xref: /openbmc/linux/mm/swapfile.c (revision ddc141e5)
1 /*
2  *  linux/mm/swapfile.c
3  *
4  *  Copyright (C) 1991, 1992, 1993, 1994  Linus Torvalds
5  *  Swap reorganised 29.12.95, Stephen Tweedie
6  */
7 
8 #include <linux/mm.h>
9 #include <linux/sched/mm.h>
10 #include <linux/sched/task.h>
11 #include <linux/hugetlb.h>
12 #include <linux/mman.h>
13 #include <linux/slab.h>
14 #include <linux/kernel_stat.h>
15 #include <linux/swap.h>
16 #include <linux/vmalloc.h>
17 #include <linux/pagemap.h>
18 #include <linux/namei.h>
19 #include <linux/shmem_fs.h>
20 #include <linux/blkdev.h>
21 #include <linux/random.h>
22 #include <linux/writeback.h>
23 #include <linux/proc_fs.h>
24 #include <linux/seq_file.h>
25 #include <linux/init.h>
26 #include <linux/ksm.h>
27 #include <linux/rmap.h>
28 #include <linux/security.h>
29 #include <linux/backing-dev.h>
30 #include <linux/mutex.h>
31 #include <linux/capability.h>
32 #include <linux/syscalls.h>
33 #include <linux/memcontrol.h>
34 #include <linux/poll.h>
35 #include <linux/oom.h>
36 #include <linux/frontswap.h>
37 #include <linux/swapfile.h>
38 #include <linux/export.h>
39 #include <linux/swap_slots.h>
40 #include <linux/sort.h>
41 
42 #include <asm/pgtable.h>
43 #include <asm/tlbflush.h>
44 #include <linux/swapops.h>
45 #include <linux/swap_cgroup.h>
46 
47 static bool swap_count_continued(struct swap_info_struct *, pgoff_t,
48 				 unsigned char);
49 static void free_swap_count_continuations(struct swap_info_struct *);
50 static sector_t map_swap_entry(swp_entry_t, struct block_device**);
51 
52 DEFINE_SPINLOCK(swap_lock);
53 static unsigned int nr_swapfiles;
54 atomic_long_t nr_swap_pages;
55 /*
56  * Some modules use swappable objects and may try to swap them out under
57  * memory pressure (via the shrinker). Before doing so, they may wish to
58  * check to see if any swap space is available.
59  */
60 EXPORT_SYMBOL_GPL(nr_swap_pages);
61 /* protected with swap_lock. reading in vm_swap_full() doesn't need lock */
62 long total_swap_pages;
63 static int least_priority = -1;
64 
65 static const char Bad_file[] = "Bad swap file entry ";
66 static const char Unused_file[] = "Unused swap file entry ";
67 static const char Bad_offset[] = "Bad swap offset entry ";
68 static const char Unused_offset[] = "Unused swap offset entry ";
69 
70 /*
71  * all active swap_info_structs
72  * protected with swap_lock, and ordered by priority.
73  */
74 PLIST_HEAD(swap_active_head);
75 
76 /*
77  * all available (active, not full) swap_info_structs
78  * protected with swap_avail_lock, ordered by priority.
79  * This is used by get_swap_page() instead of swap_active_head
80  * because swap_active_head includes all swap_info_structs,
81  * but get_swap_page() doesn't need to look at full ones.
82  * This uses its own lock instead of swap_lock because when a
83  * swap_info_struct changes between not-full/full, it needs to
84  * add/remove itself to/from this list, but the swap_info_struct->lock
85  * is held and the locking order requires swap_lock to be taken
86  * before any swap_info_struct->lock.
87  */
88 struct plist_head *swap_avail_heads;
89 static DEFINE_SPINLOCK(swap_avail_lock);
90 
91 struct swap_info_struct *swap_info[MAX_SWAPFILES];
92 
93 static DEFINE_MUTEX(swapon_mutex);
94 
95 static DECLARE_WAIT_QUEUE_HEAD(proc_poll_wait);
96 /* Activity counter to indicate that a swapon or swapoff has occurred */
97 static atomic_t proc_poll_event = ATOMIC_INIT(0);
98 
99 atomic_t nr_rotate_swap = ATOMIC_INIT(0);
100 
101 static inline unsigned char swap_count(unsigned char ent)
102 {
103 	return ent & ~SWAP_HAS_CACHE;	/* may include SWAP_HAS_CONT flag */
104 }
105 
106 /* returns 1 if swap entry is freed */
107 static int
108 __try_to_reclaim_swap(struct swap_info_struct *si, unsigned long offset)
109 {
110 	swp_entry_t entry = swp_entry(si->type, offset);
111 	struct page *page;
112 	int ret = 0;
113 
114 	page = find_get_page(swap_address_space(entry), swp_offset(entry));
115 	if (!page)
116 		return 0;
117 	/*
118 	 * This function is called from scan_swap_map() and it's called
119 	 * by vmscan.c at reclaiming pages. So, we hold a lock on a page, here.
120 	 * We have to use trylock for avoiding deadlock. This is a special
121 	 * case and you should use try_to_free_swap() with explicit lock_page()
122 	 * in usual operations.
123 	 */
124 	if (trylock_page(page)) {
125 		ret = try_to_free_swap(page);
126 		unlock_page(page);
127 	}
128 	put_page(page);
129 	return ret;
130 }
131 
132 /*
133  * swapon tell device that all the old swap contents can be discarded,
134  * to allow the swap device to optimize its wear-levelling.
135  */
136 static int discard_swap(struct swap_info_struct *si)
137 {
138 	struct swap_extent *se;
139 	sector_t start_block;
140 	sector_t nr_blocks;
141 	int err = 0;
142 
143 	/* Do not discard the swap header page! */
144 	se = &si->first_swap_extent;
145 	start_block = (se->start_block + 1) << (PAGE_SHIFT - 9);
146 	nr_blocks = ((sector_t)se->nr_pages - 1) << (PAGE_SHIFT - 9);
147 	if (nr_blocks) {
148 		err = blkdev_issue_discard(si->bdev, start_block,
149 				nr_blocks, GFP_KERNEL, 0);
150 		if (err)
151 			return err;
152 		cond_resched();
153 	}
154 
155 	list_for_each_entry(se, &si->first_swap_extent.list, list) {
156 		start_block = se->start_block << (PAGE_SHIFT - 9);
157 		nr_blocks = (sector_t)se->nr_pages << (PAGE_SHIFT - 9);
158 
159 		err = blkdev_issue_discard(si->bdev, start_block,
160 				nr_blocks, GFP_KERNEL, 0);
161 		if (err)
162 			break;
163 
164 		cond_resched();
165 	}
166 	return err;		/* That will often be -EOPNOTSUPP */
167 }
168 
169 /*
170  * swap allocation tell device that a cluster of swap can now be discarded,
171  * to allow the swap device to optimize its wear-levelling.
172  */
173 static void discard_swap_cluster(struct swap_info_struct *si,
174 				 pgoff_t start_page, pgoff_t nr_pages)
175 {
176 	struct swap_extent *se = si->curr_swap_extent;
177 	int found_extent = 0;
178 
179 	while (nr_pages) {
180 		if (se->start_page <= start_page &&
181 		    start_page < se->start_page + se->nr_pages) {
182 			pgoff_t offset = start_page - se->start_page;
183 			sector_t start_block = se->start_block + offset;
184 			sector_t nr_blocks = se->nr_pages - offset;
185 
186 			if (nr_blocks > nr_pages)
187 				nr_blocks = nr_pages;
188 			start_page += nr_blocks;
189 			nr_pages -= nr_blocks;
190 
191 			if (!found_extent++)
192 				si->curr_swap_extent = se;
193 
194 			start_block <<= PAGE_SHIFT - 9;
195 			nr_blocks <<= PAGE_SHIFT - 9;
196 			if (blkdev_issue_discard(si->bdev, start_block,
197 				    nr_blocks, GFP_NOIO, 0))
198 				break;
199 		}
200 
201 		se = list_next_entry(se, list);
202 	}
203 }
204 
205 #ifdef CONFIG_THP_SWAP
206 #define SWAPFILE_CLUSTER	HPAGE_PMD_NR
207 #else
208 #define SWAPFILE_CLUSTER	256
209 #endif
210 #define LATENCY_LIMIT		256
211 
212 static inline void cluster_set_flag(struct swap_cluster_info *info,
213 	unsigned int flag)
214 {
215 	info->flags = flag;
216 }
217 
218 static inline unsigned int cluster_count(struct swap_cluster_info *info)
219 {
220 	return info->data;
221 }
222 
223 static inline void cluster_set_count(struct swap_cluster_info *info,
224 				     unsigned int c)
225 {
226 	info->data = c;
227 }
228 
229 static inline void cluster_set_count_flag(struct swap_cluster_info *info,
230 					 unsigned int c, unsigned int f)
231 {
232 	info->flags = f;
233 	info->data = c;
234 }
235 
236 static inline unsigned int cluster_next(struct swap_cluster_info *info)
237 {
238 	return info->data;
239 }
240 
241 static inline void cluster_set_next(struct swap_cluster_info *info,
242 				    unsigned int n)
243 {
244 	info->data = n;
245 }
246 
247 static inline void cluster_set_next_flag(struct swap_cluster_info *info,
248 					 unsigned int n, unsigned int f)
249 {
250 	info->flags = f;
251 	info->data = n;
252 }
253 
254 static inline bool cluster_is_free(struct swap_cluster_info *info)
255 {
256 	return info->flags & CLUSTER_FLAG_FREE;
257 }
258 
259 static inline bool cluster_is_null(struct swap_cluster_info *info)
260 {
261 	return info->flags & CLUSTER_FLAG_NEXT_NULL;
262 }
263 
264 static inline void cluster_set_null(struct swap_cluster_info *info)
265 {
266 	info->flags = CLUSTER_FLAG_NEXT_NULL;
267 	info->data = 0;
268 }
269 
270 static inline bool cluster_is_huge(struct swap_cluster_info *info)
271 {
272 	return info->flags & CLUSTER_FLAG_HUGE;
273 }
274 
275 static inline void cluster_clear_huge(struct swap_cluster_info *info)
276 {
277 	info->flags &= ~CLUSTER_FLAG_HUGE;
278 }
279 
280 static inline struct swap_cluster_info *lock_cluster(struct swap_info_struct *si,
281 						     unsigned long offset)
282 {
283 	struct swap_cluster_info *ci;
284 
285 	ci = si->cluster_info;
286 	if (ci) {
287 		ci += offset / SWAPFILE_CLUSTER;
288 		spin_lock(&ci->lock);
289 	}
290 	return ci;
291 }
292 
293 static inline void unlock_cluster(struct swap_cluster_info *ci)
294 {
295 	if (ci)
296 		spin_unlock(&ci->lock);
297 }
298 
299 static inline struct swap_cluster_info *lock_cluster_or_swap_info(
300 	struct swap_info_struct *si,
301 	unsigned long offset)
302 {
303 	struct swap_cluster_info *ci;
304 
305 	ci = lock_cluster(si, offset);
306 	if (!ci)
307 		spin_lock(&si->lock);
308 
309 	return ci;
310 }
311 
312 static inline void unlock_cluster_or_swap_info(struct swap_info_struct *si,
313 					       struct swap_cluster_info *ci)
314 {
315 	if (ci)
316 		unlock_cluster(ci);
317 	else
318 		spin_unlock(&si->lock);
319 }
320 
321 static inline bool cluster_list_empty(struct swap_cluster_list *list)
322 {
323 	return cluster_is_null(&list->head);
324 }
325 
326 static inline unsigned int cluster_list_first(struct swap_cluster_list *list)
327 {
328 	return cluster_next(&list->head);
329 }
330 
331 static void cluster_list_init(struct swap_cluster_list *list)
332 {
333 	cluster_set_null(&list->head);
334 	cluster_set_null(&list->tail);
335 }
336 
337 static void cluster_list_add_tail(struct swap_cluster_list *list,
338 				  struct swap_cluster_info *ci,
339 				  unsigned int idx)
340 {
341 	if (cluster_list_empty(list)) {
342 		cluster_set_next_flag(&list->head, idx, 0);
343 		cluster_set_next_flag(&list->tail, idx, 0);
344 	} else {
345 		struct swap_cluster_info *ci_tail;
346 		unsigned int tail = cluster_next(&list->tail);
347 
348 		/*
349 		 * Nested cluster lock, but both cluster locks are
350 		 * only acquired when we held swap_info_struct->lock
351 		 */
352 		ci_tail = ci + tail;
353 		spin_lock_nested(&ci_tail->lock, SINGLE_DEPTH_NESTING);
354 		cluster_set_next(ci_tail, idx);
355 		spin_unlock(&ci_tail->lock);
356 		cluster_set_next_flag(&list->tail, idx, 0);
357 	}
358 }
359 
360 static unsigned int cluster_list_del_first(struct swap_cluster_list *list,
361 					   struct swap_cluster_info *ci)
362 {
363 	unsigned int idx;
364 
365 	idx = cluster_next(&list->head);
366 	if (cluster_next(&list->tail) == idx) {
367 		cluster_set_null(&list->head);
368 		cluster_set_null(&list->tail);
369 	} else
370 		cluster_set_next_flag(&list->head,
371 				      cluster_next(&ci[idx]), 0);
372 
373 	return idx;
374 }
375 
376 /* Add a cluster to discard list and schedule it to do discard */
377 static void swap_cluster_schedule_discard(struct swap_info_struct *si,
378 		unsigned int idx)
379 {
380 	/*
381 	 * If scan_swap_map() can't find a free cluster, it will check
382 	 * si->swap_map directly. To make sure the discarding cluster isn't
383 	 * taken by scan_swap_map(), mark the swap entries bad (occupied). It
384 	 * will be cleared after discard
385 	 */
386 	memset(si->swap_map + idx * SWAPFILE_CLUSTER,
387 			SWAP_MAP_BAD, SWAPFILE_CLUSTER);
388 
389 	cluster_list_add_tail(&si->discard_clusters, si->cluster_info, idx);
390 
391 	schedule_work(&si->discard_work);
392 }
393 
394 static void __free_cluster(struct swap_info_struct *si, unsigned long idx)
395 {
396 	struct swap_cluster_info *ci = si->cluster_info;
397 
398 	cluster_set_flag(ci + idx, CLUSTER_FLAG_FREE);
399 	cluster_list_add_tail(&si->free_clusters, ci, idx);
400 }
401 
402 /*
403  * Doing discard actually. After a cluster discard is finished, the cluster
404  * will be added to free cluster list. caller should hold si->lock.
405 */
406 static void swap_do_scheduled_discard(struct swap_info_struct *si)
407 {
408 	struct swap_cluster_info *info, *ci;
409 	unsigned int idx;
410 
411 	info = si->cluster_info;
412 
413 	while (!cluster_list_empty(&si->discard_clusters)) {
414 		idx = cluster_list_del_first(&si->discard_clusters, info);
415 		spin_unlock(&si->lock);
416 
417 		discard_swap_cluster(si, idx * SWAPFILE_CLUSTER,
418 				SWAPFILE_CLUSTER);
419 
420 		spin_lock(&si->lock);
421 		ci = lock_cluster(si, idx * SWAPFILE_CLUSTER);
422 		__free_cluster(si, idx);
423 		memset(si->swap_map + idx * SWAPFILE_CLUSTER,
424 				0, SWAPFILE_CLUSTER);
425 		unlock_cluster(ci);
426 	}
427 }
428 
429 static void swap_discard_work(struct work_struct *work)
430 {
431 	struct swap_info_struct *si;
432 
433 	si = container_of(work, struct swap_info_struct, discard_work);
434 
435 	spin_lock(&si->lock);
436 	swap_do_scheduled_discard(si);
437 	spin_unlock(&si->lock);
438 }
439 
440 static void alloc_cluster(struct swap_info_struct *si, unsigned long idx)
441 {
442 	struct swap_cluster_info *ci = si->cluster_info;
443 
444 	VM_BUG_ON(cluster_list_first(&si->free_clusters) != idx);
445 	cluster_list_del_first(&si->free_clusters, ci);
446 	cluster_set_count_flag(ci + idx, 0, 0);
447 }
448 
449 static void free_cluster(struct swap_info_struct *si, unsigned long idx)
450 {
451 	struct swap_cluster_info *ci = si->cluster_info + idx;
452 
453 	VM_BUG_ON(cluster_count(ci) != 0);
454 	/*
455 	 * If the swap is discardable, prepare discard the cluster
456 	 * instead of free it immediately. The cluster will be freed
457 	 * after discard.
458 	 */
459 	if ((si->flags & (SWP_WRITEOK | SWP_PAGE_DISCARD)) ==
460 	    (SWP_WRITEOK | SWP_PAGE_DISCARD)) {
461 		swap_cluster_schedule_discard(si, idx);
462 		return;
463 	}
464 
465 	__free_cluster(si, idx);
466 }
467 
468 /*
469  * The cluster corresponding to page_nr will be used. The cluster will be
470  * removed from free cluster list and its usage counter will be increased.
471  */
472 static void inc_cluster_info_page(struct swap_info_struct *p,
473 	struct swap_cluster_info *cluster_info, unsigned long page_nr)
474 {
475 	unsigned long idx = page_nr / SWAPFILE_CLUSTER;
476 
477 	if (!cluster_info)
478 		return;
479 	if (cluster_is_free(&cluster_info[idx]))
480 		alloc_cluster(p, idx);
481 
482 	VM_BUG_ON(cluster_count(&cluster_info[idx]) >= SWAPFILE_CLUSTER);
483 	cluster_set_count(&cluster_info[idx],
484 		cluster_count(&cluster_info[idx]) + 1);
485 }
486 
487 /*
488  * The cluster corresponding to page_nr decreases one usage. If the usage
489  * counter becomes 0, which means no page in the cluster is in using, we can
490  * optionally discard the cluster and add it to free cluster list.
