xref: /openbmc/linux/mm/swapfile.c (revision d2999e1b)
1 /*
2  *  linux/mm/swapfile.c
3  *
4  *  Copyright (C) 1991, 1992, 1993, 1994  Linus Torvalds
5  *  Swap reorganised 29.12.95, Stephen Tweedie
6  */
7 
8 #include <linux/mm.h>
9 #include <linux/hugetlb.h>
10 #include <linux/mman.h>
11 #include <linux/slab.h>
12 #include <linux/kernel_stat.h>
13 #include <linux/swap.h>
14 #include <linux/vmalloc.h>
15 #include <linux/pagemap.h>
16 #include <linux/namei.h>
17 #include <linux/shmem_fs.h>
18 #include <linux/blkdev.h>
19 #include <linux/random.h>
20 #include <linux/writeback.h>
21 #include <linux/proc_fs.h>
22 #include <linux/seq_file.h>
23 #include <linux/init.h>
24 #include <linux/ksm.h>
25 #include <linux/rmap.h>
26 #include <linux/security.h>
27 #include <linux/backing-dev.h>
28 #include <linux/mutex.h>
29 #include <linux/capability.h>
30 #include <linux/syscalls.h>
31 #include <linux/memcontrol.h>
32 #include <linux/poll.h>
33 #include <linux/oom.h>
34 #include <linux/frontswap.h>
35 #include <linux/swapfile.h>
36 #include <linux/export.h>
37 
38 #include <asm/pgtable.h>
39 #include <asm/tlbflush.h>
40 #include <linux/swapops.h>
41 #include <linux/page_cgroup.h>
42 
43 static bool swap_count_continued(struct swap_info_struct *, pgoff_t,
44 				 unsigned char);
45 static void free_swap_count_continuations(struct swap_info_struct *);
46 static sector_t map_swap_entry(swp_entry_t, struct block_device**);
47 
48 DEFINE_SPINLOCK(swap_lock);
49 static unsigned int nr_swapfiles;
50 atomic_long_t nr_swap_pages;
51 /* protected with swap_lock. reading in vm_swap_full() doesn't need lock */
52 long total_swap_pages;
53 static int least_priority;
54 
55 static const char Bad_file[] = "Bad swap file entry ";
56 static const char Unused_file[] = "Unused swap file entry ";
57 static const char Bad_offset[] = "Bad swap offset entry ";
58 static const char Unused_offset[] = "Unused swap offset entry ";
59 
60 /*
61  * all active swap_info_structs
62  * protected with swap_lock, and ordered by priority.
63  */
64 PLIST_HEAD(swap_active_head);
65 
66 /*
67  * all available (active, not full) swap_info_structs
68  * protected with swap_avail_lock, ordered by priority.
69  * This is used by get_swap_page() instead of swap_active_head
70  * because swap_active_head includes all swap_info_structs,
71  * but get_swap_page() doesn't need to look at full ones.
72  * This uses its own lock instead of swap_lock because when a
73  * swap_info_struct changes between not-full/full, it needs to
74  * add/remove itself to/from this list, but the swap_info_struct->lock
75  * is held and the locking order requires swap_lock to be taken
76  * before any swap_info_struct->lock.
77  */
78 static PLIST_HEAD(swap_avail_head);
79 static DEFINE_SPINLOCK(swap_avail_lock);
80 
81 struct swap_info_struct *swap_info[MAX_SWAPFILES];
82 
83 static DEFINE_MUTEX(swapon_mutex);
84 
85 static DECLARE_WAIT_QUEUE_HEAD(proc_poll_wait);
86 /* Activity counter to indicate that a swapon or swapoff has occurred */
87 static atomic_t proc_poll_event = ATOMIC_INIT(0);
88 
89 static inline unsigned char swap_count(unsigned char ent)
90 {
91 	return ent & ~SWAP_HAS_CACHE;	/* may include SWAP_HAS_CONT flag */
92 }
93 
94 /* returns 1 if swap entry is freed */
95 static int
96 __try_to_reclaim_swap(struct swap_info_struct *si, unsigned long offset)
97 {
98 	swp_entry_t entry = swp_entry(si->type, offset);
99 	struct page *page;
100 	int ret = 0;
101 
102 	page = find_get_page(swap_address_space(entry), entry.val);
103 	if (!page)
104 		return 0;
105 	/*
106 	 * This function is called from scan_swap_map() and it's called
107 	 * by vmscan.c at reclaiming pages. So, we hold a lock on a page, here.
108 	 * We have to use trylock for avoiding deadlock. This is a special
109 	 * case and you should use try_to_free_swap() with explicit lock_page()
110 	 * in usual operations.
111 	 */
112 	if (trylock_page(page)) {
113 		ret = try_to_free_swap(page);
114 		unlock_page(page);
115 	}
116 	page_cache_release(page);
117 	return ret;
118 }
119 
120 /*
121  * swapon tell device that all the old swap contents can be discarded,
122  * to allow the swap device to optimize its wear-levelling.
123  */
124 static int discard_swap(struct swap_info_struct *si)
125 {
126 	struct swap_extent *se;
127 	sector_t start_block;
128 	sector_t nr_blocks;
129 	int err = 0;
130 
131 	/* Do not discard the swap header page! */
132 	se = &si->first_swap_extent;
133 	start_block = (se->start_block + 1) << (PAGE_SHIFT - 9);
134 	nr_blocks = ((sector_t)se->nr_pages - 1) << (PAGE_SHIFT - 9);
135 	if (nr_blocks) {
136 		err = blkdev_issue_discard(si->bdev, start_block,
137 				nr_blocks, GFP_KERNEL, 0);
138 		if (err)
139 			return err;
140 		cond_resched();
141 	}
142 
143 	list_for_each_entry(se, &si->first_swap_extent.list, list) {
144 		start_block = se->start_block << (PAGE_SHIFT - 9);
145 		nr_blocks = (sector_t)se->nr_pages << (PAGE_SHIFT - 9);
146 
147 		err = blkdev_issue_discard(si->bdev, start_block,
148 				nr_blocks, GFP_KERNEL, 0);
149 		if (err)
150 			break;
151 
152 		cond_resched();
153 	}
154 	return err;		/* That will often be -EOPNOTSUPP */
155 }
156 
157 /*
158  * swap allocation tell device that a cluster of swap can now be discarded,
159  * to allow the swap device to optimize its wear-levelling.
160  */
161 static void discard_swap_cluster(struct swap_info_struct *si,
162 				 pgoff_t start_page, pgoff_t nr_pages)
163 {
164 	struct swap_extent *se = si->curr_swap_extent;
165 	int found_extent = 0;
166 
167 	while (nr_pages) {
168 		struct list_head *lh;
169 
170 		if (se->start_page <= start_page &&
171 		    start_page < se->start_page + se->nr_pages) {
172 			pgoff_t offset = start_page - se->start_page;
173 			sector_t start_block = se->start_block + offset;
174 			sector_t nr_blocks = se->nr_pages - offset;
175 
176 			if (nr_blocks > nr_pages)
177 				nr_blocks = nr_pages;
178 			start_page += nr_blocks;
179 			nr_pages -= nr_blocks;
180 
181 			if (!found_extent++)
182 				si->curr_swap_extent = se;
183 
184 			start_block <<= PAGE_SHIFT - 9;
185 			nr_blocks <<= PAGE_SHIFT - 9;
186 			if (blkdev_issue_discard(si->bdev, start_block,
187 				    nr_blocks, GFP_NOIO, 0))
188 				break;
189 		}
190 
191 		lh = se->list.next;
192 		se = list_entry(lh, struct swap_extent, list);
193 	}
194 }
195 
196 #define SWAPFILE_CLUSTER	256
197 #define LATENCY_LIMIT		256
198 
199 static inline void cluster_set_flag(struct swap_cluster_info *info,
200 	unsigned int flag)
201 {
202 	info->flags = flag;
203 }
204 
205 static inline unsigned int cluster_count(struct swap_cluster_info *info)
206 {
207 	return info->data;
208 }
209 
210 static inline void cluster_set_count(struct swap_cluster_info *info,
211 				     unsigned int c)
212 {
213 	info->data = c;
214 }
215 
216 static inline void cluster_set_count_flag(struct swap_cluster_info *info,
217 					 unsigned int c, unsigned int f)
218 {
219 	info->flags = f;
220 	info->data = c;
221 }
222 
223 static inline unsigned int cluster_next(struct swap_cluster_info *info)
224 {
225 	return info->data;
226 }
227 
228 static inline void cluster_set_next(struct swap_cluster_info *info,
229 				    unsigned int n)
230 {
231 	info->data = n;
232 }
233 
234 static inline void cluster_set_next_flag(struct swap_cluster_info *info,
235 					 unsigned int n, unsigned int f)
236 {
237 	info->flags = f;
238 	info->data = n;
239 }
240 
241 static inline bool cluster_is_free(struct swap_cluster_info *info)
242 {
243 	return info->flags & CLUSTER_FLAG_FREE;
244 }
245 
246 static inline bool cluster_is_null(struct swap_cluster_info *info)
247 {
248 	return info->flags & CLUSTER_FLAG_NEXT_NULL;
249 }
250 
251 static inline void cluster_set_null(struct swap_cluster_info *info)
252 {
253 	info->flags = CLUSTER_FLAG_NEXT_NULL;
254 	info->data = 0;
255 }
256 
257 /* Add a cluster to discard list and schedule it to do discard */
258 static void swap_cluster_schedule_discard(struct swap_info_struct *si,
259 		unsigned int idx)
260 {
261 	/*
262 	 * If scan_swap_map() can't find a free cluster, it will check
263 	 * si->swap_map directly. To make sure the discarding cluster isn't
264 	 * taken by scan_swap_map(), mark the swap entries bad (occupied). It
265 	 * will be cleared after discard
266 	 */
267 	memset(si->swap_map + idx * SWAPFILE_CLUSTER,
268 			SWAP_MAP_BAD, SWAPFILE_CLUSTER);
269 
270 	if (cluster_is_null(&si->discard_cluster_head)) {
271 		cluster_set_next_flag(&si->discard_cluster_head,
272 						idx, 0);
273 		cluster_set_next_flag(&si->discard_cluster_tail,
274 						idx, 0);
275 	} else {
276 		unsigned int tail = cluster_next(&si->discard_cluster_tail);
277 		cluster_set_next(&si->cluster_info[tail], idx);
278 		cluster_set_next_flag(&si->discard_cluster_tail,
279 						idx, 0);
280 	}
281 
282 	schedule_work(&si->discard_work);
283 }
284 
285 /*
286  * Doing discard actually. After a cluster discard is finished, the cluster
287  * will be added to free cluster list. caller should hold si->lock.
288 */
289 static void swap_do_scheduled_discard(struct swap_info_struct *si)
290 {
291 	struct swap_cluster_info *info;
292 	unsigned int idx;
293 
294 	info = si->cluster_info;
295 
296 	while (!cluster_is_null(&si->discard_cluster_head)) {
297 		idx = cluster_next(&si->discard_cluster_head);
298 
299 		cluster_set_next_flag(&si->discard_cluster_head,
300 						cluster_next(&info[idx]), 0);
301 		if (cluster_next(&si->discard_cluster_tail) == idx) {
302 			cluster_set_null(&si->discard_cluster_head);
303 			cluster_set_null(&si->discard_cluster_tail);
304 		}
305 		spin_unlock(&si->lock);
306 
307 		discard_swap_cluster(si, idx * SWAPFILE_CLUSTER,
308 				SWAPFILE_CLUSTER);
309 
310 		spin_lock(&si->lock);
311 		cluster_set_flag(&info[idx], CLUSTER_FLAG_FREE);
312 		if (cluster_is_null(&si->free_cluster_head)) {
313 			cluster_set_next_flag(&si->free_cluster_head,
314 						idx, 0);
315 			cluster_set_next_flag(&si->free_cluster_tail,
316 						idx, 0);
317 		} else {
318 			unsigned int tail;
319 
320 			tail = cluster_next(&si->free_cluster_tail);
321 			cluster_set_next(&info[tail], idx);
322 			cluster_set_next_flag(&si->free_cluster_tail,
323 						idx, 0);
324 		}
325 		memset(si->swap_map + idx * SWAPFILE_CLUSTER,
326 				0, SWAPFILE_CLUSTER);
327 	}
328 }
329 
330 static void swap_discard_work(struct work_struct *work)
331 {
332 	struct swap_info_struct *si;
333 
334 	si = container_of(work, struct swap_info_struct, discard_work);
335 
336 	spin_lock(&si->lock);
337 	swap_do_scheduled_discard(si);
338 	spin_unlock(&si->lock);
339 }
340 
341 /*
342  * The cluster corresponding to page_nr will be used. The cluster will be
343  * removed from free cluster list and its usage counter will be increased.
344  */
345 static void inc_cluster_info_page(struct swap_info_struct *p,
346 	struct swap_cluster_info *cluster_info, unsigned long page_nr)
347 {
348 	unsigned long idx = page_nr / SWAPFILE_CLUSTER;
349 
350 	if (!cluster_info)
351 		return;
352 	if (cluster_is_free(&cluster_info[idx])) {
353 		VM_BUG_ON(cluster_next(&p->free_cluster_head) != idx);
354 		cluster_set_next_flag(&p->free_cluster_head,
355 			cluster_next(&cluster_info[idx]), 0);
356 		if (cluster_next(&p->free_cluster_tail) == idx) {
357 			cluster_set_null(&p->free_cluster_tail);
358 			cluster_set_null(&p->free_cluster_head);
359 		}
360 		cluster_set_count_flag(&cluster_info[idx], 0, 0);
361 	}
362 
363 	VM_BUG_ON(cluster_count(&cluster_info[idx]) >= SWAPFILE_CLUSTER);
364 	cluster_set_count(&cluster_info[idx],
365 		cluster_count(&cluster_info[idx]) + 1);
366 }
367 
368 /*
369  * The cluster corresponding to page_nr decreases one usage. If the usage
370  * counter becomes 0, which means no page in the cluster is in using, we can
371  * optionally discard the cluster and add it to free cluster list.
