1 // SPDX-License-Identifier: GPL-2.0-only 2 /* 3 * linux/mm/swapfile.c 4 * 5 * Copyright (C) 1991, 1992, 1993, 1994 Linus Torvalds 6 * Swap reorganised 29.12.95, Stephen Tweedie 7 */ 8 9 #include <linux/blkdev.h> 10 #include <linux/mm.h> 11 #include <linux/sched/mm.h> 12 #include <linux/sched/task.h> 13 #include <linux/hugetlb.h> 14 #include <linux/mman.h> 15 #include <linux/slab.h> 16 #include <linux/kernel_stat.h> 17 #include <linux/swap.h> 18 #include <linux/vmalloc.h> 19 #include <linux/pagemap.h> 20 #include <linux/namei.h> 21 #include <linux/shmem_fs.h> 22 #include <linux/blk-cgroup.h> 23 #include <linux/random.h> 24 #include <linux/writeback.h> 25 #include <linux/proc_fs.h> 26 #include <linux/seq_file.h> 27 #include <linux/init.h> 28 #include <linux/ksm.h> 29 #include <linux/rmap.h> 30 #include <linux/security.h> 31 #include <linux/backing-dev.h> 32 #include <linux/mutex.h> 33 #include <linux/capability.h> 34 #include <linux/syscalls.h> 35 #include <linux/memcontrol.h> 36 #include <linux/poll.h> 37 #include <linux/oom.h> 38 #include <linux/swapfile.h> 39 #include <linux/export.h> 40 #include <linux/swap_slots.h> 41 #include <linux/sort.h> 42 #include <linux/completion.h> 43 #include <linux/suspend.h> 44 #include <linux/zswap.h> 45 46 #include <asm/tlbflush.h> 47 #include <linux/swapops.h> 48 #include <linux/swap_cgroup.h> 49 #include "internal.h" 50 #include "swap.h" 51 52 static bool swap_count_continued(struct swap_info_struct *, pgoff_t, 53 unsigned char); 54 static void free_swap_count_continuations(struct swap_info_struct *); 55 56 static DEFINE_SPINLOCK(swap_lock); 57 static unsigned int nr_swapfiles; 58 atomic_long_t nr_swap_pages; 59 /* 60 * Some modules use swappable objects and may try to swap them out under 61 * memory pressure (via the shrinker). Before doing so, they may wish to 62 * check to see if any swap space is available. 63 */ 64 EXPORT_SYMBOL_GPL(nr_swap_pages); 65 /* protected with swap_lock. reading in vm_swap_full() doesn't need lock */ 66 long total_swap_pages; 67 static int least_priority = -1; 68 unsigned long swapfile_maximum_size; 69 #ifdef CONFIG_MIGRATION 70 bool swap_migration_ad_supported; 71 #endif /* CONFIG_MIGRATION */ 72 73 static const char Bad_file[] = "Bad swap file entry "; 74 static const char Unused_file[] = "Unused swap file entry "; 75 static const char Bad_offset[] = "Bad swap offset entry "; 76 static const char Unused_offset[] = "Unused swap offset entry "; 77 78 /* 79 * all active swap_info_structs 80 * protected with swap_lock, and ordered by priority. 81 */ 82 static PLIST_HEAD(swap_active_head); 83 84 /* 85 * all available (active, not full) swap_info_structs 86 * protected with swap_avail_lock, ordered by priority. 87 * This is used by folio_alloc_swap() instead of swap_active_head 88 * because swap_active_head includes all swap_info_structs, 89 * but folio_alloc_swap() doesn't need to look at full ones. 90 * This uses its own lock instead of swap_lock because when a 91 * swap_info_struct changes between not-full/full, it needs to 92 * add/remove itself to/from this list, but the swap_info_struct->lock 93 * is held and the locking order requires swap_lock to be taken 94 * before any swap_info_struct->lock. 95 */ 96 static struct plist_head *swap_avail_heads; 97 static DEFINE_SPINLOCK(swap_avail_lock); 98 99 static struct swap_info_struct *swap_info[MAX_SWAPFILES]; 100 101 static DEFINE_MUTEX(swapon_mutex); 102 103 static DECLARE_WAIT_QUEUE_HEAD(proc_poll_wait); 104 /* Activity counter to indicate that a swapon or swapoff has occurred */ 105 static atomic_t proc_poll_event = ATOMIC_INIT(0); 106 107 atomic_t nr_rotate_swap = ATOMIC_INIT(0); 108 109 static struct swap_info_struct *swap_type_to_swap_info(int type) 110 { 111 if (type >= MAX_SWAPFILES) 112 return NULL; 113 114 return READ_ONCE(swap_info[type]); /* rcu_dereference() */ 115 } 116 117 static inline unsigned char swap_count(unsigned char ent) 118 { 119 return ent & ~SWAP_HAS_CACHE; /* may include COUNT_CONTINUED flag */ 120 } 121 122 /* Reclaim the swap entry anyway if possible */ 123 #define TTRS_ANYWAY 0x1 124 /* 125 * Reclaim the swap entry if there are no more mappings of the 126 * corresponding page 127 */ 128 #define TTRS_UNMAPPED 0x2 129 /* Reclaim the swap entry if swap is getting full*/ 130 #define TTRS_FULL 0x4 131 132 /* returns 1 if swap entry is freed */ 133 static int __try_to_reclaim_swap(struct swap_info_struct *si, 134 unsigned long offset, unsigned long flags) 135 { 136 swp_entry_t entry = swp_entry(si->type, offset); 137 struct folio *folio; 138 int ret = 0; 139 140 folio = filemap_get_folio(swap_address_space(entry), offset); 141 if (IS_ERR(folio)) 142 return 0; 143 /* 144 * When this function is called from scan_swap_map_slots() and it's 145 * called by vmscan.c at reclaiming folios. So we hold a folio lock 146 * here. We have to use trylock for avoiding deadlock. This is a special 147 * case and you should use folio_free_swap() with explicit folio_lock() 148 * in usual operations. 149 */ 150 if (folio_trylock(folio)) { 151 if ((flags & TTRS_ANYWAY) || 152 ((flags & TTRS_UNMAPPED) && !folio_mapped(folio)) || 153 ((flags & TTRS_FULL) && mem_cgroup_swap_full(folio))) 154 ret = folio_free_swap(folio); 155 folio_unlock(folio); 156 } 157 folio_put(folio); 158 return ret; 159 } 160 161 static inline struct swap_extent *first_se(struct swap_info_struct *sis) 162 { 163 struct rb_node *rb = rb_first(&sis->swap_extent_root); 164 return rb_entry(rb, struct swap_extent, rb_node); 165 } 166 167 static inline struct swap_extent *next_se(struct swap_extent *se) 168 { 169 struct rb_node *rb = rb_next(&se->rb_node); 170 return rb ? rb_entry(rb, struct swap_extent, rb_node) : NULL; 171 } 172 173 /* 174 * swapon tell device that all the old swap contents can be discarded, 175 * to allow the swap device to optimize its wear-levelling. 176 */ 177 static int discard_swap(struct swap_info_struct *si) 178 { 179 struct swap_extent *se; 180 sector_t start_block; 181 sector_t nr_blocks; 182 int err = 0; 183 184 /* Do not discard the swap header page! */ 185 se = first_se(si); 186 start_block = (se->start_block + 1) << (PAGE_SHIFT - 9); 187 nr_blocks = ((sector_t)se->nr_pages - 1) << (PAGE_SHIFT - 9); 188 if (nr_blocks) { 189 err = blkdev_issue_discard(si->bdev, start_block, 190 nr_blocks, GFP_KERNEL); 191 if (err) 192 return err; 193 cond_resched(); 194 } 195 196 for (se = next_se(se); se; se = next_se(se)) { 197 start_block = se->start_block << (PAGE_SHIFT - 9); 198 nr_blocks = (sector_t)se->nr_pages << (PAGE_SHIFT - 9); 199 200 err = blkdev_issue_discard(si->bdev, start_block, 201 nr_blocks, GFP_KERNEL); 202 if (err) 203 break; 204 205 cond_resched(); 206 } 207 return err; /* That will often be -EOPNOTSUPP */ 208 } 209 210 static struct swap_extent * 211 offset_to_swap_extent(struct swap_info_struct *sis, unsigned long offset) 212 { 213 struct swap_extent *se; 214 struct rb_node *rb; 215 216 rb = sis->swap_extent_root.rb_node; 217 while (rb) { 218 se = rb_entry(rb, struct swap_extent, rb_node); 219 if (offset < se->start_page) 220 rb = rb->rb_left; 221 else if (offset >= se->start_page + se->nr_pages) 222 rb = rb->rb_right; 223 else 224 return se; 225 } 226 /* It *must* be present */ 227 BUG(); 228 } 229 230 sector_t swap_page_sector(struct page *page) 231 { 232 struct swap_info_struct *sis = page_swap_info(page); 233 struct swap_extent *se; 234 sector_t sector; 235 pgoff_t offset; 236 237 offset = __page_file_index(page); 238 se = offset_to_swap_extent(sis, offset); 239 sector = se->start_block + (offset - se->start_page); 240 return sector << (PAGE_SHIFT - 9); 241 } 242 243 /* 244 * swap allocation tell device that a cluster of swap can now be discarded, 245 * to allow the swap device to optimize its wear-levelling. 246 */ 247 static void discard_swap_cluster(struct swap_info_struct *si, 248 pgoff_t start_page, pgoff_t nr_pages) 249 { 250 struct swap_extent *se = offset_to_swap_extent(si, start_page); 251 252 while (nr_pages) { 253 pgoff_t offset = start_page - se->start_page; 254 sector_t start_block = se->start_block + offset; 255 sector_t nr_blocks = se->nr_pages - offset; 256 257 if (nr_blocks > nr_pages) 258 nr_blocks = nr_pages; 259 start_page += nr_blocks; 260 nr_pages -= nr_blocks; 261 262 start_block <<= PAGE_SHIFT - 9; 263 nr_blocks <<= PAGE_SHIFT - 9; 264 if (blkdev_issue_discard(si->bdev, start_block, 265 nr_blocks, GFP_NOIO)) 266 break; 267 268 se = next_se(se); 269 } 270 } 271 272 #ifdef CONFIG_THP_SWAP 273 #define SWAPFILE_CLUSTER HPAGE_PMD_NR 274 275 #define swap_entry_size(size) (size) 276 #else 277 #define SWAPFILE_CLUSTER 256 278 279 /* 280 * Define swap_entry_size() as constant to let compiler to optimize 281 * out some code if !CONFIG_THP_SWAP 282 */ 283 #define swap_entry_size(size) 1 284 #endif 285 #define LATENCY_LIMIT 256 286 287 static inline void cluster_set_flag(struct swap_cluster_info *info, 288 unsigned int flag) 289 { 290 info->flags = flag; 291 } 292 293 static inline unsigned int cluster_count(struct swap_cluster_info *info) 294 { 295 return info->data; 296 } 297 298 static inline void cluster_set_count(struct swap_cluster_info *info, 299 unsigned int c) 300 { 301 info->data = c; 302 } 303 304 static inline void cluster_set_count_flag(struct swap_cluster_info *info, 305 unsigned int c, unsigned int f) 306 { 307 info->flags = f; 308 info->data = c; 309 } 310 311 static inline unsigned int cluster_next(struct swap_cluster_info *info) 312 { 313 return info->data; 314 } 315 316 static inline void cluster_set_next(struct swap_cluster_info *info, 317 unsigned int n) 318 { 319 info->data = n; 320 } 321 322 static inline void cluster_set_next_flag(struct swap_cluster_info *info, 323 unsigned int n, unsigned int f) 324 { 325 info->flags = f; 326 info->data = n; 327 } 328 329 static inline bool cluster_is_free(struct swap_cluster_info *info) 330 { 331 return info->flags & CLUSTER_FLAG_FREE; 332 } 333 334 static inline bool cluster_is_null(struct swap_cluster_info *info) 335 { 336 return info->flags & CLUSTER_FLAG_NEXT_NULL; 337 } 338 339 static inline void cluster_set_null(struct swap_cluster_info *info) 340 { 341 info->flags = CLUSTER_FLAG_NEXT_NULL; 342 info->data = 0; 343 } 344 345 static inline bool cluster_is_huge(struct swap_cluster_info *info) 346 { 347 if (IS_ENABLED(CONFIG_THP_SWAP)) 348 return info->flags & CLUSTER_FLAG_HUGE; 349 return false; 350 } 351 352 static inline void cluster_clear_huge(struct swap_cluster_info *info) 353 { 354 info->flags &= ~CLUSTER_FLAG_HUGE; 355 } 356 357 static inline struct swap_cluster_info *lock_cluster(struct swap_info_struct *si, 358 unsigned long offset) 359 { 360 struct swap_cluster_info *ci; 361 362 ci = si->cluster_info; 363 if (ci) { 364 ci += offset / SWAPFILE_CLUSTER; 365 spin_lock(&ci->lock); 366 } 367 return ci; 368 } 369 370 static inline void unlock_cluster(struct swap_cluster_info *ci) 371 { 372 if (ci) 373 spin_unlock(&ci->lock); 374 } 375 376 /* 377 * Determine the locking method in use for this device. Return 378 * swap_cluster_info if SSD-style cluster-based locking is in place. 