491  */
492 static void dec_cluster_info_page(struct swap_info_struct *p,
493 	struct swap_cluster_info *cluster_info, unsigned long page_nr)
494 {
495 	unsigned long idx = page_nr / SWAPFILE_CLUSTER;
496 
497 	if (!cluster_info)
498 		return;
499 
500 	VM_BUG_ON(cluster_count(&cluster_info[idx]) == 0);
501 	cluster_set_count(&cluster_info[idx],
502 		cluster_count(&cluster_info[idx]) - 1);
503 
504 	if (cluster_count(&cluster_info[idx]) == 0)
505 		free_cluster(p, idx);
506 }
507 
508 /*
509  * It's possible scan_swap_map() uses a free cluster in the middle of free
510  * cluster list. Avoiding such abuse to avoid list corruption.
511  */
512 static bool
513 scan_swap_map_ssd_cluster_conflict(struct swap_info_struct *si,
514 	unsigned long offset)
515 {
516 	struct percpu_cluster *percpu_cluster;
517 	bool conflict;
518 
519 	offset /= SWAPFILE_CLUSTER;
520 	conflict = !cluster_list_empty(&si->free_clusters) &&
521 		offset != cluster_list_first(&si->free_clusters) &&
522 		cluster_is_free(&si->cluster_info[offset]);
523 
524 	if (!conflict)
525 		return false;
526 
527 	percpu_cluster = this_cpu_ptr(si->percpu_cluster);
528 	cluster_set_null(&percpu_cluster->index);
529 	return true;
530 }
531 
532 /*
533  * Try to get a swap entry from current cpu's swap entry pool (a cluster). This
534  * might involve allocating a new cluster for current CPU too.
535  */
536 static bool scan_swap_map_try_ssd_cluster(struct swap_info_struct *si,
537 	unsigned long *offset, unsigned long *scan_base)
538 {
539 	struct percpu_cluster *cluster;
540 	struct swap_cluster_info *ci;
541 	bool found_free;
542 	unsigned long tmp, max;
543 
544 new_cluster:
545 	cluster = this_cpu_ptr(si->percpu_cluster);
546 	if (cluster_is_null(&cluster->index)) {
547 		if (!cluster_list_empty(&si->free_clusters)) {
548 			cluster->index = si->free_clusters.head;
549 			cluster->next = cluster_next(&cluster->index) *
550 					SWAPFILE_CLUSTER;
551 		} else if (!cluster_list_empty(&si->discard_clusters)) {
552 			/*
553 			 * we don't have free cluster but have some clusters in
554 			 * discarding, do discard now and reclaim them
555 			 */
556 			swap_do_scheduled_discard(si);
557 			*scan_base = *offset = si->cluster_next;
558 			goto new_cluster;
559 		} else
560 			return false;
561 	}
562 
563 	found_free = false;
564 
565 	/*
566 	 * Other CPUs can use our cluster if they can't find a free cluster,
567 	 * check if there is still free entry in the cluster
568 	 */
569 	tmp = cluster->next;
570 	max = min_t(unsigned long, si->max,
571 		    (cluster_next(&cluster->index) + 1) * SWAPFILE_CLUSTER);
572 	if (tmp >= max) {
573 		cluster_set_null(&cluster->index);
574 		goto new_cluster;
575 	}
576 	ci = lock_cluster(si, tmp);
577 	while (tmp < max) {
578 		if (!si->swap_map[tmp]) {
579 			found_free = true;
580 			break;
581 		}
582 		tmp++;
583 	}
584 	unlock_cluster(ci);
585 	if (!found_free) {
586 		cluster_set_null(&cluster->index);
587 		goto new_cluster;
588 	}
589 	cluster->next = tmp + 1;
590 	*offset = tmp;
591 	*scan_base = tmp;
592 	return found_free;
593 }
594 
595 static void __del_from_avail_list(struct swap_info_struct *p)
596 {
597 	int nid;
598 
599 	for_each_node(nid)
600 		plist_del(&p->avail_lists[nid], &swap_avail_heads[nid]);
601 }
602 
603 static void del_from_avail_list(struct swap_info_struct *p)
604 {
605 	spin_lock(&swap_avail_lock);
606 	__del_from_avail_list(p);
607 	spin_unlock(&swap_avail_lock);
608 }
609 
610 static void swap_range_alloc(struct swap_info_struct *si, unsigned long offset,
611 			     unsigned int nr_entries)
612 {
613 	unsigned int end = offset + nr_entries - 1;
614 
615 	if (offset == si->lowest_bit)
616 		si->lowest_bit += nr_entries;
617 	if (end == si->highest_bit)
618 		si->highest_bit -= nr_entries;
619 	si->inuse_pages += nr_entries;
620 	if (si->inuse_pages == si->pages) {
621 		si->lowest_bit = si->max;
622 		si->highest_bit = 0;
623 		del_from_avail_list(si);
624 	}
625 }
626 
627 static void add_to_avail_list(struct swap_info_struct *p)
628 {
629 	int nid;
630 
631 	spin_lock(&swap_avail_lock);
632 	for_each_node(nid) {
633 		WARN_ON(!plist_node_empty(&p->avail_lists[nid]));
634 		plist_add(&p->avail_lists[nid], &swap_avail_heads[nid]);
635 	}
636 	spin_unlock(&swap_avail_lock);
637 }
638 
639 static void swap_range_free(struct swap_info_struct *si, unsigned long offset,
640 			    unsigned int nr_entries)
641 {
642 	unsigned long end = offset + nr_entries - 1;
643 	void (*swap_slot_free_notify)(struct block_device *, unsigned long);
644 
645 	if (offset < si->lowest_bit)
646 		si->lowest_bit = offset;
647 	if (end > si->highest_bit) {
648 		bool was_full = !si->highest_bit;
649 
650 		si->highest_bit = end;
651 		if (was_full && (si->flags & SWP_WRITEOK))
652 			add_to_avail_list(si);
653 	}
654 	atomic_long_add(nr_entries, &nr_swap_pages);
655 	si->inuse_pages -= nr_entries;
656 	if (si->flags & SWP_BLKDEV)
657 		swap_slot_free_notify =
658 			si->bdev->bd_disk->fops->swap_slot_free_notify;
659 	else
660 		swap_slot_free_notify = NULL;
661 	while (offset <= end) {
662 		frontswap_invalidate_page(si->type, offset);
663 		if (swap_slot_free_notify)
664 			swap_slot_free_notify(si->bdev, offset);
665 		offset++;
666 	}
667 }
668 
669 static int scan_swap_map_slots(struct swap_info_struct *si,
670 			       unsigned char usage, int nr,
671 			       swp_entry_t slots[])
672 {
673 	struct swap_cluster_info *ci;
674 	unsigned long offset;
675 	unsigned long scan_base;
676 	unsigned long last_in_cluster = 0;
677 	int latency_ration = LATENCY_LIMIT;
678 	int n_ret = 0;
679 
680 	if (nr > SWAP_BATCH)
681 		nr = SWAP_BATCH;
682 
683 	/*
684 	 * We try to cluster swap pages by allocating them sequentially
685 	 * in swap.  Once we've allocated SWAPFILE_CLUSTER pages this
686 	 * way, however, we resort to first-free allocation, starting
687 	 * a new cluster.  This prevents us from scattering swap pages
688 	 * all over the entire swap partition, so that we reduce
689 	 * overall disk seek times between swap pages.  -- sct
690 	 * But we do now try to find an empty cluster.  -Andrea
691 	 * And we let swap pages go all over an SSD partition.  Hugh
692 	 */
693 
694 	si->flags += SWP_SCANNING;
695 	scan_base = offset = si->cluster_next;
696 
697 	/* SSD algorithm */
698 	if (si->cluster_info) {
699 		if (scan_swap_map_try_ssd_cluster(si, &offset, &scan_base))
700 			goto checks;
701 		else
702 			goto scan;
703 	}
704 
705 	if (unlikely(!si->cluster_nr--)) {
706 		if (si->pages - si->inuse_pages < SWAPFILE_CLUSTER) {
707 			si->cluster_nr = SWAPFILE_CLUSTER - 1;
708 			goto checks;
709 		}
710 
711 		spin_unlock(&si->lock);
712 
713 		/*
714 		 * If seek is expensive, start searching for new cluster from
715 		 * start of partition, to minimize the span of allocated swap.
716 		 * If seek is cheap, that is the SWP_SOLIDSTATE si->cluster_info
717 		 * case, just handled by scan_swap_map_try_ssd_cluster() above.
718 		 */
719 		scan_base = offset = si->lowest_bit;
720 		last_in_cluster = offset + SWAPFILE_CLUSTER - 1;
721 
722 		/* Locate the first empty (unaligned) cluster */
723 		for (; last_in_cluster <= si->highest_bit; offset++) {
724 			if (si->swap_map[offset])
725 				last_in_cluster = offset + SWAPFILE_CLUSTER;
726 			else if (offset == last_in_cluster) {
727 				spin_lock(&si->lock);
728 				offset -= SWAPFILE_CLUSTER - 1;
729 				si->cluster_next = offset;
730 				si->cluster_nr = SWAPFILE_CLUSTER - 1;
731 				goto checks;
732 			}
733 			if (unlikely(--latency_ration < 0)) {
734 				cond_resched();
735 				latency_ration = LATENCY_LIMIT;
736 			}
737 		}
738 
739 		offset = scan_base;
740 		spin_lock(&si->lock);
741 		si->cluster_nr = SWAPFILE_CLUSTER - 1;
742 	}
743 
744 checks:
745 	if (si->cluster_info) {
746 		while (scan_swap_map_ssd_cluster_conflict(si, offset)) {
747 		/* take a break if we already got some slots */
748 			if (n_ret)
749 				goto done;
750 			if (!scan_swap_map_try_ssd_cluster(si, &offset,
751 							&scan_base))
752 				goto scan;
753 		}
754 	}
755 	if (!(si->flags & SWP_WRITEOK))
756 		goto no_page;
757 	if (!si->highest_bit)
758 		goto no_page;
759 	if (offset > si->highest_bit)
760 		scan_base = offset = si->lowest_bit;
761 
762 	ci = lock_cluster(si, offset);
763 	/* reuse swap entry of cache-only swap if not busy. */
764 	if (vm_swap_full() && si->swap_map[offset] == SWAP_HAS_CACHE) {
765 		int swap_was_freed;
766 		unlock_cluster(ci);
767 		spin_unlock(&si->lock);
768 		swap_was_freed = __try_to_reclaim_swap(si, offset);
769 		spin_lock(&si->lock);
770 		/* entry was freed successfully, try to use this again */
771 		if (swap_was_freed)
772 			goto checks;
773 		goto scan; /* check next one */
774 	}
775 
776 	if (si->swap_map[offset]) {
777 		unlock_cluster(ci);
778 		if (!n_ret)
779 			goto scan;
780 		else
781 			goto done;
782 	}
783 	si->swap_map[offset] = usage;
784 	inc_cluster_info_page(si, si->cluster_info, offset);
785 	unlock_cluster(ci);
786 
787 	swap_range_alloc(si, offset, 1);
788 	si->cluster_next = offset + 1;
789 	slots[n_ret++] = swp_entry(si->type, offset);
790 
791 	/* got enough slots or reach max slots? */
792 	if ((n_ret == nr) || (offset >= si->highest_bit))
793 		goto done;
794 
795 	/* search for next available slot */
796 
797 	/* time to take a break? */
798 	if (unlikely(--latency_ration < 0)) {
799 		if (n_ret)
800 			goto done;
801 		spin_unlock(&si->lock);
802 		cond_resched();
803 		spin_lock(&si->lock);
804 		latency_ration = LATENCY_LIMIT;
805 	}
806 
807 	/* try to get more slots in cluster */
808 	if (si->cluster_info) {
809 		if (scan_swap_map_try_ssd_cluster(si, &offset, &scan_base))
810 			goto checks;
811 		else
812 			goto done;
813 	}
814 	/* non-ssd case */
815 	++offset;
816 
817 	/* non-ssd case, still more slots in cluster? */
818 	if (si->cluster_nr && !si->swap_map[offset]) {
819 		--si->cluster_nr;
820 		goto checks;
821 	}
822 
823 done:
824 	si->flags -= SWP_SCANNING;
825 	return n_ret;
826 
827 scan:
828 	spin_unlock(&si->lock);
829 	while (++offset <= si->highest_bit) {
830 		if (!si->swap_map[offset]) {
831 			spin_lock(&si->lock);
832 			goto checks;
833 		}
834 		if (vm_swap_full() && si->swap_map[offset] == SWAP_HAS_CACHE) {
835 			spin_lock(&si->lock);
836 			goto checks;
837 		}
838 		if (unlikely(--latency_ration < 0)) {
839 			cond_resched();
840 			latency_ration = LATENCY_LIMIT;
841 		}
842 	}
843 	offset = si->lowest_bit;
844 	while (offset < scan_base) {
845 		if (!si->swap_map[offset]) {
846 			spin_lock(&si->lock);
847 			goto checks;
848 		}
849 		if (vm_swap_full() && si->swap_map[offset] == SWAP_HAS_CACHE) {
850 			spin_lock(&si->lock);
851 			goto checks;
852 		}
853 		if (unlikely(--latency_ration < 0)) {
854 			cond_resched();
855 			latency_ration = LATENCY_LIMIT;
856 		}
857 		offset++;
858 	}
859 	spin_lock(&si->lock);
860 
861 no_page:
862 	si->flags -= SWP_SCANNING;
863 	return n_ret;
864 }
865 
866 #ifdef CONFIG_THP_SWAP
867 static int swap_alloc_cluster(struct swap_info_struct *si, swp_entry_t *slot)
868 {
869 	unsigned long idx;
870 	struct swap_cluster_info *ci;
871 	unsigned long offset, i;
872 	unsigned char *map;
873 
874 	if (cluster_list_empty(&si->free_clusters))
875 		return 0;
876 
877 	idx = cluster_list_first(&si->free_clusters);
878 	offset = idx * SWAPFILE_CLUSTER;
879 	ci = lock_cluster(si, offset);
880 	alloc_cluster(si, idx);
881 	cluster_set_count_flag(ci, SWAPFILE_CLUSTER, CLUSTER_FLAG_HUGE);
882 
883 	map = si->swap_map + offset;
884 	for (i = 0; i < SWAPFILE_CLUSTER; i++)
885 		map[i] = SWAP_HAS_CACHE;
886 	unlock_cluster(ci);
887 	swap_range_alloc(si, offset, SWAPFILE_CLUSTER);
888 	*slot = swp_entry(si->type, offset);
889 
890 	return 1;
891 }
892 
893 static void swap_free_cluster(struct swap_info_struct *si, unsigned long idx)
894 {
895 	unsigned long offset = idx * SWAPFILE_CLUSTER;
896 	struct swap_cluster_info *ci;
897 
898 	ci = lock_cluster(si, offset);
899 	cluster_set_count_flag(ci, 0, 0);
900 	free_cluster(si, idx);
901 	unlock_cluster(ci);
902 	swap_range_free(si, offset, SWAPFILE_CLUSTER);
903 }
904 #else
905 static int swap_alloc_cluster(struct swap_info_struct *si, swp_entry_t *slot)
906 {
907 	VM_WARN_ON_ONCE(1);
908 	return 0;
909 }
910 #endif /* CONFIG_THP_SWAP */
911 
912 static unsigned long scan_swap_map(struct swap_info_struct *si,
913 				   unsigned char usage)
914 {
915 	swp_entry_t entry;
916 	int n_ret;
917 
918 	n_ret = scan_swap_map_slots(si, usage, 1, &entry);
919 
920 	if (n_ret)
921 		return swp_offset(entry);
922 	else
923 		return 0;
924 
925 }
926 
927 int get_swap_pages(int n_goal, bool cluster, swp_entry_t swp_entries[])
928 {
929 	unsigned long nr_pages = cluster ? SWAPFILE_CLUSTER : 1;
930 	struct swap_info_struct *si, *next;
931 	long avail_pgs;
932 	int n_ret = 0;
933 	int node;
934 
935 	/* Only single cluster request supported */
936 	WARN_ON_ONCE(n_goal > 1 && cluster);
937 
938 	avail_pgs = atomic_long_read(&nr_swap_pages) / nr_pages;
939 	if (avail_pgs <= 0)
940 		goto noswap;
941 
942 	if (n_goal > SWAP_BATCH)
943 		n_goal = SWAP_BATCH;
944 
945 	if (n_goal > avail_pgs)
946 		n_goal = avail_pgs;
947 
948 	atomic_long_sub(n_goal * nr_pages, &nr_swap_pages);
949 
950 	spin_lock(&swap_avail_lock);
951 
952 start_over:
953 	node = numa_node_id();
954 	plist_for_each_entry_safe(si, next, &swap_avail_heads[node], avail_lists[node]) {
955 		/* requeue si to after same-priority siblings */
956 		plist_requeue(&si->avail_lists[node], &swap_avail_heads[node]);
957 		spin_unlock(&swap_avail_lock);
958 		spin_lock(&si->lock);
959 		if (!si->highest_bit || !(si->flags & SWP_WRITEOK)) {
960 			spin_lock(&swap_avail_lock);
961 			if (plist_node_empty(&si->avail_lists[node])) {
962 				spin_unlock(&si->lock);
963 				goto nextsi;
964 			}
965 			WARN(!si->highest_bit,
966 			     "swap_info %d in list but !highest_bit\n",
967 			     si->type);
968 			WARN(!(si->flags & SWP_WRITEOK),
969 			     "swap_info %d in list but !SWP_WRITEOK\n",
970 			     si->type);
971 			__del_from_avail_list(si);
972 			spin_unlock(&si->lock);
973 			goto nextsi;
974 		}
975 		if (cluster) {
976 			if (!(si->flags & SWP_FILE))
977 				n_ret = swap_alloc_cluster(si, swp_entries);
978 		} else
979 			n_ret = scan_swap_map_slots(si, SWAP_HAS_CACHE,
980 						    n_goal, swp_entries);
981 		spin_unlock(&si->lock);
982 		if (n_ret || cluster)
983 			goto check_out;
984 		pr_debug("scan_swap_map of si %d failed to find offset\n",
985 			si->type);
986 
987 		spin_lock(&swap_avail_lock);
988 nextsi:
989 		/*
990 		 * if we got here, it's likely that si was almost full before,
991 		 * and since scan_swap_map() can drop the si->lock, multiple
992 		 * callers probably all tried to get a page from the same si
993 		 * and it filled up before we could get one; or, the si filled
994 		 * up between us dropping swap_avail_lock and taking si->lock.