372  */
373 static void dec_cluster_info_page(struct swap_info_struct *p,
374 	struct swap_cluster_info *cluster_info, unsigned long page_nr)
375 {
376 	unsigned long idx = page_nr / SWAPFILE_CLUSTER;
377 
378 	if (!cluster_info)
379 		return;
380 
381 	VM_BUG_ON(cluster_count(&cluster_info[idx]) == 0);
382 	cluster_set_count(&cluster_info[idx],
383 		cluster_count(&cluster_info[idx]) - 1);
384 
385 	if (cluster_count(&cluster_info[idx]) == 0) {
386 		/*
387 		 * If the swap is discardable, prepare discard the cluster
388 		 * instead of free it immediately. The cluster will be freed
389 		 * after discard.
390 		 */
391 		if ((p->flags & (SWP_WRITEOK | SWP_PAGE_DISCARD)) ==
392 				 (SWP_WRITEOK | SWP_PAGE_DISCARD)) {
393 			swap_cluster_schedule_discard(p, idx);
394 			return;
395 		}
396 
397 		cluster_set_flag(&cluster_info[idx], CLUSTER_FLAG_FREE);
398 		if (cluster_is_null(&p->free_cluster_head)) {
399 			cluster_set_next_flag(&p->free_cluster_head, idx, 0);
400 			cluster_set_next_flag(&p->free_cluster_tail, idx, 0);
401 		} else {
402 			unsigned int tail = cluster_next(&p->free_cluster_tail);
403 			cluster_set_next(&cluster_info[tail], idx);
404 			cluster_set_next_flag(&p->free_cluster_tail, idx, 0);
405 		}
406 	}
407 }
408 
409 /*
410  * It's possible scan_swap_map() uses a free cluster in the middle of free
411  * cluster list. Avoiding such abuse to avoid list corruption.
412  */
413 static bool
414 scan_swap_map_ssd_cluster_conflict(struct swap_info_struct *si,
415 	unsigned long offset)
416 {
417 	struct percpu_cluster *percpu_cluster;
418 	bool conflict;
419 
420 	offset /= SWAPFILE_CLUSTER;
421 	conflict = !cluster_is_null(&si->free_cluster_head) &&
422 		offset != cluster_next(&si->free_cluster_head) &&
423 		cluster_is_free(&si->cluster_info[offset]);
424 
425 	if (!conflict)
426 		return false;
427 
428 	percpu_cluster = this_cpu_ptr(si->percpu_cluster);
429 	cluster_set_null(&percpu_cluster->index);
430 	return true;
431 }
432 
433 /*
434  * Try to get a swap entry from current cpu's swap entry pool (a cluster). This
435  * might involve allocating a new cluster for current CPU too.
436  */
437 static void scan_swap_map_try_ssd_cluster(struct swap_info_struct *si,
438 	unsigned long *offset, unsigned long *scan_base)
439 {
440 	struct percpu_cluster *cluster;
441 	bool found_free;
442 	unsigned long tmp;
443 
444 new_cluster:
445 	cluster = this_cpu_ptr(si->percpu_cluster);
446 	if (cluster_is_null(&cluster->index)) {
447 		if (!cluster_is_null(&si->free_cluster_head)) {
448 			cluster->index = si->free_cluster_head;
449 			cluster->next = cluster_next(&cluster->index) *
450 					SWAPFILE_CLUSTER;
451 		} else if (!cluster_is_null(&si->discard_cluster_head)) {
452 			/*
453 			 * we don't have free cluster but have some clusters in
454 			 * discarding, do discard now and reclaim them
455 			 */
456 			swap_do_scheduled_discard(si);
457 			*scan_base = *offset = si->cluster_next;
458 			goto new_cluster;
459 		} else
460 			return;
461 	}
462 
463 	found_free = false;
464 
465 	/*
466 	 * Other CPUs can use our cluster if they can't find a free cluster,
467 	 * check if there is still free entry in the cluster
468 	 */
469 	tmp = cluster->next;
470 	while (tmp < si->max && tmp < (cluster_next(&cluster->index) + 1) *
471 	       SWAPFILE_CLUSTER) {
472 		if (!si->swap_map[tmp]) {
473 			found_free = true;
474 			break;
475 		}
476 		tmp++;
477 	}
478 	if (!found_free) {
479 		cluster_set_null(&cluster->index);
480 		goto new_cluster;
481 	}
482 	cluster->next = tmp + 1;
483 	*offset = tmp;
484 	*scan_base = tmp;
485 }
486 
487 static unsigned long scan_swap_map(struct swap_info_struct *si,
488 				   unsigned char usage)
489 {
490 	unsigned long offset;
491 	unsigned long scan_base;
492 	unsigned long last_in_cluster = 0;
493 	int latency_ration = LATENCY_LIMIT;
494 
495 	/*
496 	 * We try to cluster swap pages by allocating them sequentially
497 	 * in swap.  Once we've allocated SWAPFILE_CLUSTER pages this
498 	 * way, however, we resort to first-free allocation, starting
499 	 * a new cluster.  This prevents us from scattering swap pages
500 	 * all over the entire swap partition, so that we reduce
501 	 * overall disk seek times between swap pages.  -- sct
502 	 * But we do now try to find an empty cluster.  -Andrea
503 	 * And we let swap pages go all over an SSD partition.  Hugh
504 	 */
505 
506 	si->flags += SWP_SCANNING;
507 	scan_base = offset = si->cluster_next;
508 
509 	/* SSD algorithm */
510 	if (si->cluster_info) {
511 		scan_swap_map_try_ssd_cluster(si, &offset, &scan_base);
512 		goto checks;
513 	}
514 
515 	if (unlikely(!si->cluster_nr--)) {
516 		if (si->pages - si->inuse_pages < SWAPFILE_CLUSTER) {
517 			si->cluster_nr = SWAPFILE_CLUSTER - 1;
518 			goto checks;
519 		}
520 
521 		spin_unlock(&si->lock);
522 
523 		/*
524 		 * If seek is expensive, start searching for new cluster from
525 		 * start of partition, to minimize the span of allocated swap.
526 		 * If seek is cheap, that is the SWP_SOLIDSTATE si->cluster_info
527 		 * case, just handled by scan_swap_map_try_ssd_cluster() above.
528 		 */
529 		scan_base = offset = si->lowest_bit;
530 		last_in_cluster = offset + SWAPFILE_CLUSTER - 1;
531 
532 		/* Locate the first empty (unaligned) cluster */
533 		for (; last_in_cluster <= si->highest_bit; offset++) {
534 			if (si->swap_map[offset])
535 				last_in_cluster = offset + SWAPFILE_CLUSTER;
536 			else if (offset == last_in_cluster) {
537 				spin_lock(&si->lock);
538 				offset -= SWAPFILE_CLUSTER - 1;
539 				si->cluster_next = offset;
540 				si->cluster_nr = SWAPFILE_CLUSTER - 1;
541 				goto checks;
542 			}
543 			if (unlikely(--latency_ration < 0)) {
544 				cond_resched();
545 				latency_ration = LATENCY_LIMIT;
546 			}
547 		}
548 
549 		offset = scan_base;
550 		spin_lock(&si->lock);
551 		si->cluster_nr = SWAPFILE_CLUSTER - 1;
552 	}
553 
554 checks:
555 	if (si->cluster_info) {
556 		while (scan_swap_map_ssd_cluster_conflict(si, offset))
557 			scan_swap_map_try_ssd_cluster(si, &offset, &scan_base);
558 	}
559 	if (!(si->flags & SWP_WRITEOK))
560 		goto no_page;
561 	if (!si->highest_bit)
562 		goto no_page;
563 	if (offset > si->highest_bit)
564 		scan_base = offset = si->lowest_bit;
565 
566 	/* reuse swap entry of cache-only swap if not busy. */
567 	if (vm_swap_full() && si->swap_map[offset] == SWAP_HAS_CACHE) {
568 		int swap_was_freed;
569 		spin_unlock(&si->lock);
570 		swap_was_freed = __try_to_reclaim_swap(si, offset);
571 		spin_lock(&si->lock);
572 		/* entry was freed successfully, try to use this again */
573 		if (swap_was_freed)
574 			goto checks;
575 		goto scan; /* check next one */
576 	}
577 
578 	if (si->swap_map[offset])
579 		goto scan;
580 
581 	if (offset == si->lowest_bit)
582 		si->lowest_bit++;
583 	if (offset == si->highest_bit)
584 		si->highest_bit--;
585 	si->inuse_pages++;
586 	if (si->inuse_pages == si->pages) {
587 		si->lowest_bit = si->max;
588 		si->highest_bit = 0;
589 		spin_lock(&swap_avail_lock);
590 		plist_del(&si->avail_list, &swap_avail_head);
591 		spin_unlock(&swap_avail_lock);
592 	}
593 	si->swap_map[offset] = usage;
594 	inc_cluster_info_page(si, si->cluster_info, offset);
595 	si->cluster_next = offset + 1;
596 	si->flags -= SWP_SCANNING;
597 
598 	return offset;
599 
600 scan:
601 	spin_unlock(&si->lock);
602 	while (++offset <= si->highest_bit) {
603 		if (!si->swap_map[offset]) {
604 			spin_lock(&si->lock);
605 			goto checks;
606 		}
607 		if (vm_swap_full() && si->swap_map[offset] == SWAP_HAS_CACHE) {
608 			spin_lock(&si->lock);
609 			goto checks;
610 		}
611 		if (unlikely(--latency_ration < 0)) {
612 			cond_resched();
613 			latency_ration = LATENCY_LIMIT;
614 		}
615 	}
616 	offset = si->lowest_bit;
617 	while (offset < scan_base) {
618 		if (!si->swap_map[offset]) {
619 			spin_lock(&si->lock);
620 			goto checks;
621 		}
622 		if (vm_swap_full() && si->swap_map[offset] == SWAP_HAS_CACHE) {
623 			spin_lock(&si->lock);
624 			goto checks;
625 		}
626 		if (unlikely(--latency_ration < 0)) {
627 			cond_resched();
628 			latency_ration = LATENCY_LIMIT;
629 		}
630 		offset++;
631 	}
632 	spin_lock(&si->lock);
633 
634 no_page:
635 	si->flags -= SWP_SCANNING;
636 	return 0;
637 }
638 
639 swp_entry_t get_swap_page(void)
640 {
641 	struct swap_info_struct *si, *next;
642 	pgoff_t offset;
643 
644 	if (atomic_long_read(&nr_swap_pages) <= 0)
645 		goto noswap;
646 	atomic_long_dec(&nr_swap_pages);
647 
648 	spin_lock(&swap_avail_lock);
649 
650 start_over:
651 	plist_for_each_entry_safe(si, next, &swap_avail_head, avail_list) {
652 		/* requeue si to after same-priority siblings */
653 		plist_requeue(&si->avail_list, &swap_avail_head);
654 		spin_unlock(&swap_avail_lock);
655 		spin_lock(&si->lock);
656 		if (!si->highest_bit || !(si->flags & SWP_WRITEOK)) {
657 			spin_lock(&swap_avail_lock);
658 			if (plist_node_empty(&si->avail_list)) {
659 				spin_unlock(&si->lock);
660 				goto nextsi;
661 			}
662 			WARN(!si->highest_bit,
663 			     "swap_info %d in list but !highest_bit\n",
664 			     si->type);
665 			WARN(!(si->flags & SWP_WRITEOK),
666 			     "swap_info %d in list but !SWP_WRITEOK\n",
667 			     si->type);
668 			plist_del(&si->avail_list, &swap_avail_head);
669 			spin_unlock(&si->lock);
670 			goto nextsi;
671 		}
672 
673 		/* This is called for allocating swap entry for cache */
674 		offset = scan_swap_map(si, SWAP_HAS_CACHE);
675 		spin_unlock(&si->lock);
676 		if (offset)
677 			return swp_entry(si->type, offset);
678 		pr_debug("scan_swap_map of si %d failed to find offset\n",
679 		       si->type);
680 		spin_lock(&swap_avail_lock);
681 nextsi:
682 		/*
683 		 * if we got here, it's likely that si was almost full before,
684 		 * and since scan_swap_map() can drop the si->lock, multiple
685 		 * callers probably all tried to get a page from the same si
686 		 * and it filled up before we could get one; or, the si filled
687 		 * up between us dropping swap_avail_lock and taking si->lock.
688 		 * Since we dropped the swap_avail_lock, the swap_avail_head
689 		 * list may have been modified; so if next is still in the
690 		 * swap_avail_head list then try it, otherwise start over.
691 		 */
692 		if (plist_node_empty(&next->avail_list))
693 			goto start_over;
694 	}
695 
696 	spin_unlock(&swap_avail_lock);
697 
698 	atomic_long_inc(&nr_swap_pages);
699 noswap:
700 	return (swp_entry_t) {0};
701 }
702 
703 /* The only caller of this function is now suspend routine */
704 swp_entry_t get_swap_page_of_type(int type)
705 {
706 	struct swap_info_struct *si;
707 	pgoff_t offset;
708 
709 	si = swap_info[type];
710 	spin_lock(&si->lock);
711 	if (si && (si->flags & SWP_WRITEOK)) {
712 		atomic_long_dec(&nr_swap_pages);
713 		/* This is called for allocating swap entry, not cache */
714 		offset = scan_swap_map(si, 1);
715 		if (offset) {
716 			spin_unlock(&si->lock);
717 			return swp_entry(type, offset);
718 		}
719 		atomic_long_inc(&nr_swap_pages);
720 	}
721 	spin_unlock(&si->lock);
722 	return (swp_entry_t) {0};
723 }
724 
725 static struct swap_info_struct *swap_info_get(swp_entry_t entry)
726 {
727 	struct swap_info_struct *p;
728 	unsigned long offset, type;
729 
730 	if (!entry.val)
731 		goto out;
732 	type = swp_type(entry);
733 	if (type >= nr_swapfiles)
734 		goto bad_nofile;
735 	p = swap_info[type];
736 	if (!(p->flags & SWP_USED))
737 		goto bad_device;
738 	offset = swp_offset(entry);
739 	if (offset >= p->max)
740 		goto bad_offset;
741 	if (!p->swap_map[offset])
742 		goto bad_free;
743 	spin_lock(&p->lock);
744 	return p;
745 
746 bad_free:
747 	pr_err("swap_free: %s%08lx\n", Unused_offset, entry.val);
748 	goto out;
749 bad_offset:
750 	pr_err("swap_free: %s%08lx\n", Bad_offset, entry.val);
751 	goto out;
752 bad_device:
753 	pr_err("swap_free: %s%08lx\n", Unused_file, entry.val);
754 	goto out;
755 bad_nofile:
756 	pr_err("swap_free: %s%08lx\n", Bad_file, entry.val);
757 out:
758 	return NULL;
759 }
760 
761 static unsigned char swap_entry_free(struct swap_info_struct *p,
762 				     swp_entry_t entry, unsigned char usage)
763 {
764 	unsigned long offset = swp_offset(entry);
765 	unsigned char count;
766 	unsigned char has_cache;
767 
768 	count = p->swap_map[offset];
769 	has_cache = count & SWAP_HAS_CACHE;
770 	count &= ~SWAP_HAS_CACHE;
771 
772 	if (usage == SWAP_HAS_CACHE) {
773 		VM_BUG_ON(!has_cache);
774 		has_cache = 0;
775 	} else if (count == SWAP_MAP_SHMEM) {
776 		/*
777 		 * Or we could insist on shmem.c using a special
778 		 * swap_shmem_free() and free_shmem_swap_and_cache()...