379 */ 380 static inline struct swap_cluster_info *lock_cluster_or_swap_info( 381 struct swap_info_struct *si, unsigned long offset) 382 { 383 struct swap_cluster_info *ci; 384 385 /* Try to use fine-grained SSD-style locking if available: */ 386 ci = lock_cluster(si, offset); 387 /* Otherwise, fall back to traditional, coarse locking: */ 388 if (!ci) 389 spin_lock(&si->lock); 390 391 return ci; 392 } 393 394 static inline void unlock_cluster_or_swap_info(struct swap_info_struct *si, 395 struct swap_cluster_info *ci) 396 { 397 if (ci) 398 unlock_cluster(ci); 399 else 400 spin_unlock(&si->lock); 401 } 402 403 static inline bool cluster_list_empty(struct swap_cluster_list *list) 404 { 405 return cluster_is_null(&list->head); 406 } 407 408 static inline unsigned int cluster_list_first(struct swap_cluster_list *list) 409 { 410 return cluster_next(&list->head); 411 } 412 413 static void cluster_list_init(struct swap_cluster_list *list) 414 { 415 cluster_set_null(&list->head); 416 cluster_set_null(&list->tail); 417 } 418 419 static void cluster_list_add_tail(struct swap_cluster_list *list, 420 struct swap_cluster_info *ci, 421 unsigned int idx) 422 { 423 if (cluster_list_empty(list)) { 424 cluster_set_next_flag(&list->head, idx, 0); 425 cluster_set_next_flag(&list->tail, idx, 0); 426 } else { 427 struct swap_cluster_info *ci_tail; 428 unsigned int tail = cluster_next(&list->tail); 429 430 /* 431 * Nested cluster lock, but both cluster locks are 432 * only acquired when we held swap_info_struct->lock 433 */ 434 ci_tail = ci + tail; 435 spin_lock_nested(&ci_tail->lock, SINGLE_DEPTH_NESTING); 436 cluster_set_next(ci_tail, idx); 437 spin_unlock(&ci_tail->lock); 438 cluster_set_next_flag(&list->tail, idx, 0); 439 } 440 } 441 442 static unsigned int cluster_list_del_first(struct swap_cluster_list *list, 443 struct swap_cluster_info *ci) 444 { 445 unsigned int idx; 446 447 idx = cluster_next(&list->head); 448 if (cluster_next(&list->tail) == idx) { 449 cluster_set_null(&list->head); 450 cluster_set_null(&list->tail); 451 } else 452 cluster_set_next_flag(&list->head, 453 cluster_next(&ci[idx]), 0); 454 455 return idx; 456 } 457 458 /* Add a cluster to discard list and schedule it to do discard */ 459 static void swap_cluster_schedule_discard(struct swap_info_struct *si, 460 unsigned int idx) 461 { 462 /* 463 * If scan_swap_map_slots() can't find a free cluster, it will check 464 * si->swap_map directly. To make sure the discarding cluster isn't 465 * taken by scan_swap_map_slots(), mark the swap entries bad (occupied). 466 * It will be cleared after discard 467 */ 468 memset(si->swap_map + idx * SWAPFILE_CLUSTER, 469 SWAP_MAP_BAD, SWAPFILE_CLUSTER); 470 471 cluster_list_add_tail(&si->discard_clusters, si->cluster_info, idx); 472 473 schedule_work(&si->discard_work); 474 } 475 476 static void __free_cluster(struct swap_info_struct *si, unsigned long idx) 477 { 478 struct swap_cluster_info *ci = si->cluster_info; 479 480 cluster_set_flag(ci + idx, CLUSTER_FLAG_FREE); 481 cluster_list_add_tail(&si->free_clusters, ci, idx); 482 } 483 484 /* 485 * Doing discard actually. After a cluster discard is finished, the cluster 486 * will be added to free cluster list. caller should hold si->lock. 487 */ 488 static void swap_do_scheduled_discard(struct swap_info_struct *si) 489 { 490 struct swap_cluster_info *info, *ci; 491 unsigned int idx; 492 493 info = si->cluster_info; 494 495 while (!cluster_list_empty(&si->discard_clusters)) { 496 idx = cluster_list_del_first(&si->discard_clusters, info); 497 spin_unlock(&si->lock); 498 499 discard_swap_cluster(si, idx * SWAPFILE_CLUSTER, 500 SWAPFILE_CLUSTER); 501 502 spin_lock(&si->lock); 503 ci = lock_cluster(si, idx * SWAPFILE_CLUSTER); 504 __free_cluster(si, idx); 505 memset(si->swap_map + idx * SWAPFILE_CLUSTER, 506 0, SWAPFILE_CLUSTER); 507 unlock_cluster(ci); 508 } 509 } 510 511 static void swap_discard_work(struct work_struct *work) 512 { 513 struct swap_info_struct *si; 514 515 si = container_of(work, struct swap_info_struct, discard_work); 516 517 spin_lock(&si->lock); 518 swap_do_scheduled_discard(si); 519 spin_unlock(&si->lock); 520 } 521 522 static void swap_users_ref_free(struct percpu_ref *ref) 523 { 524 struct swap_info_struct *si; 525 526 si = container_of(ref, struct swap_info_struct, users); 527 complete(&si->comp); 528 } 529 530 static void alloc_cluster(struct swap_info_struct *si, unsigned long idx) 531 { 532 struct swap_cluster_info *ci = si->cluster_info; 533 534 VM_BUG_ON(cluster_list_first(&si->free_clusters) != idx); 535 cluster_list_del_first(&si->free_clusters, ci); 536 cluster_set_count_flag(ci + idx, 0, 0); 537 } 538 539 static void free_cluster(struct swap_info_struct *si, unsigned long idx) 540 { 541 struct swap_cluster_info *ci = si->cluster_info + idx; 542 543 VM_BUG_ON(cluster_count(ci) != 0); 544 /* 545 * If the swap is discardable, prepare discard the cluster 546 * instead of free it immediately. The cluster will be freed 547 * after discard. 548 */ 549 if ((si->flags & (SWP_WRITEOK | SWP_PAGE_DISCARD)) == 550 (SWP_WRITEOK | SWP_PAGE_DISCARD)) { 551 swap_cluster_schedule_discard(si, idx); 552 return; 553 } 554 555 __free_cluster(si, idx); 556 } 557 558 /* 559 * The cluster corresponding to page_nr will be used. The cluster will be 560 * removed from free cluster list and its usage counter will be increased. 561 */ 562 static void inc_cluster_info_page(struct swap_info_struct *p, 563 struct swap_cluster_info *cluster_info, unsigned long page_nr) 564 { 565 unsigned long idx = page_nr / SWAPFILE_CLUSTER; 566 567 if (!cluster_info) 568 return; 569 if (cluster_is_free(&cluster_info[idx])) 570 alloc_cluster(p, idx); 571 572 VM_BUG_ON(cluster_count(&cluster_info[idx]) >= SWAPFILE_CLUSTER); 573 cluster_set_count(&cluster_info[idx], 574 cluster_count(&cluster_info[idx]) + 1); 575 } 576 577 /* 578 * The cluster corresponding to page_nr decreases one usage. If the usage 579 * counter becomes 0, which means no page in the cluster is in using, we can 580 * optionally discard the cluster and add it to free cluster list. 581 */ 582 static void dec_cluster_info_page(struct swap_info_struct *p, 583 struct swap_cluster_info *cluster_info, unsigned long page_nr) 584 { 585 unsigned long idx = page_nr / SWAPFILE_CLUSTER; 586 587 if (!cluster_info) 588 return; 589 590 VM_BUG_ON(cluster_count(&cluster_info[idx]) == 0); 591 cluster_set_count(&cluster_info[idx], 592 cluster_count(&cluster_info[idx]) - 1); 593 594 if (cluster_count(&cluster_info[idx]) == 0) 595 free_cluster(p, idx); 596 } 597 598 /* 599 * It's possible scan_swap_map_slots() uses a free cluster in the middle of free 600 * cluster list. Avoiding such abuse to avoid list corruption. 601 */ 602 static bool 603 scan_swap_map_ssd_cluster_conflict(struct swap_info_struct *si, 604 unsigned long offset) 605 { 606 struct percpu_cluster *percpu_cluster; 607 bool conflict; 608 609 offset /= SWAPFILE_CLUSTER; 610 conflict = !cluster_list_empty(&si->free_clusters) && 611 offset != cluster_list_first(&si->free_clusters) && 612 cluster_is_free(&si->cluster_info[offset]); 613 614 if (!conflict) 615 return false; 616 617 percpu_cluster = this_cpu_ptr(si->percpu_cluster); 618 cluster_set_null(&percpu_cluster->index); 619 return true; 620 } 621 622 /* 623 * Try to get a swap entry from current cpu's swap entry pool (a cluster). This 624 * might involve allocating a new cluster for current CPU too. 625 */ 626 static bool scan_swap_map_try_ssd_cluster(struct swap_info_struct *si, 627 unsigned long *offset, unsigned long *scan_base) 628 { 629 struct percpu_cluster *cluster; 630 struct swap_cluster_info *ci; 631 unsigned long tmp, max; 632 633 new_cluster: 634 cluster = this_cpu_ptr(si->percpu_cluster); 635 if (cluster_is_null(&cluster->index)) { 636 if (!cluster_list_empty(&si->free_clusters)) { 637 cluster->index = si->free_clusters.head; 638 cluster->next = cluster_next(&cluster->index) * 639 SWAPFILE_CLUSTER; 640 } else if (!cluster_list_empty(&si->discard_clusters)) { 641 /* 642 * we don't have free cluster but have some clusters in 643 * discarding, do discard now and reclaim them, then 644 * reread cluster_next_cpu since we dropped si->lock 645 */ 646 swap_do_scheduled_discard(si); 647 *scan_base = this_cpu_read(*si->cluster_next_cpu); 648 *offset = *scan_base; 649 goto new_cluster; 650 } else 651 return false; 652 } 653 654 /* 655 * Other CPUs can use our cluster if they can't find a free cluster, 656 * check if there is still free entry in the cluster 657 */ 658 tmp = cluster->next; 659 max = min_t(unsigned long, si->max, 660 (cluster_next(&cluster->index) + 1) * SWAPFILE_CLUSTER); 661 if (tmp < max) { 662 ci = lock_cluster(si, tmp); 663 while (tmp < max) { 664 if (!si->swap_map[tmp]) 665 break; 666 tmp++; 667 } 668 unlock_cluster(ci); 669 } 670 if (tmp >= max) { 671 cluster_set_null(&cluster->index); 672 goto new_cluster; 673 } 674 cluster->next = tmp + 1; 675 *offset = tmp; 676 *scan_base = tmp; 677 return true; 678 } 679 680 static void __del_from_avail_list(struct swap_info_struct *p) 681 { 682 int nid; 683 684 assert_spin_locked(&p->lock); 685 for_each_node(nid) 686 plist_del(&p->avail_lists[nid], &swap_avail_heads[nid]); 687 } 688 689 static void del_from_avail_list(struct swap_info_struct *p) 690 { 691 spin_lock(&swap_avail_lock); 692 __del_from_avail_list(p); 693 spin_unlock(&swap_avail_lock); 694 } 695 696 static void swap_range_alloc(struct swap_info_struct *si, unsigned long offset, 697 unsigned int nr_entries) 698 { 699 unsigned int end = offset + nr_entries - 1; 700 701 if (offset == si->lowest_bit) 702 si->lowest_bit += nr_entries; 703 if (end == si->highest_bit) 704 WRITE_ONCE(si->highest_bit, si->highest_bit - nr_entries); 705 WRITE_ONCE(si->inuse_pages, si->inuse_pages + nr_entries); 706 if (si->inuse_pages == si->pages) { 707 si->lowest_bit = si->max; 708 si->highest_bit = 0; 709 del_from_avail_list(si); 710 } 711 } 712 713 static void add_to_avail_list(struct swap_info_struct *p) 714 { 715 int nid; 716 717 spin_lock(&swap_avail_lock); 718 for_each_node(nid) 719 plist_add(&p->avail_lists[nid], &swap_avail_heads[nid]); 720 spin_unlock(&swap_avail_lock); 721 } 722 723 static void swap_range_free(struct swap_info_struct *si, unsigned long offset, 724 unsigned int nr_entries) 725 { 726 unsigned long begin = offset; 727 unsigned long end = offset + nr_entries - 1; 728 void (*swap_slot_free_notify)(struct block_device *, unsigned long); 729 730 if (offset < si->lowest_bit) 731 si->lowest_bit = offset; 732 if (end > si->highest_bit) { 733 bool was_full = !si->highest_bit; 734 735 WRITE_ONCE(si->highest_bit, end); 736 if (was_full && (si->flags & SWP_WRITEOK)) 737 add_to_avail_list(si); 738 } 739 atomic_long_add(nr_entries, &nr_swap_pages); 740 WRITE_ONCE(si->inuse_pages, si->inuse_pages - nr_entries); 741 if (si->flags & SWP_BLKDEV) 742 swap_slot_free_notify = 743 si->bdev->bd_disk->fops->swap_slot_free_notify; 744 else 745 swap_slot_free_notify = NULL; 746 while (offset <= end) { 747 arch_swap_invalidate_page(si->type, offset); 748 zswap_invalidate(si->type, offset); 749 if (swap_slot_free_notify) 750 swap_slot_free_notify(si->bdev, offset); 751 offset++; 752 } 753 clear_shadow_from_swap_cache(si->type, begin, end); 754 } 755 756 static void set_cluster_next(struct swap_info_struct *si, unsigned long next) 757 { 758 unsigned long prev; 759 760 if (!