2956 p->cluster_next = 1; 2957 p->cluster_nr = 0; 2958 2959 maxpages = max_swapfile_size(); 2960 last_page = swap_header->info.last_page; 2961 if (!last_page) { 2962 pr_warn("Empty swap-file\n"); 2963 return 0; 2964 } 2965 if (last_page > maxpages) { 2966 pr_warn("Truncating oversized swap area, only using %luk out of %luk\n", 2967 maxpages << (PAGE_SHIFT - 10), 2968 last_page << (PAGE_SHIFT - 10)); 2969 } 2970 if (maxpages > last_page) { 2971 maxpages = last_page + 1; 2972 /* p->max is an unsigned int: don't overflow it */ 2973 if ((unsigned int)maxpages == 0) 2974 maxpages = UINT_MAX; 2975 } 2976 p->highest_bit = maxpages - 1; 2977 2978 if (!maxpages) 2979 return 0; 2980 swapfilepages = i_size_read(inode) >> PAGE_SHIFT; 2981 if (swapfilepages && maxpages > swapfilepages) { 2982 pr_warn("Swap area shorter than signature indicates\n"); 2983 return 0; 2984 } 2985 if (swap_header->info.nr_badpages && S_ISREG(inode->i_mode)) 2986 return 0; 2987 if (swap_header->info.nr_badpages > MAX_SWAP_BADPAGES) 2988 return 0; 2989 2990 return maxpages; 2991 } 2992 2993 #define SWAP_CLUSTER_INFO_COLS \ 2994 DIV_ROUND_UP(L1_CACHE_BYTES, sizeof(struct swap_cluster_info)) 2995 #define SWAP_CLUSTER_SPACE_COLS \ 2996 DIV_ROUND_UP(SWAP_ADDRESS_SPACE_PAGES, SWAPFILE_CLUSTER) 2997 #define SWAP_CLUSTER_COLS \ 2998 max_t(unsigned int, SWAP_CLUSTER_INFO_COLS, SWAP_CLUSTER_SPACE_COLS) 2999 3000 static int setup_swap_map_and_extents(struct swap_info_struct *p, 3001 union swap_header *swap_header, 3002 unsigned char *swap_map, 3003 struct swap_cluster_info *cluster_info, 3004 unsigned long maxpages, 3005 sector_t *span) 3006 { 3007 unsigned int j, k; 3008 unsigned int nr_good_pages; 3009 int nr_extents; 3010 unsigned long nr_clusters = DIV_ROUND_UP(maxpages, SWAPFILE_CLUSTER); 3011 unsigned long col = p->cluster_next / SWAPFILE_CLUSTER % SWAP_CLUSTER_COLS; 3012 unsigned long i, idx; 3013 3014 nr_good_pages = maxpages - 1; /* omit header page */ 3015 3016 cluster_list_init(&p->free_clusters); 3017 cluster_list_init(&p->discard_clusters); 3018 3019 for (i = 0; i < swap_header->info.nr_badpages; i++) { 3020 unsigned int page_nr = swap_header->info.badpages[i]; 3021 if (page_nr == 0 || page_nr > swap_header->info.last_page) 3022 return -EINVAL; 3023 if (page_nr < maxpages) { 3024 swap_map[page_nr] = SWAP_MAP_BAD; 3025 nr_good_pages--; 3026 /* 3027 * Haven't marked the cluster free yet, no list 3028 * operation involved 3029 */ 3030 inc_cluster_info_page(p, cluster_info, page_nr); 3031 } 3032 } 3033 3034 /* Haven't marked the cluster free yet, no list operation involved */ 3035 for (i = maxpages; i < round_up(maxpages, SWAPFILE_CLUSTER); i++) 3036 inc_cluster_info_page(p, cluster_info, i); 3037 3038 if (nr_good_pages) { 3039 swap_map[0] = SWAP_MAP_BAD; 3040 /* 3041 * Not mark the cluster free yet, no list 3042 * operation involved 3043 */ 3044 inc_cluster_info_page(p, cluster_info, 0); 3045 p->max = maxpages; 3046 p->pages = nr_good_pages; 3047 nr_extents = setup_swap_extents(p, span); 3048 if (nr_extents < 0) 3049 return nr_extents; 3050 nr_good_pages = p->pages; 3051 } 3052 if (!nr_good_pages) { 3053 pr_warn("Empty swap-file\n"); 3054 return -EINVAL; 3055 } 3056 3057 if (!cluster_info) 3058 return nr_extents; 3059 3060 3061 /* 3062 * Reduce false cache line sharing between cluster_info and 3063 * sharing same address space. 