779 		 */
780 		count = 0;
781 	} else if ((count & ~COUNT_CONTINUED) <= SWAP_MAP_MAX) {
782 		if (count == COUNT_CONTINUED) {
783 			if (swap_count_continued(p, offset, count))
784 				count = SWAP_MAP_MAX | COUNT_CONTINUED;
785 			else
786 				count = SWAP_MAP_MAX;
787 		} else
788 			count--;
789 	}
790 
791 	if (!count)
792 		mem_cgroup_uncharge_swap(entry);
793 
794 	usage = count | has_cache;
795 	p->swap_map[offset] = usage;
796 
797 	/* free if no reference */
798 	if (!usage) {
799 		dec_cluster_info_page(p, p->cluster_info, offset);
800 		if (offset < p->lowest_bit)
801 			p->lowest_bit = offset;
802 		if (offset > p->highest_bit) {
803 			bool was_full = !p->highest_bit;
804 			p->highest_bit = offset;
805 			if (was_full && (p->flags & SWP_WRITEOK)) {
806 				spin_lock(&swap_avail_lock);
807 				WARN_ON(!plist_node_empty(&p->avail_list));
808 				if (plist_node_empty(&p->avail_list))
809 					plist_add(&p->avail_list,
810 						  &swap_avail_head);
811 				spin_unlock(&swap_avail_lock);
812 			}
813 		}
814 		atomic_long_inc(&nr_swap_pages);
815 		p->inuse_pages--;
816 		frontswap_invalidate_page(p->type, offset);
817 		if (p->flags & SWP_BLKDEV) {
818 			struct gendisk *disk = p->bdev->bd_disk;
819 			if (disk->fops->swap_slot_free_notify)
820 				disk->fops->swap_slot_free_notify(p->bdev,
821 								  offset);
822 		}
823 	}
824 
825 	return usage;
826 }
827 
828 /*
829  * Caller has made sure that the swap device corresponding to entry
830  * is still around or has not been recycled.
831  */
832 void swap_free(swp_entry_t entry)
833 {
834 	struct swap_info_struct *p;
835 
836 	p = swap_info_get(entry);
837 	if (p) {
838 		swap_entry_free(p, entry, 1);
839 		spin_unlock(&p->lock);
840 	}
841 }
842 
843 /*
844  * Called after dropping swapcache to decrease refcnt to swap entries.
845  */
846 void swapcache_free(swp_entry_t entry, struct page *page)
847 {
848 	struct swap_info_struct *p;
849 	unsigned char count;
850 
851 	p = swap_info_get(entry);
852 	if (p) {
853 		count = swap_entry_free(p, entry, SWAP_HAS_CACHE);
854 		if (page)
855 			mem_cgroup_uncharge_swapcache(page, entry, count != 0);
856 		spin_unlock(&p->lock);
857 	}
858 }
859 
860 /*
861  * How many references to page are currently swapped out?
862  * This does not give an exact answer when swap count is continued,
863  * but does include the high COUNT_CONTINUED flag to allow for that.
864  */
865 int page_swapcount(struct page *page)
866 {
867 	int count = 0;
868 	struct swap_info_struct *p;
869 	swp_entry_t entry;
870 
871 	entry.val = page_private(page);
872 	p = swap_info_get(entry);
873 	if (p) {
874 		count = swap_count(p->swap_map[swp_offset(entry)]);
875 		spin_unlock(&p->lock);
876 	}
877 	return count;
878 }
879 
880 /*
881  * We can write to an anon page without COW if there are no other references
882  * to it.  And as a side-effect, free up its swap: because the old content
883  * on disk will never be read, and seeking back there to write new content
884  * later would only waste time away from clustering.
885  */
886 int reuse_swap_page(struct page *page)
887 {
888 	int count;
889 
890 	VM_BUG_ON_PAGE(!PageLocked(page), page);
891 	if (unlikely(PageKsm(page)))
892 		return 0;
893 	count = page_mapcount(page);
894 	if (count <= 1 && PageSwapCache(page)) {
895 		count += page_swapcount(page);
896 		if (count == 1 && !PageWriteback(page)) {
897 			delete_from_swap_cache(page);
898 			SetPageDirty(page);
899 		}
900 	}
901 	return count <= 1;
902 }
903 
904 /*
905  * If swap is getting full, or if there are no more mappings of this page,
906  * then try_to_free_swap is called to free its swap space.
907  */
908 int try_to_free_swap(struct page *page)
909 {
910 	VM_BUG_ON_PAGE(!PageLocked(page), page);
911 
912 	if (!PageSwapCache(page))
913 		return 0;
914 	if (PageWriteback(page))
915 		return 0;
916 	if (page_swapcount(page))
917 		return 0;
918 
919 	/*
920 	 * Once hibernation has begun to create its image of memory,
921 	 * there's a danger that one of the calls to try_to_free_swap()
922 	 * - most probably a call from __try_to_reclaim_swap() while
923 	 * hibernation is allocating its own swap pages for the image,
924 	 * but conceivably even a call from memory reclaim - will free
925 	 * the swap from a page which has already been recorded in the
926 	 * image as a clean swapcache page, and then reuse its swap for
927 	 * another page of the image.  On waking from hibernation, the
928 	 * original page might be freed under memory pressure, then
929 	 * later read back in from swap, now with the wrong data.
930 	 *
931 	 * Hibernation suspends storage while it is writing the image
932 	 * to disk so check that here.
933 	 */
934 	if (pm_suspended_storage())
935 		return 0;
936 
937 	delete_from_swap_cache(page);
938 	SetPageDirty(page);
939 	return 1;
940 }
941 
942 /*
943  * Free the swap entry like above, but also try to
944  * free the page cache entry if it is the last user.
945  */
946 int free_swap_and_cache(swp_entry_t entry)
947 {
948 	struct swap_info_struct *p;
949 	struct page *page = NULL;
950 
951 	if (non_swap_entry(entry))
952 		return 1;
953 
954 	p = swap_info_get(entry);
955 	if (p) {
956 		if (swap_entry_free(p, entry, 1) == SWAP_HAS_CACHE) {
957 			page = find_get_page(swap_address_space(entry),
958 						entry.val);
959 			if (page && !trylock_page(page)) {
960 				page_cache_release(page);
961 				page = NULL;
962 			}
963 		}
964 		spin_unlock(&p->lock);
965 	}
966 	if (page) {
967 		/*
968 		 * Not mapped elsewhere, or swap space full? Free it!
969 		 * Also recheck PageSwapCache now page is locked (above).
970 		 */
971 		if (PageSwapCache(page) && !PageWriteback(page) &&
972 				(!page_mapped(page) || vm_swap_full())) {
973 			delete_from_swap_cache(page);
974 			SetPageDirty(page);
975 		}
976 		unlock_page(page);
977 		page_cache_release(page);
978 	}
979 	return p != NULL;
980 }
981 
982 #ifdef CONFIG_HIBERNATION
983 /*
984  * Find the swap type that corresponds to given device (if any).
985  *
986  * @offset - number of the PAGE_SIZE-sized block of the device, starting
987  * from 0, in which the swap header is expected to be located.
988  *
989  * This is needed for the suspend to disk (aka swsusp).
990  */
991 int swap_type_of(dev_t device, sector_t offset, struct block_device **bdev_p)
992 {
993 	struct block_device *bdev = NULL;
994 	int type;
995 
996 	if (device)
997 		bdev = bdget(device);
998 
999 	spin_lock(&swap_lock);
1000 	for (type = 0; type < nr_swapfiles; type++) {
1001 		struct swap_info_struct *sis = swap_info[type];
1002 
1003 		if (!(sis->flags & SWP_WRITEOK))
1004 			continue;
1005 
1006 		if (!bdev) {
1007 			if (bdev_p)
1008 				*bdev_p = bdgrab(sis->bdev);
1009 
1010 			spin_unlock(&swap_lock);
1011 			return type;
1012 		}
1013 		if (bdev == sis->bdev) {
1014 			struct swap_extent *se = &sis->first_swap_extent;
1015 
1016 			if (se->start_block == offset) {
1017 				if (bdev_p)
1018 					*bdev_p = bdgrab(sis->bdev);
1019 
1020 				spin_unlock(&swap_lock);
1021 				bdput(bdev);
1022 				return type;
1023 			}
1024 		}
1025 	}
1026 	spin_unlock(&swap_lock);
1027 	if (bdev)
1028 		bdput(bdev);
1029 
1030 	return -ENODEV;
1031 }
1032 
1033 /*
1034  * Get the (PAGE_SIZE) block corresponding to given offset on the swapdev
1035  * corresponding to given index in swap_info (swap type).
1036  */
1037 sector_t swapdev_block(int type, pgoff_t offset)
1038 {
1039 	struct block_device *bdev;
1040 
1041 	if ((unsigned int)type >= nr_swapfiles)
1042 		return 0;
1043 	if (!(swap_info[type]->flags & SWP_WRITEOK))
1044 		return 0;
1045 	return map_swap_entry(swp_entry(type, offset), &bdev);
1046 }
1047 
1048 /*
1049  * Return either the total number of swap pages of given type, or the number
1050  * of free pages of that type (depending on @free)
1051  *
1052  * This is needed for software suspend
1053  */
1054 unsigned int count_swap_pages(int type, int free)
1055 {
1056 	unsigned int n = 0;
1057 
1058 	spin_lock(&swap_lock);
1059 	if ((unsigned int)type < nr_swapfiles) {
1060 		struct swap_info_struct *sis = swap_info[type];
1061 
1062 		spin_lock(&sis->lock);
1063 		if (sis->flags & SWP_WRITEOK) {
1064 			n = sis->pages;
1065 			if (free)
1066 				n -= sis->inuse_pages;
1067 		}
1068 		spin_unlock(&sis->lock);
1069 	}
1070 	spin_unlock(&swap_lock);
1071 	return n;
1072 }
1073 #endif /* CONFIG_HIBERNATION */
1074 
1075 static inline int maybe_same_pte(pte_t pte, pte_t swp_pte)
1076 {
1077 #ifdef CONFIG_MEM_SOFT_DIRTY
1078 	/*
1079 	 * When pte keeps soft dirty bit the pte generated
1080 	 * from swap entry does not has it, still it's same
1081 	 * pte from logical point of view.
1082 	 */
1083 	pte_t swp_pte_dirty = pte_swp_mksoft_dirty(swp_pte);
1084 	return pte_same(pte, swp_pte) || pte_same(pte, swp_pte_dirty);
1085 #else
1086 	return pte_same(pte, swp_pte);
1087 #endif
1088 }
1089 
1090 /*
1091  * No need to decide whether this PTE shares the swap entry with others,
1092  * just let do_wp_page work it out if a write is requested later - to
1093  * force COW, vm_page_prot omits write permission from any private vma.
1094  */
1095 static int unuse_pte(struct vm_area_struct *vma, pmd_t *pmd,
1096 		unsigned long addr, swp_entry_t entry, struct page *page)
1097 {
1098 	struct page *swapcache;
1099 	struct mem_cgroup *memcg;
1100 	spinlock_t *ptl;
1101 	pte_t *pte;
1102 	int ret = 1;
1103 
1104 	swapcache = page;
1105 	page = ksm_might_need_to_copy(page, vma, addr);
1106 	if (unlikely(!page))
1107 		return -ENOMEM;
1108 
1109 	if (mem_cgroup_try_charge_swapin(vma->vm_mm, page,
1110 					 GFP_KERNEL, &memcg)) {
1111 		ret = -ENOMEM;
1112 		goto out_nolock;
1113 	}
1114 
1115 	pte = pte_offset_map_lock(vma->vm_mm, pmd, addr, &ptl);
1116 	if (unlikely(!maybe_same_pte(*pte, swp_entry_to_pte(entry)))) {
1117 		mem_cgroup_cancel_charge_swapin(memcg);
1118 		ret = 0;
1119 		goto out;
1120 	}
1121 
1122 	dec_mm_counter(vma->vm_mm, MM_SWAPENTS);
1123 	inc_mm_counter(vma->vm_mm, MM_ANONPAGES);
1124 	get_page(page);
1125 	set_pte_at(vma->vm_mm, addr, pte,
1126 		   pte_mkold(mk_pte(page, vma->vm_page_prot)));
1127 	if (page == swapcache)
1128 		page_add_anon_rmap(page, vma, addr);
1129 	else /* ksm created a completely new copy */
1130 		page_add_new_anon_rmap(page, vma, addr);
1131 	mem_cgroup_commit_charge_swapin(page, memcg);
1132 	swap_free(entry);
1133 	/*
1134 	 * Move the page to the active list so it is not
1135 	 * immediately swapped out again after swapon.