(si->flags & SWP_SOLIDSTATE)) { 761 si->cluster_next = next; 762 return; 763 } 764 765 prev = this_cpu_read(*si->cluster_next_cpu); 766 /* 767 * Cross the swap address space size aligned trunk, choose 768 * another trunk randomly to avoid lock contention on swap 769 * address space if possible. 770 */ 771 if ((prev >> SWAP_ADDRESS_SPACE_SHIFT) != 772 (next >> SWAP_ADDRESS_SPACE_SHIFT)) { 773 /* No free swap slots available */ 774 if (si->highest_bit <= si->lowest_bit) 775 return; 776 next = get_random_u32_inclusive(si->lowest_bit, si->highest_bit); 777 next = ALIGN_DOWN(next, SWAP_ADDRESS_SPACE_PAGES); 778 next = max_t(unsigned int, next, si->lowest_bit); 779 } 780 this_cpu_write(*si->cluster_next_cpu, next); 781 } 782 783 static bool swap_offset_available_and_locked(struct swap_info_struct *si, 784 unsigned long offset) 785 { 786 if (data_race(!si->swap_map[offset])) { 787 spin_lock(&si->lock); 788 return true; 789 } 790 791 if (vm_swap_full() && READ_ONCE(si->swap_map[offset]) == SWAP_HAS_CACHE) { 792 spin_lock(&si->lock); 793 return true; 794 } 795 796 return false; 797 } 798 799 static int scan_swap_map_slots(struct swap_info_struct *si, 800 unsigned char usage, int nr, 801 swp_entry_t slots[]) 802 { 803 struct swap_cluster_info *ci; 804 unsigned long offset; 805 unsigned long scan_base; 806 unsigned long last_in_cluster = 0; 807 int latency_ration = LATENCY_LIMIT; 808 int n_ret = 0; 809 bool scanned_many = false; 810 811 /* 812 * We try to cluster swap pages by allocating them sequentially 813 * in swap. Once we've allocated SWAPFILE_CLUSTER pages this 814 * way, however, we resort to first-free allocation, starting 815 * a new cluster. This prevents us from scattering swap pages 816 * all over the entire swap partition, so that we reduce 817 * overall disk seek times between swap pages. -- sct 818 * But we do now try to find an empty cluster. -Andrea 819 * And we let swap pages go all over an SSD partition. Hugh 820 */ 821 822 si->flags += SWP_SCANNING; 823 /* 824 * Use percpu scan base for SSD to reduce lock contention on 825 * cluster and swap cache. For HDD, sequential access is more 826 * important. 827 */ 828 if (si->flags & SWP_SOLIDSTATE) 829 scan_base = this_cpu_read(*si->cluster_next_cpu); 830 else 831 scan_base = si->cluster_next; 832 offset = scan_base; 833 834 /* SSD algorithm */ 835 if (si->cluster_info) { 836 if (!scan_swap_map_try_ssd_cluster(si, &offset, &scan_base)) 837 goto scan; 838 } else if (unlikely(!si->cluster_nr--)) { 839 if (si->pages - si->inuse_pages < SWAPFILE_CLUSTER) { 840 si->cluster_nr = SWAPFILE_CLUSTER - 1; 841 goto checks; 842 } 843 844 spin_unlock(&si->lock); 845 846 /* 847 * If seek is expensive, start searching for new cluster from 848 * start of partition, to minimize the span of allocated swap. 849 * If seek is cheap, that is the SWP_SOLIDSTATE si->cluster_info 850 * case, just handled by scan_swap_map_try_ssd_cluster() above. 851 */ 852 scan_base = offset = si->lowest_bit; 853 last_in_cluster = offset + SWAPFILE_CLUSTER - 1; 854 855 /* Locate the first empty (unaligned) cluster */ 856 for (; last_in_cluster <= si->highest_bit; offset++) { 857 if (si->swap_map[offset]) 858 last_in_cluster = offset + SWAPFILE_CLUSTER; 859 else if (offset == last_in_cluster) { 860 spin_lock(&si->lock); 861 offset -= SWAPFILE_CLUSTER - 1; 862 si->cluster_next = offset; 863 si->cluster_nr = SWAPFILE_CLUSTER - 1; 864 goto checks; 865 } 866 if (unlikely(--latency_ration < 0)) { 867 cond_resched(); 868 latency_ration = LATENCY_LIMIT; 869 } 870 } 871 872 offset = scan_base; 873 spin_lock(&si->lock); 874 si->cluster_nr = SWAPFILE_CLUSTER - 1; 875 } 876 877 checks: 878 if (si->cluster_info) { 879 while (scan_swap_map_ssd_cluster_conflict(si, offset)) { 880 /* take a break if we already got some slots */ 881 if (n_ret) 882 goto done; 883 if (!scan_swap_map_try_ssd_cluster(si, &offset, 884 &scan_base)) 885 goto scan; 886 } 887 } 888 if (!(si->flags & SWP_WRITEOK)) 889 goto no_page; 890 if (!si->highest_bit) 891 goto no_page; 892 if (offset > si->highest_bit) 893 scan_base = offset = si->lowest_bit; 894 895 ci = lock_cluster(si, offset); 896 /* reuse swap entry of cache-only swap if not busy. */ 897 if (vm_swap_full() && si->swap_map[offset] == SWAP_HAS_CACHE) { 898 int swap_was_freed; 899 unlock_cluster(ci); 900 spin_unlock(&si->lock); 901 swap_was_freed = __try_to_reclaim_swap(si, offset, TTRS_ANYWAY); 902 spin_lock(&si->lock); 903 /* entry was freed successfully, try to use this again */ 904 if (swap_was_freed) 905 goto checks; 906 goto scan; /* check next one */ 907 } 908 909 if (si->swap_map[offset]) { 910 unlock_cluster(ci); 911 if (!n_ret) 912 goto scan; 913 else 914 goto done; 915 } 916 WRITE_ONCE(si->swap_map[offset], usage); 917 inc_cluster_info_page(si, si->cluster_info, offset); 918 unlock_cluster(ci); 919 920 swap_range_alloc(si, offset, 1); 921 slots[n_ret++] = swp_entry(si->type, offset); 922 923 /* got enough slots or reach max slots? */ 924 if ((n_ret == nr) || (offset >= si->highest_bit)) 925 goto done; 926 927 /* search for next available slot */ 928 929 /* time to take a break? */ 930 if (unlikely(--latency_ration < 0)) { 931 if (n_ret) 932 goto done; 933 spin_unlock(&si->lock); 934 cond_resched(); 935 spin_lock(&si->lock); 936 latency_ration = LATENCY_LIMIT; 937 } 938 939 /* try to get more slots in cluster */ 940 if (si->cluster_info) { 941 if (scan_swap_map_try_ssd_cluster(si, &offset, &scan_base)) 942 goto checks; 943 } else if (si->cluster_nr && !si->swap_map[++offset]) { 944 /* non-ssd case, still more slots in cluster? */ 945 --si->cluster_nr; 946 goto checks; 947 } 948 949 /* 950 * Even if there's no free clusters available (fragmented), 951 * try to scan a little more quickly with lock held unless we 952 * have scanned too many slots already. 953 */ 954 if (!scanned_many) { 955 unsigned long scan_limit; 956 957 if (offset < scan_base) 958 scan_limit = scan_base; 959 else 960 scan_limit = si->highest_bit; 961 for (; offset <= scan_limit && --latency_ration > 0; 962 offset++) { 963 if (!si->swap_map[offset]) 964 goto checks; 965 } 966 } 967 968 done: 969 set_cluster_next(si, offset + 1); 970 si->flags -= SWP_SCANNING; 971 return n_ret; 972 973 scan: 974 spin_unlock(&si->lock); 975 while (++offset <= READ_ONCE(si->highest_bit)) { 976 if (unlikely(--latency_ration < 0)) { 977 cond_resched(); 978 latency_ration = LATENCY_LIMIT; 979 scanned_many = true; 980 } 981 if (swap_offset_available_and_locked(si, offset)) 982 goto checks; 983 } 984 offset = si->lowest_bit; 985 while (offset < scan_base) { 986 if (unlikely(--latency_ration < 0)) { 987 cond_resched(); 988 latency_ration = LATENCY_LIMIT; 989 scanned_many = true; 990 } 991 if (swap_offset_available_and_locked(si, offset)) 992 goto checks; 993 offset++; 994 } 995 spin_lock(&si->lock); 996 997 no_page: 998 si->flags -= SWP_SCANNING; 999 return n_ret; 1000 } 1001 1002 static int swap_alloc_cluster(struct swap_info_struct *si, swp_entry_t *slot) 1003 { 1004 unsigned long idx; 1005 struct swap_cluster_info *ci; 1006 unsigned long offset; 1007 1008 /* 1009 * Should not even be attempting cluster allocations when huge 1010 * page swap is disabled. Warn and fail the allocation. 1011 */ 1012 if (!IS_ENABLED(CONFIG_THP_SWAP)) { 1013 VM_WARN_ON_ONCE(1); 1014 return 0; 1015 } 1016 1017 if (cluster_list_empty(&si->free_clusters)) 1018 return 0; 1019 1020 idx = cluster_list_first(&si->free_clusters); 1021 offset = idx * SWAPFILE_CLUSTER; 1022 ci = lock_cluster(si, offset); 1023 alloc_cluster(si, idx); 1024 cluster_set_count_flag(ci, SWAPFILE_CLUSTER, CLUSTER_FLAG_HUGE); 1025 1026 memset(si->swap_map + offset, SWAP_HAS_CACHE, SWAPFILE_CLUSTER); 1027 unlock_cluster(ci); 1028 swap_range_alloc(si, offset, SWAPFILE_CLUSTER); 1029 *slot = swp_entry(si->type, offset); 1030 1031 return 1; 1032 } 1033 1034 static void swap_free_cluster(struct swap_info_struct *si, unsigned long idx) 1035 { 1036 unsigned long offset = idx * SWAPFILE_CLUSTER; 1037 struct swap_cluster_info *ci; 1038 1039 ci = lock_cluster(si, offset); 1040 memset(si->swap_map + offset, 0, SWAPFILE_CLUSTER); 1041 cluster_set_count_flag(ci, 0, 0); 1042 free_cluster(si, idx); 1043 unlock_cluster(ci); 1044 swap_range_free(si, offset, SWAPFILE_CLUSTER); 1045 } 1046 1047 int get_swap_pages(int n_goal, swp_entry_t swp_entries[], int entry_size) 1048 { 1049 unsigned long size = swap_entry_size(entry_size); 1050 struct swap_info_struct *si, *next; 1051 long avail_pgs; 1052 int n_ret = 0; 1053 int node; 1054 1055 /* Only single cluster request supported */ 1056 WARN_ON_ONCE(n_goal > 1 && size == SWAPFILE_CLUSTER); 1057 1058 spin_lock(&swap_avail_lock); 1059 1060 avail_pgs = atomic_long_read(&nr_swap_pages) / size; 1061 if (avail_pgs <= 0) { 1062 spin_unlock(&swap_avail_lock); 1063 goto noswap; 1064 } 1065 1066 n_goal = min3((long)n_goal, (long)SWAP_BATCH, avail_pgs); 1067 1068 atomic_long_sub(n_goal * size, &nr_swap_pages); 1069 1070 start_over: 1071 node = numa_node_id(); 1072 plist_for_each_entry_safe(si, next, &swap_avail_heads[node], avail_lists[node]) { 1073 /* requeue si to after same-priority siblings */ 1074 plist_requeue(&si->avail_lists[node], &swap_avail_heads[node]); 1075 spin_unlock(&swap_avail_lock); 1076 spin_lock(&si->lock); 1077 if (!si->highest_bit || !