3064 */ 3065 for (k = 0; k < SWAP_CLUSTER_COLS; k++) { 3066 j = (k + col) % SWAP_CLUSTER_COLS; 3067 for (i = 0; i < DIV_ROUND_UP(nr_clusters, SWAP_CLUSTER_COLS); i++) { 3068 idx = i * SWAP_CLUSTER_COLS + j; 3069 if (idx >= nr_clusters) 3070 continue; 3071 if (cluster_count(&cluster_info[idx])) 3072 continue; 3073 cluster_set_flag(&cluster_info[idx], CLUSTER_FLAG_FREE); 3074 cluster_list_add_tail(&p->free_clusters, cluster_info, 3075 idx); 3076 } 3077 } 3078 return nr_extents; 3079 } 3080 3081 /* 3082 * Helper to sys_swapon determining if a given swap 3083 * backing device queue supports DISCARD operations. 3084 */ 3085 static bool swap_discardable(struct swap_info_struct *si) 3086 { 3087 struct request_queue *q = bdev_get_queue(si->bdev); 3088 3089 if (!q || !blk_queue_discard(q)) 3090 return false; 3091 3092 return true; 3093 } 3094 3095 SYSCALL_DEFINE2(swapon, const char __user *, specialfile, int, swap_flags) 3096 { 3097 struct swap_info_struct *p; 3098 struct filename *name; 3099 struct file *swap_file = NULL; 3100 struct address_space *mapping; 3101 int prio; 3102 int error; 3103 union swap_header *swap_header; 3104 int nr_extents; 3105 sector_t span; 3106 unsigned long maxpages; 3107 unsigned char *swap_map = NULL; 3108 struct swap_cluster_info *cluster_info = NULL; 3109 unsigned long *frontswap_map = NULL; 3110 struct page *page = NULL; 3111 struct inode *inode = NULL; 3112 bool inced_nr_rotate_swap = false; 3113 3114 if (swap_flags & ~SWAP_FLAGS_VALID) 3115 return -EINVAL; 3116 3117 if (!capable(CAP_SYS_ADMIN)) 3118 return -EPERM; 3119 3120 if (!swap_avail_heads) 3121 return -ENOMEM; 3122 3123 p = alloc_swap_info(); 3124 if (IS_ERR(p)) 3125 return PTR_ERR(p); 3126 3127 INIT_WORK(&p->discard_work, swap_discard_work); 3128 3129 name = getname(specialfile); 3130 if (IS_ERR(name)) { 3131 error = PTR_ERR(name); 3132 name = NULL; 3133 goto bad_swap; 3134 } 3135 swap_file = file_open_name(name, O_RDWR|O_LARGEFILE, 0); 3136 if (IS_ERR(swap_file)) { 3137 error = PTR_ERR(swap_file); 3138 swap_file = NULL; 3139 goto bad_swap; 3140 } 3141 3142 p->swap_file = swap_file; 3143 mapping = swap_file->f_mapping; 3144 inode = mapping->host; 3145 3146 /* If S_ISREG(inode->i_mode) will do inode_lock(inode); */ 3147 error = claim_swapfile(p, inode); 3148 if (unlikely(error)) 3149 goto bad_swap; 3150 3151 /* 3152 * Read the swap header. 