1136 	 */
1137 	activate_page(page);
1138 out:
1139 	pte_unmap_unlock(pte, ptl);
1140 out_nolock:
1141 	if (page != swapcache) {
1142 		unlock_page(page);
1143 		put_page(page);
1144 	}
1145 	return ret;
1146 }
1147 
1148 static int unuse_pte_range(struct vm_area_struct *vma, pmd_t *pmd,
1149 				unsigned long addr, unsigned long end,
1150 				swp_entry_t entry, struct page *page)
1151 {
1152 	pte_t swp_pte = swp_entry_to_pte(entry);
1153 	pte_t *pte;
1154 	int ret = 0;
1155 
1156 	/*
1157 	 * We don't actually need pte lock while scanning for swp_pte: since
1158 	 * we hold page lock and mmap_sem, swp_pte cannot be inserted into the
1159 	 * page table while we're scanning; though it could get zapped, and on
1160 	 * some architectures (e.g. x86_32 with PAE) we might catch a glimpse
1161 	 * of unmatched parts which look like swp_pte, so unuse_pte must
1162 	 * recheck under pte lock.  Scanning without pte lock lets it be
1163 	 * preemptable whenever CONFIG_PREEMPT but not CONFIG_HIGHPTE.
1164 	 */
1165 	pte = pte_offset_map(pmd, addr);
1166 	do {
1167 		/*
1168 		 * swapoff spends a _lot_ of time in this loop!
1169 		 * Test inline before going to call unuse_pte.
1170 		 */
1171 		if (unlikely(maybe_same_pte(*pte, swp_pte))) {
1172 			pte_unmap(pte);
1173 			ret = unuse_pte(vma, pmd, addr, entry, page);
1174 			if (ret)
1175 				goto out;
1176 			pte = pte_offset_map(pmd, addr);
1177 		}
1178 	} while (pte++, addr += PAGE_SIZE, addr != end);
1179 	pte_unmap(pte - 1);
1180 out:
1181 	return ret;
1182 }
1183 
1184 static inline int unuse_pmd_range(struct vm_area_struct *vma, pud_t *pud,
1185 				unsigned long addr, unsigned long end,
1186 				swp_entry_t entry, struct page *page)
1187 {
1188 	pmd_t *pmd;
1189 	unsigned long next;
1190 	int ret;
1191 
1192 	pmd = pmd_offset(pud, addr);
1193 	do {
1194 		next = pmd_addr_end(addr, end);
1195 		if (pmd_none_or_trans_huge_or_clear_bad(pmd))
1196 			continue;
1197 		ret = unuse_pte_range(vma, pmd, addr, next, entry, page);
1198 		if (ret)
1199 			return ret;
1200 	} while (pmd++, addr = next, addr != end);
1201 	return 0;
1202 }
1203 
1204 static inline int unuse_pud_range(struct vm_area_struct *vma, pgd_t *pgd,
1205 				unsigned long addr, unsigned long end,
1206 				swp_entry_t entry, struct page *page)
1207 {
1208 	pud_t *pud;
1209 	unsigned long next;
1210 	int ret;
1211 
1212 	pud = pud_offset(pgd, addr);
1213 	do {
1214 		next = pud_addr_end(addr, end);
1215 		if (pud_none_or_clear_bad(pud))
1216 			continue;
1217 		ret = unuse_pmd_range(vma, pud, addr, next, entry, page);
1218 		if (ret)
1219 			return ret;
1220 	} while (pud++, addr = next, addr != end);
1221 	return 0;
1222 }
1223 
1224 static int unuse_vma(struct vm_area_struct *vma,
1225 				swp_entry_t entry, struct page *page)
1226 {
1227 	pgd_t *pgd;
1228 	unsigned long addr, end, next;
1229 	int ret;
1230 
1231 	if (page_anon_vma(page)) {
1232 		addr = page_address_in_vma(page, vma);
1233 		if (addr == -EFAULT)
1234 			return 0;
1235 		else
1236 			end = addr + PAGE_SIZE;
1237 	} else {
1238 		addr = vma->vm_start;
1239 		end = vma->vm_end;
1240 	}
1241 
1242 	pgd = pgd_offset(vma->vm_mm, addr);
1243 	do {
1244 		next = pgd_addr_end(addr, end);
1245 		if (pgd_none_or_clear_bad(pgd))
1246 			continue;
1247 		ret = unuse_pud_range(vma, pgd, addr, next, entry, page);
1248 		if (ret)
1249 			return ret;
1250 	} while (pgd++, addr = next, addr != end);
1251 	return 0;
1252 }
1253 
1254 static int unuse_mm(struct mm_struct *mm,
1255 				swp_entry_t entry, struct page *page)
1256 {
1257 	struct vm_area_struct *vma;
1258 	int ret = 0;
1259 
1260 	if (!down_read_trylock(&mm->mmap_sem)) {
1261 		/*
1262 		 * Activate page so shrink_inactive_list is unlikely to unmap
1263 		 * its ptes while lock is dropped, so swapoff can make progress.
1264 		 */
1265 		activate_page(page);
1266 		unlock_page(page);
1267 		down_read(&mm->mmap_sem);
1268 		lock_page(page);
1269 	}
1270 	for (vma = mm->mmap; vma; vma = vma->vm_next) {
1271 		if (vma->anon_vma && (ret = unuse_vma(vma, entry, page)))
1272 			break;
1273 	}
1274 	up_read(&mm->mmap_sem);
1275 	return (ret < 0)? ret: 0;
1276 }
1277 
1278 /*
1279  * Scan swap_map (or frontswap_map if frontswap parameter is true)
1280  * from current position to next entry still in use.
1281  * Recycle to start on reaching the end, returning 0 when empty.
1282  */
1283 static unsigned int find_next_to_unuse(struct swap_info_struct *si,
1284 					unsigned int prev, bool frontswap)
1285 {
1286 	unsigned int max = si->max;
1287 	unsigned int i = prev;
1288 	unsigned char count;
1289 
1290 	/*
1291 	 * No need for swap_lock here: we're just looking
1292 	 * for whether an entry is in use, not modifying it; false
1293 	 * hits are okay, and sys_swapoff() has already prevented new
1294 	 * allocations from this area (while holding swap_lock).
1295 	 */
1296 	for (;;) {
1297 		if (++i >= max) {
1298 			if (!prev) {
1299 				i = 0;
1300 				break;
1301 			}
1302 			/*
1303 			 * No entries in use at top of swap_map,
1304 			 * loop back to start and recheck there.
1305 			 */
1306 			max = prev + 1;
1307 			prev = 0;
1308 			i = 1;
1309 		}
1310 		if (frontswap) {
1311 			if (frontswap_test(si, i))
1312 				break;
1313 			else
1314 				continue;
1315 		}
1316 		count = ACCESS_ONCE(si->swap_map[i]);
1317 		if (count && swap_count(count) != SWAP_MAP_BAD)
1318 			break;
1319 	}
1320 	return i;
1321 }
1322 
1323 /*
1324  * We completely avoid races by reading each swap page in advance,
1325  * and then search for the process using it.  All the necessary
1326  * page table adjustments can then be made atomically.
1327  *
1328  * if the boolean frontswap is true, only unuse pages_to_unuse pages;
1329  * pages_to_unuse==0 means all pages; ignored if frontswap is false
1330  */
1331 int try_to_unuse(unsigned int type, bool frontswap,
1332 		 unsigned long pages_to_unuse)
1333 {
1334 	struct swap_info_struct *si = swap_info[type];
1335 	struct mm_struct *start_mm;
1336 	volatile unsigned char *swap_map; /* swap_map is accessed without
1337 					   * locking. Mark it as volatile
1338 					   * to prevent compiler doing
1339 					   * something odd.
1340 					   */
1341 	unsigned char swcount;
1342 	struct page *page;
1343 	swp_entry_t entry;
1344 	unsigned int i = 0;
1345 	int retval = 0;
1346 
1347 	/*
1348 	 * When searching mms for an entry, a good strategy is to
1349 	 * start at the first mm we freed the previous entry from
1350 	 * (though actually we don't notice whether we or coincidence
1351 	 * freed the entry).  Initialize this start_mm with a hold.
1352 	 *
1353 	 * A simpler strategy would be to start at the last mm we
1354 	 * freed the previous entry from; but that would take less
1355 	 * advantage of mmlist ordering, which clusters forked mms
1356 	 * together, child after parent.  If we race with dup_mmap(), we
1357 	 * prefer to resolve parent before child, lest we miss entries
1358 	 * duplicated after we scanned child: using last mm would invert
1359 	 * that.
1360 	 */
1361 	start_mm = &init_mm;
1362 	atomic_inc(&init_mm.mm_users);
1363 
1364 	/*
1365 	 * Keep on scanning until all entries have gone.  Usually,
1366 	 * one pass through swap_map is enough, but not necessarily:
1367 	 * there are races when an instance of an entry might be missed.
1368 	 */
1369 	while ((i = find_next_to_unuse(si, i, frontswap)) != 0) {
1370 		if (signal_pending(current)) {
1371 			retval = -EINTR;
1372 			break;
1373 		}
1374 
1375 		/*
1376 		 * Get a page for the entry, using the existing swap
1377 		 * cache page if there is one.  Otherwise, get a clean
1378 		 * page and read the swap into it.
1379 		 */
1380 		swap_map = &si->swap_map[i];
1381 		entry = swp_entry(type, i);
1382 		page = read_swap_cache_async(entry,
1383 					GFP_HIGHUSER_MOVABLE, NULL, 0);
1384 		if (!page) {
1385 			/*
1386 			 * Either swap_duplicate() failed because entry
1387 			 * has been freed independently, and will not be
1388 			 * reused since sys_swapoff() already disabled
1389 			 * allocation from here, or alloc_page() failed.
1390 			 */
1391 			swcount = *swap_map;
1392 			/*
1393 			 * We don't hold lock here, so the swap entry could be
1394 			 * SWAP_MAP_BAD (when the cluster is discarding).
1395 			 * Instead of fail out, We can just skip the swap
1396 			 * entry because swapoff will wait for discarding
1397 			 * finish anyway.
1398 			 */
1399 			if (!swcount || swcount == SWAP_MAP_BAD)
1400 				continue;
1401 			retval = -ENOMEM;
1402 			break;
1403 		}
1404 
1405 		/*
1406 		 * Don't hold on to start_mm if it looks like exiting.
1407 		 */
1408 		if (atomic_read(&start_mm->mm_users) == 1) {
1409 			mmput(start_mm);
1410 			start_mm = &init_mm;
1411 			atomic_inc(&init_mm.mm_users);
1412 		}
1413 
1414 		/*
1415 		 * Wait for and lock page.  When do_swap_page races with
1416 		 * try_to_unuse, do_swap_page can handle the fault much
1417 		 * faster than try_to_unuse can locate the entry.  This
1418 		 * apparently redundant "wait_on_page_locked" lets try_to_unuse
1419 		 * defer to do_swap_page in such a case - in some tests,
1420 		 * do_swap_page and try_to_unuse repeatedly compete.
1421 		 */
1422 		wait_on_page_locked(page);
1423 		wait_on_page_writeback(page);
1424 		lock_page(page);
1425 		wait_on_page_writeback(page);
1426 
1427 		/*
1428 		 * Remove all references to entry.
1429 		 */
1430 		swcount = *swap_map;
1431 		if (swap_count(swcount) == SWAP_MAP_SHMEM) {
1432 			retval = shmem_unuse(entry, page);
1433 			/* page has already been unlocked and released */
1434 			if (retval < 0)
1435 				break;
1436 			continue;
1437 		}
1438 		if (swap_count(swcount) && start_mm != &init_mm)
1439 			retval = unuse_mm(start_mm, entry, page);
1440 
1441 		if (swap_count(*swap_map)) {
1442 			int set_start_mm = (*swap_map >= swcount);
1443 			struct list_head *p = &start_mm->mmlist;
1444 			struct mm_struct *new_start_mm = start_mm;
1445 			struct mm_struct *prev_mm = start_mm;
1446 			struct mm_struct *mm;
1447 
1448 			atomic_inc(&new_start_mm->mm_users);
1449 			atomic_inc(&prev_mm->mm_users);
1450 			spin_lock(&mmlist_lock);
1451 			while (swap_count(*swap_map) && !retval &&
1452 					(p = p->next) != &start_mm->mmlist) {
1453 				mm = list_entry(p, struct mm_struct, mmlist);
1454 				if (!atomic_inc_not_zero(&mm->mm_users))
1455 					continue;
1456 				spin_unlock(&mmlist_lock);
1457 				mmput(prev_mm);
1458 				prev_mm = mm;
1459 
1460 				cond_resched();
1461 
1462 				swcount = *swap_map;
1463 				if (!swap_count(swcount)) /* any usage ? */
1464 					;
1465 				else if (mm == &init_mm)
1466 					set_start_mm = 1;
1467 				else
1468 					retval = unuse_mm(mm, entry, page);
1469 
1470 				if (set_start_mm && *swap_map < swcount) {
1471 					mmput(new_start_mm);
1472 					atomic_inc(&mm->mm_users);
1473 					new_start_mm = mm;
1474 					set_start_mm = 0;
1475 				}
1476 				spin_lock(&mmlist_lock);
1477 			}
1478 			spin_unlock(&mmlist_lock);
1479 			mmput(prev_mm);
1480 			mmput(start_mm);
1481 			start_mm = new_start_mm;
1482 		}
1483 		if (retval) {
1484 			unlock_page(page);
1485 			page_cache_release(page);
1486 			break;
1487 		}
1488 
1489 		/*
1490 		 * If a reference remains (rare), we would like to leave
1491 		 * the page in the swap cache; but try_to_unmap could
1492 		 * then re-duplicate the entry once we drop page lock,
1493 		 * so we might loop indefinitely; also, that page could
1494 		 * not be swapped out to other storage meanwhile.  So:
1495 		 * delete from cache even if there's another reference,
1496 		 * after ensuring that the data has been saved to disk -
1497 		 * since if the reference remains (rarer), it will be
1498 		 * read from disk into another page.  Splitting into two
1499 		 * pages would be incorrect if swap supported "shared
1500 		 * private" pages, but they are handled by tmpfs files.
1501 		 *
1502 		 * Given how unuse_vma() targets one particular offset
1503 		 * in an anon_vma, once the anon_vma has been determined,
1504 		 * this splitting happens to be just what is needed to
1505 		 * handle where KSM pages have been swapped out: re-reading
1506 		 * is unnecessarily slow, but we can fix that later on.