(si->flags & SWP_WRITEOK)) { 1078 spin_lock(&swap_avail_lock); 1079 if (plist_node_empty(&si->avail_lists[node])) { 1080 spin_unlock(&si->lock); 1081 goto nextsi; 1082 } 1083 WARN(!si->highest_bit, 1084 "swap_info %d in list but !highest_bit\n", 1085 si->type); 1086 WARN(!(si->flags & SWP_WRITEOK), 1087 "swap_info %d in list but !SWP_WRITEOK\n", 1088 si->type); 1089 __del_from_avail_list(si); 1090 spin_unlock(&si->lock); 1091 goto nextsi; 1092 } 1093 if (size == SWAPFILE_CLUSTER) { 1094 if (si->flags & SWP_BLKDEV) 1095 n_ret = swap_alloc_cluster(si, swp_entries); 1096 } else 1097 n_ret = scan_swap_map_slots(si, SWAP_HAS_CACHE, 1098 n_goal, swp_entries); 1099 spin_unlock(&si->lock); 1100 if (n_ret || size == SWAPFILE_CLUSTER) 1101 goto check_out; 1102 cond_resched(); 1103 1104 spin_lock(&swap_avail_lock); 1105 nextsi: 1106 /* 1107 * if we got here, it's likely that si was almost full before, 1108 * and since scan_swap_map_slots() can drop the si->lock, 1109 * multiple callers probably all tried to get a page from the 1110 * same si and it filled up before we could get one; or, the si 1111 * filled up between us dropping swap_avail_lock and taking 1112 * si->lock. Since we dropped the swap_avail_lock, the 1113 * swap_avail_head list may have been modified; so if next is 1114 * still in the swap_avail_head list then try it, otherwise 1115 * start over if we have not gotten any slots. 1116 */ 1117 if (plist_node_empty(&next->avail_lists[node])) 1118 goto start_over; 1119 } 1120 1121 spin_unlock(&swap_avail_lock); 1122 1123 check_out: 1124 if (n_ret < n_goal) 1125 atomic_long_add((long)(n_goal - n_ret) * size, 1126 &nr_swap_pages); 1127 noswap: 1128 return n_ret; 1129 } 1130 1131 static struct swap_info_struct *_swap_info_get(swp_entry_t entry) 1132 { 1133 struct swap_info_struct *p; 1134 unsigned long offset; 1135 1136 if (!entry.val) 1137 goto out; 1138 p = swp_swap_info(entry); 1139 if (!p) 1140 goto bad_nofile; 1141 if (data_race(!(p->flags & SWP_USED))) 1142 goto bad_device; 1143 offset = swp_offset(entry); 1144 if (offset >= p->max) 1145 goto bad_offset; 1146 if (data_race(!p->swap_map[swp_offset(entry)])) 1147 goto bad_free; 1148 return p; 1149 1150 bad_free: 1151 pr_err("%s: %s%08lx\n", __func__, Unused_offset, entry.val); 1152 goto out; 1153 bad_offset: 1154 pr_err("%s: %s%08lx\n", __func__, Bad_offset, entry.val); 1155 goto out; 1156 bad_device: 1157 pr_err("%s: %s%08lx\n", __func__, Unused_file, entry.val); 1158 goto out; 1159 bad_nofile: 1160 pr_err("%s: %s%08lx\n", __func__, Bad_file, entry.val); 1161 out: 1162 return NULL; 1163 } 1164 1165 static struct swap_info_struct *swap_info_get_cont(swp_entry_t entry, 1166 struct swap_info_struct *q) 1167 { 1168 struct swap_info_struct *p; 1169 1170 p = _swap_info_get(entry); 1171 1172 if (p != q) { 1173 if (q != NULL) 1174 spin_unlock(&q->lock); 1175 if (p != NULL) 1176 spin_lock(&p->lock); 1177 } 1178 return p; 1179 } 1180 1181 static unsigned char __swap_entry_free_locked(struct swap_info_struct *p, 1182 unsigned long offset, 1183 unsigned char usage) 1184 { 1185 unsigned char count; 1186 unsigned char has_cache; 1187 1188 count = p->swap_map[offset]; 1189 1190 has_cache = count & SWAP_HAS_CACHE; 1191 count &= ~SWAP_HAS_CACHE; 1192 1193 if (usage == SWAP_HAS_CACHE) { 1194 VM_BUG_ON(!has_cache); 1195 has_cache = 0; 1196 } else if (count == SWAP_MAP_SHMEM) { 1197 /* 1198 * Or we could insist on shmem.c using a special 1199 * swap_shmem_free() and free_shmem_swap_and_cache()... 1200 */ 1201 count = 0; 1202 } else if ((count & ~COUNT_CONTINUED) <= SWAP_MAP_MAX) { 1203 if (count == COUNT_CONTINUED) { 1204 if (swap_count_continued(p, offset, count)) 1205 count = SWAP_MAP_MAX | COUNT_CONTINUED; 1206 else 1207 count = SWAP_MAP_MAX; 1208 } else 1209 count--; 1210 } 1211 1212 usage = count | has_cache; 1213 if (usage) 1214 WRITE_ONCE(p->swap_map[offset], usage); 1215 else 1216 WRITE_ONCE(p->swap_map[offset], SWAP_HAS_CACHE); 1217 1218 return usage; 1219 } 1220 1221 /* 1222 * When we get a swap entry, if there aren't some other ways to 1223 * prevent swapoff, such as the folio in swap cache is locked, page 1224 * table lock is held, etc., the swap entry may become invalid because 1225 * of swapoff. Then, we need to enclose all swap related functions 1226 * with get_swap_device() and put_swap_device(), unless the swap 1227 * functions call get/put_swap_device() by themselves. 1228 * 1229 * Note that when only holding the PTL, swapoff might succeed immediately 1230 * after freeing a swap entry. Therefore, immediately after 1231 * __swap_entry_free(), the swap info might become stale and should not 1232 * be touched without a prior get_swap_device(). 1233 * 1234 * Check whether swap entry is valid in the swap device. If so, 1235 * return pointer to swap_info_struct, and keep the swap entry valid 1236 * via preventing the swap device from being swapoff, until 1237 * put_swap_device() is called. Otherwise return NULL. 1238 * 1239 * Notice that swapoff or swapoff+swapon can still happen before the 1240 * percpu_ref_tryget_live() in get_swap_device() or after the 1241 * percpu_ref_put() in put_swap_device() if there isn't any other way 1242 * to prevent swapoff. The caller must be prepared for that. For 1243 * example, the following situation is possible. 1244 * 1245 * CPU1 CPU2 1246 * do_swap_page() 1247 * ... swapoff+swapon 1248 * __read_swap_cache_async() 1249 * swapcache_prepare() 1250 * __swap_duplicate() 1251 * // check swap_map 1252 * // verify PTE not changed 1253 * 1254 * In __swap_duplicate(), the swap_map need to be checked before 1255 * changing partly because the specified swap entry may be for another 1256 * swap device which has been swapoff. And in do_swap_page(), after 1257 * the page is read from the swap device, the PTE is verified not 1258 * changed with the page table locked to check whether the swap device 1259 * has been swapoff or swapoff+swapon. 1260 */ 1261 struct swap_info_struct *get_swap_device(swp_entry_t entry) 1262 { 1263 struct swap_info_struct *si; 1264 unsigned long offset; 1265 1266 if (!entry.val) 1267 goto out; 1268 si = swp_swap_info(entry); 1269 if (!si) 1270 goto bad_nofile; 1271 if (!percpu_ref_tryget_live(&si->users)) 1272 goto out; 1273 /* 1274 * Guarantee the si->users are checked before accessing other 1275 * fields of swap_info_struct. 1276 * 1277 * Paired with the spin_unlock() after setup_swap_info() in 1278 * enable_swap_info(). 1279 */ 1280 smp_rmb(); 1281 offset = swp_offset(entry); 1282 if (offset >= si->max) 1283 goto put_out; 1284 1285 return si; 1286 bad_nofile: 1287 pr_err("%s: %s%08lx\n", __func__, Bad_file, entry.val); 1288 out: 1289 return NULL; 1290 put_out: 1291 pr_err("%s: %s%08lx\n", __func__, Bad_offset, entry.val); 1292 percpu_ref_put(&si->users); 1293 return NULL; 1294 } 1295 1296 static unsigned char __swap_entry_free(struct swap_info_struct *p, 1297 swp_entry_t entry) 1298 { 1299 struct swap_cluster_info *ci; 1300 unsigned long offset = swp_offset(entry); 1301 unsigned char usage; 1302 1303 ci = lock_cluster_or_swap_info(p, offset); 1304 usage = __swap_entry_free_locked(p, offset, 1); 1305 unlock_cluster_or_swap_info(p, ci); 1306 if (!usage) 1307 free_swap_slot(entry); 1308 1309 return usage; 1310 } 1311 1312 static void swap_entry_free(struct swap_info_struct *p, swp_entry_t entry) 1313 { 1314 struct swap_cluster_info *ci; 1315 unsigned long offset = swp_offset(entry); 1316 unsigned char count; 1317 1318 ci = lock_cluster(p, offset); 1319 count = p->swap_map[offset]; 1320 VM_BUG_ON(count != SWAP_HAS_CACHE); 1321 p->swap_map[offset] = 0; 1322 dec_cluster_info_page(p, p->cluster_info, offset); 1323 unlock_cluster(ci); 1324 1325 mem_cgroup_uncharge_swap(entry, 1); 1326 swap_range_free(p, offset, 1); 1327 } 1328 1329 /* 1330 * Caller has made sure that the swap device corresponding to entry 1331 * is still around or has not been recycled. 1332 */ 1333 void swap_free(swp_entry_t entry) 1334 { 1335 struct swap_info_struct *p; 1336 1337 p = _swap_info_get(entry); 1338 if (p) 1339 __swap_entry_free(p, entry); 1340 } 1341 1342 /* 1343 * Called after dropping swapcache to decrease refcnt to swap entries. 1344 */ 1345 void put_swap_folio(struct folio *folio, swp_entry_t entry) 1346 { 1347 unsigned long offset = swp_offset(entry); 1348 unsigned long idx = offset / SWAPFILE_CLUSTER; 1349 struct swap_cluster_info *ci; 1350 struct swap_info_struct *si; 1351 unsigned char *map; 1352 unsigned int i, free_entries = 0; 1353 unsigned char val; 1354 int size = swap_entry_size(folio_nr_pages(folio)); 1355 1356 si = _swap_info_get(entry); 1357 if (!si) 1358 return; 1359 1360 ci = lock_cluster_or_swap_info(si, offset); 1361 if (size == SWAPFILE_CLUSTER) { 1362 VM_BUG_ON(!cluster_is_huge(ci)); 1363 map = si->swap_map + offset; 1364 for (i = 0; i < SWAPFILE_CLUSTER; i++) { 1365 val = map[i]; 1366 VM_BUG_ON(!(val & SWAP_HAS_CACHE)); 1367 if (val == SWAP_HAS_CACHE) 1368 free_entries++; 1369 } 1370 cluster_clear_huge(ci); 1371 if (free_entries == SWAPFILE_CLUSTER) { 1372 unlock_cluster_or_swap_info(si, ci); 1373 spin_lock(&si->lock); 1374 mem_cgroup_uncharge_swap(entry, SWAPFILE_CLUSTER); 1375 swap_free_cluster(si, idx); 1376 spin_unlock(&si->lock); 1377 return; 1378 } 1379 } 1380 for (i = 0; i < size; i++, entry.val++) { 1381 if (!__swap_entry_free_locked(si, offset + i, SWAP_HAS_CACHE)) { 1382 unlock_cluster_or_swap_info(si, ci); 1383 free_swap_slot(entry); 1384 if (i == size - 1) 1385 return; 1386 lock_cluster_or_swap_info(si, offset); 1387 } 1388 } 1389 unlock_cluster_or_swap_info(si, ci); 1390 } 1391 1392 #ifdef CONFIG_THP_SWAP 1393 int split_swap_cluster(swp_entry_t entry) 1394 { 1395 struct swap_info_struct *si; 1396 struct swap_cluster_info *ci; 1397 unsigned long offset = swp_offset(entry); 1398 1399 si = _swap_info_get(entry); 1400 if (!si) 1401 return -EBUSY; 1402 ci = lock_cluster(si, offset); 1403 cluster_clear_huge(ci); 1404 unlock_cluster(ci); 1405 return 0; 1406 } 1407 #endif 1408 1409 static int swp_entry_cmp(const void *ent1, const void *ent2) 1410 { 1411 const swp_entry_t *e1 = ent1, *e2 = ent2; 1412 1413 return (int)swp_type(*e1) - (int)swp_type(*e2); 1414 } 1415 1416 void swapcache_free_entries(swp_entry_t *entries, int n) 1417 { 1418 struct swap_info_struct *p, *prev; 1419 int i; 1420 1421 if (n <= 0) 1422 return; 1423 1424 prev = NULL; 1425 p = NULL; 1426 1427 /* 1428 * Sort swap entries by swap device, so each lock is only taken once. 1429 * nr_swapfiles isn't absolutely correct, but the overhead of sort() is 1430 * so low that it isn't necessary to optimize further. 