995 		 * Since we dropped the swap_avail_lock, the swap_avail_head
996 		 * list may have been modified; so if next is still in the
997 		 * swap_avail_head list then try it, otherwise start over
998 		 * if we have not gotten any slots.
999 		 */
1000 		if (plist_node_empty(&next->avail_lists[node]))
1001 			goto start_over;
1002 	}
1003 
1004 	spin_unlock(&swap_avail_lock);
1005 
1006 check_out:
1007 	if (n_ret < n_goal)
1008 		atomic_long_add((long)(n_goal - n_ret) * nr_pages,
1009 				&nr_swap_pages);
1010 noswap:
1011 	return n_ret;
1012 }
1013 
1014 /* The only caller of this function is now suspend routine */
1015 swp_entry_t get_swap_page_of_type(int type)
1016 {
1017 	struct swap_info_struct *si;
1018 	pgoff_t offset;
1019 
1020 	si = swap_info[type];
1021 	spin_lock(&si->lock);
1022 	if (si && (si->flags & SWP_WRITEOK)) {
1023 		atomic_long_dec(&nr_swap_pages);
1024 		/* This is called for allocating swap entry, not cache */
1025 		offset = scan_swap_map(si, 1);
1026 		if (offset) {
1027 			spin_unlock(&si->lock);
1028 			return swp_entry(type, offset);
1029 		}
1030 		atomic_long_inc(&nr_swap_pages);
1031 	}
1032 	spin_unlock(&si->lock);
1033 	return (swp_entry_t) {0};
1034 }
1035 
1036 static struct swap_info_struct *__swap_info_get(swp_entry_t entry)
1037 {
1038 	struct swap_info_struct *p;
1039 	unsigned long offset, type;
1040 
1041 	if (!entry.val)
1042 		goto out;
1043 	type = swp_type(entry);
1044 	if (type >= nr_swapfiles)
1045 		goto bad_nofile;
1046 	p = swap_info[type];
1047 	if (!(p->flags & SWP_USED))
1048 		goto bad_device;
1049 	offset = swp_offset(entry);
1050 	if (offset >= p->max)
1051 		goto bad_offset;
1052 	return p;
1053 
1054 bad_offset:
1055 	pr_err("swap_info_get: %s%08lx\n", Bad_offset, entry.val);
1056 	goto out;
1057 bad_device:
1058 	pr_err("swap_info_get: %s%08lx\n", Unused_file, entry.val);
1059 	goto out;
1060 bad_nofile:
1061 	pr_err("swap_info_get: %s%08lx\n", Bad_file, entry.val);
1062 out:
1063 	return NULL;
1064 }
1065 
1066 static struct swap_info_struct *_swap_info_get(swp_entry_t entry)
1067 {
1068 	struct swap_info_struct *p;
1069 
1070 	p = __swap_info_get(entry);
1071 	if (!p)
1072 		goto out;
1073 	if (!p->swap_map[swp_offset(entry)])
1074 		goto bad_free;
1075 	return p;
1076 
1077 bad_free:
1078 	pr_err("swap_info_get: %s%08lx\n", Unused_offset, entry.val);
1079 	goto out;
1080 out:
1081 	return NULL;
1082 }
1083 
1084 static struct swap_info_struct *swap_info_get(swp_entry_t entry)
1085 {
1086 	struct swap_info_struct *p;
1087 
1088 	p = _swap_info_get(entry);
1089 	if (p)
1090 		spin_lock(&p->lock);
1091 	return p;
1092 }
1093 
1094 static struct swap_info_struct *swap_info_get_cont(swp_entry_t entry,
1095 					struct swap_info_struct *q)
1096 {
1097 	struct swap_info_struct *p;
1098 
1099 	p = _swap_info_get(entry);
1100 
1101 	if (p != q) {
1102 		if (q != NULL)
1103 			spin_unlock(&q->lock);
1104 		if (p != NULL)
1105 			spin_lock(&p->lock);
1106 	}
1107 	return p;
1108 }
1109 
1110 static unsigned char __swap_entry_free(struct swap_info_struct *p,
1111 				       swp_entry_t entry, unsigned char usage)
1112 {
1113 	struct swap_cluster_info *ci;
1114 	unsigned long offset = swp_offset(entry);
1115 	unsigned char count;
1116 	unsigned char has_cache;
1117 
1118 	ci = lock_cluster_or_swap_info(p, offset);
1119 
1120 	count = p->swap_map[offset];
1121 
1122 	has_cache = count & SWAP_HAS_CACHE;
1123 	count &= ~SWAP_HAS_CACHE;
1124 
1125 	if (usage == SWAP_HAS_CACHE) {
1126 		VM_BUG_ON(!has_cache);
1127 		has_cache = 0;
1128 	} else if (count == SWAP_MAP_SHMEM) {
1129 		/*
1130 		 * Or we could insist on shmem.c using a special
1131 		 * swap_shmem_free() and free_shmem_swap_and_cache()...
1132 		 */
1133 		count = 0;
1134 	} else if ((count & ~COUNT_CONTINUED) <= SWAP_MAP_MAX) {
1135 		if (count == COUNT_CONTINUED) {
1136 			if (swap_count_continued(p, offset, count))
1137 				count = SWAP_MAP_MAX | COUNT_CONTINUED;
1138 			else
1139 				count = SWAP_MAP_MAX;
1140 		} else
1141 			count--;
1142 	}
1143 
1144 	usage = count | has_cache;
1145 	p->swap_map[offset] = usage ? : SWAP_HAS_CACHE;
1146 
1147 	unlock_cluster_or_swap_info(p, ci);
1148 
1149 	return usage;
1150 }
1151 
1152 static void swap_entry_free(struct swap_info_struct *p, swp_entry_t entry)
1153 {
1154 	struct swap_cluster_info *ci;
1155 	unsigned long offset = swp_offset(entry);
1156 	unsigned char count;
1157 
1158 	ci = lock_cluster(p, offset);
1159 	count = p->swap_map[offset];
1160 	VM_BUG_ON(count != SWAP_HAS_CACHE);
1161 	p->swap_map[offset] = 0;
1162 	dec_cluster_info_page(p, p->cluster_info, offset);
1163 	unlock_cluster(ci);
1164 
1165 	mem_cgroup_uncharge_swap(entry, 1);
1166 	swap_range_free(p, offset, 1);
1167 }
1168 
1169 /*
1170  * Caller has made sure that the swap device corresponding to entry
1171  * is still around or has not been recycled.
1172  */
1173 void swap_free(swp_entry_t entry)
1174 {
1175 	struct swap_info_struct *p;
1176 
1177 	p = _swap_info_get(entry);
1178 	if (p) {
1179 		if (!__swap_entry_free(p, entry, 1))
1180 			free_swap_slot(entry);
1181 	}
1182 }
1183 
1184 /*
1185  * Called after dropping swapcache to decrease refcnt to swap entries.
1186  */
1187 static void swapcache_free(swp_entry_t entry)
1188 {
1189 	struct swap_info_struct *p;
1190 
1191 	p = _swap_info_get(entry);
1192 	if (p) {
1193 		if (!__swap_entry_free(p, entry, SWAP_HAS_CACHE))
1194 			free_swap_slot(entry);
1195 	}
1196 }
1197 
1198 #ifdef CONFIG_THP_SWAP
1199 static void swapcache_free_cluster(swp_entry_t entry)
1200 {
1201 	unsigned long offset = swp_offset(entry);
1202 	unsigned long idx = offset / SWAPFILE_CLUSTER;
1203 	struct swap_cluster_info *ci;
1204 	struct swap_info_struct *si;
1205 	unsigned char *map;
1206 	unsigned int i, free_entries = 0;
1207 	unsigned char val;
1208 
1209 	si = _swap_info_get(entry);
1210 	if (!si)
1211 		return;
1212 
1213 	ci = lock_cluster(si, offset);
1214 	VM_BUG_ON(!cluster_is_huge(ci));
1215 	map = si->swap_map + offset;
1216 	for (i = 0; i < SWAPFILE_CLUSTER; i++) {
1217 		val = map[i];
1218 		VM_BUG_ON(!(val & SWAP_HAS_CACHE));
1219 		if (val == SWAP_HAS_CACHE)
1220 			free_entries++;
1221 	}
1222 	if (!free_entries) {
1223 		for (i = 0; i < SWAPFILE_CLUSTER; i++)
1224 			map[i] &= ~SWAP_HAS_CACHE;
1225 	}
1226 	cluster_clear_huge(ci);
1227 	unlock_cluster(ci);
1228 	if (free_entries == SWAPFILE_CLUSTER) {
1229 		spin_lock(&si->lock);
1230 		ci = lock_cluster(si, offset);
1231 		memset(map, 0, SWAPFILE_CLUSTER);
1232 		unlock_cluster(ci);
1233 		mem_cgroup_uncharge_swap(entry, SWAPFILE_CLUSTER);
1234 		swap_free_cluster(si, idx);
1235 		spin_unlock(&si->lock);
1236 	} else if (free_entries) {
1237 		for (i = 0; i < SWAPFILE_CLUSTER; i++, entry.val++) {
1238 			if (!__swap_entry_free(si, entry, SWAP_HAS_CACHE))
1239 				free_swap_slot(entry);
1240 		}
1241 	}
1242 }
1243 
1244 int split_swap_cluster(swp_entry_t entry)
1245 {
1246 	struct swap_info_struct *si;
1247 	struct swap_cluster_info *ci;
1248 	unsigned long offset = swp_offset(entry);
1249 
1250 	si = _swap_info_get(entry);
1251 	if (!si)
1252 		return -EBUSY;
1253 	ci = lock_cluster(si, offset);
1254 	cluster_clear_huge(ci);
1255 	unlock_cluster(ci);
1256 	return 0;
1257 }
1258 #else
1259 static inline void swapcache_free_cluster(swp_entry_t entry)
1260 {
1261 }
1262 #endif /* CONFIG_THP_SWAP */
1263 
1264 void put_swap_page(struct page *page, swp_entry_t entry)
1265 {
1266 	if (!PageTransHuge(page))
1267 		swapcache_free(entry);
1268 	else
1269 		swapcache_free_cluster(entry);
1270 }
1271 
1272 static int swp_entry_cmp(const void *ent1, const void *ent2)
1273 {
1274 	const swp_entry_t *e1 = ent1, *e2 = ent2;
1275 
1276 	return (int)swp_type(*e1) - (int)swp_type(*e2);
1277 }
1278 
1279 void swapcache_free_entries(swp_entry_t *entries, int n)
1280 {
1281 	struct swap_info_struct *p, *prev;
1282 	int i;
1283 
1284 	if (n <= 0)
1285 		return;
1286 
1287 	prev = NULL;
1288 	p = NULL;
1289 
1290 	/*
1291 	 * Sort swap entries by swap device, so each lock is only taken once.
1292 	 * nr_swapfiles isn't absolutely correct, but the overhead of sort() is
1293 	 * so low that it isn't necessary to optimize further.
1294 	 */
1295 	if (nr_swapfiles > 1)
1296 		sort(entries, n, sizeof(entries[0]), swp_entry_cmp, NULL);
1297 	for (i = 0; i < n; ++i) {
1298 		p = swap_info_get_cont(entries[i], prev);
1299 		if (p)
1300 			swap_entry_free(p, entries[i]);
1301 		prev = p;
1302 	}
1303 	if (p)
1304 		spin_unlock(&p->lock);
1305 }
1306 
1307 /*
1308  * How many references to page are currently swapped out?
1309  * This does not give an exact answer when swap count is continued,
1310  * but does include the high COUNT_CONTINUED flag to allow for that.
1311  */
1312 int page_swapcount(struct page *page)
1313 {
1314 	int count = 0;
1315 	struct swap_info_struct *p;
1316 	struct swap_cluster_info *ci;
1317 	swp_entry_t entry;
1318 	unsigned long offset;
1319 
1320 	entry.val = page_private(page);
1321 	p = _swap_info_get(entry);
1322 	if (p) {
1323 		offset = swp_offset(entry);
1324 		ci = lock_cluster_or_swap_info(p, offset);
1325 		count = swap_count(p->swap_map[offset]);
1326 		unlock_cluster_or_swap_info(p, ci);
1327 	}
1328 	return count;
1329 }
1330 
1331 int __swap_count(struct swap_info_struct *si, swp_entry_t entry)
1332 {
1333 	pgoff_t offset = swp_offset(entry);
1334 
1335 	return swap_count(si->swap_map[offset]);
1336 }
1337 
1338 static int swap_swapcount(struct swap_info_struct *si, swp_entry_t entry)
1339 {
1340 	int count = 0;
1341 	pgoff_t offset = swp_offset(entry);
1342 	struct swap_cluster_info *ci;
1343 
1344 	ci = lock_cluster_or_swap_info(si, offset);
1345 	count = swap_count(si->swap_map[offset]);
1346 	unlock_cluster_or_swap_info(si, ci);
1347 	return count;
1348 }
1349 
1350 /*
1351  * How many references to @entry are currently swapped out?
1352  * This does not give an exact answer when swap count is continued,
1353  * but does include the high COUNT_CONTINUED flag to allow for that.
1354  */
1355 int __swp_swapcount(swp_entry_t entry)
1356 {
1357 	int count = 0;
1358 	struct swap_info_struct *si;
1359 
1360 	si = __swap_info_get(entry);
1361 	if (si)
1362 		count = swap_swapcount(si, entry);
1363 	return count;
1364 }
1365 
1366 /*
1367  * How many references to @entry are currently swapped out?
1368  * This considers COUNT_CONTINUED so it returns exact answer.
1369  */
1370 int swp_swapcount(swp_entry_t entry)
1371 {
1372 	int count, tmp_count, n;
1373 	struct swap_info_struct *p;
1374 	struct swap_cluster_info *ci;
1375 	struct page *page;
1376 	pgoff_t offset;
1377 	unsigned char *map;
1378 
1379 	p = _swap_info_get(entry);
1380 	if (!p)
1381 		return 0;
1382 
1383 	offset = swp_offset(entry);
1384 
1385 	ci = lock_cluster_or_swap_info(p, offset);
1386 
1387 	count = swap_count(p->swap_map[offset]);
1388 	if (!(count & COUNT_CONTINUED))
1389 		goto out;
1390 
1391 	count &= ~COUNT_CONTINUED;
1392 	n = SWAP_MAP_MAX + 1;
1393 
1394 	page = vmalloc_to_page(p->swap_map + offset);
1395 	offset &= ~PAGE_MASK;
1396 	VM_BUG_ON(page_private(page) != SWP_CONTINUED);
1397 
1398 	do {
1399 		page = list_next_entry(page, lru);
1400 		map = kmap_atomic(page);
1401 		tmp_count = map[offset];
1402 		kunmap_atomic(map);
1403 
1404 		count += (tmp_count & ~COUNT_CONTINUED) * n;
1405 		n *= (SWAP_CONT_MAX + 1);
1406 	} while (tmp_count & COUNT_CONTINUED);
1407 out:
1408 	unlock_cluster_or_swap_info(p, ci);
1409 	return count;
1410 }
1411 
1412 #ifdef CONFIG_THP_SWAP
1413 static bool swap_page_trans_huge_swapped(struct swap_info_struct *si,
1414 					 swp_entry_t entry)
1415 {
1416 	struct swap_cluster_info *ci;
1417 	unsigned char *map = si->swap_map;
1418 	unsigned long roffset = swp_offset(entry);
1419 	unsigned long offset = round_down(roffset, SWAPFILE_CLUSTER);
1420 	int i;
1421 	bool ret = false;
1422 
1423 	ci = lock_cluster_or_swap_info(si, offset);
1424 	if (!ci || !cluster_is_huge(ci)) {
1425 		if (map[roffset] != SWAP_HAS_CACHE)
1426 			ret = true;
1427 		goto unlock_out;
1428 	}
1429 	for (i = 0; i < SWAPFILE_CLUSTER; i++) {
1430 		if (map[offset + i] != SWAP_HAS_CACHE) {
1431 			ret = true;
1432 			break;
1433 		}
1434 	}
1435 unlock_out:
1436 	unlock_cluster_or_swap_info(si, ci);
1437 	return ret;
1438 }
1439 
1440 static bool page_swapped(struct page *page)
1441 {
1442 	swp_entry_t entry;
1443 	struct swap_info_struct *si;
1444 
1445 	if (likely(!PageTransCompound(page)))
1446 		return page_swapcount(page) != 0;
1447 
1448 	page = compound_head(page);
1449 	entry.val = page_private(page);
1450 	si = _swap_info_get(entry);
1451 	if (si)
1452 		return swap_page_trans_huge_swapped(si, entry);
1453 	return false;
1454 }
1455 
1456 static int page_trans_huge_map_swapcount(struct page *page, int *total_mapcount,
1457 					 int *total_swapcount)
1458 {
1459 	int i, map_swapcount, _total_mapcount, _total_swapcount;
1460 	unsigned long offset = 0;
1461 	struct swap_info_struct *si;
1462 	struct swap_cluster_info *ci = NULL;
1463 	unsigned char *map = NULL;
1464 	int mapcount, swapcount = 0;
1465 
1466 	/* hugetlbfs shouldn't call it */
1467 	VM_BUG_ON_PAGE(PageHuge(page), page);
1468 
1469 	if (likely(!PageTransCompound(page))) {
1470 		mapcount = atomic_read(&page->_mapcount) + 1;
1471 		if (total_mapcount)
1472 			*total_mapcount = mapcount;
1473 		if (PageSwapCache(page))
1474 			swapcount = page_swapcount(page);
1475 		if (total_swapcount)
1476 			*total_swapcount = swapcount;
1477 		return mapcount + swapcount;
1478 	}
1479 
1480 	page = compound_head(page);
1481 
1482 	_total_mapcount = _total_swapcount = map_swapcount = 0;
1483 	if (PageSwapCache(page)) {
1484 		swp_entry_t entry;
1485 
1486 		entry.val = page_private(page);
1487 		si = _swap_info_get(entry);
1488 		if (si) {
1489 			map = si->swap_map;
1490 			offset = swp_offset(entry);
1491 		}
1492 	}
1493 	if (map)
1494 		ci = lock_cluster(si, offset);
1495 	for (i = 0; i < HPAGE_PMD_NR; i++) {
1496 		mapcount = atomic_read(&page[i]._mapcount) + 1;
1497 		_total_mapcount += mapcount;
1498 		if (map) {
1499 			swapcount = swap_count(map[offset + i]);
1500 			_total_swapcount += swapcount;
1501 		}
1502 		map_swapcount = max(map_swapcount, mapcount + swapcount);
1503 	}
1504 	unlock_cluster(ci);
1505 	if (PageDoubleMap(page)) {
1506 		map_swapcount -= 1;
1507 		_total_mapcount -= HPAGE_PMD_NR;
1508 	}
1509 	mapcount = compound_mapcount(page);
1510 	map_swapcount += mapcount;
1511 	_total_mapcount += mapcount;
1512 	if (total_mapcount)
1513 		*total_mapcount = _total_mapcount;
1514 	if (total_swapcount)
1515 		*total_swapcount = _total_swapcount;
1516 
1517 	return map_swapcount;
1518 }
1519 #else
1520 #define swap_page_trans_huge_swapped(si, entry)	swap_swapcount(si, entry)
1521 #define page_swapped(page)			(page_swapcount(page) != 0)
1522 
1523 static int page_trans_huge_map_swapcount(struct page *page, int *total_mapcount,
1524 					 int *total_swapcount)
1525 {
1526 	int mapcount, swapcount = 0;
1527 
1528 	/* hugetlbfs shouldn't call it */
1529 	VM_BUG_ON_PAGE(PageHuge(page), page);
1530 
1531 	mapcount = page_trans_huge_mapcount(page, total_mapcount);
1532 	if (PageSwapCache(page))
1533 		swapcount = page_swapcount(page);
1534 	if (total_swapcount)
1535 		*total_swapcount = swapcount;
1536 	return mapcount + swapcount;
1537 }
1538 #endif
1539 
1540 /*
1541  * We can write to an anon page without COW if there are no other references
1542  * to it.  And as a side-effect, free up its swap: because the old content
1543  * on disk will never be read, and seeking back there to write new content
1544  * later would only waste time away from clustering.