1507 		 */
1508 		if (swap_count(*swap_map) &&
1509 		     PageDirty(page) && PageSwapCache(page)) {
1510 			struct writeback_control wbc = {
1511 				.sync_mode = WB_SYNC_NONE,
1512 			};
1513 
1514 			swap_writepage(page, &wbc);
1515 			lock_page(page);
1516 			wait_on_page_writeback(page);
1517 		}
1518 
1519 		/*
1520 		 * It is conceivable that a racing task removed this page from
1521 		 * swap cache just before we acquired the page lock at the top,
1522 		 * or while we dropped it in unuse_mm().  The page might even
1523 		 * be back in swap cache on another swap area: that we must not
1524 		 * delete, since it may not have been written out to swap yet.
1525 		 */
1526 		if (PageSwapCache(page) &&
1527 		    likely(page_private(page) == entry.val))
1528 			delete_from_swap_cache(page);
1529 
1530 		/*
1531 		 * So we could skip searching mms once swap count went
1532 		 * to 1, we did not mark any present ptes as dirty: must
1533 		 * mark page dirty so shrink_page_list will preserve it.
1534 		 */
1535 		SetPageDirty(page);
1536 		unlock_page(page);
1537 		page_cache_release(page);
1538 
1539 		/*
1540 		 * Make sure that we aren't completely killing
1541 		 * interactive performance.
1542 		 */
1543 		cond_resched();
1544 		if (frontswap && pages_to_unuse > 0) {
1545 			if (!--pages_to_unuse)
1546 				break;
1547 		}
1548 	}
1549 
1550 	mmput(start_mm);
1551 	return retval;
1552 }
1553 
1554 /*
1555  * After a successful try_to_unuse, if no swap is now in use, we know
1556  * we can empty the mmlist.  swap_lock must be held on entry and exit.
1557  * Note that mmlist_lock nests inside swap_lock, and an mm must be
1558  * added to the mmlist just after page_duplicate - before would be racy.
1559  */
1560 static void drain_mmlist(void)
1561 {
1562 	struct list_head *p, *next;
1563 	unsigned int type;
1564 
1565 	for (type = 0; type < nr_swapfiles; type++)
1566 		if (swap_info[type]->inuse_pages)
1567 			return;
1568 	spin_lock(&mmlist_lock);
1569 	list_for_each_safe(p, next, &init_mm.mmlist)
1570 		list_del_init(p);
1571 	spin_unlock(&mmlist_lock);
1572 }
1573 
1574 /*
1575  * Use this swapdev's extent info to locate the (PAGE_SIZE) block which
1576  * corresponds to page offset for the specified swap entry.
1577  * Note that the type of this function is sector_t, but it returns page offset
1578  * into the bdev, not sector offset.
1579  */
1580 static sector_t map_swap_entry(swp_entry_t entry, struct block_device **bdev)
1581 {
1582 	struct swap_info_struct *sis;
1583 	struct swap_extent *start_se;
1584 	struct swap_extent *se;
1585 	pgoff_t offset;
1586 
1587 	sis = swap_info[swp_type(entry)];
1588 	*bdev = sis->bdev;
1589 
1590 	offset = swp_offset(entry);
1591 	start_se = sis->curr_swap_extent;
1592 	se = start_se;
1593 
1594 	for ( ; ; ) {
1595 		struct list_head *lh;
1596 
1597 		if (se->start_page <= offset &&
1598 				offset < (se->start_page + se->nr_pages)) {
1599 			return se->start_block + (offset - se->start_page);
1600 		}
1601 		lh = se->list.next;
1602 		se = list_entry(lh, struct swap_extent, list);
1603 		sis->curr_swap_extent = se;
1604 		BUG_ON(se == start_se);		/* It *must* be present */
1605 	}
1606 }
1607 
1608 /*
1609  * Returns the page offset into bdev for the specified page's swap entry.
1610  */
1611 sector_t map_swap_page(struct page *page, struct block_device **bdev)
1612 {
1613 	swp_entry_t entry;
1614 	entry.val = page_private(page);
1615 	return map_swap_entry(entry, bdev);
1616 }
1617 
1618 /*
1619  * Free all of a swapdev's extent information
1620  */
1621 static void destroy_swap_extents(struct swap_info_struct *sis)
1622 {
1623 	while (!list_empty(&sis->first_swap_extent.list)) {
1624 		struct swap_extent *se;
1625 
1626 		se = list_entry(sis->first_swap_extent.list.next,
1627 				struct swap_extent, list);
1628 		list_del(&se->list);
1629 		kfree(se);
1630 	}
1631 
1632 	if (sis->flags & SWP_FILE) {
1633 		struct file *swap_file = sis->swap_file;
1634 		struct address_space *mapping = swap_file->f_mapping;
1635 
1636 		sis->flags &= ~SWP_FILE;
1637 		mapping->a_ops->swap_deactivate(swap_file);
1638 	}
1639 }
1640 
1641 /*
1642  * Add a block range (and the corresponding page range) into this swapdev's
1643  * extent list.  The extent list is kept sorted in page order.
1644  *
1645  * This function rather assumes that it is called in ascending page order.
1646  */
1647 int
1648 add_swap_extent(struct swap_info_struct *sis, unsigned long start_page,
1649 		unsigned long nr_pages, sector_t start_block)
1650 {
1651 	struct swap_extent *se;
1652 	struct swap_extent *new_se;
1653 	struct list_head *lh;
1654 
1655 	if (start_page == 0) {
1656 		se = &sis->first_swap_extent;
1657 		sis->curr_swap_extent = se;
1658 		se->start_page = 0;
1659 		se->nr_pages = nr_pages;
1660 		se->start_block = start_block;
1661 		return 1;
1662 	} else {
1663 		lh = sis->first_swap_extent.list.prev;	/* Highest extent */
1664 		se = list_entry(lh, struct swap_extent, list);
1665 		BUG_ON(se->start_page + se->nr_pages != start_page);
1666 		if (se->start_block + se->nr_pages == start_block) {
1667 			/* Merge it */
1668 			se->nr_pages += nr_pages;
1669 			return 0;
1670 		}
1671 	}
1672 
1673 	/*
1674 	 * No merge.  Insert a new extent, preserving ordering.
1675 	 */
1676 	new_se = kmalloc(sizeof(*se), GFP_KERNEL);
1677 	if (new_se == NULL)
1678 		return -ENOMEM;
1679 	new_se->start_page = start_page;
1680 	new_se->nr_pages = nr_pages;
1681 	new_se->start_block = start_block;
1682 
1683 	list_add_tail(&new_se->list, &sis->first_swap_extent.list);
1684 	return 1;
1685 }
1686 
1687 /*
1688  * A `swap extent' is a simple thing which maps a contiguous range of pages
1689  * onto a contiguous range of disk blocks.  An ordered list of swap extents
1690  * is built at swapon time and is then used at swap_writepage/swap_readpage
1691  * time for locating where on disk a page belongs.
1692  *
1693  * If the swapfile is an S_ISBLK block device, a single extent is installed.
1694  * This is done so that the main operating code can treat S_ISBLK and S_ISREG
1695  * swap files identically.
1696  *
1697  * Whether the swapdev is an S_ISREG file or an S_ISBLK blockdev, the swap
1698  * extent list operates in PAGE_SIZE disk blocks.  Both S_ISREG and S_ISBLK
1699  * swapfiles are handled *identically* after swapon time.
1700  *
1701  * For S_ISREG swapfiles, setup_swap_extents() will walk all the file's blocks
1702  * and will parse them into an ordered extent list, in PAGE_SIZE chunks.  If
1703  * some stray blocks are found which do not fall within the PAGE_SIZE alignment
1704  * requirements, they are simply tossed out - we will never use those blocks
1705  * for swapping.
1706  *
1707  * For S_ISREG swapfiles we set S_SWAPFILE across the life of the swapon.  This
1708  * prevents root from shooting her foot off by ftruncating an in-use swapfile,
1709  * which will scribble on the fs.
1710  *
1711  * The amount of disk space which a single swap extent represents varies.
1712  * Typically it is in the 1-4 megabyte range.  So we can have hundreds of
1713  * extents in the list.  To avoid much list walking, we cache the previous
1714  * search location in `curr_swap_extent', and start new searches from there.
1715  * This is extremely effective.  The average number of iterations in
1716  * map_swap_page() has been measured at about 0.3 per page.  - akpm.
1717  */
1718 static int setup_swap_extents(struct swap_info_struct *sis, sector_t *span)
1719 {
1720 	struct file *swap_file = sis->swap_file;
1721 	struct address_space *mapping = swap_file->f_mapping;
1722 	struct inode *inode = mapping->host;
1723 	int ret;
1724 
1725 	if (S_ISBLK(inode->i_mode)) {
1726 		ret = add_swap_extent(sis, 0, sis->max, 0);
1727 		*span = sis->pages;
1728 		return ret;
1729 	}
1730 
1731 	if (mapping->a_ops->swap_activate) {
1732 		ret = mapping->a_ops->swap_activate(sis, swap_file, span);
1733 		if (!ret) {
1734 			sis->flags |= SWP_FILE;
1735 			ret = add_swap_extent(sis, 0, sis->max, 0);
1736 			*span = sis->pages;
1737 		}
1738 		return ret;
1739 	}
1740 
1741 	return generic_swapfile_activate(sis, swap_file, span);
1742 }
1743 
1744 static void _enable_swap_info(struct swap_info_struct *p, int prio,
1745 				unsigned char *swap_map,
1746 				struct swap_cluster_info *cluster_info)
1747 {
1748 	if (prio >= 0)
1749 		p->prio = prio;
1750 	else
1751 		p->prio = --least_priority;
1752 	/*
1753 	 * the plist prio is negated because plist ordering is
1754 	 * low-to-high, while swap ordering is high-to-low
1755 	 */
1756 	p->list.prio = -p->prio;
1757 	p->avail_list.prio = -p->prio;
1758 	p->swap_map = swap_map;
1759 	p->cluster_info = cluster_info;
1760 	p->flags |= SWP_WRITEOK;
1761 	atomic_long_add(p->pages, &nr_swap_pages);
1762 	total_swap_pages += p->pages;
1763 
1764 	assert_spin_locked(&swap_lock);
1765 	/*
1766 	 * both lists are plists, and thus priority ordered.
1767 	 * swap_active_head needs to be priority ordered for swapoff(),
1768 	 * which on removal of any swap_info_struct with an auto-assigned
1769 	 * (i.e. negative) priority increments the auto-assigned priority
1770 	 * of any lower-priority swap_info_structs.
1771 	 * swap_avail_head needs to be priority ordered for get_swap_page(),
1772 	 * which allocates swap pages from the highest available priority
1773 	 * swap_info_struct.
1774 	 */
1775 	plist_add(&p->list, &swap_active_head);
1776 	spin_lock(&swap_avail_lock);
1777 	plist_add(&p->avail_list, &swap_avail_head);
1778 	spin_unlock(&swap_avail_lock);
1779 }
1780 
1781 static void enable_swap_info(struct swap_info_struct *p, int prio,
1782 				unsigned char *swap_map,
1783 				struct swap_cluster_info *cluster_info,
1784 				unsigned long *frontswap_map)
1785 {
1786 	frontswap_init(p->type, frontswap_map);
1787 	spin_lock(&swap_lock);
1788 	spin_lock(&p->lock);
1789 	 _enable_swap_info(p, prio, swap_map, cluster_info);
1790 	spin_unlock(&p->lock);
1791 	spin_unlock(&swap_lock);
1792 }
1793 
1794 static void reinsert_swap_info(struct swap_info_struct *p)
1795 {
1796 	spin_lock(&swap_lock);
1797 	spin_lock(&p->lock);
1798 	_enable_swap_info(p, p->prio, p->swap_map, p->cluster_info);
1799 	spin_unlock(&p->lock);
1800 	spin_unlock(&swap_lock);
1801 }
1802 
1803 SYSCALL_DEFINE1(swapoff, const char __user *, specialfile)
1804 {
1805 	struct swap_info_struct *p = NULL;
1806 	unsigned char *swap_map;
1807 	struct swap_cluster_info *cluster_info;
1808 	unsigned long *frontswap_map;
1809 	struct file *swap_file, *victim;
1810 	struct address_space *mapping;
1811 	struct inode *inode;
1812 	struct filename *pathname;
1813 	int err, found = 0;
1814 	unsigned int old_block_size;
1815 
1816 	if (!capable(CAP_SYS_ADMIN))
1817 		return -EPERM;
1818 
1819 	BUG_ON(!current->mm);
1820 
1821 	pathname = getname(specialfile);
1822 	if (IS_ERR(pathname))
1823 		return PTR_ERR(pathname);
1824 
1825 	victim = file_open_name(pathname, O_RDWR|O_LARGEFILE, 0);
1826 	err = PTR_ERR(victim);
1827 	if (IS_ERR(victim))
1828 		goto out;
1829 
1830 	mapping = victim->f_mapping;
1831 	spin_lock(&swap_lock);
1832 	plist_for_each_entry(p, &swap_active_head, list) {
1833 		if (p->flags & SWP_WRITEOK) {
1834 			if (p->swap_file->f_mapping == mapping) {
1835 				found = 1;
1836 				break;
1837 			}
1838 		}
1839 	}
1840 	if (!found) {
1841 		err = -EINVAL;
1842 		spin_unlock(&swap_lock);
1843 		goto out_dput;
1844 	}
1845 	if (!security_vm_enough_memory_mm(current->mm, p->pages))
1846 		vm_unacct_memory(p->pages);
1847 	else {
1848 		err = -ENOMEM;
1849 		spin_unlock(&swap_lock);
1850 		goto out_dput;
1851 	}
1852 	spin_lock(&swap_avail_lock);
1853 	plist_del(&p->avail_list, &swap_avail_head);
1854 	spin_unlock(&swap_avail_lock);
1855 	spin_lock(&p->lock);
1856 	if (p->prio < 0) {
1857 		struct swap_info_struct *si = p;
1858 
1859 		plist_for_each_entry_continue(si, &swap_active_head, list) {
1860 			si->prio++;
1861 			si->list.prio--;
1862 			si->avail_list.prio--;
1863 		}
1864 		least_priority++;
1865 	}
1866 	plist_del(&p->list, &swap_active_head);
1867 	atomic_long_sub(p->pages, &nr_swap_pages);
1868 	total_swap_pages -= p->pages;
1869 	p->flags &= ~SWP_WRITEOK;
1870 	spin_unlock(&p->lock);
1871 	spin_unlock(&swap_lock);
1872 
1873 	set_current_oom_origin();
1874 	err = try_to_unuse(p->type, false, 0); /* force unuse all pages */
1875 	clear_current_oom_origin();
1876 
1877 	if (err) {
1878 		/* re-insert swap space back into swap_list */
1879 		reinsert_swap_info(p);
1880 		goto out_dput;
1881 	}
1882 
1883 	flush_work(&p->discard_work);
1884 
1885 	destroy_swap_extents(p);
1886 	if (p->flags & SWP_CONTINUED)
1887 		free_swap_count_continuations(p);
1888 
1889 	mutex_lock(&swapon_mutex);
1890 	spin_lock(&swap_lock);
1891 	spin_lock(&p->lock);
1892 	drain_mmlist();
1893 
1894 	/* wait for anyone still in scan_swap_map */
1895 	p->highest_bit = 0;		/* cuts scans short */
1896 	while (p->flags >= SWP_SCANNING) {
1897 		spin_unlock(&p->lock);
1898 		spin_unlock(&swap_lock);
1899 		schedule_timeout_uninterruptible(1);
1900 		spin_lock(&swap_lock);
1901 		spin_lock(&p->lock);
1902 	}
1903 
1904 	swap_file = p->swap_file;
1905 	old_block_size = p->old_block_size;
1906 	p->swap_file = NULL;
1907 	p->max = 0;
1908 	swap_map = p->swap_map;
1909 	p->swap_map = NULL;
1910 	cluster_info = p->cluster_info;
1911 	p->cluster_info = NULL;
1912 	frontswap_map = frontswap_map_get(p);
1913 	spin_unlock(&p->lock);
1914 	spin_unlock(&swap_lock);
1915 	frontswap_invalidate_area(p->type);
1916 	frontswap_map_set(p, NULL);
1917 	mutex_unlock(&swapon_mutex);
1918 	free_percpu(p->percpu_cluster);
1919 	p->percpu_cluster = NULL;
1920 	vfree(swap_map);
1921 	vfree(cluster_info);
1922 	vfree(frontswap_map);
1923 	/* Destroy swap account information */
1924 	swap_cgroup_swapoff(p->type);
1925 
1926 	inode = mapping->host;
1927 	if (S_ISBLK(inode->i_mode)) {
1928 		struct block_device *bdev = I_BDEV(inode);
1929 		set_blocksize(bdev, old_block_size);
1930 		blkdev_put(bdev, FMODE_READ | FMODE_WRITE | FMODE_EXCL);
1931 	} else {
1932 		mutex_lock(&inode->i_mutex);
1933 		inode->i_flags &= ~S_SWAPFILE;
1934 		mutex_unlock(&inode->i_mutex);
1935 	}
1936 	filp_close(swap_file, NULL);
1937 
1938 	/*
1939 	 * Clear the SWP_USED flag after all resources are freed so that swapon
1940 	 * can reuse this swap_info in alloc_swap_info() safely.  It is ok to
1941 	 * not hold p->lock after we cleared its SWP_WRITEOK.