1431 */ 1432 if (nr_swapfiles > 1) 1433 sort(entries, n, sizeof(entries[0]), swp_entry_cmp, NULL); 1434 for (i = 0; i < n; ++i) { 1435 p = swap_info_get_cont(entries[i], prev); 1436 if (p) 1437 swap_entry_free(p, entries[i]); 1438 prev = p; 1439 } 1440 if (p) 1441 spin_unlock(&p->lock); 1442 } 1443 1444 int __swap_count(swp_entry_t entry) 1445 { 1446 struct swap_info_struct *si = swp_swap_info(entry); 1447 pgoff_t offset = swp_offset(entry); 1448 1449 return swap_count(si->swap_map[offset]); 1450 } 1451 1452 /* 1453 * How many references to @entry are currently swapped out? 1454 * This does not give an exact answer when swap count is continued, 1455 * but does include the high COUNT_CONTINUED flag to allow for that. 1456 */ 1457 int swap_swapcount(struct swap_info_struct *si, swp_entry_t entry) 1458 { 1459 pgoff_t offset = swp_offset(entry); 1460 struct swap_cluster_info *ci; 1461 int count; 1462 1463 ci = lock_cluster_or_swap_info(si, offset); 1464 count = swap_count(si->swap_map[offset]); 1465 unlock_cluster_or_swap_info(si, ci); 1466 return count; 1467 } 1468 1469 /* 1470 * How many references to @entry are currently swapped out? 1471 * This considers COUNT_CONTINUED so it returns exact answer. 1472 */ 1473 int swp_swapcount(swp_entry_t entry) 1474 { 1475 int count, tmp_count, n; 1476 struct swap_info_struct *p; 1477 struct swap_cluster_info *ci; 1478 struct page *page; 1479 pgoff_t offset; 1480 unsigned char *map; 1481 1482 p = _swap_info_get(entry); 1483 if (!p) 1484 return 0; 1485 1486 offset = swp_offset(entry); 1487 1488 ci = lock_cluster_or_swap_info(p, offset); 1489 1490 count = swap_count(p->swap_map[offset]); 1491 if (!(count & COUNT_CONTINUED)) 1492 goto out; 1493 1494 count &= ~COUNT_CONTINUED; 1495 n = SWAP_MAP_MAX + 1; 1496 1497 page = vmalloc_to_page(p->swap_map + offset); 1498 offset &= ~PAGE_MASK; 1499 VM_BUG_ON(page_private(page) != SWP_CONTINUED); 1500 1501 do { 1502 page = list_next_entry(page, lru); 1503 map = kmap_atomic(page); 1504 tmp_count = map[offset]; 1505 kunmap_atomic(map); 1506 1507 count += (tmp_count & ~COUNT_CONTINUED) * n; 1508 n *= (SWAP_CONT_MAX + 1); 1509 } while (tmp_count & COUNT_CONTINUED); 1510 out: 1511 unlock_cluster_or_swap_info(p, ci); 1512 return count; 1513 } 1514 1515 static bool swap_page_trans_huge_swapped(struct swap_info_struct *si, 1516 swp_entry_t entry) 1517 { 1518 struct swap_cluster_info *ci; 1519 unsigned char *map = si->swap_map; 1520 unsigned long roffset = swp_offset(entry); 1521 unsigned long offset = round_down(roffset, SWAPFILE_CLUSTER); 1522 int i; 1523 bool ret = false; 1524 1525 ci = lock_cluster_or_swap_info(si, offset); 1526 if (!ci || !cluster_is_huge(ci)) { 1527 if (swap_count(map[roffset])) 1528 ret = true; 1529 goto unlock_out; 1530 } 1531 for (i = 0; i < SWAPFILE_CLUSTER; i++) { 1532 if (swap_count(map[offset + i])) { 1533 ret = true; 1534 break; 1535 } 1536 } 1537 unlock_out: 1538 unlock_cluster_or_swap_info(si, ci); 1539 return ret; 1540 } 1541 1542 static bool folio_swapped(struct folio *folio) 1543 { 1544 swp_entry_t entry = folio->swap; 1545 struct swap_info_struct *si = _swap_info_get(entry); 1546 1547 if (!si) 1548 return false; 1549 1550 if (!IS_ENABLED(CONFIG_THP_SWAP) || likely(!folio_test_large(folio))) 1551 return swap_swapcount(si, entry) != 0; 1552 1553 return swap_page_trans_huge_swapped(si, entry); 1554 } 1555 1556 /** 1557 * folio_free_swap() - Free the swap space used for this folio. 1558 * @folio: The folio to remove. 1559 * 1560 * If swap is getting full, or if there are no more mappings of this folio, 1561 * then call folio_free_swap to free its swap space. 1562 * 1563 * Return: true if we were able to release the swap space. 1564 */ 1565 bool folio_free_swap(struct folio *folio) 1566 { 1567 VM_BUG_ON_FOLIO(!folio_test_locked(folio), folio); 1568 1569 if (!folio_test_swapcache(folio)) 1570 return false; 1571 if (folio_test_writeback(folio)) 1572 return false; 1573 if (folio_swapped(folio)) 1574 return false; 1575 1576 /* 1577 * Once hibernation has begun to create its image of memory, 1578 * there's a danger that one of the calls to folio_free_swap() 1579 * - most probably a call from __try_to_reclaim_swap() while 1580 * hibernation is allocating its own swap pages for the image, 1581 * but conceivably even a call from memory reclaim - will free 1582 * the swap from a folio which has already been recorded in the 1583 * image as a clean swapcache folio, and then reuse its swap for 1584 * another page of the image. On waking from hibernation, the 1585 * original folio might be freed under memory pressure, then 1586 * later read back in from swap, now with the wrong data. 1587 * 1588 * Hibernation suspends storage while it is writing the image 1589 * to disk so check that here. 1590 */ 1591 if (pm_suspended_storage()) 1592 return false; 1593 1594 delete_from_swap_cache(folio); 1595 folio_set_dirty(folio); 1596 return true; 1597 } 1598 1599 /* 1600 * Free the swap entry like above, but also try to 1601 * free the page cache entry if it is the last user. 1602 */ 1603 int free_swap_and_cache(swp_entry_t entry) 1604 { 1605 struct swap_info_struct *p; 1606 unsigned char count; 1607 1608 if (non_swap_entry(entry)) 1609 return 1; 1610 1611 p = get_swap_device(entry); 1612 if (p) { 1613 if (WARN_ON(data_race(!p->swap_map[swp_offset(entry)]))) { 1614 put_swap_device(p); 1615 return 0; 1616 } 1617 1618 count = __swap_entry_free(p, entry); 1619 if (count == SWAP_HAS_CACHE && 1620 !swap_page_trans_huge_swapped(p, entry)) 1621 __try_to_reclaim_swap(p, swp_offset(entry), 1622 TTRS_UNMAPPED | TTRS_FULL); 1623 put_swap_device(p); 1624 } 1625 return p != NULL; 1626 } 1627 1628 #ifdef CONFIG_HIBERNATION 1629 1630 swp_entry_t get_swap_page_of_type(int type) 1631 { 1632 struct swap_info_struct *si = swap_type_to_swap_info(type); 1633 swp_entry_t entry = {0}; 1634 1635 if (!si) 1636 goto fail; 1637 1638 /* This is called for allocating swap entry, not cache */ 1639 spin_lock(&si->lock); 1640 if ((si->flags & SWP_WRITEOK) && scan_swap_map_slots(si, 1, 1, &entry)) 1641 atomic_long_dec(&nr_swap_pages); 1642 spin_unlock(&si->lock); 1643 fail: 1644 return entry; 1645 } 1646 1647 /* 1648 * Find the swap type that corresponds to given device (if any). 1649 * 1650 * @offset - number of the PAGE_SIZE-sized block of the device, starting 1651 * from 0, in which the swap header is expected to be located. 1652 * 1653 * This is needed for the suspend to disk (aka swsusp). 1654 */ 1655 int swap_type_of(dev_t device, sector_t offset) 1656 { 1657 int type; 1658 1659 if (!device) 1660 return -1; 1661 1662 spin_lock(&swap_lock); 1663 for (type = 0; type < nr_swapfiles; type++) { 1664 struct swap_info_struct *sis = swap_info[type]; 1665 1666 if (!(sis->flags & SWP_WRITEOK)) 1667 continue; 1668 1669 if (device == sis->bdev->bd_dev) { 1670 struct swap_extent *se = first_se(sis); 1671 1672 if (se->start_block == offset) { 1673 spin_unlock(&swap_lock); 1674 return type; 1675 } 1676 } 1677 } 1678 spin_unlock(&swap_lock); 1679 return -ENODEV; 1680 } 1681 1682 int find_first_swap(dev_t *device) 1683 { 1684 int type; 1685 1686 spin_lock(&swap_lock); 1687 for (type = 0; type < nr_swapfiles; type++) { 1688 struct swap_info_struct *sis = swap_info[type]; 1689 1690 if (!(sis->flags & SWP_WRITEOK)) 1691 continue; 1692 *device = sis->bdev->bd_dev; 1693 spin_unlock(&swap_lock); 1694 return type; 1695 } 1696 spin_unlock(&swap_lock); 1697 return -ENODEV; 1698 } 1699 1700 /* 1701 * Get the (PAGE_SIZE) block corresponding to given offset on the swapdev 1702 * corresponding to given index in swap_info (swap type). 1703 */ 1704 sector_t swapdev_block(int type, pgoff_t offset) 1705 { 1706 struct swap_info_struct *si = swap_type_to_swap_info(type); 1707 struct swap_extent *se; 1708 1709 if (!si || !(si->flags & SWP_WRITEOK)) 1710 return 0; 1711 se = offset_to_swap_extent(si, offset); 1712 return se->start_block + (offset - se->start_page); 1713 } 1714 1715 /* 1716 * Return either the total number of swap pages of given type, or the number 1717 * of free pages of that type (depending on @free) 1718 * 1719 * This is needed for software suspend 1720 */ 1721 unsigned int count_swap_pages(int type, int free) 1722 { 1723 unsigned int n = 0; 1724 1725 spin_lock(&swap_lock); 1726 if ((unsigned int)type < nr_swapfiles) { 1727 struct swap_info_struct *sis = swap_info[type]; 1728 1729 spin_lock(&sis->lock); 1730 if (sis->flags & SWP_WRITEOK) { 1731 n = sis->pages; 1732 if (free) 1733 n -= sis->inuse_pages; 1734 } 1735 spin_unlock(&sis->lock); 1736 } 1737 spin_unlock(&swap_lock); 1738 return n; 1739 } 1740 #endif /* CONFIG_HIBERNATION */ 1741 1742 static inline int pte_same_as_swp(pte_t pte, pte_t swp_pte) 1743 { 1744 return pte_same(pte_swp_clear_flags(pte), swp_pte); 1745 } 1746 1747 /* 1748 * No need to decide whether this PTE shares the swap entry with others, 1749 * just let do_wp_page work it out if a write is requested later - to 1750 * force COW, vm_page_prot omits write permission from any private vma. 1751 */ 1752 static int unuse_pte(struct vm_area_struct *vma, pmd_t *pmd, 1753 unsigned long addr, swp_entry_t entry, struct folio *folio) 1754 { 1755 struct page *page = folio_file_page(folio, swp_offset(entry)); 1756 struct page *swapcache; 1757 spinlock_t *ptl; 1758 pte_t *pte, new_pte, old_pte; 1759 bool hwpoisoned = PageHWPoison(page); 1760 int ret = 1; 1761 1762 swapcache = page; 1763 page = ksm_might_need_to_copy(page, vma, addr); 1764 if (unlikely(!page)) 1765 return -ENOMEM; 1766 else if (unlikely(PTR_ERR(page) == -EHWPOISON)) 1767 hwpoisoned = true; 1768 1769 pte = pte_offset_map_lock(vma->vm_mm, pmd, addr, &ptl); 1770 if (unlikely(!pte || !pte_same_as_swp(ptep_get(pte), 1771 swp_entry_to_pte(entry)))) { 1772 ret = 0; 1773 goto out; 1774 } 1775 1776 old_pte = ptep_get(pte); 1777 1778 if (unlikely(hwpoisoned || !PageUptodate(page))) { 1779 swp_entry_t swp_entry; 1780 1781 dec_mm_counter(vma->vm_mm, MM_SWAPENTS); 1782 if (hwpoisoned) { 1783 swp_entry = make_hwpoison_entry(swapcache); 1784 page = swapcache; 1785 } else { 1786 swp_entry = make_poisoned_swp_entry(); 1787 } 1788 new_pte = swp_entry_to_pte(swp_entry); 1789 ret = 0; 1790 goto setpte; 1791 } 1792 1793 /* 1794 * Some architectures may have to restore extra metadata to the page 1795 * when reading from swap. This metadata may be indexed by swap entry 1796 * so this must be called before swap_free(). 