1545  *
1546  * NOTE: total_map_swapcount should not be relied upon by the caller if
1547  * reuse_swap_page() returns false, but it may be always overwritten
1548  * (see the other implementation for CONFIG_SWAP=n).
1549  */
1550 bool reuse_swap_page(struct page *page, int *total_map_swapcount)
1551 {
1552 	int count, total_mapcount, total_swapcount;
1553 
1554 	VM_BUG_ON_PAGE(!PageLocked(page), page);
1555 	if (unlikely(PageKsm(page)))
1556 		return false;
1557 	count = page_trans_huge_map_swapcount(page, &total_mapcount,
1558 					      &total_swapcount);
1559 	if (total_map_swapcount)
1560 		*total_map_swapcount = total_mapcount + total_swapcount;
1561 	if (count == 1 && PageSwapCache(page) &&
1562 	    (likely(!PageTransCompound(page)) ||
1563 	     /* The remaining swap count will be freed soon */
1564 	     total_swapcount == page_swapcount(page))) {
1565 		if (!PageWriteback(page)) {
1566 			page = compound_head(page);
1567 			delete_from_swap_cache(page);
1568 			SetPageDirty(page);
1569 		} else {
1570 			swp_entry_t entry;
1571 			struct swap_info_struct *p;
1572 
1573 			entry.val = page_private(page);
1574 			p = swap_info_get(entry);
1575 			if (p->flags & SWP_STABLE_WRITES) {
1576 				spin_unlock(&p->lock);
1577 				return false;
1578 			}
1579 			spin_unlock(&p->lock);
1580 		}
1581 	}
1582 
1583 	return count <= 1;
1584 }
1585 
1586 /*
1587  * If swap is getting full, or if there are no more mappings of this page,
1588  * then try_to_free_swap is called to free its swap space.
1589  */
1590 int try_to_free_swap(struct page *page)
1591 {
1592 	VM_BUG_ON_PAGE(!PageLocked(page), page);
1593 
1594 	if (!PageSwapCache(page))
1595 		return 0;
1596 	if (PageWriteback(page))
1597 		return 0;
1598 	if (page_swapped(page))
1599 		return 0;
1600 
1601 	/*
1602 	 * Once hibernation has begun to create its image of memory,
1603 	 * there's a danger that one of the calls to try_to_free_swap()
1604 	 * - most probably a call from __try_to_reclaim_swap() while
1605 	 * hibernation is allocating its own swap pages for the image,
1606 	 * but conceivably even a call from memory reclaim - will free
1607 	 * the swap from a page which has already been recorded in the
1608 	 * image as a clean swapcache page, and then reuse its swap for
1609 	 * another page of the image.  On waking from hibernation, the
1610 	 * original page might be freed under memory pressure, then
1611 	 * later read back in from swap, now with the wrong data.
1612 	 *
1613 	 * Hibernation suspends storage while it is writing the image
1614 	 * to disk so check that here.
1615 	 */
1616 	if (pm_suspended_storage())
1617 		return 0;
1618 
1619 	page = compound_head(page);
1620 	delete_from_swap_cache(page);
1621 	SetPageDirty(page);
1622 	return 1;
1623 }
1624 
1625 /*
1626  * Free the swap entry like above, but also try to
1627  * free the page cache entry if it is the last user.
1628  */
1629 int free_swap_and_cache(swp_entry_t entry)
1630 {
1631 	struct swap_info_struct *p;
1632 	struct page *page = NULL;
1633 	unsigned char count;
1634 
1635 	if (non_swap_entry(entry))
1636 		return 1;
1637 
1638 	p = _swap_info_get(entry);
1639 	if (p) {
1640 		count = __swap_entry_free(p, entry, 1);
1641 		if (count == SWAP_HAS_CACHE &&
1642 		    !swap_page_trans_huge_swapped(p, entry)) {
1643 			page = find_get_page(swap_address_space(entry),
1644 					     swp_offset(entry));
1645 			if (page && !trylock_page(page)) {
1646 				put_page(page);
1647 				page = NULL;
1648 			}
1649 		} else if (!count)
1650 			free_swap_slot(entry);
1651 	}
1652 	if (page) {
1653 		/*
1654 		 * Not mapped elsewhere, or swap space full? Free it!
1655 		 * Also recheck PageSwapCache now page is locked (above).
1656 		 */
1657 		if (PageSwapCache(page) && !PageWriteback(page) &&
1658 		    (!page_mapped(page) || mem_cgroup_swap_full(page)) &&
1659 		    !swap_page_trans_huge_swapped(p, entry)) {
1660 			page = compound_head(page);
1661 			delete_from_swap_cache(page);
1662 			SetPageDirty(page);
1663 		}
1664 		unlock_page(page);
1665 		put_page(page);
1666 	}
1667 	return p != NULL;
1668 }
1669 
1670 #ifdef CONFIG_HIBERNATION
1671 /*
1672  * Find the swap type that corresponds to given device (if any).
1673  *
1674  * @offset - number of the PAGE_SIZE-sized block of the device, starting
1675  * from 0, in which the swap header is expected to be located.
1676  *
1677  * This is needed for the suspend to disk (aka swsusp).
1678  */
1679 int swap_type_of(dev_t device, sector_t offset, struct block_device **bdev_p)
1680 {
1681 	struct block_device *bdev = NULL;
1682 	int type;
1683 
1684 	if (device)
1685 		bdev = bdget(device);
1686 
1687 	spin_lock(&swap_lock);
1688 	for (type = 0; type < nr_swapfiles; type++) {
1689 		struct swap_info_struct *sis = swap_info[type];
1690 
1691 		if (!(sis->flags & SWP_WRITEOK))
1692 			continue;
1693 
1694 		if (!bdev) {
1695 			if (bdev_p)
1696 				*bdev_p = bdgrab(sis->bdev);
1697 
1698 			spin_unlock(&swap_lock);
1699 			return type;
1700 		}
1701 		if (bdev == sis->bdev) {
1702 			struct swap_extent *se = &sis->first_swap_extent;
1703 
1704 			if (se->start_block == offset) {
1705 				if (bdev_p)
1706 					*bdev_p = bdgrab(sis->bdev);
1707 
1708 				spin_unlock(&swap_lock);
1709 				bdput(bdev);
1710 				return type;
1711 			}
1712 		}
1713 	}
1714 	spin_unlock(&swap_lock);
1715 	if (bdev)
1716 		bdput(bdev);
1717 
1718 	return -ENODEV;
1719 }
1720 
1721 /*
1722  * Get the (PAGE_SIZE) block corresponding to given offset on the swapdev
1723  * corresponding to given index in swap_info (swap type).
1724  */
1725 sector_t swapdev_block(int type, pgoff_t offset)
1726 {
1727 	struct block_device *bdev;
1728 
1729 	if ((unsigned int)type >= nr_swapfiles)
1730 		return 0;
1731 	if (!(swap_info[type]->flags & SWP_WRITEOK))
1732 		return 0;
1733 	return map_swap_entry(swp_entry(type, offset), &bdev);
1734 }
1735 
1736 /*
1737  * Return either the total number of swap pages of given type, or the number
1738  * of free pages of that type (depending on @free)
1739  *
1740  * This is needed for software suspend
1741  */
1742 unsigned int count_swap_pages(int type, int free)
1743 {
1744 	unsigned int n = 0;
1745 
1746 	spin_lock(&swap_lock);
1747 	if ((unsigned int)type < nr_swapfiles) {
1748 		struct swap_info_struct *sis = swap_info[type];
1749 
1750 		spin_lock(&sis->lock);
1751 		if (sis->flags & SWP_WRITEOK) {
1752 			n = sis->pages;
1753 			if (free)
1754 				n -= sis->inuse_pages;
1755 		}
1756 		spin_unlock(&sis->lock);
1757 	}
1758 	spin_unlock(&swap_lock);
1759 	return n;
1760 }
1761 #endif /* CONFIG_HIBERNATION */
1762 
1763 static inline int pte_same_as_swp(pte_t pte, pte_t swp_pte)
1764 {
1765 	return pte_same(pte_swp_clear_soft_dirty(pte), swp_pte);
1766 }
1767 
1768 /*
1769  * No need to decide whether this PTE shares the swap entry with others,
1770  * just let do_wp_page work it out if a write is requested later - to
1771  * force COW, vm_page_prot omits write permission from any private vma.
1772  */
1773 static int unuse_pte(struct vm_area_struct *vma, pmd_t *pmd,
1774 		unsigned long addr, swp_entry_t entry, struct page *page)
1775 {
1776 	struct page *swapcache;
1777 	struct mem_cgroup *memcg;
1778 	spinlock_t *ptl;
1779 	pte_t *pte;
1780 	int ret = 1;
1781 
1782 	swapcache = page;
1783 	page = ksm_might_need_to_copy(page, vma, addr);
1784 	if (unlikely(!page))
1785 		return -ENOMEM;
1786 
1787 	if (mem_cgroup_try_charge(page, vma->vm_mm, GFP_KERNEL,
1788 				&memcg, false)) {
1789 		ret = -ENOMEM;
1790 		goto out_nolock;
1791 	}
1792 
1793 	pte = pte_offset_map_lock(vma->vm_mm, pmd, addr, &ptl);
1794 	if (unlikely(!pte_same_as_swp(*pte, swp_entry_to_pte(entry)))) {
1795 		mem_cgroup_cancel_charge(page, memcg, false);
1796 		ret = 0;
1797 		goto out;
1798 	}
1799 
1800 	dec_mm_counter(vma->vm_mm, MM_SWAPENTS);
1801 	inc_mm_counter(vma->vm_mm, MM_ANONPAGES);
1802 	get_page(page);
1803 	set_pte_at(vma->vm_mm, addr, pte,
1804 		   pte_mkold(mk_pte(page, vma->vm_page_prot)));
1805 	if (page == swapcache) {
1806 		page_add_anon_rmap(page, vma, addr, false);
1807 		mem_cgroup_commit_charge(page, memcg, true, false);
1808 	} else { /* ksm created a completely new copy */
1809 		page_add_new_anon_rmap(page, vma, addr, false);
1810 		mem_cgroup_commit_charge(page, memcg, false, false);
1811 		lru_cache_add_active_or_unevictable(page, vma);
1812 	}
1813 	swap_free(entry);
1814 	/*
1815 	 * Move the page to the active list so it is not
1816 	 * immediately swapped out again after swapon.
1817 	 */
1818 	activate_page(page);
1819 out:
1820 	pte_unmap_unlock(pte, ptl);
1821 out_nolock:
1822 	if (page != swapcache) {
1823 		unlock_page(page);
1824 		put_page(page);
1825 	}
1826 	return ret;
1827 }
1828 
1829 static int unuse_pte_range(struct vm_area_struct *vma, pmd_t *pmd,
1830 				unsigned long addr, unsigned long end,
1831 				swp_entry_t entry, struct page *page)
1832 {
1833 	pte_t swp_pte = swp_entry_to_pte(entry);
1834 	pte_t *pte;
1835 	int ret = 0;
1836 
1837 	/*
1838 	 * We don't actually need pte lock while scanning for swp_pte: since
1839 	 * we hold page lock and mmap_sem, swp_pte cannot be inserted into the
1840 	 * page table while we're scanning; though it could get zapped, and on
1841 	 * some architectures (e.g. x86_32 with PAE) we might catch a glimpse
1842 	 * of unmatched parts which look like swp_pte, so unuse_pte must
1843 	 * recheck under pte lock.  Scanning without pte lock lets it be
1844 	 * preemptable whenever CONFIG_PREEMPT but not CONFIG_HIGHPTE.
1845 	 */
1846 	pte = pte_offset_map(pmd, addr);
1847 	do {
1848 		/*
1849 		 * swapoff spends a _lot_ of time in this loop!
1850 		 * Test inline before going to call unuse_pte.
1851 		 */
1852 		if (unlikely(pte_same_as_swp(*pte, swp_pte))) {
1853 			pte_unmap(pte);
1854 			ret = unuse_pte(vma, pmd, addr, entry, page);
1855 			if (ret)
1856 				goto out;
1857 			pte = pte_offset_map(pmd, addr);
1858 		}
1859 	} while (pte++, addr += PAGE_SIZE, addr != end);
1860 	pte_unmap(pte - 1);
1861 out:
1862 	return ret;
1863 }
1864 
1865 static inline int unuse_pmd_range(struct vm_area_struct *vma, pud_t *pud,
1866 				unsigned long addr, unsigned long end,
1867 				swp_entry_t entry, struct page *page)
1868 {
1869 	pmd_t *pmd;
1870 	unsigned long next;
1871 	int ret;
1872 
1873 	pmd = pmd_offset(pud, addr);
1874 	do {
1875 		cond_resched();
1876 		next = pmd_addr_end(addr, end);
1877 		if (pmd_none_or_trans_huge_or_clear_bad(pmd))
1878 			continue;
1879 		ret = unuse_pte_range(vma, pmd, addr, next, entry, page);
1880 		if (ret)
1881 			return ret;
1882 	} while (pmd++, addr = next, addr != end);
1883 	return 0;
1884 }
1885 
1886 static inline int unuse_pud_range(struct vm_area_struct *vma, p4d_t *p4d,
1887 				unsigned long addr, unsigned long end,
1888 				swp_entry_t entry, struct page *page)
1889 {
1890 	pud_t *pud;
1891 	unsigned long next;
1892 	int ret;
1893 
1894 	pud = pud_offset(p4d, addr);
1895 	do {
1896 		next = pud_addr_end(addr, end);
1897 		if (pud_none_or_clear_bad(pud))
1898 			continue;
1899 		ret = unuse_pmd_range(vma, pud, addr, next, entry, page);
1900 		if (ret)
1901 			return ret;
1902 	} while (pud++, addr = next, addr != end);
1903 	return 0;
1904 }
1905 
1906 static inline int unuse_p4d_range(struct vm_area_struct *vma, pgd_t *pgd,
1907 				unsigned long addr, unsigned long end,
1908 				swp_entry_t entry, struct page *page)
1909 {
1910 	p4d_t *p4d;
1911 	unsigned long next;
1912 	int ret;
1913 
1914 	p4d = p4d_offset(pgd, addr);
1915 	do {
1916 		next = p4d_addr_end(addr, end);
1917 		if (p4d_none_or_clear_bad(p4d))
1918 			continue;
1919 		ret = unuse_pud_range(vma, p4d, addr, next, entry, page);
1920 		if (ret)
1921 			return ret;
1922 	} while (p4d++, addr = next, addr != end);
1923 	return 0;
1924 }
1925 
1926 static int unuse_vma(struct vm_area_struct *vma,
1927 				swp_entry_t entry, struct page *page)
1928 {
1929 	pgd_t *pgd;
1930 	unsigned long addr, end, next;
1931 	int ret;
1932 
1933 	if (page_anon_vma(page)) {
1934 		addr = page_address_in_vma(page, vma);
1935 		if (addr == -EFAULT)
1936 			return 0;
1937 		else
1938 			end = addr + PAGE_SIZE;
1939 	} else {
1940 		addr = vma->vm_start;
1941 		end = vma->vm_end;
1942 	}
1943 
1944 	pgd = pgd_offset(vma->vm_mm, addr);
1945 	do {
1946 		next = pgd_addr_end(addr, end);
1947 		if (pgd_none_or_clear_bad(pgd))
1948 			continue;
1949 		ret = unuse_p4d_range(vma, pgd, addr, next, entry, page);
1950 		if (ret)
1951 			return ret;
1952 	} while (pgd++, addr = next, addr != end);
1953 	return 0;
1954 }
1955 
1956 static int unuse_mm(struct mm_struct *mm,
1957 				swp_entry_t entry, struct page *page)
1958 {
1959 	struct vm_area_struct *vma;
1960 	int ret = 0;
1961 
1962 	if (!down_read_trylock(&mm->mmap_sem)) {
1963 		/*
1964 		 * Activate page so shrink_inactive_list is unlikely to unmap
1965 		 * its ptes while lock is dropped, so swapoff can make progress.