3153 */ 3154 if (!mapping->a_ops->readpage) { 3155 error = -EINVAL; 3156 goto bad_swap; 3157 } 3158 page = read_mapping_page(mapping, 0, swap_file); 3159 if (IS_ERR(page)) { 3160 error = PTR_ERR(page); 3161 goto bad_swap; 3162 } 3163 swap_header = kmap(page); 3164 3165 maxpages = read_swap_header(p, swap_header, inode); 3166 if (unlikely(!maxpages)) { 3167 error = -EINVAL; 3168 goto bad_swap; 3169 } 3170 3171 /* OK, set up the swap map and apply the bad block list */ 3172 swap_map = vzalloc(maxpages); 3173 if (!swap_map) { 3174 error = -ENOMEM; 3175 goto bad_swap; 3176 } 3177 3178 if (bdi_cap_stable_pages_required(inode_to_bdi(inode))) 3179 p->flags |= SWP_STABLE_WRITES; 3180 3181 if (bdi_cap_synchronous_io(inode_to_bdi(inode))) 3182 p->flags |= SWP_SYNCHRONOUS_IO; 3183 3184 if (p->bdev && blk_queue_nonrot(bdev_get_queue(p->bdev))) { 3185 int cpu; 3186 unsigned long ci, nr_cluster; 3187 3188 p->flags |= SWP_SOLIDSTATE; 3189 /* 3190 * select a random position to start with to help wear leveling 3191 * SSD 3192 */ 3193 p->cluster_next = 1 + (prandom_u32() % p->highest_bit); 3194 nr_cluster = DIV_ROUND_UP(maxpages, SWAPFILE_CLUSTER); 3195 3196 cluster_info = kvcalloc(nr_cluster, sizeof(*cluster_info), 3197 GFP_KERNEL); 3198 if (!cluster_info) { 3199 error = -ENOMEM; 3200 goto bad_swap; 3201 } 3202 3203 for (ci = 0; ci < nr_cluster; ci++) 3204 spin_lock_init(&((cluster_info + ci)->lock)); 3205 3206 p->percpu_cluster = alloc_percpu(struct percpu_cluster); 3207 if (!p->percpu_cluster) { 3208 error = -ENOMEM; 3209 goto bad_swap; 3210 } 3211 for_each_possible_cpu(cpu) { 3212 struct percpu_cluster *cluster; 3213 cluster = per_cpu_ptr(p->percpu_cluster, cpu); 3214 cluster_set_null(&cluster->index); 3215 } 3216 } else { 3217 atomic_inc(&nr_rotate_swap); 3218 inced_nr_rotate_swap = true; 3219 } 3220 3221 error = swap_cgroup_swapon(p->type, maxpages); 3222 if (error) 3223 goto bad_swap; 3224 3225 nr_extents = setup_swap_map_and_extents(p, swap_header, swap_map, 3226 cluster_info, maxpages, &span); 3227 if (unlikely(nr_extents < 0)) { 3228 error = nr_extents; 3229 goto bad_swap; 3230 } 3231 /* frontswap enabled? set up bit-per-page map for frontswap */ 3232 if (IS_ENABLED(CONFIG_FRONTSWAP)) 3233 frontswap_map = kvcalloc(BITS_TO_LONGS(maxpages), 3234 sizeof(long), 3235 GFP_KERNEL); 3236 3237 if (p->bdev &&(swap_flags & SWAP_FLAG_DISCARD) && swap_discardable(p)) { 3238 /* 3239 * When discard is enabled for swap with no particular 3240 * policy flagged, we set all swap discard flags here in 3241 * order to sustain backward compatibility with older 3242 * swapon(8) releases. 3243 */ 3244 p->flags |= (SWP_DISCARDABLE | SWP_AREA_DISCARD | 3245 SWP_PAGE_DISCARD); 3246 3247 /* 3248 * By flagging sys_swapon, a sysadmin can tell us to 3249 * either do single-time area discards only, or to just 3250 * perform discards for released swap page-clusters. 3251 * Now it's time to adjust the p->flags accordingly. 3252 */ 3253 if (swap_flags & SWAP_FLAG_DISCARD_ONCE) 3254 p->flags &= ~SWP_PAGE_DISCARD; 3255 else if (swap_flags & SWAP_FLAG_DISCARD_PAGES) 3256 p->flags &= ~SWP_AREA_DISCARD; 3257 3258 /* issue a swapon-time discard if it's still required */ 3259 if (p->flags & SWP_AREA_DISCARD) { 3260 int err = discard_swap(p); 3261 if (unlikely(err)) 3262 pr_err("swapon: discard_swap(%p): %d\n", 3263 p, err); 3264 } 3265 } 3266 3267 error = init_swap_address_space(p->type, maxpages); 3268 if (error) 3269 goto bad_swap; 3270 3271 mutex_lock(&swapon_mutex); 3272 prio = -1; 3273 if (swap_flags & SWAP_FLAG_PREFER) 3274 prio = 3275 (swap_flags & SWAP_FLAG_PRIO_MASK) >> SWAP_FLAG_PRIO_SHIFT; 3276 enable_swap_info(p, prio, swap_map, cluster_info, frontswap_map); 3277 3278 pr_info("Adding %uk swap on %s. Priority:%d extents:%d across:%lluk %s%s%s%s%s\n", 3279 p->pages<<(PAGE_SHIFT-10), name->name, p->prio, 3280 nr_extents, (unsigned long long)span<<(PAGE_SHIFT-10), 3281 (p->flags & SWP_SOLIDSTATE) ? "SS" : "", 3282 (p->flags & SWP_DISCARDABLE) ? "D" : "", 3283 (p->flags & SWP_AREA_DISCARD) ? "s" : "", 3284 (p->flags & SWP_PAGE_DISCARD) ? "c" : "", 3285 (frontswap_map) ? "FS" : ""); 3286 3287 mutex_unlock(&swapon_mutex); 3288 atomic_inc(&proc_poll_event); 3289 wake_up_interruptible(&proc_poll_wait); 3290 3291 if (S_ISREG(inode->i_mode)) 3292 inode->i_flags |= S_SWAPFILE; 3293 error = 0; 3294 goto out; 3295 bad_swap: 3296 free_percpu(p->percpu_cluster); 3297 p->percpu_cluster = NULL; 3298 if (inode && S_ISBLK(inode->i_mode) && p->bdev) { 3299 set_blocksize(p->bdev, p->old_block_size); 3300 blkdev_put(p->bdev, FMODE_READ | FMODE_WRITE | FMODE_EXCL); 3301 } 3302 destroy_swap_extents(p); 3303 swap_cgroup_swapoff(p->type); 3304 spin_lock(&swap_lock); 3305 p->swap_file = NULL; 3306 p->flags = 0; 3307 spin_unlock(&swap_lock); 3308 vfree(swap_map); 3309 kvfree(cluster_info); 3310 kvfree(frontswap_map); 3311 if (inced_nr_rotate_swap) 3312 atomic_dec(&nr_rotate_swap); 3313 if (swap_file) { 3314 if (inode && S_ISREG(inode->i_mode)) { 3315 inode_unlock(inode); 3316 inode = NULL; 3317 } 3318 filp_close(swap_file, NULL); 3319 } 3320 out: 3321 if (page && !IS_ERR(page)) { 3322 kunmap(page); 3323 put_page(page); 3324 } 3325 if (name) 3326 putname(name); 3327 if (inode && S_ISREG(inode->i_mode)) 3328 inode_unlock(inode); 3329 if (!error) 3330 enable_swap_slots_cache(); 3331 return error; 3332 } 3333 3334 void si_swapinfo(struct sysinfo *val) 3335 { 3336 unsigned int type; 3337 unsigned long nr_to_be_unused = 0; 3338 3339 spin_lock(&swap_lock); 3340 for (type = 0; type < nr_swapfiles; type++) { 3341 struct swap_info_struct *si = swap_info[type]; 3342 3343 if ((si->flags & SWP_USED) && !(si->flags & SWP_WRITEOK)) 3344 nr_to_be_unused += si->inuse_pages; 3345 } 3346 val->freeswap = atomic_long_read(&nr_swap_pages) + nr_to_be_unused; 3347 val->totalswap = total_swap_pages + nr_to_be_unused; 3348 spin_unlock(&swap_lock); 3349 } 3350 3351 /* 3352 * Verify that a swap entry is valid and increment its swap map count. 3353 * 3354 * Returns error code in following case. 3355 * - success -> 0 3356 * - swp_entry is invalid -> EINVAL 3357 * - swp_entry is migration entry -> EINVAL 3358 * - swap-cache reference is requested but there is already one. -> EEXIST 3359 * - swap-cache reference is requested but the entry is not used. -> ENOENT 3360 * - swap-mapped reference requested but needs continued swap count. -> ENOMEM 3361 */ 3362 static int __swap_duplicate(swp_entry_t entry, unsigned char usage) 3363 { 3364 struct swap_info_struct *p; 3365 struct swap_cluster_info *ci; 3366 unsigned long offset, type; 3367 unsigned char count; 3368 