1797 */ 1798 arch_swap_restore(entry, page_folio(page)); 1799 1800 /* See do_swap_page() */ 1801 BUG_ON(!PageAnon(page) && PageMappedToDisk(page)); 1802 BUG_ON(PageAnon(page) && PageAnonExclusive(page)); 1803 1804 dec_mm_counter(vma->vm_mm, MM_SWAPENTS); 1805 inc_mm_counter(vma->vm_mm, MM_ANONPAGES); 1806 get_page(page); 1807 if (page == swapcache) { 1808 rmap_t rmap_flags = RMAP_NONE; 1809 1810 /* 1811 * See do_swap_page(): PageWriteback() would be problematic. 1812 * However, we do a wait_on_page_writeback() just before this 1813 * call and have the page locked. 1814 */ 1815 VM_BUG_ON_PAGE(PageWriteback(page), page); 1816 if (pte_swp_exclusive(old_pte)) 1817 rmap_flags |= RMAP_EXCLUSIVE; 1818 1819 page_add_anon_rmap(page, vma, addr, rmap_flags); 1820 } else { /* ksm created a completely new copy */ 1821 page_add_new_anon_rmap(page, vma, addr); 1822 lru_cache_add_inactive_or_unevictable(page, vma); 1823 } 1824 new_pte = pte_mkold(mk_pte(page, vma->vm_page_prot)); 1825 if (pte_swp_soft_dirty(old_pte)) 1826 new_pte = pte_mksoft_dirty(new_pte); 1827 if (pte_swp_uffd_wp(old_pte)) 1828 new_pte = pte_mkuffd_wp(new_pte); 1829 setpte: 1830 set_pte_at(vma->vm_mm, addr, pte, new_pte); 1831 swap_free(entry); 1832 out: 1833 if (pte) 1834 pte_unmap_unlock(pte, ptl); 1835 if (page != swapcache) { 1836 unlock_page(page); 1837 put_page(page); 1838 } 1839 return ret; 1840 } 1841 1842 static int unuse_pte_range(struct vm_area_struct *vma, pmd_t *pmd, 1843 unsigned long addr, unsigned long end, 1844 unsigned int type) 1845 { 1846 pte_t *pte = NULL; 1847 struct swap_info_struct *si; 1848 1849 si = swap_info[type]; 1850 do { 1851 struct folio *folio; 1852 unsigned long offset; 1853 unsigned char swp_count; 1854 swp_entry_t entry; 1855 int ret; 1856 pte_t ptent; 1857 1858 if (!pte++) { 1859 pte = pte_offset_map(pmd, addr); 1860 if (!pte) 1861 break; 1862 } 1863 1864 ptent = ptep_get_lockless(pte); 1865 1866 if (!is_swap_pte(ptent)) 1867 continue; 1868 1869 entry = pte_to_swp_entry(ptent); 1870 if (swp_type(entry) != type) 1871 continue; 1872 1873 offset = swp_offset(entry); 1874 pte_unmap(pte); 1875 pte = NULL; 1876 1877 folio = swap_cache_get_folio(entry, vma, addr); 1878 if (!folio) { 1879 struct page *page; 1880 struct vm_fault vmf = { 1881 .vma = vma, 1882 .address = addr, 1883 .real_address = addr, 1884 .pmd = pmd, 1885 }; 1886 1887 page = swapin_readahead(entry, GFP_HIGHUSER_MOVABLE, 1888 &vmf); 1889 if (page) 1890 folio = page_folio(page); 1891 } 1892 if (!folio) { 1893 swp_count = READ_ONCE(si->swap_map[offset]); 1894 if (swp_count == 0 || swp_count == SWAP_MAP_BAD) 1895 continue; 1896 return -ENOMEM; 1897 } 1898 1899 folio_lock(folio); 1900 folio_wait_writeback(folio); 1901 ret = unuse_pte(vma, pmd, addr, entry, folio); 1902 if (ret < 0) { 1903 folio_unlock(folio); 1904 folio_put(folio); 1905 return ret; 1906 } 1907 1908 folio_free_swap(folio); 1909 folio_unlock(folio); 1910 folio_put(folio); 1911 } while (addr += PAGE_SIZE, addr != end); 1912 1913 if (pte) 1914 pte_unmap(pte); 1915 return 0; 1916 } 1917 1918 static inline int unuse_pmd_range(struct vm_area_struct *vma, pud_t *pud, 1919 unsigned long addr, unsigned long end, 1920 unsigned int type) 1921 { 1922 pmd_t *pmd; 1923 unsigned long next; 1924 int ret; 1925 1926 pmd = pmd_offset(pud, addr); 1927 do { 1928 cond_resched(); 1929 next = pmd_addr_end(addr, end); 1930 ret = unuse_pte_range(vma, pmd, addr, next, type); 1931 if (ret) 1932 return ret; 1933 } while (pmd++, addr = next, addr != end); 1934 return 0; 1935 } 1936 1937 static inline int unuse_pud_range(struct vm_area_struct *vma, p4d_t *p4d, 1938 unsigned long addr, unsigned long end, 1939 unsigned int type) 1940 { 1941 pud_t *pud; 1942 unsigned long next; 1943 int ret; 1944 1945 pud = pud_offset(p4d, addr); 1946 do { 1947 next = pud_addr_end(addr, end); 1948 if (pud_none_or_clear_bad(pud)) 1949 continue; 1950 ret = unuse_pmd_range(vma, pud, addr, next, type); 1951 if (ret) 1952 return ret; 1953 } while (pud++, addr = next, addr != end); 1954 return 0; 1955 } 1956 1957 static inline int unuse_p4d_range(struct vm_area_struct *vma, pgd_t *pgd, 1958 unsigned long addr, unsigned long end, 1959 unsigned int type) 1960 { 1961 p4d_t *p4d; 1962 unsigned long next; 1963 int ret; 1964 1965 p4d = p4d_offset(pgd, addr); 1966 do { 1967 next = p4d_addr_end(addr, end); 1968 if (p4d_none_or_clear_bad(p4d)) 1969 continue; 1970 ret = unuse_pud_range(vma, p4d, addr, next, type); 1971 if (ret) 1972 return ret; 1973 } while (p4d++, addr = next, addr != end); 1974 return 0; 1975 } 1976 1977 static int unuse_vma(struct vm_area_struct *vma, unsigned int type) 1978 { 1979 pgd_t *pgd; 1980 unsigned long addr, end, next; 1981 int ret; 1982 1983 addr = vma->vm_start; 1984 end = vma->vm_end; 1985 1986 pgd = pgd_offset(vma->vm_mm, addr); 1987 do { 1988 next = pgd_addr_end(addr, end); 1989 if (pgd_none_or_clear_bad(pgd)) 1990 continue; 1991 ret = unuse_p4d_range(vma, pgd, addr, next, type); 1992 if (ret) 1993 return ret; 1994 } while (pgd++, addr = next, addr != end); 1995 return 0; 1996 } 1997 1998 static int unuse_mm(struct mm_struct *mm, unsigned int type) 1999 { 2000 struct vm_area_struct *vma; 2001 int ret = 0; 2002 VMA_ITERATOR(vmi, mm, 0); 2003 2004 mmap_read_lock(mm); 2005 for_each_vma(vmi, vma) { 2006 if (vma->anon_vma) { 2007 ret = unuse_vma(vma, type); 2008 if (ret) 2009 break; 2010 } 2011 2012 cond_resched(); 2013 } 2014 mmap_read_unlock(mm); 2015 return ret; 2016 } 2017 2018 /* 2019 * Scan swap_map from current position to next entry still in use. 2020 * Return 0 if there are no inuse entries after prev till end of 2021 * the map. 2022 */ 2023 static unsigned int find_next_to_unuse(struct swap_info_struct *si, 2024 unsigned int prev) 2025 { 2026 unsigned int i; 2027 unsigned char count; 2028 2029 /* 2030 * No need for swap_lock here: we're just looking 2031 * for whether an entry is in use, not modifying it; false 2032 * hits are okay, and sys_swapoff() has already prevented new 2033 * allocations from this area (while holding swap_lock). 2034 */ 2035 for (i = prev + 1; i < si->max; i++) { 2036 count = READ_ONCE(si->swap_map[i]); 2037 if (count && swap_count(count) != SWAP_MAP_BAD) 2038 break; 2039 if ((i % LATENCY_LIMIT) == 0) 2040 cond_resched(); 2041 } 2042 2043 if (i == si->max) 2044 i = 0; 2045 2046 return i; 2047 } 2048 2049 static int try_to_unuse(unsigned int type) 2050 { 2051 struct mm_struct *prev_mm; 2052 struct mm_struct *mm; 2053 struct list_head *p; 2054 int retval = 0; 2055 struct swap_info_struct *si = swap_info[type]; 2056 struct folio *folio; 2057 swp_entry_t entry; 2058 unsigned int i; 2059 2060 if (!READ_ONCE(si->inuse_pages)) 2061 return 0; 2062 2063 retry: 2064 retval = shmem_unuse(type); 2065 if (retval) 2066 return retval; 2067 2068 prev_mm = &init_mm; 2069 mmget(prev_mm); 2070 2071 spin_lock(&mmlist_lock); 2072 p = &init_mm.mmlist; 2073 while (READ_ONCE(si->inuse_pages) && 2074 !signal_pending(current) && 2075 (p = p->next) != &init_mm.mmlist) { 2076 2077 mm = list_entry(p, struct mm_struct, mmlist); 2078 if (!mmget_not_zero(mm)) 2079 continue; 2080 spin_unlock(&mmlist_lock); 2081 mmput(prev_mm); 2082 prev_mm = mm; 2083 retval = unuse_mm(mm, type); 2084 if (retval) { 2085 mmput(prev_mm); 2086 return retval; 2087 } 2088 2089 /* 2090 * Make sure that we aren't completely killing 2091 * interactive performance. 2092 */ 2093 cond_resched(); 2094 spin_lock(&mmlist_lock); 2095 } 2096 spin_unlock(&mmlist_lock); 2097 2098 mmput(prev_mm); 2099 2100 i = 0; 2101 while (READ_ONCE(si->inuse_pages) && 2102 !signal_pending(current) && 2103 (i = find_next_to_unuse(si, i)) != 0) { 2104 2105 entry = swp_entry(type, i); 2106 folio = filemap_get_folio(swap_address_space(entry), i); 2107 if (IS_ERR(folio)) 2108 continue; 2109 2110 /* 2111 * It is conceivable that a racing task removed this folio from 2112 * swap cache just before we acquired the page lock. The folio 2113 * might even be back in swap cache on another swap area. But 2114 * that is okay, folio_free_swap() only removes stale folios. 2115 */ 2116 folio_lock(folio); 2117 folio_wait_writeback(folio); 2118 folio_free_swap(folio); 2119 folio_unlock(folio); 2120 folio_put(folio); 2121 } 2122 2123 /* 2124 * Lets check again to see if there are still swap entries in the map. 2125 * If yes, we would need to do retry the unuse logic again. 2126 * Under global memory pressure, swap entries can be reinserted back 2127 * into process space after the mmlist loop above passes over them. 2128 * 2129 * Limit the number of retries? No: when mmget_not_zero() 2130 * above fails, that mm is likely to be freeing swap from 2131 * exit_mmap(), which proceeds at its own independent pace; 2132 * and even shmem_writepage() could have been preempted after 2133 * folio_alloc_swap(), temporarily hiding that swap. It's easy 2134 * and robust (though cpu-intensive) just to keep retrying. 2135 */ 2136 if (READ_ONCE(si->inuse_pages)) { 2137 if (!signal_pending(current)) 2138 goto retry; 2139 return -EINTR; 2140 } 2141 2142 return 0; 2143 } 2144 2145 /* 2146 * After a successful try_to_unuse, if no swap is now in use, we know 2147 * we can empty the mmlist. swap_lock must be held on entry and exit. 2148 * Note that mmlist_lock nests inside swap_lock, and an mm must be 2149 * added to the mmlist just after page_duplicate - before would be racy. 2150 */ 2151 static void drain_mmlist(void) 2152 { 2153 struct list_head *p, *next; 2154 unsigned int type; 2155 2156 for (type = 0; type < nr_swapfiles; type++) 2157 if (swap_info[type]->inuse_pages) 2158 return; 2159 spin_lock(&mmlist_lock); 2160 list_for_each_safe(p, next, &init_mm.mmlist) 2161 list_del_init(p); 2162 spin_unlock(&mmlist_lock); 2163 } 2164 2165 /* 2166 * Free all of a swapdev's extent information 2167 */ 2168 static void destroy_swap_extents(struct swap_info_struct *sis) 2169 { 2170 while (!RB_EMPTY_ROOT(&sis->swap_extent_root)) { 2171 struct rb_node *rb = sis->swap_extent_root.rb_node; 2172 struct swap_extent *se = rb_entry(rb, struct swap_extent, rb_node); 2173 2174 rb_erase(rb, &sis->swap_extent_root); 2175 kfree(se); 2176 } 2177 2178 if (sis->flags & SWP_ACTIVATED) { 2179 struct file *swap_file = sis->swap_file; 2180 struct address_space *mapping = swap_file->f_mapping; 2181 2182 sis->flags &= ~SWP_ACTIVATED; 2183 if (mapping->a_ops->swap_deactivate) 2184 mapping->a_ops->swap_deactivate(swap_file); 2185 } 2186 } 2187 2188 /* 2189 * Add a block range (and the corresponding page range) into this swapdev's 2190 * extent tree. 2191 * 2192 * This function rather assumes that it is called in ascending page order. 