1966 		 */
1967 		activate_page(page);
1968 		unlock_page(page);
1969 		down_read(&mm->mmap_sem);
1970 		lock_page(page);
1971 	}
1972 	for (vma = mm->mmap; vma; vma = vma->vm_next) {
1973 		if (vma->anon_vma && (ret = unuse_vma(vma, entry, page)))
1974 			break;
1975 		cond_resched();
1976 	}
1977 	up_read(&mm->mmap_sem);
1978 	return (ret < 0)? ret: 0;
1979 }
1980 
1981 /*
1982  * Scan swap_map (or frontswap_map if frontswap parameter is true)
1983  * from current position to next entry still in use.
1984  * Recycle to start on reaching the end, returning 0 when empty.
1985  */
1986 static unsigned int find_next_to_unuse(struct swap_info_struct *si,
1987 					unsigned int prev, bool frontswap)
1988 {
1989 	unsigned int max = si->max;
1990 	unsigned int i = prev;
1991 	unsigned char count;
1992 
1993 	/*
1994 	 * No need for swap_lock here: we're just looking
1995 	 * for whether an entry is in use, not modifying it; false
1996 	 * hits are okay, and sys_swapoff() has already prevented new
1997 	 * allocations from this area (while holding swap_lock).
1998 	 */
1999 	for (;;) {
2000 		if (++i >= max) {
2001 			if (!prev) {
2002 				i = 0;
2003 				break;
2004 			}
2005 			/*
2006 			 * No entries in use at top of swap_map,
2007 			 * loop back to start and recheck there.
2008 			 */
2009 			max = prev + 1;
2010 			prev = 0;
2011 			i = 1;
2012 		}
2013 		count = READ_ONCE(si->swap_map[i]);
2014 		if (count && swap_count(count) != SWAP_MAP_BAD)
2015 			if (!frontswap || frontswap_test(si, i))
2016 				break;
2017 		if ((i % LATENCY_LIMIT) == 0)
2018 			cond_resched();
2019 	}
2020 	return i;
2021 }
2022 
2023 /*
2024  * We completely avoid races by reading each swap page in advance,
2025  * and then search for the process using it.  All the necessary
2026  * page table adjustments can then be made atomically.
2027  *
2028  * if the boolean frontswap is true, only unuse pages_to_unuse pages;
2029  * pages_to_unuse==0 means all pages; ignored if frontswap is false
2030  */
2031 int try_to_unuse(unsigned int type, bool frontswap,
2032 		 unsigned long pages_to_unuse)
2033 {
2034 	struct swap_info_struct *si = swap_info[type];
2035 	struct mm_struct *start_mm;
2036 	volatile unsigned char *swap_map; /* swap_map is accessed without
2037 					   * locking. Mark it as volatile
2038 					   * to prevent compiler doing
2039 					   * something odd.
2040 					   */
2041 	unsigned char swcount;
2042 	struct page *page;
2043 	swp_entry_t entry;
2044 	unsigned int i = 0;
2045 	int retval = 0;
2046 
2047 	/*
2048 	 * When searching mms for an entry, a good strategy is to
2049 	 * start at the first mm we freed the previous entry from
2050 	 * (though actually we don't notice whether we or coincidence
2051 	 * freed the entry).  Initialize this start_mm with a hold.
2052 	 *
2053 	 * A simpler strategy would be to start at the last mm we
2054 	 * freed the previous entry from; but that would take less
2055 	 * advantage of mmlist ordering, which clusters forked mms
2056 	 * together, child after parent.  If we race with dup_mmap(), we
2057 	 * prefer to resolve parent before child, lest we miss entries
2058 	 * duplicated after we scanned child: using last mm would invert
2059 	 * that.
2060 	 */
2061 	start_mm = &init_mm;
2062 	mmget(&init_mm);
2063 
2064 	/*
2065 	 * Keep on scanning until all entries have gone.  Usually,
2066 	 * one pass through swap_map is enough, but not necessarily:
2067 	 * there are races when an instance of an entry might be missed.
2068 	 */
2069 	while ((i = find_next_to_unuse(si, i, frontswap)) != 0) {
2070 		if (signal_pending(current)) {
2071 			retval = -EINTR;
2072 			break;
2073 		}
2074 
2075 		/*
2076 		 * Get a page for the entry, using the existing swap
2077 		 * cache page if there is one.  Otherwise, get a clean
2078 		 * page and read the swap into it.
2079 		 */
2080 		swap_map = &si->swap_map[i];
2081 		entry = swp_entry(type, i);
2082 		page = read_swap_cache_async(entry,
2083 					GFP_HIGHUSER_MOVABLE, NULL, 0, false);
2084 		if (!page) {
2085 			/*
2086 			 * Either swap_duplicate() failed because entry
2087 			 * has been freed independently, and will not be
2088 			 * reused since sys_swapoff() already disabled
2089 			 * allocation from here, or alloc_page() failed.
2090 			 */
2091 			swcount = *swap_map;
2092 			/*
2093 			 * We don't hold lock here, so the swap entry could be
2094 			 * SWAP_MAP_BAD (when the cluster is discarding).
2095 			 * Instead of fail out, We can just skip the swap
2096 			 * entry because swapoff will wait for discarding
2097 			 * finish anyway.
2098 			 */
2099 			if (!swcount || swcount == SWAP_MAP_BAD)
2100 				continue;
2101 			retval = -ENOMEM;
2102 			break;
2103 		}
2104 
2105 		/*
2106 		 * Don't hold on to start_mm if it looks like exiting.
2107 		 */
2108 		if (atomic_read(&start_mm->mm_users) == 1) {
2109 			mmput(start_mm);
2110 			start_mm = &init_mm;
2111 			mmget(&init_mm);
2112 		}
2113 
2114 		/*
2115 		 * Wait for and lock page.  When do_swap_page races with
2116 		 * try_to_unuse, do_swap_page can handle the fault much
2117 		 * faster than try_to_unuse can locate the entry.  This
2118 		 * apparently redundant "wait_on_page_locked" lets try_to_unuse
2119 		 * defer to do_swap_page in such a case - in some tests,
2120 		 * do_swap_page and try_to_unuse repeatedly compete.
2121 		 */
2122 		wait_on_page_locked(page);
2123 		wait_on_page_writeback(page);
2124 		lock_page(page);
2125 		wait_on_page_writeback(page);
2126 
2127 		/*
2128 		 * Remove all references to entry.
2129 		 */
2130 		swcount = *swap_map;
2131 		if (swap_count(swcount) == SWAP_MAP_SHMEM) {
2132 			retval = shmem_unuse(entry, page);
2133 			/* page has already been unlocked and released */
2134 			if (retval < 0)
2135 				break;
2136 			continue;
2137 		}
2138 		if (swap_count(swcount) && start_mm != &init_mm)
2139 			retval = unuse_mm(start_mm, entry, page);
2140 
2141 		if (swap_count(*swap_map)) {
2142 			int set_start_mm = (*swap_map >= swcount);
2143 			struct list_head *p = &start_mm->mmlist;
2144 			struct mm_struct *new_start_mm = start_mm;
2145 			struct mm_struct *prev_mm = start_mm;
2146 			struct mm_struct *mm;
2147 
2148 			mmget(new_start_mm);
2149 			mmget(prev_mm);
2150 			spin_lock(&mmlist_lock);
2151 			while (swap_count(*swap_map) && !retval &&
2152 					(p = p->next) != &start_mm->mmlist) {
2153 				mm = list_entry(p, struct mm_struct, mmlist);
2154 				if (!mmget_not_zero(mm))
2155 					continue;
2156 				spin_unlock(&mmlist_lock);
2157 				mmput(prev_mm);
2158 				prev_mm = mm;
2159 
2160 				cond_resched();
2161 
2162 				swcount = *swap_map;
2163 				if (!swap_count(swcount)) /* any usage ? */
2164 					;
2165 				else if (mm == &init_mm)
2166 					set_start_mm = 1;
2167 				else
2168 					retval = unuse_mm(mm, entry, page);
2169 
2170 				if (set_start_mm && *swap_map < swcount) {
2171 					mmput(new_start_mm);
2172 					mmget(mm);
2173 					new_start_mm = mm;
2174 					set_start_mm = 0;
2175 				}
2176 				spin_lock(&mmlist_lock);
2177 			}
2178 			spin_unlock(&mmlist_lock);
2179 			mmput(prev_mm);
2180 			mmput(start_mm);
2181 			start_mm = new_start_mm;
2182 		}
2183 		if (retval) {
2184 			unlock_page(page);
2185 			put_page(page);
2186 			break;
2187 		}
2188 
2189 		/*
2190 		 * If a reference remains (rare), we would like to leave
2191 		 * the page in the swap cache; but try_to_unmap could
2192 		 * then re-duplicate the entry once we drop page lock,
2193 		 * so we might loop indefinitely; also, that page could
2194 		 * not be swapped out to other storage meanwhile.  So:
2195 		 * delete from cache even if there's another reference,
2196 		 * after ensuring that the data has been saved to disk -
2197 		 * since if the reference remains (rarer), it will be
2198 		 * read from disk into another page.  Splitting into two
2199 		 * pages would be incorrect if swap supported "shared
2200 		 * private" pages, but they are handled by tmpfs files.
2201 		 *
2202 		 * Given how unuse_vma() targets one particular offset
2203 		 * in an anon_vma, once the anon_vma has been determined,
2204 		 * this splitting happens to be just what is needed to
2205 		 * handle where KSM pages have been swapped out: re-reading
2206 		 * is unnecessarily slow, but we can fix that later on.
2207 		 */
2208 		if (swap_count(*swap_map) &&
2209 		     PageDirty(page) && PageSwapCache(page)) {
2210 			struct writeback_control wbc = {
2211 				.sync_mode = WB_SYNC_NONE,
2212 			};
2213 
2214 			swap_writepage(compound_head(page), &wbc);
2215 			lock_page(page);
2216 			wait_on_page_writeback(page);
2217 		}
2218 
2219 		/*
2220 		 * It is conceivable that a racing task removed this page from
2221 		 * swap cache just before we acquired the page lock at the top,
2222 		 * or while we dropped it in unuse_mm().  The page might even
2223 		 * be back in swap cache on another swap area: that we must not
2224 		 * delete, since it may not have been written out to swap yet.
2225 		 */
2226 		if (PageSwapCache(page) &&
2227 		    likely(page_private(page) == entry.val) &&
2228 		    !page_swapped(page))
2229 			delete_from_swap_cache(compound_head(page));
2230 
2231 		/*
2232 		 * So we could skip searching mms once swap count went
2233 		 * to 1, we did not mark any present ptes as dirty: must
2234 		 * mark page dirty so shrink_page_list will preserve it.
2235 		 */
2236 		SetPageDirty(page);
2237 		unlock_page(page);
2238 		put_page(page);
2239 
2240 		/*
2241 		 * Make sure that we aren't completely killing
2242 		 * interactive performance.
2243 		 */
2244 		cond_resched();
2245 		if (frontswap && pages_to_unuse > 0) {
2246 			if (!--pages_to_unuse)
2247 				break;
2248 		}
2249 	}
2250 
2251 	mmput(start_mm);
2252 	return retval;
2253 }
2254 
2255 /*
2256  * After a successful try_to_unuse, if no swap is now in use, we know
2257  * we can empty the mmlist.  swap_lock must be held on entry and exit.
2258  * Note that mmlist_lock nests inside swap_lock, and an mm must be
2259  * added to the mmlist just after page_duplicate - before would be racy.
2260  */
2261 static void drain_mmlist(void)
2262 {
2263 	struct list_head *p, *next;
2264 	unsigned int type;
2265 
2266 	for (type = 0; type < nr_swapfiles; type++)
2267 		if (swap_info[type]->inuse_pages)
2268 			return;
2269 	spin_lock(&mmlist_lock);
2270 	list_for_each_safe(p, next, &init_mm.mmlist)
2271 		list_del_init(p);
2272 	spin_unlock(&mmlist_lock);
2273 }
2274 
2275 /*
2276  * Use this swapdev's extent info to locate the (PAGE_SIZE) block which
2277  * corresponds to page offset for the specified swap entry.
2278  * Note that the type of this function is sector_t, but it returns page offset
2279  * into the bdev, not sector offset.
2280  */
2281 static sector_t map_swap_entry(swp_entry_t entry, struct block_device **bdev)
2282 {
2283 	struct swap_info_struct *sis;
2284 	struct swap_extent *start_se;
2285 	struct swap_extent *se;
2286 	pgoff_t offset;
2287 
2288 	sis = swap_info[swp_type(entry)];
2289 	*bdev = sis->bdev;
2290 
2291 	offset = swp_offset(entry);
2292 	start_se = sis->curr_swap_extent;
2293 	se = start_se;
2294 
2295 	for ( ; ; ) {
2296 		if (se->start_page <= offset &&
2297 				offset < (se->start_page + se->nr_pages)) {
2298 			return se->start_block + (offset - se->start_page);
2299 		}
2300 		se = list_next_entry(se, list);
2301 		sis->curr_swap_extent = se;
2302 		BUG_ON(se == start_se);		/* It *must* be present */
2303 	}
2304 }
2305 
2306 /*
2307  * Returns the page offset into bdev for the specified page's swap entry.
2308  */
2309 sector_t map_swap_page(struct page *page, struct block_device **bdev)
2310 {
2311 	swp_entry_t entry;
2312 	entry.val = page_private(page);
2313 	return map_swap_entry(entry, bdev);
2314 }
2315 
2316 /*
2317  * Free all of a swapdev's extent information
2318  */
2319 static void destroy_swap_extents(struct swap_info_struct *sis)
2320 {
2321 	while (!list_empty(&sis->first_swap_extent.list)) {
2322 		struct swap_extent *se;
2323 
2324 		se = list_first_entry(&sis->first_swap_extent.list,
2325 				struct swap_extent, list);
2326 		list_del(&se->list);
2327 		kfree(se);
2328 	}
2329 
2330 	if (sis->flags & SWP_FILE) {
2331 		struct file *swap_file = sis->swap_file;
2332 		struct address_space *mapping = swap_file->f_mapping;
2333 
2334 		sis->flags &= ~SWP_FILE;
2335 		mapping->a_ops->swap_deactivate(swap_file);
2336 	}
2337 }
2338 
2339 /*
2340  * Add a block range (and the corresponding page range) into this swapdev's
2341  * extent list.  The extent list is kept sorted in page order.
2342  *
2343  * This function rather assumes that it is called in ascending page order.
2344  */
2345 int
2346 add_swap_extent(struct swap_info_struct *sis, unsigned long start_page,
2347 		unsigned long nr_pages, sector_t start_block)
2348 {
2349 	struct swap_extent *se;
2350 	struct swap_extent *new_se;
2351 	struct list_head *lh;
2352 
2353 	if (start_page == 0) {
2354 		se = &sis->first_swap_extent;
2355 		sis->curr_swap_extent = se;
2356 		se->start_page = 0;
2357 		se->nr_pages = nr_pages;
2358 		se->start_block = start_block;
2359 		return 1;
2360 	} else {
2361 		lh = sis->first_swap_extent.list.prev;	/* Highest extent */
2362 		se = list_entry(lh, struct swap_extent, list);
2363 		BUG_ON(se->start_page + se->nr_pages != start_page);
2364 		if (se->start_block + se->nr_pages == start_block) {
2365 			/* Merge it */
2366 			se->nr_pages += nr_pages;
2367 			return 0;
2368 		}
2369 	}
2370 
2371 	/*
2372 	 * No merge.  Insert a new extent, preserving ordering.
2373 	 */
2374 	new_se = kmalloc(sizeof(*se), GFP_KERNEL);
2375 	if (new_se == NULL)
2376 		return -ENOMEM;
2377 	new_se->start_page = start_page;
2378 	new_se->nr_pages = nr_pages;
2379 	new_se->start_block = start_block;
2380 
2381 	list_add_tail(&new_se->list, &sis->first_swap_extent.list);
2382 	return 1;
2383 }
2384 
2385 /*
2386  * A `swap extent' is a simple thing which maps a contiguous range of pages
2387  * onto a contiguous range of disk blocks.  An ordered list of swap extents
2388  * is built at swapon time and is then used at swap_writepage/swap_readpage
2389  * time for locating where on disk a page belongs.
2390  *
2391  * If the swapfile is an S_ISBLK block device, a single extent is installed.
2392  * This is done so that the main operating code can treat S_ISBLK and S_ISREG
2393  * swap files identically.