1942 	 */
1943 	spin_lock(&swap_lock);
1944 	p->flags = 0;
1945 	spin_unlock(&swap_lock);
1946 
1947 	err = 0;
1948 	atomic_inc(&proc_poll_event);
1949 	wake_up_interruptible(&proc_poll_wait);
1950 
1951 out_dput:
1952 	filp_close(victim, NULL);
1953 out:
1954 	putname(pathname);
1955 	return err;
1956 }
1957 
1958 #ifdef CONFIG_PROC_FS
1959 static unsigned swaps_poll(struct file *file, poll_table *wait)
1960 {
1961 	struct seq_file *seq = file->private_data;
1962 
1963 	poll_wait(file, &proc_poll_wait, wait);
1964 
1965 	if (seq->poll_event != atomic_read(&proc_poll_event)) {
1966 		seq->poll_event = atomic_read(&proc_poll_event);
1967 		return POLLIN | POLLRDNORM | POLLERR | POLLPRI;
1968 	}
1969 
1970 	return POLLIN | POLLRDNORM;
1971 }
1972 
1973 /* iterator */
1974 static void *swap_start(struct seq_file *swap, loff_t *pos)
1975 {
1976 	struct swap_info_struct *si;
1977 	int type;
1978 	loff_t l = *pos;
1979 
1980 	mutex_lock(&swapon_mutex);
1981 
1982 	if (!l)
1983 		return SEQ_START_TOKEN;
1984 
1985 	for (type = 0; type < nr_swapfiles; type++) {
1986 		smp_rmb();	/* read nr_swapfiles before swap_info[type] */
1987 		si = swap_info[type];
1988 		if (!(si->flags & SWP_USED) || !si->swap_map)
1989 			continue;
1990 		if (!--l)
1991 			return si;
1992 	}
1993 
1994 	return NULL;
1995 }
1996 
1997 static void *swap_next(struct seq_file *swap, void *v, loff_t *pos)
1998 {
1999 	struct swap_info_struct *si = v;
2000 	int type;
2001 
2002 	if (v == SEQ_START_TOKEN)
2003 		type = 0;
2004 	else
2005 		type = si->type + 1;
2006 
2007 	for (; type < nr_swapfiles; type++) {
2008 		smp_rmb();	/* read nr_swapfiles before swap_info[type] */
2009 		si = swap_info[type];
2010 		if (!(si->flags & SWP_USED) || !si->swap_map)
2011 			continue;
2012 		++*pos;
2013 		return si;
2014 	}
2015 
2016 	return NULL;
2017 }
2018 
2019 static void swap_stop(struct seq_file *swap, void *v)
2020 {
2021 	mutex_unlock(&swapon_mutex);
2022 }
2023 
2024 static int swap_show(struct seq_file *swap, void *v)
2025 {
2026 	struct swap_info_struct *si = v;
2027 	struct file *file;
2028 	int len;
2029 
2030 	if (si == SEQ_START_TOKEN) {
2031 		seq_puts(swap,"Filename\t\t\t\tType\t\tSize\tUsed\tPriority\n");
2032 		return 0;
2033 	}
2034 
2035 	file = si->swap_file;
2036 	len = seq_path(swap, &file->f_path, " \t\n\\");
2037 	seq_printf(swap, "%*s%s\t%u\t%u\t%d\n",
2038 			len < 40 ? 40 - len : 1, " ",
2039 			S_ISBLK(file_inode(file)->i_mode) ?
2040 				"partition" : "file\t",
2041 			si->pages << (PAGE_SHIFT - 10),
2042 			si->inuse_pages << (PAGE_SHIFT - 10),
2043 			si->prio);
2044 	return 0;
2045 }
2046 
2047 static const struct seq_operations swaps_op = {
2048 	.start =	swap_start,
2049 	.next =		swap_next,
2050 	.stop =		swap_stop,
2051 	.show =		swap_show
2052 };
2053 
2054 static int swaps_open(struct inode *inode, struct file *file)
2055 {
2056 	struct seq_file *seq;
2057 	int ret;
2058 
2059 	ret = seq_open(file, &swaps_op);
2060 	if (ret)
2061 		return ret;
2062 
2063 	seq = file->private_data;
2064 	seq->poll_event = atomic_read(&proc_poll_event);
2065 	return 0;
2066 }
2067 
2068 static const struct file_operations proc_swaps_operations = {
2069 	.open		= swaps_open,
2070 	.read		= seq_read,
2071 	.llseek		= seq_lseek,
2072 	.release	= seq_release,
2073 	.poll		= swaps_poll,
2074 };
2075 
2076 static int __init procswaps_init(void)
2077 {
2078 	proc_create("swaps", 0, NULL, &proc_swaps_operations);
2079 	return 0;
2080 }
2081 __initcall(procswaps_init);
2082 #endif /* CONFIG_PROC_FS */
2083 
2084 #ifdef MAX_SWAPFILES_CHECK
2085 static int __init max_swapfiles_check(void)
2086 {
2087 	MAX_SWAPFILES_CHECK();
2088 	return 0;
2089 }
2090 late_initcall(max_swapfiles_check);
2091 #endif
2092 
2093 static struct swap_info_struct *alloc_swap_info(void)
2094 {
2095 	struct swap_info_struct *p;
2096 	unsigned int type;
2097 
2098 	p = kzalloc(sizeof(*p), GFP_KERNEL);
2099 	if (!p)
2100 		return ERR_PTR(-ENOMEM);
2101 
2102 	spin_lock(&swap_lock);
2103 	for (type = 0; type < nr_swapfiles; type++) {
2104 		if (!(swap_info[type]->flags & SWP_USED))
2105 			break;
2106 	}
2107 	if (type >= MAX_SWAPFILES) {
2108 		spin_unlock(&swap_lock);
2109 		kfree(p);
2110 		return ERR_PTR(-EPERM);
2111 	}
2112 	if (type >= nr_swapfiles) {
2113 		p->type = type;
2114 		swap_info[type] = p;
2115 		/*
2116 		 * Write swap_info[type] before nr_swapfiles, in case a
2117 		 * racing procfs swap_start() or swap_next() is reading them.
2118 		 * (We never shrink nr_swapfiles, we never free this entry.)
2119 		 */
2120 		smp_wmb();
2121 		nr_swapfiles++;
2122 	} else {
2123 		kfree(p);
2124 		p = swap_info[type];
2125 		/*
2126 		 * Do not memset this entry: a racing procfs swap_next()
2127 		 * would be relying on p->type to remain valid.
2128 		 */
2129 	}
2130 	INIT_LIST_HEAD(&p->first_swap_extent.list);
2131 	plist_node_init(&p->list, 0);
2132 	plist_node_init(&p->avail_list, 0);
2133 	p->flags = SWP_USED;
2134 	spin_unlock(&swap_lock);
2135 	spin_lock_init(&p->lock);
2136 
2137 	return p;
2138 }
2139 
2140 static int claim_swapfile(struct swap_info_struct *p, struct inode *inode)
2141 {
2142 	int error;
2143 
2144 	if (S_ISBLK(inode->i_mode)) {
2145 		p->bdev = bdgrab(I_BDEV(inode));
2146 		error = blkdev_get(p->bdev,
2147 				   FMODE_READ | FMODE_WRITE | FMODE_EXCL,
2148 				   sys_swapon);
2149 		if (error < 0) {
2150 			p->bdev = NULL;
2151 			return -EINVAL;
2152 		}
2153 		p->old_block_size = block_size(p->bdev);
2154 		error = set_blocksize(p->bdev, PAGE_SIZE);
2155 		if (error < 0)
2156 			return error;
2157 		p->flags |= SWP_BLKDEV;
2158 	} else if (S_ISREG(inode->i_mode)) {
2159 		p->bdev = inode->i_sb->s_bdev;
2160 		mutex_lock(&inode->i_mutex);
2161 		if (IS_SWAPFILE(inode))
2162 			return -EBUSY;
2163 	} else
2164 		return -EINVAL;
2165 
2166 	return 0;
2167 }
2168 
2169 static unsigned long read_swap_header(struct swap_info_struct *p,
2170 					union swap_header *swap_header,
2171 					struct inode *inode)
2172 {
2173 	int i;
2174 	unsigned long maxpages;
2175 	unsigned long swapfilepages;
2176 	unsigned long last_page;
2177 
2178 	if (memcmp("SWAPSPACE2", swap_header->magic.magic, 10)) {
2179 		pr_err("Unable to find swap-space signature\n");
2180 		return 0;
2181 	}
2182 
2183 	/* swap partition endianess hack... */
2184 	if (swab32(swap_header->info.version) == 1) {
2185 		swab32s(&swap_header->info.version);
2186 		swab32s(&swap_header->info.last_page);
2187 		swab32s(&swap_header->info.nr_badpages);
2188 		for (i = 0; i < swap_header->info.nr_badpages; i++)
2189 			swab32s(&swap_header->info.badpages[i]);
2190 	}
2191 	/* Check the swap header's sub-version */
2192 	if (swap_header->info.version != 1) {
2193 		pr_warn("Unable to handle swap header version %d\n",
2194 			swap_header->info.version);
2195 		return 0;
2196 	}
2197 
2198 	p->lowest_bit  = 1;
2199 	p->cluster_next = 1;
2200 	p->cluster_nr = 0;
2201 
2202 	/*
2203 	 * Find out how many pages are allowed for a single swap
2204 	 * device. There are two limiting factors: 1) the number
2205 	 * of bits for the swap offset in the swp_entry_t type, and
2206 	 * 2) the number of bits in the swap pte as defined by the
2207 	 * different architectures. In order to find the
2208 	 * largest possible bit mask, a swap entry with swap type 0
2209 	 * and swap offset ~0UL is created, encoded to a swap pte,
2210 	 * decoded to a swp_entry_t again, and finally the swap
2211 	 * offset is extracted. This will mask all the bits from
2212 	 * the initial ~0UL mask that can't be encoded in either
2213 	 * the swp_entry_t or the architecture definition of a
2214 	 * swap pte.