2193 */ 2194 int 2195 add_swap_extent(struct swap_info_struct *sis, unsigned long start_page, 2196 unsigned long nr_pages, sector_t start_block) 2197 { 2198 struct rb_node **link = &sis->swap_extent_root.rb_node, *parent = NULL; 2199 struct swap_extent *se; 2200 struct swap_extent *new_se; 2201 2202 /* 2203 * place the new node at the right most since the 2204 * function is called in ascending page order. 2205 */ 2206 while (*link) { 2207 parent = *link; 2208 link = &parent->rb_right; 2209 } 2210 2211 if (parent) { 2212 se = rb_entry(parent, struct swap_extent, rb_node); 2213 BUG_ON(se->start_page + se->nr_pages != start_page); 2214 if (se->start_block + se->nr_pages == start_block) { 2215 /* Merge it */ 2216 se->nr_pages += nr_pages; 2217 return 0; 2218 } 2219 } 2220 2221 /* No merge, insert a new extent. */ 2222 new_se = kmalloc(sizeof(*se), GFP_KERNEL); 2223 if (new_se == NULL) 2224 return -ENOMEM; 2225 new_se->start_page = start_page; 2226 new_se->nr_pages = nr_pages; 2227 new_se->start_block = start_block; 2228 2229 rb_link_node(&new_se->rb_node, parent, link); 2230 rb_insert_color(&new_se->rb_node, &sis->swap_extent_root); 2231 return 1; 2232 } 2233 EXPORT_SYMBOL_GPL(add_swap_extent); 2234 2235 /* 2236 * A `swap extent' is a simple thing which maps a contiguous range of pages 2237 * onto a contiguous range of disk blocks. A rbtree of swap extents is 2238 * built at swapon time and is then used at swap_writepage/swap_readpage 2239 * time for locating where on disk a page belongs. 2240 * 2241 * If the swapfile is an S_ISBLK block device, a single extent is installed. 2242 * This is done so that the main operating code can treat S_ISBLK and S_ISREG 2243 * swap files identically. 2244 * 2245 * Whether the swapdev is an S_ISREG file or an S_ISBLK blockdev, the swap 2246 * extent rbtree operates in PAGE_SIZE disk blocks. Both S_ISREG and S_ISBLK 2247 * swapfiles are handled *identically* after swapon time. 2248 * 2249 * For S_ISREG swapfiles, setup_swap_extents() will walk all the file's blocks 2250 * and will parse them into a rbtree, in PAGE_SIZE chunks. If some stray 2251 * blocks are found which do not fall within the PAGE_SIZE alignment 2252 * requirements, they are simply tossed out - we will never use those blocks 2253 * for swapping. 2254 * 2255 * For all swap devices we set S_SWAPFILE across the life of the swapon. This 2256 * prevents users from writing to the swap device, which will corrupt memory. 2257 * 2258 * The amount of disk space which a single swap extent represents varies. 2259 * Typically it is in the 1-4 megabyte range. So we can have hundreds of 2260 * extents in the rbtree. - akpm. 2261 */ 2262 static int setup_swap_extents(struct swap_info_struct *sis, sector_t *span) 2263 { 2264 struct file *swap_file = sis->swap_file; 2265 struct address_space *mapping = swap_file->f_mapping; 2266 struct inode *inode = mapping->host; 2267 int ret; 2268 2269 if (S_ISBLK(inode->i_mode)) { 2270 ret = add_swap_extent(sis, 0, sis->max, 0); 2271 *span = sis->pages; 2272 return ret; 2273 } 2274 2275 if (mapping->a_ops->swap_activate) { 2276 ret = mapping->a_ops->swap_activate(sis, swap_file, span); 2277 if (ret < 0) 2278 return ret; 2279 sis->flags |= SWP_ACTIVATED; 2280 if ((sis->flags & SWP_FS_OPS) && 2281 sio_pool_init() != 0) { 2282 destroy_swap_extents(sis); 2283 return -ENOMEM; 2284 } 2285 return ret; 2286 } 2287 2288 return generic_swapfile_activate(sis, swap_file, span); 2289 } 2290 2291 static int swap_node(struct swap_info_struct *p) 2292 { 2293 struct block_device *bdev; 2294 2295 if (p->bdev) 2296 bdev = p->bdev; 2297 else 2298 bdev = p->swap_file->f_inode->i_sb->s_bdev; 2299 2300 return bdev ? bdev->bd_disk->node_id : NUMA_NO_NODE; 2301 } 2302 2303 static void setup_swap_info(struct swap_info_struct *p, int prio, 2304 unsigned char *swap_map, 2305 struct swap_cluster_info *cluster_info) 2306 { 2307 int i; 2308 2309 if (prio >= 0) 2310 p->prio = prio; 2311 else 2312 p->prio = --least_priority; 2313 /* 2314 * the plist prio is negated because plist ordering is 2315 * low-to-high, while swap ordering is high-to-low 2316 */ 2317 p->list.prio = -p->prio; 2318 for_each_node(i) { 2319 if (p->prio >= 0) 2320 p->avail_lists[i].prio = -p->prio; 2321 else { 2322 if (swap_node(p) == i) 2323 p->avail_lists[i].prio = 1; 2324 else 2325 p->avail_lists[i].prio = -p->prio; 2326 } 2327 } 2328 p->swap_map = swap_map; 2329 p->cluster_info = cluster_info; 2330 } 2331 2332 static void _enable_swap_info(struct swap_info_struct *p) 2333 { 2334 p->flags |= SWP_WRITEOK; 2335 atomic_long_add(p->pages, &nr_swap_pages); 2336 total_swap_pages += p->pages; 2337 2338 assert_spin_locked(&swap_lock); 2339 /* 2340 * both lists are plists, and thus priority ordered. 2341 * swap_active_head needs to be priority ordered for swapoff(), 2342 * which on removal of any swap_info_struct with an auto-assigned 2343 * (i.e. negative) priority increments the auto-assigned priority 2344 * of any lower-priority swap_info_structs. 2345 * swap_avail_head needs to be priority ordered for folio_alloc_swap(), 2346 * which allocates swap pages from the highest available priority 2347 * swap_info_struct. 2348 */ 2349 plist_add(&p->list, &swap_active_head); 2350 2351 /* add to available list iff swap device is not full */ 2352 if (p->highest_bit) 2353 add_to_avail_list(p); 2354 } 2355 2356 static void enable_swap_info(struct swap_info_struct *p, int prio, 2357 unsigned char *swap_map, 2358 struct swap_cluster_info *cluster_info) 2359 { 2360 zswap_swapon(p->type); 2361 2362 spin_lock(&swap_lock); 2363 spin_lock(&p->lock); 2364 setup_swap_info(p, prio, swap_map, cluster_info); 2365 spin_unlock(&p->lock); 2366 spin_unlock(&swap_lock); 2367 /* 2368 * Finished initializing swap device, now it's safe to reference it. 2369 */ 2370 percpu_ref_resurrect(&p->users); 2371 spin_lock(&swap_lock); 2372 spin_lock(&p->lock); 2373 _enable_swap_info(p); 2374 spin_unlock(&p->lock); 2375 spin_unlock(&swap_lock); 2376 } 2377 2378 static void reinsert_swap_info(struct swap_info_struct *p) 2379 { 2380 spin_lock(&swap_lock); 2381 spin_lock(&p->lock); 2382 setup_swap_info(p, p->prio, p->swap_map, p->cluster_info); 2383 _enable_swap_info(p); 2384 spin_unlock(&p->lock); 2385 spin_unlock(&swap_lock); 2386 } 2387 2388 bool has_usable_swap(void) 2389 { 2390 bool ret = true; 2391 2392 spin_lock(&swap_lock); 2393 if (plist_head_empty(&swap_active_head)) 2394 ret = false; 2395 spin_unlock(&swap_lock); 2396 return ret; 2397 } 2398 2399 SYSCALL_DEFINE1(swapoff, const char __user *, specialfile) 2400 { 2401 struct swap_info_struct *p = NULL; 2402 unsigned char *swap_map; 2403 struct swap_cluster_info *cluster_info; 2404 struct file *swap_file, *victim; 2405 struct address_space *mapping; 2406 struct inode *inode; 2407 struct filename *pathname; 2408 int err, found = 0; 2409 unsigned int old_block_size; 2410 2411 if (!capable(CAP_SYS_ADMIN)) 2412 return -EPERM; 2413 2414 BUG_ON(!current->mm); 2415 2416 pathname = getname(specialfile); 2417 if (IS_ERR(pathname)) 2418 return PTR_ERR(pathname); 2419 2420 victim = file_open_name(pathname, O_RDWR|O_LARGEFILE, 0); 2421 err = PTR_ERR(victim); 2422 if (IS_ERR(victim)) 2423 goto out; 2424 2425 mapping = victim->f_mapping; 2426 spin_lock(&swap_lock); 2427 plist_for_each_entry(p, &swap_active_head, list) { 2428 if (p->flags & SWP_WRITEOK) { 2429 if (p->swap_file->f_mapping == mapping) { 2430 found = 1; 2431 break; 2432 } 2433 } 2434 } 2435 if (!found) { 2436 err = -EINVAL; 2437 spin_unlock(&swap_lock); 2438 goto out_dput; 2439 } 2440 if (!security_vm_enough_memory_mm(current->mm, p->pages)) 2441 vm_unacct_memory(p->pages); 2442 else { 2443 err = -ENOMEM; 2444 spin_unlock(&swap_lock); 2445 goto out_dput; 2446 } 2447 spin_lock(&p->lock); 2448 del_from_avail_list(p); 2449 if (p->prio < 0) { 2450 struct swap_info_struct *si = p; 2451 int nid; 2452 2453 plist_for_each_entry_continue(si, &swap_active_head, list) { 2454 si->prio++; 2455 si->list.prio--; 2456 for_each_node(nid) { 2457 if (si->avail_lists[nid].prio != 1) 2458 si->avail_lists[nid].prio--; 2459 } 2460 } 2461 least_priority++; 2462 } 2463 plist_del(&p->list, &swap_active_head); 2464 atomic_long_sub(p->pages, &nr_swap_pages); 2465 total_swap_pages -= p->pages; 2466 p->flags &= ~SWP_WRITEOK; 2467 spin_unlock(&p->lock); 2468 spin_unlock(&swap_lock); 2469 2470 disable_swap_slots_cache_lock(); 2471 2472 set_current_oom_origin(); 2473 err = try_to_unuse(p->type); 2474 clear_current_oom_origin(); 2475 2476 if (err) { 2477 /* re-insert swap space back into swap_list */ 2478 reinsert_swap_info(p); 2479 reenable_swap_slots_cache_unlock(); 2480 goto out_dput; 2481 } 2482 2483 reenable_swap_slots_cache_unlock(); 2484 2485 /* 2486 * Wait for swap operations protected by get/put_swap_device() 2487 * to complete. 2488 * 2489 * We need synchronize_rcu() here to protect the accessing to 2490 * the swap cache data structure. 2491 */ 2492 percpu_ref_kill(&p->users); 2493 synchronize_rcu(); 2494 wait_for_completion(&p->comp); 2495 2496 flush_work(&p->discard_work); 2497 2498 destroy_swap_extents(p); 2499 if (p->flags & SWP_CONTINUED) 2500 free_swap_count_continuations(p); 2501 2502 if (!p->bdev || !bdev_nonrot(p->bdev)) 2503 atomic_dec(&nr_rotate_swap); 2504 2505 mutex_lock(&swapon_mutex); 2506 spin_lock(&swap_lock); 2507 spin_lock(&p->lock); 2508 drain_mmlist(); 2509 2510 /* wait for anyone still in scan_swap_map_slots */ 2511 p->highest_bit = 0; /* cuts scans short */ 2512 while (p->flags >= SWP_SCANNING) { 2513 spin_unlock(&p->lock); 2514 spin_unlock(&swap_lock); 2515 schedule_timeout_uninterruptible(1); 2516 spin_lock(&swap_lock); 2517 spin_lock(&p->lock); 2518 } 2519 2520 swap_file = p->swap_file; 2521 old_block_size = p->old_block_size; 2522 p->swap_file = NULL; 2523 p->max = 0; 2524 swap_map = p->swap_map; 2525 p->swap_map = NULL; 2526 cluster_info = p->cluster_info; 2527 p->cluster_info = NULL; 2528 spin_unlock(&p->lock); 2529 spin_unlock(&swap_lock); 2530 arch_swap_invalidate_area(p->type); 2531 zswap_swapoff(p->type); 2532 mutex_unlock(&swapon_mutex); 2533 free_percpu(p->percpu_cluster); 2534 p->percpu_cluster = NULL; 2535 free_percpu(p->cluster_next_cpu); 2536 p->cluster_next_cpu = NULL; 2537 vfree(swap_map); 2538 kvfree(cluster_info); 2539 /* Destroy swap account information */ 2540 swap_cgroup_swapoff(p->type); 2541 exit_swap_address_space(p->type); 2542 2543 inode = mapping->host; 2544 if (S_ISBLK(inode->i_mode)) { 2545 struct block_device *bdev = I_BDEV(inode); 2546 2547 set_blocksize(bdev, old_block_size); 2548 blkdev_put(bdev, p); 2549 } 2550 2551 inode_lock(inode); 2552 inode->i_flags &= ~S_SWAPFILE; 2553 inode_unlock(inode); 2554 filp_close(swap_file, NULL); 2555 2556 /* 2557 * Clear the SWP_USED flag after all resources are freed so that swapon 2558 * can reuse this swap_info in alloc_swap_info() safely. It is ok to 2559 * not hold p->lock after we cleared its SWP_WRITEOK. 