unsigned char has_cache; 3369 int err = -EINVAL; 3370 3371 if (non_swap_entry(entry)) 3372 goto out; 3373 3374 type = swp_type(entry); 3375 if (type >= nr_swapfiles) 3376 goto bad_file; 3377 p = swap_info[type]; 3378 offset = swp_offset(entry); 3379 if (unlikely(offset >= p->max)) 3380 goto out; 3381 3382 ci = lock_cluster_or_swap_info(p, offset); 3383 3384 count = p->swap_map[offset]; 3385 3386 /* 3387 * swapin_readahead() doesn't check if a swap entry is valid, so the 3388 * swap entry could be SWAP_MAP_BAD. Check here with lock held. 3389 */ 3390 if (unlikely(swap_count(count) == SWAP_MAP_BAD)) { 3391 err = -ENOENT; 3392 goto unlock_out; 3393 } 3394 3395 has_cache = count & SWAP_HAS_CACHE; 3396 count &= ~SWAP_HAS_CACHE; 3397 err = 0; 3398 3399 if (usage == SWAP_HAS_CACHE) { 3400 3401 /* set SWAP_HAS_CACHE if there is no cache and entry is used */ 3402 if (!has_cache && count) 3403 has_cache = SWAP_HAS_CACHE; 3404 else if (has_cache) /* someone else added cache */ 3405 err = -EEXIST; 3406 else /* no users remaining */ 3407 err = -ENOENT; 3408 3409 } else if (count || has_cache) { 3410 3411 if ((count & ~COUNT_CONTINUED) < SWAP_MAP_MAX) 3412 count += usage; 3413 else if ((count & ~COUNT_CONTINUED) > SWAP_MAP_MAX) 3414 err = -EINVAL; 3415 else if (swap_count_continued(p, offset, count)) 3416 count = COUNT_CONTINUED; 3417 else 3418 err = -ENOMEM; 3419 } else 3420 err = -ENOENT; /* unused swap entry */ 3421 3422 p->swap_map[offset] = count | has_cache; 3423 3424 unlock_out: 3425 unlock_cluster_or_swap_info(p, ci); 3426 out: 3427 return err; 3428 3429 bad_file: 3430 pr_err("swap_dup: %s%08lx\n", Bad_file, entry.val); 3431 goto out; 3432 } 3433 3434 /* 3435 * Help swapoff by noting that swap entry belongs to shmem/tmpfs 3436 * (in which case its reference count is never incremented). 3437 */ 3438 void swap_shmem_alloc(swp_entry_t entry) 3439 { 3440 __swap_duplicate(entry, SWAP_MAP_SHMEM); 3441 } 3442 3443 /* 3444 * Increase reference count of swap entry by 1. 3445 * Returns 0 for success, or -ENOMEM if a swap_count_continuation is required 3446 * but could not be atomically allocated. Returns 0, just as if it succeeded, 3447 * if __swap_duplicate() fails for another reason (-EINVAL or -ENOENT), which 3448 * might occur if a page table entry has got corrupted. 3449 */ 3450 int swap_duplicate(swp_entry_t entry) 3451 { 3452 int err = 0; 3453 3454 while (!err && __swap_duplicate(entry, 1) == -ENOMEM) 3455 err = add_swap_count_continuation(entry, GFP_ATOMIC); 3456 return err; 3457 } 3458 3459 /* 3460 * @entry: swap entry for which we allocate swap cache. 3461 * 3462 * Called when allocating swap cache for existing swap entry, 3463 * This can return error codes. Returns 0 at success. 3464 * -EBUSY means there is a swap cache. 3465 * Note: return code is different from swap_duplicate(). 