2215 	 */
2216 	maxpages = swp_offset(pte_to_swp_entry(
2217 			swp_entry_to_pte(swp_entry(0, ~0UL)))) + 1;
2218 	last_page = swap_header->info.last_page;
2219 	if (last_page > maxpages) {
2220 		pr_warn("Truncating oversized swap area, only using %luk out of %luk\n",
2221 			maxpages << (PAGE_SHIFT - 10),
2222 			last_page << (PAGE_SHIFT - 10));
2223 	}
2224 	if (maxpages > last_page) {
2225 		maxpages = last_page + 1;
2226 		/* p->max is an unsigned int: don't overflow it */
2227 		if ((unsigned int)maxpages == 0)
2228 			maxpages = UINT_MAX;
2229 	}
2230 	p->highest_bit = maxpages - 1;
2231 
2232 	if (!maxpages)
2233 		return 0;
2234 	swapfilepages = i_size_read(inode) >> PAGE_SHIFT;
2235 	if (swapfilepages && maxpages > swapfilepages) {
2236 		pr_warn("Swap area shorter than signature indicates\n");
2237 		return 0;
2238 	}
2239 	if (swap_header->info.nr_badpages && S_ISREG(inode->i_mode))
2240 		return 0;
2241 	if (swap_header->info.nr_badpages > MAX_SWAP_BADPAGES)
2242 		return 0;
2243 
2244 	return maxpages;
2245 }
2246 
2247 static int setup_swap_map_and_extents(struct swap_info_struct *p,
2248 					union swap_header *swap_header,
2249 					unsigned char *swap_map,
2250 					struct swap_cluster_info *cluster_info,
2251 					unsigned long maxpages,
2252 					sector_t *span)
2253 {
2254 	int i;
2255 	unsigned int nr_good_pages;
2256 	int nr_extents;
2257 	unsigned long nr_clusters = DIV_ROUND_UP(maxpages, SWAPFILE_CLUSTER);
2258 	unsigned long idx = p->cluster_next / SWAPFILE_CLUSTER;
2259 
2260 	nr_good_pages = maxpages - 1;	/* omit header page */
2261 
2262 	cluster_set_null(&p->free_cluster_head);
2263 	cluster_set_null(&p->free_cluster_tail);
2264 	cluster_set_null(&p->discard_cluster_head);
2265 	cluster_set_null(&p->discard_cluster_tail);
2266 
2267 	for (i = 0; i < swap_header->info.nr_badpages; i++) {
2268 		unsigned int page_nr = swap_header->info.badpages[i];
2269 		if (page_nr == 0 || page_nr > swap_header->info.last_page)
2270 			return -EINVAL;
2271 		if (page_nr < maxpages) {
2272 			swap_map[page_nr] = SWAP_MAP_BAD;
2273 			nr_good_pages--;
2274 			/*
2275 			 * Haven't marked the cluster free yet, no list
2276 			 * operation involved
2277 			 */
2278 			inc_cluster_info_page(p, cluster_info, page_nr);
2279 		}
2280 	}
2281 
2282 	/* Haven't marked the cluster free yet, no list operation involved */
2283 	for (i = maxpages; i < round_up(maxpages, SWAPFILE_CLUSTER); i++)
2284 		inc_cluster_info_page(p, cluster_info, i);
2285 
2286 	if (nr_good_pages) {
2287 		swap_map[0] = SWAP_MAP_BAD;
2288 		/*
2289 		 * Not mark the cluster free yet, no list
2290 		 * operation involved
2291 		 */
2292 		inc_cluster_info_page(p, cluster_info, 0);
2293 		p->max = maxpages;
2294 		p->pages = nr_good_pages;
2295 		nr_extents = setup_swap_extents(p, span);
2296 		if (nr_extents < 0)
2297 			return nr_extents;
2298 		nr_good_pages = p->pages;
2299 	}
2300 	if (!nr_good_pages) {
2301 		pr_warn("Empty swap-file\n");
2302 		return -EINVAL;
2303 	}
2304 
2305 	if (!cluster_info)
2306 		return nr_extents;
2307 
2308 	for (i = 0; i < nr_clusters; i++) {
2309 		if (!cluster_count(&cluster_info[idx])) {
2310 			cluster_set_flag(&cluster_info[idx], CLUSTER_FLAG_FREE);
2311 			if (cluster_is_null(&p->free_cluster_head)) {
2312 				cluster_set_next_flag(&p->free_cluster_head,
2313 								idx, 0);
2314 				cluster_set_next_flag(&p->free_cluster_tail,
2315 								idx, 0);
2316 			} else {
2317 				unsigned int tail;
2318 
2319 				tail = cluster_next(&p->free_cluster_tail);
2320 				cluster_set_next(&cluster_info[tail], idx);
2321 				cluster_set_next_flag(&p->free_cluster_tail,
2322 								idx, 0);
2323 			}
2324 		}
2325 		idx++;
2326 		if (idx == nr_clusters)
2327 			idx = 0;
2328 	}
2329 	return nr_extents;
2330 }
2331 
2332 /*
2333  * Helper to sys_swapon determining if a given swap
2334  * backing device queue supports DISCARD operations.
2335  */
2336 static bool swap_discardable(struct swap_info_struct *si)
2337 {
2338 	struct request_queue *q = bdev_get_queue(si->bdev);
2339 
2340 	if (!q || !blk_queue_discard(q))
2341 		return false;
2342 
2343 	return true;
2344 }
2345 
2346 SYSCALL_DEFINE2(swapon, const char __user *, specialfile, int, swap_flags)
2347 {
2348 	struct swap_info_struct *p;
2349 	struct filename *name;
2350 	struct file *swap_file = NULL;
2351 	struct address_space *mapping;
2352 	int i;
2353 	int prio;
2354 	int error;
2355 	union swap_header *swap_header;
2356 	int nr_extents;
2357 	sector_t span;
2358 	unsigned long maxpages;
2359 	unsigned char *swap_map = NULL;
2360 	struct swap_cluster_info *cluster_info = NULL;
2361 	unsigned long *frontswap_map = NULL;
2362 	struct page *page = NULL;
2363 	struct inode *inode = NULL;
2364 
2365 	if (swap_flags & ~SWAP_FLAGS_VALID)
2366 		return -EINVAL;
2367 
2368 	if (!capable(CAP_SYS_ADMIN))
2369 		return -EPERM;
2370 
2371 	p = alloc_swap_info();
2372 	if (IS_ERR(p))
2373 		return PTR_ERR(p);
2374 
2375 	INIT_WORK(&p->discard_work, swap_discard_work);
2376 
2377 	name = getname(specialfile);
2378 	if (IS_ERR(name)) {
2379 		error = PTR_ERR(name);
2380 		name = NULL;
2381 		goto bad_swap;
2382 	}
2383 	swap_file = file_open_name(name, O_RDWR|O_LARGEFILE, 0);
2384 	if (IS_ERR(swap_file)) {
2385 		error = PTR_ERR(swap_file);
2386 		swap_file = NULL;
2387 		goto bad_swap;
2388 	}
2389 
2390 	p->swap_file = swap_file;
2391 	mapping = swap_file->f_mapping;
2392 
2393 	for (i = 0; i < nr_swapfiles; i++) {
2394 		struct swap_info_struct *q = swap_info[i];
2395 
2396 		if (q == p || !q->swap_file)
2397 			continue;
2398 		if (mapping == q->swap_file->f_mapping) {
2399 			error = -EBUSY;
2400 			goto bad_swap;
2401 		}
2402 	}
2403 
2404 	inode = mapping->host;
2405 	/* If S_ISREG(inode->i_mode) will do mutex_lock(&inode->i_mutex); */
2406 	error = claim_swapfile(p, inode);
2407 	if (unlikely(error))
2408 		goto bad_swap;
2409 
2410 	/*
2411 	 * Read the swap header.
2412 	 */
2413 	if (!mapping->a_ops->readpage) {
2414 		error = -EINVAL;
2415 		goto bad_swap;
2416 	}
2417 	page = read_mapping_page(mapping, 0, swap_file);
2418 	if (IS_ERR(page)) {
2419 		error = PTR_ERR(page);
2420 		goto bad_swap;
2421 	}
2422 	swap_header = kmap(page);
2423 
2424 	maxpages = read_swap_header(p, swap_header, inode);
2425 	if (unlikely(!maxpages)) {
2426 		error = -EINVAL;
2427 		goto bad_swap;
2428 	}
2429 
2430 	/* OK, set up the swap map and apply the bad block list */
2431 	swap_map = vzalloc(maxpages);
2432 	if (!swap_map) {
2433 		error = -ENOMEM;
2434 		goto bad_swap;
2435 	}
2436 	if (p->bdev && blk_queue_nonrot(bdev_get_queue(p->bdev))) {
2437 		p->flags |= SWP_SOLIDSTATE;
2438 		/*
2439 		 * select a random position to start with to help wear leveling
2440 		 * SSD
2441 		 */
2442 		p->cluster_next = 1 + (prandom_u32() % p->highest_bit);
2443 
2444 		cluster_info = vzalloc(DIV_ROUND_UP(maxpages,
2445 			SWAPFILE_CLUSTER) * sizeof(*cluster_info));
2446 		if (!cluster_info) {
2447 			error = -ENOMEM;
2448 			goto bad_swap;
2449 		}
2450 		p->percpu_cluster = alloc_percpu(struct percpu_cluster);
2451 		if (!p->percpu_cluster) {
2452 			error = -ENOMEM;
2453 			goto bad_swap;
2454 		}
2455 		for_each_possible_cpu(i) {
2456 			struct percpu_cluster *cluster;
2457 			cluster = per_cpu_ptr(p->percpu_cluster, i);
2458 			cluster_set_null(&cluster->index);
2459 		}
2460 	}
2461 
2462 	error = swap_cgroup_swapon(p->type, maxpages);
2463 	if (error)
2464 		goto bad_swap;
2465 
2466 	nr_extents = setup_swap_map_and_extents(p, swap_header, swap_map,
2467 		cluster_info, maxpages, &span);
2468 	if (unlikely(nr_extents < 0)) {
2469 		error = nr_extents;
2470 		goto bad_swap;
2471 	}
2472 	/* frontswap enabled? set up bit-per-page map for frontswap */
2473 	if (frontswap_enabled)
2474 		frontswap_map = vzalloc(BITS_TO_LONGS(maxpages) * sizeof(long));
2475 
2476 	if (p->bdev &&(swap_flags & SWAP_FLAG_DISCARD) && swap_discardable(p)) {
2477 		/*
2478 		 * When discard is enabled for swap with no particular
2479 		 * policy flagged, we set all swap discard flags here in
2480 		 * order to sustain backward compatibility with older
2481 		 * swapon(8) releases.
2482 		 */
2483 		p->flags |= (SWP_DISCARDABLE | SWP_AREA_DISCARD |
2484 			     SWP_PAGE_DISCARD);
2485 
2486 		/*
2487 		 * By flagging sys_swapon, a sysadmin can tell us to
2488 		 * either do single-time area discards only, or to just
2489 		 * perform discards for released swap page-clusters.
2490 		 * Now it's time to adjust the p->flags accordingly.
2491 		 */
2492 		if (swap_flags & SWAP_FLAG_DISCARD_ONCE)
2493 			p->flags &= ~SWP_PAGE_DISCARD;
2494 		else if (swap_flags & SWAP_FLAG_DISCARD_PAGES)
2495 			p->flags &= ~SWP_AREA_DISCARD;
2496 
2497 		/* issue a swapon-time discard if it's still required */
2498 		if (p->flags & SWP_AREA_DISCARD) {
2499 			int err = discard_swap(p);
2500 			if (unlikely(err))
2501 				pr_err("swapon: discard_swap(%p): %d\n",
2502 					p, err);
2503 		}
2504 	}
2505 
2506 	mutex_lock(&swapon_mutex);
2507 	prio = -1;
2508 	if (swap_flags & SWAP_FLAG_PREFER)
2509 		prio =
2510 		  (swap_flags & SWAP_FLAG_PRIO_MASK) >> SWAP_FLAG_PRIO_SHIFT;
2511 	enable_swap_info(p, prio, swap_map, cluster_info, frontswap_map);
2512 
2513 	pr_info("Adding %uk swap on %s.  "
2514 			"Priority:%d extents:%d across:%lluk %s%s%s%s%s\n",
2515 		p->pages<<(PAGE_SHIFT-10), name->name, p->prio,
2516 		nr_extents, (unsigned long long)span<<(PAGE_SHIFT-10),
2517 		(p->flags & SWP_SOLIDSTATE) ? "SS" : "",
2518 		(p->flags & SWP_DISCARDABLE) ? "D" : "",
2519 		(p->flags & SWP_AREA_DISCARD) ? "s" : "",
2520 		(p->flags & SWP_PAGE_DISCARD) ? "c" : "",
2521 		(frontswap_map) ? "FS" : "");
2522 
2523 	mutex_unlock(&swapon_mutex);
2524 	atomic_inc(&proc_poll_event);
2525 	wake_up_interruptible(&proc_poll_wait);
2526 
2527 	if (S_ISREG(inode->i_mode))
2528 		inode->i_flags |= S_SWAPFILE;
2529 	error = 0;
2530 	goto out;
2531 bad_swap:
2532 	free_percpu(p->percpu_cluster);
2533 	p->percpu_cluster = NULL;
2534 	if (inode && S_ISBLK(inode->i_mode) && p->bdev) {
2535 		set_blocksize(p->bdev, p->old_block_size);
2536 		blkdev_put(p->bdev, FMODE_READ | FMODE_WRITE | FMODE_EXCL);
2537 	}
2538 	destroy_swap_extents(p);
2539 	swap_cgroup_swapoff(p->type);
2540 	spin_lock(&swap_lock);
2541 	p->swap_file = NULL;
2542 	p->flags = 0;
2543 	spin_unlock(&swap_lock);
2544 	vfree(swap_map);
2545 	vfree(cluster_info);
2546 	if (swap_file) {
2547 		if (inode && S_ISREG(inode->i_mode)) {
2548 			mutex_unlock(&inode->i_mutex);
2549 			inode = NULL;
2550 		}
2551 		filp_close(swap_file, NULL);
2552 	}
2553 out:
2554 	if (page && !IS_ERR(page)) {
2555 		kunmap(page);
2556 		page_cache_release(page);
2557 	}
2558 	if (name)
2559 		putname(name);
2560 	if (inode && S_ISREG(inode->i_mode))
2561 		mutex_unlock(&inode->i_mutex);
2562 	return error;
2563 }
2564 
2565 void si_swapinfo(struct sysinfo *val)
2566 {
2567 	unsigned int type;
2568 	unsigned long nr_to_be_unused = 0;
2569 
2570 	spin_lock(&swap_lock);
2571 	for (type = 0; type < nr_swapfiles; type++) {
2572 		struct swap_info_struct *si = swap_info[type];
2573 
2574 		if ((si->flags & SWP_USED) && !(si->flags & SWP_WRITEOK))
2575 			nr_to_be_unused += si->inuse_pages;
2576 	}
2577 	val->freeswap = atomic_long_read(&nr_swap_pages) + nr_to_be_unused;
2578 	val->totalswap = total_swap_pages + nr_to_be_unused;
2579 	spin_unlock(&swap_lock);
2580 }
2581 
2582 /*
2583  * Verify that a swap entry is valid and increment its swap map count.
2584  *
2585  * Returns error code in following case.