2394  *
2395  * Whether the swapdev is an S_ISREG file or an S_ISBLK blockdev, the swap
2396  * extent list operates in PAGE_SIZE disk blocks.  Both S_ISREG and S_ISBLK
2397  * swapfiles are handled *identically* after swapon time.
2398  *
2399  * For S_ISREG swapfiles, setup_swap_extents() will walk all the file's blocks
2400  * and will parse them into an ordered extent list, in PAGE_SIZE chunks.  If
2401  * some stray blocks are found which do not fall within the PAGE_SIZE alignment
2402  * requirements, they are simply tossed out - we will never use those blocks
2403  * for swapping.
2404  *
2405  * For S_ISREG swapfiles we set S_SWAPFILE across the life of the swapon.  This
2406  * prevents root from shooting her foot off by ftruncating an in-use swapfile,
2407  * which will scribble on the fs.
2408  *
2409  * The amount of disk space which a single swap extent represents varies.
2410  * Typically it is in the 1-4 megabyte range.  So we can have hundreds of
2411  * extents in the list.  To avoid much list walking, we cache the previous
2412  * search location in `curr_swap_extent', and start new searches from there.
2413  * This is extremely effective.  The average number of iterations in
2414  * map_swap_page() has been measured at about 0.3 per page.  - akpm.
2415  */
2416 static int setup_swap_extents(struct swap_info_struct *sis, sector_t *span)
2417 {
2418 	struct file *swap_file = sis->swap_file;
2419 	struct address_space *mapping = swap_file->f_mapping;
2420 	struct inode *inode = mapping->host;
2421 	int ret;
2422 
2423 	if (S_ISBLK(inode->i_mode)) {
2424 		ret = add_swap_extent(sis, 0, sis->max, 0);
2425 		*span = sis->pages;
2426 		return ret;
2427 	}
2428 
2429 	if (mapping->a_ops->swap_activate) {
2430 		ret = mapping->a_ops->swap_activate(sis, swap_file, span);
2431 		if (!ret) {
2432 			sis->flags |= SWP_FILE;
2433 			ret = add_swap_extent(sis, 0, sis->max, 0);
2434 			*span = sis->pages;
2435 		}
2436 		return ret;
2437 	}
2438 
2439 	return generic_swapfile_activate(sis, swap_file, span);
2440 }
2441 
2442 static int swap_node(struct swap_info_struct *p)
2443 {
2444 	struct block_device *bdev;
2445 
2446 	if (p->bdev)
2447 		bdev = p->bdev;
2448 	else
2449 		bdev = p->swap_file->f_inode->i_sb->s_bdev;
2450 
2451 	return bdev ? bdev->bd_disk->node_id : NUMA_NO_NODE;
2452 }
2453 
2454 static void _enable_swap_info(struct swap_info_struct *p, int prio,
2455 				unsigned char *swap_map,
2456 				struct swap_cluster_info *cluster_info)
2457 {
2458 	int i;
2459 
2460 	if (prio >= 0)
2461 		p->prio = prio;
2462 	else
2463 		p->prio = --least_priority;
2464 	/*
2465 	 * the plist prio is negated because plist ordering is
2466 	 * low-to-high, while swap ordering is high-to-low
2467 	 */
2468 	p->list.prio = -p->prio;
2469 	for_each_node(i) {
2470 		if (p->prio >= 0)
2471 			p->avail_lists[i].prio = -p->prio;
2472 		else {
2473 			if (swap_node(p) == i)
2474 				p->avail_lists[i].prio = 1;
2475 			else
2476 				p->avail_lists[i].prio = -p->prio;
2477 		}
2478 	}
2479 	p->swap_map = swap_map;
2480 	p->cluster_info = cluster_info;
2481 	p->flags |= SWP_WRITEOK;
2482 	atomic_long_add(p->pages, &nr_swap_pages);
2483 	total_swap_pages += p->pages;
2484 
2485 	assert_spin_locked(&swap_lock);
2486 	/*
2487 	 * both lists are plists, and thus priority ordered.
2488 	 * swap_active_head needs to be priority ordered for swapoff(),
2489 	 * which on removal of any swap_info_struct with an auto-assigned
2490 	 * (i.e. negative) priority increments the auto-assigned priority
2491 	 * of any lower-priority swap_info_structs.
2492 	 * swap_avail_head needs to be priority ordered for get_swap_page(),
2493 	 * which allocates swap pages from the highest available priority
2494 	 * swap_info_struct.
2495 	 */
2496 	plist_add(&p->list, &swap_active_head);
2497 	add_to_avail_list(p);
2498 }
2499 
2500 static void enable_swap_info(struct swap_info_struct *p, int prio,
2501 				unsigned char *swap_map,
2502 				struct swap_cluster_info *cluster_info,
2503 				unsigned long *frontswap_map)
2504 {
2505 	frontswap_init(p->type, frontswap_map);
2506 	spin_lock(&swap_lock);
2507 	spin_lock(&p->lock);
2508 	 _enable_swap_info(p, prio, swap_map, cluster_info);
2509 	spin_unlock(&p->lock);
2510 	spin_unlock(&swap_lock);
2511 }
2512 
2513 static void reinsert_swap_info(struct swap_info_struct *p)
2514 {
2515 	spin_lock(&swap_lock);
2516 	spin_lock(&p->lock);
2517 	_enable_swap_info(p, p->prio, p->swap_map, p->cluster_info);
2518 	spin_unlock(&p->lock);
2519 	spin_unlock(&swap_lock);
2520 }
2521 
2522 bool has_usable_swap(void)
2523 {
2524 	bool ret = true;
2525 
2526 	spin_lock(&swap_lock);
2527 	if (plist_head_empty(&swap_active_head))
2528 		ret = false;
2529 	spin_unlock(&swap_lock);
2530 	return ret;
2531 }
2532 
2533 SYSCALL_DEFINE1(swapoff, const char __user *, specialfile)
2534 {
2535 	struct swap_info_struct *p = NULL;
2536 	unsigned char *swap_map;
2537 	struct swap_cluster_info *cluster_info;
2538 	unsigned long *frontswap_map;
2539 	struct file *swap_file, *victim;
2540 	struct address_space *mapping;
2541 	struct inode *inode;
2542 	struct filename *pathname;
2543 	int err, found = 0;
2544 	unsigned int old_block_size;
2545 
2546 	if (!capable(CAP_SYS_ADMIN))
2547 		return -EPERM;
2548 
2549 	BUG_ON(!current->mm);
2550 
2551 	pathname = getname(specialfile);
2552 	if (IS_ERR(pathname))
2553 		return PTR_ERR(pathname);
2554 
2555 	victim = file_open_name(pathname, O_RDWR|O_LARGEFILE, 0);
2556 	err = PTR_ERR(victim);
2557 	if (IS_ERR(victim))
2558 		goto out;
2559 
2560 	mapping = victim->f_mapping;
2561 	spin_lock(&swap_lock);
2562 	plist_for_each_entry(p, &swap_active_head, list) {
2563 		if (p->flags & SWP_WRITEOK) {
2564 			if (p->swap_file->f_mapping == mapping) {
2565 				found = 1;
2566 				break;
2567 			}
2568 		}
2569 	}
2570 	if (!found) {
2571 		err = -EINVAL;
2572 		spin_unlock(&swap_lock);
2573 		goto out_dput;
2574 	}
2575 	if (!security_vm_enough_memory_mm(current->mm, p->pages))
2576 		vm_unacct_memory(p->pages);
2577 	else {
2578 		err = -ENOMEM;
2579 		spin_unlock(&swap_lock);
2580 		goto out_dput;
2581 	}
2582 	del_from_avail_list(p);
2583 	spin_lock(&p->lock);
2584 	if (p->prio < 0) {
2585 		struct swap_info_struct *si = p;
2586 		int nid;
2587 
2588 		plist_for_each_entry_continue(si, &swap_active_head, list) {
2589 			si->prio++;
2590 			si->list.prio--;
2591 			for_each_node(nid) {
2592 				if (si->avail_lists[nid].prio != 1)
2593 					si->avail_lists[nid].prio--;
2594 			}
2595 		}
2596 		least_priority++;
2597 	}
2598 	plist_del(&p->list, &swap_active_head);
2599 	atomic_long_sub(p->pages, &nr_swap_pages);
2600 	total_swap_pages -= p->pages;
2601 	p->flags &= ~SWP_WRITEOK;
2602 	spin_unlock(&p->lock);
2603 	spin_unlock(&swap_lock);
2604 
2605 	disable_swap_slots_cache_lock();
2606 
2607 	set_current_oom_origin();
2608 	err = try_to_unuse(p->type, false, 0); /* force unuse all pages */
2609 	clear_current_oom_origin();
2610 
2611 	if (err) {
2612 		/* re-insert swap space back into swap_list */
2613 		reinsert_swap_info(p);
2614 		reenable_swap_slots_cache_unlock();
2615 		goto out_dput;
2616 	}
2617 
2618 	reenable_swap_slots_cache_unlock();
2619 
2620 	flush_work(&p->discard_work);
2621 
2622 	destroy_swap_extents(p);
2623 	if (p->flags & SWP_CONTINUED)
2624 		free_swap_count_continuations(p);
2625 
2626 	if (!p->bdev || !blk_queue_nonrot(bdev_get_queue(p->bdev)))
2627 		atomic_dec(&nr_rotate_swap);
2628 
2629 	mutex_lock(&swapon_mutex);
2630 	spin_lock(&swap_lock);
2631 	spin_lock(&p->lock);
2632 	drain_mmlist();
2633 
2634 	/* wait for anyone still in scan_swap_map */
2635 	p->highest_bit = 0;		/* cuts scans short */
2636 	while (p->flags >= SWP_SCANNING) {
2637 		spin_unlock(&p->lock);
2638 		spin_unlock(&swap_lock);
2639 		schedule_timeout_uninterruptible(1);
2640 		spin_lock(&swap_lock);
2641 		spin_lock(&p->lock);
2642 	}
2643 
2644 	swap_file = p->swap_file;
2645 	old_block_size = p->old_block_size;
2646 	p->swap_file = NULL;
2647 	p->max = 0;
2648 	swap_map = p->swap_map;
2649 	p->swap_map = NULL;
2650 	cluster_info = p->cluster_info;
2651 	p->cluster_info = NULL;
2652 	frontswap_map = frontswap_map_get(p);
2653 	spin_unlock(&p->lock);
2654 	spin_unlock(&swap_lock);
2655 	frontswap_invalidate_area(p->type);
2656 	frontswap_map_set(p, NULL);
2657 	mutex_unlock(&swapon_mutex);
2658 	free_percpu(p->percpu_cluster);
2659 	p->percpu_cluster = NULL;
2660 	vfree(swap_map);
2661 	kvfree(cluster_info);
2662 	kvfree(frontswap_map);
2663 	/* Destroy swap account information */
2664 	swap_cgroup_swapoff(p->type);
2665 	exit_swap_address_space(p->type);
2666 
2667 	inode = mapping->host;
2668 	if (S_ISBLK(inode->i_mode)) {
2669 		struct block_device *bdev = I_BDEV(inode);
2670 		set_blocksize(bdev, old_block_size);
2671 		blkdev_put(bdev, FMODE_READ | FMODE_WRITE | FMODE_EXCL);
2672 	} else {
2673 		inode_lock(inode);
2674 		inode->i_flags &= ~S_SWAPFILE;
2675 		inode_unlock(inode);
2676 	}
2677 	filp_close(swap_file, NULL);
2678 
2679 	/*
2680 	 * Clear the SWP_USED flag after all resources are freed so that swapon
2681 	 * can reuse this swap_info in alloc_swap_info() safely.  It is ok to
2682 	 * not hold p->lock after we cleared its SWP_WRITEOK.
2683 	 */
2684 	spin_lock(&swap_lock);
2685 	p->flags = 0;
2686 	spin_unlock(&swap_lock);
2687 
2688 	err = 0;
2689 	atomic_inc(&proc_poll_event);
2690 	wake_up_interruptible(&proc_poll_wait);
2691 
2692 out_dput:
2693 	filp_close(victim, NULL);
2694 out:
2695 	putname(pathname);
2696 	return err;
2697 }
2698 
2699 #ifdef CONFIG_PROC_FS
2700 static __poll_t swaps_poll(struct file *file, poll_table *wait)
2701 {
2702 	struct seq_file *seq = file->private_data;
2703 
2704 	poll_wait(file, &proc_poll_wait, wait);
2705 
2706 	if (seq->poll_event != atomic_read(&proc_poll_event)) {
2707 		seq->poll_event = atomic_read(&proc_poll_event);
2708 		return EPOLLIN | EPOLLRDNORM | EPOLLERR | EPOLLPRI;
2709 	}
2710 
2711 	return EPOLLIN | EPOLLRDNORM;
2712 }
2713 
2714 /* iterator */
2715 static void *swap_start(struct seq_file *swap, loff_t *pos)
2716 {
2717 	struct swap_info_struct *si;
2718 	int type;
2719 	loff_t l = *pos;
2720 
2721 	mutex_lock(&swapon_mutex);
2722 
2723 	if (!l)
2724 		return SEQ_START_TOKEN;
2725 
2726 	for (type = 0; type < nr_swapfiles; type++) {
2727 		smp_rmb();	/* read nr_swapfiles before swap_info[type] */
2728 		si = swap_info[type];
2729 		if (!(si->flags & SWP_USED) || !si->swap_map)
2730 			continue;
2731 		if (!--l)
2732 			return si;
2733 	}
2734 
2735 	return NULL;
2736 }
2737 
2738 static void *swap_next(struct seq_file *swap, void *v, loff_t *pos)
2739 {
2740 	struct swap_info_struct *si = v;
2741 	int type;
2742 
2743 	if (v == SEQ_START_TOKEN)
2744 		type = 0;
2745 	else
2746 		type = si->type + 1;
2747 
2748 	for (; type < nr_swapfiles; type++) {
2749 		smp_rmb();	/* read nr_swapfiles before swap_info[type] */
2750 		si = swap_info[type];
2751 		if (!(si->flags & SWP_USED) || !si->swap_map)
2752 			continue;
2753 		++*pos;
2754 		return si;
2755 	}
2756 
2757 	return NULL;
2758 }
2759 
2760 static void swap_stop(struct seq_file *swap, void *v)
2761 {
2762 	mutex_unlock(&swapon_mutex);
2763 }
2764 
2765 static int swap_show(struct seq_file *swap, void *v)
2766 {
2767 	struct swap_info_struct *si = v;
2768 	struct file *file;
2769 	int len;
2770 
2771 	if (si == SEQ_START_TOKEN) {
2772 		seq_puts(swap,"Filename\t\t\t\tType\t\tSize\tUsed\tPriority\n");
2773 		return 0;
2774 	}
2775 
2776 	file = si->swap_file;
2777 	len = seq_file_path(swap, file, " \t\n\\");
2778 	seq_printf(swap, "%*s%s\t%u\t%u\t%d\n",
2779 			len < 40 ? 40 - len : 1, " ",
2780 			S_ISBLK(file_inode(file)->i_mode) ?
2781 				"partition" : "file\t",
2782 			si->pages << (PAGE_SHIFT - 10),
2783 			si->inuse_pages << (PAGE_SHIFT - 10),
2784 			si->prio);
2785 	return 0;
2786 }
2787 
2788 static const struct seq_operations swaps_op = {
2789 	.start =	swap_start,
2790 	.next =		swap_next,
2791 	.stop =		swap_stop,
2792 	.show =		swap_show
2793 };
2794 
2795 static int swaps_open(struct inode *inode, struct file *file)
2796 {
2797 	struct seq_file *seq;
2798 	int ret;
2799 
2800 	ret = seq_open(file, &swaps_op);
2801 	if (ret)
2802 		return ret;
2803 
2804 	seq = file->private_data;
2805 	seq->poll_event = atomic_read(&proc_poll_event);
2806 	return 0;
2807 }
2808 
2809 static const struct file_operations proc_swaps_operations = {
2810 	.open		= swaps_open,
2811 	.read		= seq_read,
2812 	.llseek		= seq_lseek,
2813 	.release	= seq_release,
2814 	.poll		= swaps_poll,
2815 };
2816 
2817 static int __init procswaps_init(void)
2818 {
2819 	proc_create("swaps", 0, NULL, &proc_swaps_operations);
2820 	return 0;
2821 }
2822 __initcall(procswaps_init);
2823 #endif /* CONFIG_PROC_FS */
2824 
2825 #ifdef MAX_SWAPFILES_CHECK
2826 static int __init max_swapfiles_check(void)
2827 {
2828 	MAX_SWAPFILES_CHECK();
2829 	return 0;
2830 }
2831 late_initcall(max_swapfiles_check);
2832 #endif
2833 
2834 static struct swap_info_struct *alloc_swap_info(void)
2835 {
2836 	struct swap_info_struct *p;
2837 	unsigned int type;
2838 	int i;
2839 
2840 	p = kzalloc(sizeof(*p), GFP_KERNEL);
2841 	if (!p)
2842 		return ERR_PTR(-ENOMEM);
2843 
2844 	spin_lock(&swap_lock);
2845 	for (type = 0; type < nr_swapfiles; type++) {
2846 		if (!(swap_info[type]->flags & SWP_USED))
2847 			break;
2848 	}
2849 	if (type >= MAX_SWAPFILES) {
2850 		spin_unlock(&swap_lock);
2851 		kfree(p);
2852 		return ERR_PTR(-EPERM);
2853 	}
2854 	if (type >= nr_swapfiles) {
2855 		p->type = type;
2856 		swap_info[type] = p;
2857 		/*
2858 		 * Write swap_info[type] before nr_swapfiles, in case a
2859 		 * racing procfs swap_start() or swap_next() is reading them.
2860 		 * (We never shrink nr_swapfiles, we never free this entry.)