3466 */ 3467 int swapcache_prepare(swp_entry_t entry) 3468 { 3469 return __swap_duplicate(entry, SWAP_HAS_CACHE); 3470 } 3471 3472 struct swap_info_struct *swp_swap_info(swp_entry_t entry) 3473 { 3474 return swap_info[swp_type(entry)]; 3475 } 3476 3477 struct swap_info_struct *page_swap_info(struct page *page) 3478 { 3479 swp_entry_t entry = { .val = page_private(page) }; 3480 return swp_swap_info(entry); 3481 } 3482 3483 /* 3484 * out-of-line __page_file_ methods to avoid include hell. 3485 */ 3486 struct address_space *__page_file_mapping(struct page *page) 3487 { 3488 return page_swap_info(page)->swap_file->f_mapping; 3489 } 3490 EXPORT_SYMBOL_GPL(__page_file_mapping); 3491 3492 pgoff_t __page_file_index(struct page *page) 3493 { 3494 swp_entry_t swap = { .val = page_private(page) }; 3495 return swp_offset(swap); 3496 } 3497 EXPORT_SYMBOL_GPL(__page_file_index); 3498 3499 /* 3500 * add_swap_count_continuation - called when a swap count is duplicated 3501 * beyond SWAP_MAP_MAX, it allocates a new page and links that to the entry's 3502 * page of the original vmalloc'ed swap_map, to hold the continuation count 3503 * (for that entry and for its neighbouring PAGE_SIZE swap entries). Called 3504 * again when count is duplicated beyond SWAP_MAP_MAX * SWAP_CONT_MAX, etc. 3505 * 3506 * These continuation pages are seldom referenced: the common paths all work 3507 * on the original swap_map, only referring to a continuation page when the 3508 * low "digit" of a count is incremented or decremented through SWAP_MAP_MAX. 3509 * 3510 * add_swap_count_continuation(, GFP_ATOMIC) can be called while holding 3511 * page table locks; if it fails, add_swap_count_continuation(, GFP_KERNEL) 3512 * can be called after dropping locks. 3513 */ 3514 int add_swap_count_continuation(swp_entry_t entry, gfp_t gfp_mask) 3515 { 3516 struct swap_info_struct *si; 3517 struct swap_cluster_info *ci; 3518 struct page *head; 3519 struct page *page; 3520 struct page *list_page; 3521 pgoff_t offset; 3522 unsigned char count; 3523 3524 /* 3525 * When debugging, it's easier to use __GFP_ZERO here; but it's better 3526 * for latency not to zero a page while GFP_ATOMIC and holding locks. 3527 */ 3528 page = alloc_page(gfp_mask | __GFP_HIGHMEM); 3529 3530 si = swap_info_get(entry); 3531 if (!si) { 3532 /* 3533 * An acceptable race has occurred since the failing 3534 * __swap_duplicate(): the swap entry has been freed, 3535 * perhaps even the whole swap_map cleared for swapoff. 3536 */ 3537 goto outer; 3538 } 3539 3540 offset = swp_offset(entry); 3541 3542 ci = lock_cluster(si, offset); 3543 3544 count = si->swap_map[offset] & ~SWAP_HAS_CACHE; 3545 3546 if ((count & ~COUNT_CONTINUED) != SWAP_MAP_MAX) { 3547 /* 3548 * The higher the swap count, the more likely it is that tasks 3549 * will race to add swap count continuation: we need to avoid 3550 * over-provisioning. 3551 */ 3552 goto out; 3553 } 3554 3555 if (!page) { 3556 unlock_cluster(ci); 3557 spin_unlock(&si->lock); 3558 return -ENOMEM; 3559 } 3560 3561 /* 3562 * We are fortunate that although vmalloc_to_page uses pte_offset_map, 3563 * no architecture is using highmem pages for kernel page tables: so it 3564 * will not corrupt the GFP_ATOMIC caller's atomic page table kmaps. 