2586  * - success -> 0
2587  * - swp_entry is invalid -> EINVAL
2588  * - swp_entry is migration entry -> EINVAL
2589  * - swap-cache reference is requested but there is already one. -> EEXIST
2590  * - swap-cache reference is requested but the entry is not used. -> ENOENT
2591  * - swap-mapped reference requested but needs continued swap count. -> ENOMEM
2592  */
2593 static int __swap_duplicate(swp_entry_t entry, unsigned char usage)
2594 {
2595 	struct swap_info_struct *p;
2596 	unsigned long offset, type;
2597 	unsigned char count;
2598 	unsigned char has_cache;
2599 	int err = -EINVAL;
2600 
2601 	if (non_swap_entry(entry))
2602 		goto out;
2603 
2604 	type = swp_type(entry);
2605 	if (type >= nr_swapfiles)
2606 		goto bad_file;
2607 	p = swap_info[type];
2608 	offset = swp_offset(entry);
2609 
2610 	spin_lock(&p->lock);
2611 	if (unlikely(offset >= p->max))
2612 		goto unlock_out;
2613 
2614 	count = p->swap_map[offset];
2615 
2616 	/*
2617 	 * swapin_readahead() doesn't check if a swap entry is valid, so the
2618 	 * swap entry could be SWAP_MAP_BAD. Check here with lock held.
2619 	 */
2620 	if (unlikely(swap_count(count) == SWAP_MAP_BAD)) {
2621 		err = -ENOENT;
2622 		goto unlock_out;
2623 	}
2624 
2625 	has_cache = count & SWAP_HAS_CACHE;
2626 	count &= ~SWAP_HAS_CACHE;
2627 	err = 0;
2628 
2629 	if (usage == SWAP_HAS_CACHE) {
2630 
2631 		/* set SWAP_HAS_CACHE if there is no cache and entry is used */
2632 		if (!has_cache && count)
2633 			has_cache = SWAP_HAS_CACHE;
2634 		else if (has_cache)		/* someone else added cache */
2635 			err = -EEXIST;
2636 		else				/* no users remaining */
2637 			err = -ENOENT;
2638 
2639 	} else if (count || has_cache) {
2640 
2641 		if ((count & ~COUNT_CONTINUED) < SWAP_MAP_MAX)
2642 			count += usage;
2643 		else if ((count & ~COUNT_CONTINUED) > SWAP_MAP_MAX)
2644 			err = -EINVAL;
2645 		else if (swap_count_continued(p, offset, count))
2646 			count = COUNT_CONTINUED;
2647 		else
2648 			err = -ENOMEM;
2649 	} else
2650 		err = -ENOENT;			/* unused swap entry */
2651 
2652 	p->swap_map[offset] = count | has_cache;
2653 
2654 unlock_out:
2655 	spin_unlock(&p->lock);
2656 out:
2657 	return err;
2658 
2659 bad_file:
2660 	pr_err("swap_dup: %s%08lx\n", Bad_file, entry.val);
2661 	goto out;
2662 }
2663 
2664 /*
2665  * Help swapoff by noting that swap entry belongs to shmem/tmpfs
2666  * (in which case its reference count is never incremented).
2667  */
2668 void swap_shmem_alloc(swp_entry_t entry)
2669 {
2670 	__swap_duplicate(entry, SWAP_MAP_SHMEM);
2671 }
2672 
2673 /*
2674  * Increase reference count of swap entry by 1.
2675  * Returns 0 for success, or -ENOMEM if a swap_count_continuation is required
2676  * but could not be atomically allocated.  Returns 0, just as if it succeeded,
2677  * if __swap_duplicate() fails for another reason (-EINVAL or -ENOENT), which
2678  * might occur if a page table entry has got corrupted.
2679  */
2680 int swap_duplicate(swp_entry_t entry)
2681 {
2682 	int err = 0;
2683 
2684 	while (!err && __swap_duplicate(entry, 1) == -ENOMEM)
2685 		err = add_swap_count_continuation(entry, GFP_ATOMIC);
2686 	return err;
2687 }
2688 
2689 /*
2690  * @entry: swap entry for which we allocate swap cache.
2691  *
2692  * Called when allocating swap cache for existing swap entry,
2693  * This can return error codes. Returns 0 at success.
2694  * -EBUSY means there is a swap cache.
2695  * Note: return code is different from swap_duplicate().
2696  */
2697 int swapcache_prepare(swp_entry_t entry)
2698 {
2699 	return __swap_duplicate(entry, SWAP_HAS_CACHE);
2700 }
2701 
2702 struct swap_info_struct *page_swap_info(struct page *page)
2703 {
2704 	swp_entry_t swap = { .val = page_private(page) };
2705 	BUG_ON(!PageSwapCache(page));
2706 	return swap_info[swp_type(swap)];
2707 }
2708 
2709 /*
2710  * out-of-line __page_file_ methods to avoid include hell.
2711  */
2712 struct address_space *__page_file_mapping(struct page *page)
2713 {
2714 	VM_BUG_ON_PAGE(!PageSwapCache(page), page);
2715 	return page_swap_info(page)->swap_file->f_mapping;
2716 }
2717 EXPORT_SYMBOL_GPL(__page_file_mapping);
2718 
2719 pgoff_t __page_file_index(struct page *page)
2720 {
2721 	swp_entry_t swap = { .val = page_private(page) };
2722 	VM_BUG_ON_PAGE(!PageSwapCache(page), page);
2723 	return swp_offset(swap);
2724 }
2725 EXPORT_SYMBOL_GPL(__page_file_index);
2726 
2727 /*
2728  * add_swap_count_continuation - called when a swap count is duplicated
2729  * beyond SWAP_MAP_MAX, it allocates a new page and links that to the entry's
2730  * page of the original vmalloc'ed swap_map, to hold the continuation count
2731  * (for that entry and for its neighbouring PAGE_SIZE swap entries).  Called
2732  * again when count is duplicated beyond SWAP_MAP_MAX * SWAP_CONT_MAX, etc.
2733  *
2734  * These continuation pages are seldom referenced: the common paths all work
2735  * on the original swap_map, only referring to a continuation page when the
2736  * low "digit" of a count is incremented or decremented through SWAP_MAP_MAX.
2737  *
2738  * add_swap_count_continuation(, GFP_ATOMIC) can be called while holding
2739  * page table locks; if it fails, add_swap_count_continuation(, GFP_KERNEL)
2740  * can be called after dropping locks.
2741  */
2742 int add_swap_count_continuation(swp_entry_t entry, gfp_t gfp_mask)
2743 {
2744 	struct swap_info_struct *si;
2745 	struct page *head;
2746 	struct page *page;
2747 	struct page *list_page;
2748 	pgoff_t offset;
2749 	unsigned char count;
2750 
2751 	/*
2752 	 * When debugging, it's easier to use __GFP_ZERO here; but it's better
2753 	 * for latency not to zero a page while GFP_ATOMIC and holding locks.
2754 	 */
2755 	page = alloc_page(gfp_mask | __GFP_HIGHMEM);
2756 
2757 	si = swap_info_get(entry);
2758 	if (!si) {
2759 		/*
2760 		 * An acceptable race has occurred since the failing
2761 		 * __swap_duplicate(): the swap entry has been freed,
2762 		 * perhaps even the whole swap_map cleared for swapoff.
2763 		 */
2764 		goto outer;
2765 	}
2766 
2767 	offset = swp_offset(entry);
2768 	count = si->swap_map[offset] & ~SWAP_HAS_CACHE;
2769 
2770 	if ((count & ~COUNT_CONTINUED) != SWAP_MAP_MAX) {
2771 		/*
2772 		 * The higher the swap count, the more likely it is that tasks
2773 		 * will race to add swap count continuation: we need to avoid
2774 		 * over-provisioning.
2775 		 */
2776 		goto out;
2777 	}
2778 
2779 	if (!page) {
2780 		spin_unlock(&si->lock);
2781 		return -ENOMEM;
2782 	}
2783 
2784 	/*
2785 	 * We are fortunate that although vmalloc_to_page uses pte_offset_map,
2786 	 * no architecture is using highmem pages for kernel page tables: so it
2787 	 * will not corrupt the GFP_ATOMIC caller's atomic page table kmaps.
2788 	 */
2789 	head = vmalloc_to_page(si->swap_map + offset);
2790 	offset &= ~PAGE_MASK;
2791 
2792 	/*
2793 	 * Page allocation does not initialize the page's lru field,
2794 	 * but it does always reset its private field.
2795 	 */
2796 	if (!page_private(head)) {
2797 		BUG_ON(count & COUNT_CONTINUED);
2798 		INIT_LIST_HEAD(&head->lru);
2799 		set_page_private(head, SWP_CONTINUED);
2800 		si->flags |= SWP_CONTINUED;
2801 	}
2802 
2803 	list_for_each_entry(list_page, &head->lru, lru) {
2804 		unsigned char *map;
2805 
2806 		/*
2807 		 * If the previous map said no continuation, but we've found
2808 		 * a continuation page, free our allocation and use this one.
2809 		 */
2810 		if (!(count & COUNT_CONTINUED))
2811 			goto out;
2812 
2813 		map = kmap_atomic(list_page) + offset;
2814 		count = *map;
2815 		kunmap_atomic(map);
2816 
2817 		/*
2818 		 * If this continuation count now has some space in it,
2819 		 * free our allocation and use this one.
2820 		 */
2821 		if ((count & ~COUNT_CONTINUED) != SWAP_CONT_MAX)
2822 			goto out;
2823 	}
2824 
2825 	list_add_tail(&page->lru, &head->lru);
2826 	page = NULL;			/* now it's attached, don't free it */
2827 out:
2828 	spin_unlock(&si->lock);
2829 outer:
2830 	if (page)
2831 		__free_page(page);
2832 	return 0;
2833 }
2834 
2835 /*
2836  * swap_count_continued - when the original swap_map count is incremented
2837  * from SWAP_MAP_MAX, check if there is already a continuation page to carry
2838  * into, carry if so, or else fail until a new continuation page is allocated;
2839  * when the original swap_map count is decremented from 0 with continuation,
2840  * borrow from the continuation and report whether it still holds more.
2841  * Called while __swap_duplicate() or swap_entry_free() holds swap_lock.
2842  */
2843 static bool swap_count_continued(struct swap_info_struct *si,
2844 				 pgoff_t offset, unsigned char count)
2845 {
2846 	struct page *head;
2847 	struct page *page;
2848 	unsigned char *map;
2849 
2850 	head = vmalloc_to_page(si->swap_map + offset);
2851 	if (page_private(head) != SWP_CONTINUED) {
2852 		BUG_ON(count & COUNT_CONTINUED);
2853 		return false;		/* need to add count continuation */
2854 	}
2855 
2856 	offset &= ~PAGE_MASK;
2857 	page = list_entry(head->lru.next, struct page, lru);
2858 	map = kmap_atomic(page) + offset;
2859 
2860 	if (count == SWAP_MAP_MAX)	/* initial increment from swap_map */
2861 		goto init_map;		/* jump over SWAP_CONT_MAX checks */
2862 
2863 	if (count == (SWAP_MAP_MAX | COUNT_CONTINUED)) { /* incrementing */
2864 		/*
2865 		 * Think of how you add 1 to 999
2866 		 */
2867 		while (*map == (SWAP_CONT_MAX | COUNT_CONTINUED)) {
2868 			kunmap_atomic(map);
2869 			page = list_entry(page->lru.next, struct page, lru);
2870 			BUG_ON(page == head);
2871 			map = kmap_atomic(page) + offset;
2872 		}
2873 		if (*map == SWAP_CONT_MAX) {
2874 			kunmap_atomic(map);
2875 			page = list_entry(page->lru.next, struct page, lru);
2876 			if (page == head)
2877 				return false;	/* add count continuation */
2878 			map = kmap_atomic(page) + offset;
2879 init_map:		*map = 0;		/* we didn't zero the page */
2880 		}
2881 		*map += 1;
2882 		kunmap_atomic(map);
2883 		page = list_entry(page->lru.prev, struct page, lru);
2884 		while (page != head) {
2885 			map = kmap_atomic(page) + offset;
2886 			*map = COUNT_CONTINUED;
2887 			kunmap_atomic(map);
2888 			page = list_entry(page->lru.prev, struct page, lru);
2889 		}
2890 		return true;			/* incremented */
2891 
2892 	} else {				/* decrementing */
2893 		/*
2894 		 * Think of how you subtract 1 from 1000
2895 		 */
2896 		BUG_ON(count != COUNT_CONTINUED);
2897 		while (*map == COUNT_CONTINUED) {
2898 			kunmap_atomic(map);
2899 			page = list_entry(page->lru.next, struct page, lru);
2900 			BUG_ON(page == head);
2901 			map = kmap_atomic(page) + offset;
2902 		}
2903 		BUG_ON(*map == 0);
2904 		*map -= 1;
2905 		if (*map == 0)
2906 			count = 0;
2907 		kunmap_atomic(map);
2908 		page = list_entry(page->lru.prev, struct page, lru);
2909 		while (page != head) {
2910 			map = kmap_atomic(page) + offset;
2911 			*map = SWAP_CONT_MAX | count;
2912 			count = COUNT_CONTINUED;
2913 			kunmap_atomic(map);
2914 			page = list_entry(page->lru.prev, struct page, lru);
2915 		}
2916 		return count == COUNT_CONTINUED;
2917 	}
2918 }
2919 
2920 /*
2921  * free_swap_count_continuations - swapoff free all the continuation pages
2922  * appended to the swap_map, after swap_map is quiesced, before vfree'ing it.
2923  */
2924 static void free_swap_count_continuations(struct swap_info_struct *si)
2925 {
2926 	pgoff_t offset;
2927 
2928 	for (offset = 0; offset < si->max; offset += PAGE_SIZE) {
2929 		struct page *head;
2930 		head = vmalloc_to_page(si->swap_map + offset);
2931 		if (page_private(head)) {
2932 			struct list_head *this, *next;
2933 			list_for_each_safe(this, next, &head->lru) {
2934 				struct page *page;
2935 				page = list_entry(this, struct page, lru);
2936 				list_del(this);
2937 				__free_page(page);
2938 			}
2939 		}
2940 	}
2941 }
2942