2861 		 */
2862 		smp_wmb();
2863 		nr_swapfiles++;
2864 	} else {
2865 		kfree(p);
2866 		p = swap_info[type];
2867 		/*
2868 		 * Do not memset this entry: a racing procfs swap_next()
2869 		 * would be relying on p->type to remain valid.
2870 		 */
2871 	}
2872 	INIT_LIST_HEAD(&p->first_swap_extent.list);
2873 	plist_node_init(&p->list, 0);
2874 	for_each_node(i)
2875 		plist_node_init(&p->avail_lists[i], 0);
2876 	p->flags = SWP_USED;
2877 	spin_unlock(&swap_lock);
2878 	spin_lock_init(&p->lock);
2879 	spin_lock_init(&p->cont_lock);
2880 
2881 	return p;
2882 }
2883 
2884 static int claim_swapfile(struct swap_info_struct *p, struct inode *inode)
2885 {
2886 	int error;
2887 
2888 	if (S_ISBLK(inode->i_mode)) {
2889 		p->bdev = bdgrab(I_BDEV(inode));
2890 		error = blkdev_get(p->bdev,
2891 				   FMODE_READ | FMODE_WRITE | FMODE_EXCL, p);
2892 		if (error < 0) {
2893 			p->bdev = NULL;
2894 			return error;
2895 		}
2896 		p->old_block_size = block_size(p->bdev);
2897 		error = set_blocksize(p->bdev, PAGE_SIZE);
2898 		if (error < 0)
2899 			return error;
2900 		p->flags |= SWP_BLKDEV;
2901 	} else if (S_ISREG(inode->i_mode)) {
2902 		p->bdev = inode->i_sb->s_bdev;
2903 		inode_lock(inode);
2904 		if (IS_SWAPFILE(inode))
2905 			return -EBUSY;
2906 	} else
2907 		return -EINVAL;
2908 
2909 	return 0;
2910 }
2911 
2912 static unsigned long read_swap_header(struct swap_info_struct *p,
2913 					union swap_header *swap_header,
2914 					struct inode *inode)
2915 {
2916 	int i;
2917 	unsigned long maxpages;
2918 	unsigned long swapfilepages;
2919 	unsigned long last_page;
2920 
2921 	if (memcmp("SWAPSPACE2", swap_header->magic.magic, 10)) {
2922 		pr_err("Unable to find swap-space signature\n");
2923 		return 0;
2924 	}
2925 
2926 	/* swap partition endianess hack... */
2927 	if (swab32(swap_header->info.version) == 1) {
2928 		swab32s(&swap_header->info.version);
2929 		swab32s(&swap_header->info.last_page);
2930 		swab32s(&swap_header->info.nr_badpages);
2931 		if (swap_header->info.nr_badpages > MAX_SWAP_BADPAGES)
2932 			return 0;
2933 		for (i = 0; i < swap_header->info.nr_badpages; i++)
2934 			swab32s(&swap_header->info.badpages[i]);
2935 	}
2936 	/* Check the swap header's sub-version */
2937 	if (swap_header->info.version != 1) {
2938 		pr_warn("Unable to handle swap header version %d\n",
2939 			swap_header->info.version);
2940 		return 0;
2941 	}
2942 
2943 	p->lowest_bit  = 1;
2944 	p->cluster_next = 1;
2945 	p->cluster_nr = 0;
2946 
2947 	/*
2948 	 * Find out how many pages are allowed for a single swap
2949 	 * device. There are two limiting factors: 1) the number
2950 	 * of bits for the swap offset in the swp_entry_t type, and
2951 	 * 2) the number of bits in the swap pte as defined by the
2952 	 * different architectures. In order to find the
2953 	 * largest possible bit mask, a swap entry with swap type 0
2954 	 * and swap offset ~0UL is created, encoded to a swap pte,
2955 	 * decoded to a swp_entry_t again, and finally the swap
2956 	 * offset is extracted. This will mask all the bits from
2957 	 * the initial ~0UL mask that can't be encoded in either
2958 	 * the swp_entry_t or the architecture definition of a
2959 	 * swap pte.
2960 	 */
2961 	maxpages = swp_offset(pte_to_swp_entry(
2962 			swp_entry_to_pte(swp_entry(0, ~0UL)))) + 1;
2963 	last_page = swap_header->info.last_page;
2964 	if (last_page > maxpages) {
2965 		pr_warn("Truncating oversized swap area, only using %luk out of %luk\n",
2966 			maxpages << (PAGE_SHIFT - 10),
2967 			last_page << (PAGE_SHIFT - 10));
2968 	}
2969 	if (maxpages > last_page) {
2970 		maxpages = last_page + 1;
2971 		/* p->max is an unsigned int: don't overflow it */
2972 		if ((unsigned int)maxpages == 0)
2973 			maxpages = UINT_MAX;
2974 	}
2975 	p->highest_bit = maxpages - 1;
2976 
2977 	if (!maxpages)
2978 		return 0;
2979 	swapfilepages = i_size_read(inode) >> PAGE_SHIFT;
2980 	if (swapfilepages && maxpages > swapfilepages) {
2981 		pr_warn("Swap area shorter than signature indicates\n");
2982 		return 0;
2983 	}
2984 	if (swap_header->info.nr_badpages && S_ISREG(inode->i_mode))
2985 		return 0;
2986 	if (swap_header->info.nr_badpages > MAX_SWAP_BADPAGES)
2987 		return 0;
2988 
2989 	return maxpages;
2990 }
2991 
2992 #define SWAP_CLUSTER_INFO_COLS						\
2993 	DIV_ROUND_UP(L1_CACHE_BYTES, sizeof(struct swap_cluster_info))
2994 #define SWAP_CLUSTER_SPACE_COLS						\
2995 	DIV_ROUND_UP(SWAP_ADDRESS_SPACE_PAGES, SWAPFILE_CLUSTER)
2996 #define SWAP_CLUSTER_COLS						\
2997 	max_t(unsigned int, SWAP_CLUSTER_INFO_COLS, SWAP_CLUSTER_SPACE_COLS)
2998 
2999 static int setup_swap_map_and_extents(struct swap_info_struct *p,
3000 					union swap_header *swap_header,
3001 					unsigned char *swap_map,
3002 					struct swap_cluster_info *cluster_info,
3003 					unsigned long maxpages,
3004 					sector_t *span)
3005 {
3006 	unsigned int j, k;
3007 	unsigned int nr_good_pages;
3008 	int nr_extents;
3009 	unsigned long nr_clusters = DIV_ROUND_UP(maxpages, SWAPFILE_CLUSTER);
3010 	unsigned long col = p->cluster_next / SWAPFILE_CLUSTER % SWAP_CLUSTER_COLS;
3011 	unsigned long i, idx;
3012 
3013 	nr_good_pages = maxpages - 1;	/* omit header page */
3014 
3015 	cluster_list_init(&p->free_clusters);
3016 	cluster_list_init(&p->discard_clusters);
3017 
3018 	for (i = 0; i < swap_header->info.nr_badpages; i++) {
3019 		unsigned int page_nr = swap_header->info.badpages[i];
3020 		if (page_nr == 0 || page_nr > swap_header->info.last_page)
3021 			return -EINVAL;
3022 		if (page_nr < maxpages) {
3023 			swap_map[page_nr] = SWAP_MAP_BAD;
3024 			nr_good_pages--;
3025 			/*
3026 			 * Haven't marked the cluster free yet, no list
3027 			 * operation involved
3028 			 */
3029 			inc_cluster_info_page(p, cluster_info, page_nr);
3030 		}
3031 	}
3032 
3033 	/* Haven't marked the cluster free yet, no list operation involved */
3034 	for (i = maxpages; i < round_up(maxpages, SWAPFILE_CLUSTER); i++)
3035 		inc_cluster_info_page(p, cluster_info, i);
3036 
3037 	if (nr_good_pages) {
3038 		swap_map[0] = SWAP_MAP_BAD;
3039 		/*
3040 		 * Not mark the cluster free yet, no list
3041 		 * operation involved
3042 		 */
3043 		inc_cluster_info_page(p, cluster_info, 0);
3044 		p->max = maxpages;
3045 		p->pages = nr_good_pages;
3046 		nr_extents = setup_swap_extents(p, span);
3047 		if (nr_extents < 0)
3048 			return nr_extents;
3049 		nr_good_pages = p->pages;
3050 	}
3051 	if (!nr_good_pages) {
3052 		pr_warn("Empty swap-file\n");
3053 		return -EINVAL;
3054 	}
3055 
3056 	if (!cluster_info)
3057 		return nr_extents;
3058 
3059 
3060 	/*
3061 	 * Reduce false cache line sharing between cluster_info and
3062 	 * sharing same address space.
3063 	 */
3064 	for (k = 0; k < SWAP_CLUSTER_COLS; k++) {
3065 		j = (k + col) % SWAP_CLUSTER_COLS;
3066 		for (i = 0; i < DIV_ROUND_UP(nr_clusters, SWAP_CLUSTER_COLS); i++) {
3067 			idx = i * SWAP_CLUSTER_COLS + j;
3068 			if (idx >= nr_clusters)
3069 				continue;
3070 			if (cluster_count(&cluster_info[idx]))
3071 				continue;
3072 			cluster_set_flag(&cluster_info[idx], CLUSTER_FLAG_FREE);
3073 			cluster_list_add_tail(&p->free_clusters, cluster_info,
3074 					      idx);
3075 		}
3076 	}
3077 	return nr_extents;
3078 }
3079 
3080 /*
3081  * Helper to sys_swapon determining if a given swap
3082  * backing device queue supports DISCARD operations.
3083  */
3084 static bool swap_discardable(struct swap_info_struct *si)
3085 {
3086 	struct request_queue *q = bdev_get_queue(si->bdev);
3087 
3088 	if (!q || !blk_queue_discard(q))
3089 		return false;
3090 
3091 	return true;
3092 }
3093 
3094 SYSCALL_DEFINE2(swapon, const char __user *, specialfile, int, swap_flags)
3095 {
3096 	struct swap_info_struct *p;
3097 	struct filename *name;
3098 	struct file *swap_file = NULL;
3099 	struct address_space *mapping;
3100 	int prio;
3101 	int error;
3102 	union swap_header *swap_header;
3103 	int nr_extents;
3104 	sector_t span;
3105 	unsigned long maxpages;
3106 	unsigned char *swap_map = NULL;
3107 	struct swap_cluster_info *cluster_info = NULL;
3108 	unsigned long *frontswap_map = NULL;
3109 	struct page *page = NULL;
3110 	struct inode *inode = NULL;
3111 
3112 	if (swap_flags & ~SWAP_FLAGS_VALID)
3113 		return -EINVAL;
3114 
3115 	if (!capable(CAP_SYS_ADMIN))
3116 		return -EPERM;
3117 
3118 	if (!swap_avail_heads)
3119 		return -ENOMEM;
3120 
3121 	p = alloc_swap_info();
3122 	if (IS_ERR(p))
3123 		return PTR_ERR(p);
3124 
3125 	INIT_WORK(&p->discard_work, swap_discard_work);
3126 
3127 	name = getname(specialfile);
3128 	if (IS_ERR(name)) {
3129 		error = PTR_ERR(name);
3130 		name = NULL;
3131 		goto bad_swap;
3132 	}
3133 	swap_file = file_open_name(name, O_RDWR|O_LARGEFILE, 0);
3134 	if (IS_ERR(swap_file)) {
3135 		error = PTR_ERR(swap_file);
3136 		swap_file = NULL;
3137 		goto bad_swap;
3138 	}
3139 
3140 	p->swap_file = swap_file;
3141 	mapping = swap_file->f_mapping;
3142 	inode = mapping->host;
3143 
3144 	/* If S_ISREG(inode->i_mode) will do inode_lock(inode); */
3145 	error = claim_swapfile(p, inode);
3146 	if (unlikely(error))
3147 		goto bad_swap;
3148 
3149 	/*
3150 	 * Read the swap header.
3151 	 */
3152 	if (!mapping->a_ops->readpage) {
3153 		error = -EINVAL;
3154 		goto bad_swap;
3155 	}
3156 	page = read_mapping_page(mapping, 0, swap_file);
3157 	if (IS_ERR(page)) {
3158 		error = PTR_ERR(page);
3159 		goto bad_swap;
3160 	}
3161 	swap_header = kmap(page);
3162 
3163 	maxpages = read_swap_header(p, swap_header, inode);
3164 	if (unlikely(!maxpages)) {
3165 		error = -EINVAL;
3166 		goto bad_swap;
3167 	}
3168 
3169 	/* OK, set up the swap map and apply the bad block list */
3170 	swap_map = vzalloc(maxpages);
3171 	if (!swap_map) {
3172 		error = -ENOMEM;
3173 		goto bad_swap;
3174 	}
3175 
3176 	if (bdi_cap_stable_pages_required(inode_to_bdi(inode)))
3177 		p->flags |= SWP_STABLE_WRITES;
3178 
3179 	if (bdi_cap_synchronous_io(inode_to_bdi(inode)))
3180 		p->flags |= SWP_SYNCHRONOUS_IO;
3181 
3182 	if (p->bdev && blk_queue_nonrot(bdev_get_queue(p->bdev))) {
3183 		int cpu;
3184 		unsigned long ci, nr_cluster;
3185 
3186 		p->flags |= SWP_SOLIDSTATE;
3187 		/*
3188 		 * select a random position to start with to help wear leveling
3189 		 * SSD
3190 		 */
3191 		p->cluster_next = 1 + (prandom_u32() % p->highest_bit);
3192 		nr_cluster = DIV_ROUND_UP(maxpages, SWAPFILE_CLUSTER);
3193 
3194 		cluster_info = kvzalloc(nr_cluster * sizeof(*cluster_info),
3195 					GFP_KERNEL);
3196 		if (!cluster_info) {
3197 			error = -ENOMEM;
3198 			goto bad_swap;
3199 		}
3200 
3201 		for (ci = 0; ci < nr_cluster; ci++)
3202 			spin_lock_init(&((cluster_info + ci)->lock));
3203 
3204 		p->percpu_cluster = alloc_percpu(struct percpu_cluster);
3205 		if (!p->percpu_cluster) {
3206 			error = -ENOMEM;
3207 			goto bad_swap;
3208 		}
3209 		for_each_possible_cpu(cpu) {
3210 			struct percpu_cluster *cluster;
3211 			cluster = per_cpu_ptr(p->percpu_cluster, cpu);
3212 			cluster_set_null(&cluster->index);
3213 		}
3214 	} else
3215 		atomic_inc(&nr_rotate_swap);
3216 
3217 	error = swap_cgroup_swapon(p->type, maxpages);
3218 	if (error)
3219 		goto bad_swap;
3220 
3221 	nr_extents = setup_swap_map_and_extents(p, swap_header, swap_map,
3222 		cluster_info, maxpages, &span);
3223 	if (unlikely(nr_extents < 0)) {
3224 		error = nr_extents;
3225 		goto bad_swap;
3226 	}
3227 	/* frontswap enabled? set up bit-per-page map for frontswap */
3228 	if (IS_ENABLED(CONFIG_FRONTSWAP))
3229 		frontswap_map = kvzalloc(BITS_TO_LONGS(maxpages) * sizeof(long),
3230 					 GFP_KERNEL);
3231 
3232 	if (p->bdev &&(swap_flags & SWAP_FLAG_DISCARD) && swap_discardable(p)) {
3233 		/*
3234 		 * When discard is enabled for swap with no particular
3235 		 * policy flagged, we set all swap discard flags here in
3236 		 * order to sustain backward compatibility with older
3237 		 * swapon(8) releases.
3238 		 */
3239 		p->flags |= (SWP_DISCARDABLE | SWP_AREA_DISCARD |
3240 			     SWP_PAGE_DISCARD);
3241 
3242 		/*
3243 		 * By flagging sys_swapon, a sysadmin can tell us to
3244 		 * either do single-time area discards only, or to just
3245 		 * perform discards for released swap page-clusters.
3246 		 * Now it's time to adjust the p->flags accordingly.