3565 */ 3566 head = vmalloc_to_page(si->swap_map + offset); 3567 offset &= ~PAGE_MASK; 3568 3569 spin_lock(&si->cont_lock); 3570 /* 3571 * Page allocation does not initialize the page's lru field, 3572 * but it does always reset its private field. 3573 */ 3574 if (!page_private(head)) { 3575 BUG_ON(count & COUNT_CONTINUED); 3576 INIT_LIST_HEAD(&head->lru); 3577 set_page_private(head, SWP_CONTINUED); 3578 si->flags |= SWP_CONTINUED; 3579 } 3580 3581 list_for_each_entry(list_page, &head->lru, lru) { 3582 unsigned char *map; 3583 3584 /* 3585 * If the previous map said no continuation, but we've found 3586 * a continuation page, free our allocation and use this one. 3587 */ 3588 if (!(count & COUNT_CONTINUED)) 3589 goto out_unlock_cont; 3590 3591 map = kmap_atomic(list_page) + offset; 3592 count = *map; 3593 kunmap_atomic(map); 3594 3595 /* 3596 * If this continuation count now has some space in it, 3597 * free our allocation and use this one. 3598 */ 3599 if ((count & ~COUNT_CONTINUED) != SWAP_CONT_MAX) 3600 goto out_unlock_cont; 3601 } 3602 3603 list_add_tail(&page->lru, &head->lru); 3604 page = NULL; /* now it's attached, don't free it */ 3605 out_unlock_cont: 3606 spin_unlock(&si->cont_lock); 3607 out: 3608 unlock_cluster(ci); 3609 spin_unlock(&si->lock); 3610 outer: 3611 if (page) 3612 __free_page(page); 3613 return 0; 3614 } 3615 3616 /* 3617 * swap_count_continued - when the original swap_map count is incremented 3618 * from SWAP_MAP_MAX, check if there is already a continuation page to carry 3619 * into, carry if so, or else fail until a new continuation page is allocated; 3620 * when the original swap_map count is decremented from 0 with continuation, 3621 * borrow from the continuation and report whether it still holds more. 3622 * Called while __swap_duplicate() or swap_entry_free() holds swap or cluster 3623 * lock. 3624 */ 3625 static bool swap_count_continued(struct swap_info_struct *si, 3626 pgoff_t offset, unsigned char count) 3627 { 3628 struct page *head; 3629 struct page *page; 3630 unsigned char *map; 3631 bool ret; 3632 3633 head = vmalloc_to_page(si->swap_map + offset); 3634 if (page_private(head) != SWP_CONTINUED) { 3635 BUG_ON(count & COUNT_CONTINUED); 3636 return false; /* need to add count continuation */ 3637 } 3638 3639 spin_lock(&si->cont_lock); 3640 offset &= ~PAGE_MASK; 3641 page = list_entry(head->lru.next, struct page, lru); 3642 map = kmap_atomic(page) + offset; 3643 3644 if (count == SWAP_MAP_MAX) /* initial increment from swap_map */ 3645 goto init_map; /* jump over SWAP_CONT_MAX checks */ 3646 3647 if (count == (SWAP_MAP_MAX | COUNT_CONTINUED)) { /* incrementing */ 3648 /* 3649 * Think of how you add 1 to 999 3650 */ 3651 while (*map == (SWAP_CONT_MAX | COUNT_CONTINUED)) { 3652 kunmap_atomic(map); 3653 page = list_entry(page->lru.next, struct page, lru); 3654 BUG_ON(page == head); 3655 map = kmap_atomic(page) + offset; 3656 } 3657 if (*map == SWAP_CONT_MAX) { 3658 kunmap_atomic(map); 3659 page = list_entry(page->lru.next, struct page, lru); 3660 if (page == head) { 3661 ret = false; /* add count continuation */ 3662 goto out; 3663 } 3664 map = kmap_atomic(page) + offset; 3665 init_map: *map = 0; /* we didn't zero the page */ 3666 } 3667 *map += 1; 3668 kunmap_atomic(map); 3669 page = list_entry(page->lru.prev, struct page, lru); 3670 while (page != head) { 3671 map = kmap_atomic(page) + offset; 3672 *map = COUNT_CONTINUED; 3673 kunmap_atomic(map); 3674 page = list_entry(page->lru.prev, struct page, lru); 3675 } 3676 ret = true; /* incremented */ 3677 3678 } else { /* decrementing */ 3679 /* 3680 * Think of how you subtract 1 from 1000 3681 */ 3682 BUG_ON(count != COUNT_CONTINUED); 3683 while (*map == COUNT_CONTINUED) { 3684 kunmap_atomic(map); 3685 page = list_entry(page->lru.next, struct page, lru); 3686 BUG_ON(page == head); 3687 map = kmap_atomic(page) + offset; 3688 } 3689 BUG_ON(*map == 0); 3690 *map -= 1; 3691 if (*map == 0) 3692 count = 0; 3693 kunmap_atomic(map); 3694 page = list_entry(page->lru.prev, struct page, lru); 3695 while (page != head) { 3696 map = kmap_atomic(page) + offset; 3697 *map = SWAP_CONT_MAX | count; 3698 count = COUNT_CONTINUED; 3699 kunmap_atomic(map); 3700 page = list_entry(page->lru.prev, struct page, lru); 3701 } 3702 ret = count == COUNT_CONTINUED; 3703 } 3704 out: 3705 spin_unlock(&si->cont_lock); 3706 return ret; 3707 } 3708 3709 /* 3710 * free_swap_count_continuations - swapoff free all the continuation pages 3711 * appended to the swap_map, after swap_map is quiesced, before vfree'ing it. 3712 */ 3713 static void free_swap_count_continuations(struct swap_info_struct *si) 3714 { 3715 pgoff_t offset; 3716 3717 for (offset = 0; offset < si->max; offset += PAGE_SIZE) { 3718 struct page *head; 3719 head = vmalloc_to_page(si->swap_map + offset); 3720 if (page_private(head)) { 3721 struct page *page, *next; 3722 3723 list_for_each_entry_safe(page, next, &head->lru, lru) { 3724 list_del(&page->lru); 3725 __free_page(page); 3726 } 3727 } 3728 } 3729 } 3730 3731 #if defined(CONFIG_MEMCG) && defined(CONFIG_BLK_CGROUP) 3732 void mem_cgroup_throttle_swaprate(struct mem_cgroup *memcg, int node, 3733 gfp_t gfp_mask) 3734 { 3735 struct swap_info_struct *si, *next; 3736 if (!(gfp_mask & __GFP_IO) || !memcg) 3737 return; 3738 3739 if (!blk_cgroup_congested()) 3740 return; 3741 3742 /* 3743 * We've already scheduled a throttle, avoid taking the global swap 3744 * lock. 3745 */ 3746 if (current->throttle_queue) 3747 return; 3748 3749 spin_lock(&swap_avail_lock); 3750 plist_for_each_entry_safe(si, next, &swap_avail_heads[node], 3751 avail_lists[node]) { 3752 if (si->bdev) { 3753 blkcg_schedule_throttle(bdev_get_queue(si->bdev), 3754 true); 3755 break; 3756 } 3757 } 3758 spin_unlock(&swap_avail_lock); 3759 } 3760 #endif 3761 3762 static int __init swapfile_init(void) 3763 { 3764 int nid; 3765 3766 swap_avail_heads = kmalloc_array(nr_node_ids, sizeof(struct plist_head), 3767 GFP_KERNEL); 3768 if (!swap_avail_heads) { 3769 pr_emerg("Not enough memory for swap heads, swap is disabled\n"); 3770 return -ENOMEM; 3771 } 3772 3773 for_each_node(nid) 3774 plist_head_init(&swap_avail_heads[nid]); 3775 3776 return 0; 3777 } 3778 subsys_initcall(swapfile_init); 3779