3247 		 */
3248 		if (swap_flags & SWAP_FLAG_DISCARD_ONCE)
3249 			p->flags &= ~SWP_PAGE_DISCARD;
3250 		else if (swap_flags & SWAP_FLAG_DISCARD_PAGES)
3251 			p->flags &= ~SWP_AREA_DISCARD;
3252 
3253 		/* issue a swapon-time discard if it's still required */
3254 		if (p->flags & SWP_AREA_DISCARD) {
3255 			int err = discard_swap(p);
3256 			if (unlikely(err))
3257 				pr_err("swapon: discard_swap(%p): %d\n",
3258 					p, err);
3259 		}
3260 	}
3261 
3262 	error = init_swap_address_space(p->type, maxpages);
3263 	if (error)
3264 		goto bad_swap;
3265 
3266 	mutex_lock(&swapon_mutex);
3267 	prio = -1;
3268 	if (swap_flags & SWAP_FLAG_PREFER)
3269 		prio =
3270 		  (swap_flags & SWAP_FLAG_PRIO_MASK) >> SWAP_FLAG_PRIO_SHIFT;
3271 	enable_swap_info(p, prio, swap_map, cluster_info, frontswap_map);
3272 
3273 	pr_info("Adding %uk swap on %s.  Priority:%d extents:%d across:%lluk %s%s%s%s%s\n",
3274 		p->pages<<(PAGE_SHIFT-10), name->name, p->prio,
3275 		nr_extents, (unsigned long long)span<<(PAGE_SHIFT-10),
3276 		(p->flags & SWP_SOLIDSTATE) ? "SS" : "",
3277 		(p->flags & SWP_DISCARDABLE) ? "D" : "",
3278 		(p->flags & SWP_AREA_DISCARD) ? "s" : "",
3279 		(p->flags & SWP_PAGE_DISCARD) ? "c" : "",
3280 		(frontswap_map) ? "FS" : "");
3281 
3282 	mutex_unlock(&swapon_mutex);
3283 	atomic_inc(&proc_poll_event);
3284 	wake_up_interruptible(&proc_poll_wait);
3285 
3286 	if (S_ISREG(inode->i_mode))
3287 		inode->i_flags |= S_SWAPFILE;
3288 	error = 0;
3289 	goto out;
3290 bad_swap:
3291 	free_percpu(p->percpu_cluster);
3292 	p->percpu_cluster = NULL;
3293 	if (inode && S_ISBLK(inode->i_mode) && p->bdev) {
3294 		set_blocksize(p->bdev, p->old_block_size);
3295 		blkdev_put(p->bdev, FMODE_READ | FMODE_WRITE | FMODE_EXCL);
3296 	}
3297 	destroy_swap_extents(p);
3298 	swap_cgroup_swapoff(p->type);
3299 	spin_lock(&swap_lock);
3300 	p->swap_file = NULL;
3301 	p->flags = 0;
3302 	spin_unlock(&swap_lock);
3303 	vfree(swap_map);
3304 	kvfree(cluster_info);
3305 	kvfree(frontswap_map);
3306 	if (swap_file) {
3307 		if (inode && S_ISREG(inode->i_mode)) {
3308 			inode_unlock(inode);
3309 			inode = NULL;
3310 		}
3311 		filp_close(swap_file, NULL);
3312 	}
3313 out:
3314 	if (page && !IS_ERR(page)) {
3315 		kunmap(page);
3316 		put_page(page);
3317 	}
3318 	if (name)
3319 		putname(name);
3320 	if (inode && S_ISREG(inode->i_mode))
3321 		inode_unlock(inode);
3322 	if (!error)
3323 		enable_swap_slots_cache();
3324 	return error;
3325 }
3326 
3327 void si_swapinfo(struct sysinfo *val)
3328 {
3329 	unsigned int type;
3330 	unsigned long nr_to_be_unused = 0;
3331 
3332 	spin_lock(&swap_lock);
3333 	for (type = 0; type < nr_swapfiles; type++) {
3334 		struct swap_info_struct *si = swap_info[type];
3335 
3336 		if ((si->flags & SWP_USED) && !(si->flags & SWP_WRITEOK))
3337 			nr_to_be_unused += si->inuse_pages;
3338 	}
3339 	val->freeswap = atomic_long_read(&nr_swap_pages) + nr_to_be_unused;
3340 	val->totalswap = total_swap_pages + nr_to_be_unused;
3341 	spin_unlock(&swap_lock);
3342 }
3343 
3344 /*
3345  * Verify that a swap entry is valid and increment its swap map count.
3346  *
3347  * Returns error code in following case.
3348  * - success -> 0
3349  * - swp_entry is invalid -> EINVAL
3350  * - swp_entry is migration entry -> EINVAL
3351  * - swap-cache reference is requested but there is already one. -> EEXIST
3352  * - swap-cache reference is requested but the entry is not used. -> ENOENT
3353  * - swap-mapped reference requested but needs continued swap count. -> ENOMEM
3354  */
3355 static int __swap_duplicate(swp_entry_t entry, unsigned char usage)
3356 {
3357 	struct swap_info_struct *p;
3358 	struct swap_cluster_info *ci;
3359 	unsigned long offset, type;
3360 	unsigned char count;
3361 	unsigned char has_cache;
3362 	int err = -EINVAL;
3363 
3364 	if (non_swap_entry(entry))
3365 		goto out;
3366 
3367 	type = swp_type(entry);
3368 	if (type >= nr_swapfiles)
3369 		goto bad_file;
3370 	p = swap_info[type];
3371 	offset = swp_offset(entry);
3372 	if (unlikely(offset >= p->max))
3373 		goto out;
3374 
3375 	ci = lock_cluster_or_swap_info(p, offset);
3376 
3377 	count = p->swap_map[offset];
3378 
3379 	/*
3380 	 * swapin_readahead() doesn't check if a swap entry is valid, so the
3381 	 * swap entry could be SWAP_MAP_BAD. Check here with lock held.
3382 	 */
3383 	if (unlikely(swap_count(count) == SWAP_MAP_BAD)) {
3384 		err = -ENOENT;
3385 		goto unlock_out;
3386 	}
3387 
3388 	has_cache = count & SWAP_HAS_CACHE;
3389 	count &= ~SWAP_HAS_CACHE;
3390 	err = 0;
3391 
3392 	if (usage == SWAP_HAS_CACHE) {
3393 
3394 		/* set SWAP_HAS_CACHE if there is no cache and entry is used */
3395 		if (!has_cache && count)
3396 			has_cache = SWAP_HAS_CACHE;
3397 		else if (has_cache)		/* someone else added cache */
3398 			err = -EEXIST;
3399 		else				/* no users remaining */
3400 			err = -ENOENT;
3401 
3402 	} else if (count || has_cache) {
3403 
3404 		if ((count & ~COUNT_CONTINUED) < SWAP_MAP_MAX)
3405 			count += usage;
3406 		else if ((count & ~COUNT_CONTINUED) > SWAP_MAP_MAX)
3407 			err = -EINVAL;
3408 		else if (swap_count_continued(p, offset, count))
3409 			count = COUNT_CONTINUED;
3410 		else
3411 			err = -ENOMEM;
3412 	} else
3413 		err = -ENOENT;			/* unused swap entry */
3414 
3415 	p->swap_map[offset] = count | has_cache;
3416 
3417 unlock_out:
3418 	unlock_cluster_or_swap_info(p, ci);
3419 out:
3420 	return err;
3421 
3422 bad_file:
3423 	pr_err("swap_dup: %s%08lx\n", Bad_file, entry.val);
3424 	goto out;
3425 }
3426 
3427 /*
3428  * Help swapoff by noting that swap entry belongs to shmem/tmpfs
3429  * (in which case its reference count is never incremented).
3430  */
3431 void swap_shmem_alloc(swp_entry_t entry)
3432 {
3433 	__swap_duplicate(entry, SWAP_MAP_SHMEM);
3434 }
3435 
3436 /*
3437  * Increase reference count of swap entry by 1.
3438  * Returns 0 for success, or -ENOMEM if a swap_count_continuation is required
3439  * but could not be atomically allocated.  Returns 0, just as if it succeeded,
3440  * if __swap_duplicate() fails for another reason (-EINVAL or -ENOENT), which
3441  * might occur if a page table entry has got corrupted.
3442  */
3443 int swap_duplicate(swp_entry_t entry)
3444 {
3445 	int err = 0;
3446 
3447 	while (!err && __swap_duplicate(entry, 1) == -ENOMEM)
3448 		err = add_swap_count_continuation(entry, GFP_ATOMIC);
3449 	return err;
3450 }
3451 
3452 /*
3453  * @entry: swap entry for which we allocate swap cache.
3454  *
3455  * Called when allocating swap cache for existing swap entry,
3456  * This can return error codes. Returns 0 at success.
3457  * -EBUSY means there is a swap cache.
3458  * Note: return code is different from swap_duplicate().
3459  */
3460 int swapcache_prepare(swp_entry_t entry)
3461 {
3462 	return __swap_duplicate(entry, SWAP_HAS_CACHE);
3463 }
3464 
3465 struct swap_info_struct *swp_swap_info(swp_entry_t entry)
3466 {
3467 	return swap_info[swp_type(entry)];
3468 }
3469 
3470 struct swap_info_struct *page_swap_info(struct page *page)
3471 {
3472 	swp_entry_t entry = { .val = page_private(page) };
3473 	return swp_swap_info(entry);
3474 }
3475 
3476 /*
3477  * out-of-line __page_file_ methods to avoid include hell.
3478  */
3479 struct address_space *__page_file_mapping(struct page *page)
3480 {
3481 	return page_swap_info(page)->swap_file->f_mapping;
3482 }
3483 EXPORT_SYMBOL_GPL(__page_file_mapping);
3484 
3485 pgoff_t __page_file_index(struct page *page)
3486 {
3487 	swp_entry_t swap = { .val = page_private(page) };
3488 	return swp_offset(swap);
3489 }
3490 EXPORT_SYMBOL_GPL(__page_file_index);
3491 
3492 /*
3493  * add_swap_count_continuation - called when a swap count is duplicated
3494  * beyond SWAP_MAP_MAX, it allocates a new page and links that to the entry's
3495  * page of the original vmalloc'ed swap_map, to hold the continuation count
3496  * (for that entry and for its neighbouring PAGE_SIZE swap entries).  Called
3497  * again when count is duplicated beyond SWAP_MAP_MAX * SWAP_CONT_MAX, etc.
3498  *
3499  * These continuation pages are seldom referenced: the common paths all work
3500  * on the original swap_map, only referring to a continuation page when the
3501  * low "digit" of a count is incremented or decremented through SWAP_MAP_MAX.
3502  *
3503  * add_swap_count_continuation(, GFP_ATOMIC) can be called while holding
3504  * page table locks; if it fails, add_swap_count_continuation(, GFP_KERNEL)
3505  * can be called after dropping locks.
3506  */
3507 int add_swap_count_continuation(swp_entry_t entry, gfp_t gfp_mask)
3508 {
3509 	struct swap_info_struct *si;
3510 	struct swap_cluster_info *ci;
3511 	struct page *head;
3512 	struct page *page;
3513 	struct page *list_page;
3514 	pgoff_t offset;
3515 	unsigned char count;
3516 
3517 	/*
3518 	 * When debugging, it's easier to use __GFP_ZERO here; but it's better
3519 	 * for latency not to zero a page while GFP_ATOMIC and holding locks.
3520 	 */
3521 	page = alloc_page(gfp_mask | __GFP_HIGHMEM);
3522 
3523 	si = swap_info_get(entry);
3524 	if (!si) {
3525 		/*
3526 		 * An acceptable race has occurred since the failing
3527 		 * __swap_duplicate(): the swap entry has been freed,
3528 		 * perhaps even the whole swap_map cleared for swapoff.
3529 		 */
3530 		goto outer;
3531 	}
3532 
3533 	offset = swp_offset(entry);
3534 
3535 	ci = lock_cluster(si, offset);
3536 
3537 	count = si->swap_map[offset] & ~SWAP_HAS_CACHE;
3538 
3539 	if ((count & ~COUNT_CONTINUED) != SWAP_MAP_MAX) {
3540 		/*
3541 		 * The higher the swap count, the more likely it is that tasks
3542 		 * will race to add swap count continuation: we need to avoid
3543 		 * over-provisioning.
3544 		 */
3545 		goto out;
3546 	}
3547 
3548 	if (!page) {
3549 		unlock_cluster(ci);
3550 		spin_unlock(&si->lock);
3551 		return -ENOMEM;
3552 	}
3553 
3554 	/*
3555 	 * We are fortunate that although vmalloc_to_page uses pte_offset_map,
3556 	 * no architecture is using highmem pages for kernel page tables: so it
3557 	 * will not corrupt the GFP_ATOMIC caller's atomic page table kmaps.
3558 	 */
3559 	head = vmalloc_to_page(si->swap_map + offset);
3560 	offset &= ~PAGE_MASK;
3561 
3562 	spin_lock(&si->cont_lock);
3563 	/*
3564 	 * Page allocation does not initialize the page's lru field,
3565 	 * but it does always reset its private field.
3566 	 */
3567 	if (!page_private(head)) {
3568 		BUG_ON(count & COUNT_CONTINUED);
3569 		INIT_LIST_HEAD(&head->lru);
3570 		set_page_private(head, SWP_CONTINUED);
3571 		si->flags |= SWP_CONTINUED;
3572 	}
3573 
3574 	list_for_each_entry(list_page, &head->lru, lru) {
3575 		unsigned char *map;
3576 
3577 		/*
3578 		 * If the previous map said no continuation, but we've found
3579 		 * a continuation page, free our allocation and use this one.
3580 		 */
3581 		if (!(count & COUNT_CONTINUED))
3582 			goto out_unlock_cont;
3583 
3584 		map = kmap_atomic(list_page) + offset;
3585 		count = *map;
3586 		kunmap_atomic(map);
3587 
3588 		/*
3589 		 * If this continuation count now has some space in it,
3590 		 * free our allocation and use this one.
3591 		 */
3592 		if ((count & ~COUNT_CONTINUED) != SWAP_CONT_MAX)
3593 			goto out_unlock_cont;
3594 	}
3595 
3596 	list_add_tail(&page->lru, &head->lru);
3597 	page = NULL;			/* now it's attached, don't free it */
3598 out_unlock_cont:
3599 	spin_unlock(&si->cont_lock);
3600 out:
3601 	unlock_cluster(ci);
3602 	spin_unlock(&si->lock);
3603 outer:
3604 	if (page)
3605 		__free_page(page);
3606 	return 0;
3607 }
3608 
3609 /*
3610  * swap_count_continued - when the original swap_map count is incremented
3611  * from SWAP_MAP_MAX, check if there is already a continuation page to carry
3612  * into, carry if so, or else fail until a new continuation page is allocated;
3613  * when the original swap_map count is decremented from 0 with continuation,
3614  * borrow from the continuation and report whether it still holds more.
3615  * Called while __swap_duplicate() or swap_entry_free() holds swap or cluster
3616  * lock.
3617  */
3618 static bool swap_count_continued(struct swap_info_struct *si,
3619 				 pgoff_t offset, unsigned char count)
3620 {
3621 	struct page *head;
3622 	struct page *page;
3623 	unsigned char *map;
3624 	bool ret;
3625 
3626 	head = vmalloc_to_page(si->swap_map + offset);
3627 	if (page_private(head) != SWP_CONTINUED) {
3628 		BUG_ON(count & COUNT_CONTINUED);
3629 		return false;		/* need to add count continuation */
3630 	}
3631 
3632 	spin_lock(&si->cont_lock);
3633 	offset &= ~PAGE_MASK;
3634 	page = list_entry(head->lru.next, struct page, lru);
3635 	map = kmap_atomic(page) + offset;
3636 
3637 	if (count == SWAP_MAP_MAX)	/* initial increment from swap_map */
3638 		goto init_map;		/* jump over SWAP_CONT_MAX checks */
3639 
3640 	if (count == (SWAP_MAP_MAX | COUNT_CONTINUED)) { /* incrementing */
3641 		/*
3642 		 * Think of how you add 1 to 999
3643 		 */
3644 		while (*map == (SWAP_CONT_MAX | COUNT_CONTINUED)) {
3645 			kunmap_atomic(map);
3646 			page = list_entry(page->lru.next, struct page, lru);
3647 			BUG_ON(page == head);
3648 			map = kmap_atomic(page) + offset;
3649 		}
3650 		if (*map == SWAP_CONT_MAX) {
3651 			kunmap_atomic(map);
3652 			page = list_entry(page->lru.next, struct page, lru);
3653 			if (page == head) {
3654 				ret = false;	/* add count continuation */
3655 				goto out;
3656 			}
3657 			map = kmap_atomic(page) + offset;
3658 init_map:		*map = 0;		/* we didn't zero the page */
3659 		}
3660 		*map += 1;
3661 		kunmap_atomic(map);
3662 		page = list_entry(page->lru.prev, struct page, lru);
3663 		while (page != head) {
3664 			map = kmap_atomic(page) + offset;
3665 			*map = COUNT_CONTINUED;
3666 			kunmap_atomic(map);
3667 			page = list_entry(page->lru.prev, struct page, lru);
3668 		}
3669 		ret = true;			/* incremented */
3670 
3671 	} else {				/* decrementing */
3672 		/*
3673 		 * Think of how you subtract 1 from 1000
3674 		 */
3675 		BUG_ON(count != COUNT_CONTINUED);
3676 		while (*map == COUNT_CONTINUED) {
3677 			kunmap_atomic(map);
3678 			page = list_entry(page->lru.next, struct page, lru);
3679 			BUG_ON(page == head);
3680 			map = kmap_atomic(page) + offset;
3681 		}
3682 		BUG_ON(*map == 0);
3683 		*map -= 1;
3684 		if (*map == 0)
3685 			count = 0;
3686 		kunmap_atomic(map);
3687 		page = list_entry(page->lru.prev, struct page, lru);
3688 		while (page != head) {
3689 			map = kmap_atomic(page) + offset;
3690 			*map = SWAP_CONT_MAX | count;
3691 			count = COUNT_CONTINUED;
3692 			kunmap_atomic(map);
3693 			page = list_entry(page->lru.prev, struct page, lru);
3694 		}
3695 		ret = count == COUNT_CONTINUED;
3696 	}
3697 out:
3698 	spin_unlock(&si->cont_lock);
3699 	return ret;
3700 }
3701 
3702 /*
3703  * free_swap_count_continuations - swapoff free all the continuation pages
3704  * appended to the swap_map, after swap_map is quiesced, before vfree'ing it.
3705  */
3706 static void free_swap_count_continuations(struct swap_info_struct *si)
3707 {
3708 	pgoff_t offset;
3709 
3710 	for (offset = 0; offset < si->max; offset += PAGE_SIZE) {
3711 		struct page *head;
3712 		head = vmalloc_to_page(si->swap_map + offset);
3713 		if (page_private(head)) {
3714 			struct page *page, *next;
3715 
3716 			list_for_each_entry_safe(page, next, &head->lru, lru) {
3717 				list_del(&page->lru);
3718 				__free_page(page);
3719 			}
3720 		}
3721 	}
3722 }
3723 
3724 static int __init swapfile_init(void)
3725 {
3726 	int nid;
3727 
3728 	swap_avail_heads = kmalloc_array(nr_node_ids, sizeof(struct plist_head),
3729 					 GFP_KERNEL);
3730 	if (!swap_avail_heads) {
3731 		pr_emerg("Not enough memory for swap heads, swap is disabled\n");
3732 		return -ENOMEM;
3733 	}
3734 
3735 	for_each_node(nid)
3736 		plist_head_init(&swap_avail_heads[nid]);
3737 
3738 	return 0;
3739 }
3740 subsys_initcall(swapfile_init);
3741