2560 */ 2561 spin_lock(&swap_lock); 2562 p->flags = 0; 2563 spin_unlock(&swap_lock); 2564 2565 err = 0; 2566 atomic_inc(&proc_poll_event); 2567 wake_up_interruptible(&proc_poll_wait); 2568 2569 out_dput: 2570 filp_close(victim, NULL); 2571 out: 2572 putname(pathname); 2573 return err; 2574 } 2575 2576 #ifdef CONFIG_PROC_FS 2577 static __poll_t swaps_poll(struct file *file, poll_table *wait) 2578 { 2579 struct seq_file *seq = file->private_data; 2580 2581 poll_wait(file, &proc_poll_wait, wait); 2582 2583 if (seq->poll_event != atomic_read(&proc_poll_event)) { 2584 seq->poll_event = atomic_read(&proc_poll_event); 2585 return EPOLLIN | EPOLLRDNORM | EPOLLERR | EPOLLPRI; 2586 } 2587 2588 return EPOLLIN | EPOLLRDNORM; 2589 } 2590 2591 /* iterator */ 2592 static void *swap_start(struct seq_file *swap, loff_t *pos) 2593 { 2594 struct swap_info_struct *si; 2595 int type; 2596 loff_t l = *pos; 2597 2598 mutex_lock(&swapon_mutex); 2599 2600 if (!l) 2601 return SEQ_START_TOKEN; 2602 2603 for (type = 0; (si = swap_type_to_swap_info(type)); type++) { 2604 if (!(si->flags & SWP_USED) || !si->swap_map) 2605 continue; 2606 if (!--l) 2607 return si; 2608 } 2609 2610 return NULL; 2611 } 2612 2613 static void *swap_next(struct seq_file *swap, void *v, loff_t *pos) 2614 { 2615 struct swap_info_struct *si = v; 2616 int type; 2617 2618 if (v == SEQ_START_TOKEN) 2619 type = 0; 2620 else 2621 type = si->type + 1; 2622 2623 ++(*pos); 2624 for (; (si = swap_type_to_swap_info(type)); type++) { 2625 if (!(si->flags & SWP_USED) || !si->swap_map) 2626 continue; 2627 return si; 2628 } 2629 2630 return NULL; 2631 } 2632 2633 static void swap_stop(struct seq_file *swap, void *v) 2634 { 2635 mutex_unlock(&swapon_mutex); 2636 } 2637 2638 static int swap_show(struct seq_file *swap, void *v) 2639 { 2640 struct swap_info_struct *si = v; 2641 struct file *file; 2642 int len; 2643 unsigned long bytes, inuse; 2644 2645 if (si == SEQ_START_TOKEN) { 2646 seq_puts(swap, "Filename\t\t\t\tType\t\tSize\t\tUsed\t\tPriority\n"); 2647 return 0; 2648 } 2649 2650 bytes = K(si->pages); 2651 inuse = K(READ_ONCE(si->inuse_pages)); 2652 2653 file = si->swap_file; 2654 len = seq_file_path(swap, file, " \t\n\\"); 2655 seq_printf(swap, "%*s%s\t%lu\t%s%lu\t%s%d\n", 2656 len < 40 ? 40 - len : 1, " ", 2657 S_ISBLK(file_inode(file)->i_mode) ? 2658 "partition" : "file\t", 2659 bytes, bytes < 10000000 ? "\t" : "", 2660 inuse, inuse < 10000000 ? "\t" : "", 2661 si->prio); 2662 return 0; 2663 } 2664 2665 static const struct seq_operations swaps_op = { 2666 .start = swap_start, 2667 .next = swap_next, 2668 .stop = swap_stop, 2669 .show = swap_show 2670 }; 2671 2672 static int swaps_open(struct inode *inode, struct file *file) 2673 { 2674 struct seq_file *seq; 2675 int ret; 2676 2677 ret = seq_open(file, &swaps_op); 2678 if (ret) 2679 return ret; 2680 2681 seq = file->private_data; 2682 seq->poll_event = atomic_read(&proc_poll_event); 2683 return 0; 2684 } 2685 2686 static const struct proc_ops swaps_proc_ops = { 2687 .proc_flags = PROC_ENTRY_PERMANENT, 2688 .proc_open = swaps_open, 2689 .proc_read = seq_read, 2690 .proc_lseek = seq_lseek, 2691 .proc_release = seq_release, 2692 .proc_poll = swaps_poll, 2693 }; 2694 2695 static int __init procswaps_init(void) 2696 { 2697 proc_create("swaps", 0, NULL, &swaps_proc_ops); 2698 return 0; 2699 } 2700 __initcall(procswaps_init); 2701 #endif /* CONFIG_PROC_FS */ 2702 2703 #ifdef MAX_SWAPFILES_CHECK 2704 static int __init max_swapfiles_check(void) 2705 { 2706 MAX_SWAPFILES_CHECK(); 2707 return 0; 2708 } 2709 late_initcall(max_swapfiles_check); 2710 #endif 2711 2712 static struct swap_info_struct *alloc_swap_info(void) 2713 { 2714 struct swap_info_struct *p; 2715 struct swap_info_struct *defer = NULL; 2716 unsigned int type; 2717 int i; 2718 2719 p = kvzalloc(struct_size(p, avail_lists, nr_node_ids), GFP_KERNEL); 2720 if (!p) 2721 return ERR_PTR(-ENOMEM); 2722 2723 if (percpu_ref_init(&p->users, swap_users_ref_free, 2724 PERCPU_REF_INIT_DEAD, GFP_KERNEL)) { 2725 kvfree(p); 2726 return ERR_PTR(-ENOMEM); 2727 } 2728 2729 spin_lock(&swap_lock); 2730 for (type = 0; type < nr_swapfiles; type++) { 2731 if (!(swap_info[type]->flags & SWP_USED)) 2732 break; 2733 } 2734 if (type >= MAX_SWAPFILES) { 2735 spin_unlock(&swap_lock); 2736 percpu_ref_exit(&p->users); 2737 kvfree(p); 2738 return ERR_PTR(-EPERM); 2739 } 2740 if (type >= nr_swapfiles) { 2741 p->type = type; 2742 /* 2743 * Publish the swap_info_struct after initializing it. 2744 * Note that kvzalloc() above zeroes all its fields. 2745 */ 2746 smp_store_release(&swap_info[type], p); /* rcu_assign_pointer() */ 2747 nr_swapfiles++; 2748 } else { 2749 defer = p; 2750 p = swap_info[type]; 2751 /* 2752 * Do not memset this entry: a racing procfs swap_next() 2753 * would be relying on p->type to remain valid. 2754 */ 2755 } 2756 p->swap_extent_root = RB_ROOT; 2757 plist_node_init(&p->list, 0); 2758 for_each_node(i) 2759 plist_node_init(&p->avail_lists[i], 0); 2760 p->flags = SWP_USED; 2761 spin_unlock(&swap_lock); 2762 if (defer) { 2763 percpu_ref_exit(&defer->users); 2764 kvfree(defer); 2765 } 2766 spin_lock_init(&p->lock); 2767 spin_lock_init(&p->cont_lock); 2768 init_completion(&p->comp); 2769 2770 return p; 2771 } 2772 2773 static int claim_swapfile(struct swap_info_struct *p, struct inode *inode) 2774 { 2775 int error; 2776 2777 if (S_ISBLK(inode->i_mode)) { 2778 p->bdev = blkdev_get_by_dev(inode->i_rdev, 2779 BLK_OPEN_READ | BLK_OPEN_WRITE, p, NULL); 2780 if (IS_ERR(p->bdev)) { 2781 error = PTR_ERR(p->bdev); 2782 p->bdev = NULL; 2783 return error; 2784 } 2785 p->old_block_size = block_size(p->bdev); 2786 error = set_blocksize(p->bdev, PAGE_SIZE); 2787 if (error < 0) 2788 return error; 2789 /* 2790 * Zoned block devices contain zones that have a sequential 2791 * write only restriction. Hence zoned block devices are not 2792 * suitable for swapping. Disallow them here. 2793 */ 2794 if (bdev_is_zoned(p->bdev)) 2795 return -EINVAL; 2796 p->flags |= SWP_BLKDEV; 2797 } else if (S_ISREG(inode->i_mode)) { 2798 p->bdev = inode->i_sb->s_bdev; 2799 } 2800 2801 return 0; 2802 } 2803 2804 2805 /* 2806 * Find out how many pages are allowed for a single swap device. There 2807 * are two limiting factors: 2808 * 1) the number of bits for the swap offset in the swp_entry_t type, and 2809 * 2) the number of bits in the swap pte, as defined by the different 2810 * architectures. 2811 * 2812 * In order to find the largest possible bit mask, a swap entry with 2813 * swap type 0 and swap offset ~0UL is created, encoded to a swap pte, 2814 * decoded to a swp_entry_t again, and finally the swap offset is 2815 * extracted. 2816 * 2817 * This will mask all the bits from the initial ~0UL mask that can't 2818 * be encoded in either the swp_entry_t or the architecture definition 2819 * of a swap pte. 2820 */ 2821 unsigned long generic_max_swapfile_size(void) 2822 { 2823 return swp_offset(pte_to_swp_entry( 2824 swp_entry_to_pte(swp_entry(0, ~0UL)))) + 1; 2825 } 2826 2827 /* Can be overridden by an architecture for additional checks. */ 2828 __weak unsigned long arch_max_swapfile_size(void) 2829 { 2830 return generic_max_swapfile_size(); 2831 } 2832 2833 static unsigned long read_swap_header(struct swap_info_struct *p, 2834 union swap_header *swap_header, 2835 struct inode *inode) 2836 { 2837 int i; 2838 unsigned long maxpages; 2839 unsigned long swapfilepages; 2840 unsigned long last_page; 2841 2842 if (memcmp("SWAPSPACE2", swap_header->magic.magic, 10)) { 2843 pr_err("Unable to find swap-space signature\n"); 2844 return 0; 2845 } 2846 2847 /* swap partition endianness hack... */ 2848 if (swab32(swap_header->info.version) == 1) { 2849 swab32s(&swap_header->info.version); 2850 swab32s(&swap_header->info.last_page); 2851 swab32s(&swap_header->info.nr_badpages); 2852 if (swap_header->info.nr_badpages > MAX_SWAP_BADPAGES) 2853 return 0; 2854 for (i = 0; i < swap_header->info.nr_badpages; i++) 2855 swab32s(&swap_header->info.badpages[i]); 2856 } 2857 /* Check the swap header's sub-version */ 2858 if (swap_header->info.version != 1) { 2859 pr_warn("Unable to handle swap header version %d\n", 2860 swap_header->info.version); 2861 return 0; 2862 } 2863 2864 p->lowest_bit = 1; 2865 p->cluster_next = 1; 2866 p->cluster_nr = 0; 2867 2868 maxpages = swapfile_maximum_size; 2869 last_page = swap_header->info.last_page; 2870 if (!last_page) { 2871 pr_warn("Empty swap-file\n"); 2872 return 0; 2873 } 2874 if (last_page > maxpages) { 2875 pr_warn("Truncating oversized swap area, only using %luk out of %luk\n", 2876 K(maxpages), K(last_page)); 2877 } 2878 if (maxpages > last_page) { 2879 maxpages = last_page + 1; 2880 /* p->max is an unsigned int: don't overflow it */ 2881 if ((unsigned int)maxpages == 0) 2882 maxpages = UINT_MAX; 2883 } 2884 p->highest_bit = maxpages - 1; 2885 2886 if (!maxpages) 2887 return 0; 2888 swapfilepages = i_size_read(inode) >> PAGE_SHIFT; 2889 if (swapfilepages && maxpages > swapfilepages) { 2890 pr_warn("Swap area shorter than signature indicates\n"); 2891 return 0; 2892 } 2893 if (swap_header->info.nr_badpages && S_ISREG(inode->i_mode)) 2894 return 0; 2895 if (swap_header->info.nr_badpages > MAX_SWAP_BADPAGES) 2896 return 0; 2897 2898 return maxpages; 2899 } 2900 2901 #define SWAP_CLUSTER_INFO_COLS \ 2902 DIV_ROUND_UP(L1_CACHE_BYTES, sizeof(struct swap_cluster_info)) 2903 #define SWAP_CLUSTER_SPACE_COLS \ 2904 DIV_ROUND_UP(SWAP_ADDRESS_SPACE_PAGES, SWAPFILE_CLUSTER) 2905 #define SWAP_CLUSTER_COLS \ 2906 max_t(unsigned int, SWAP_CLUSTER_INFO_COLS, SWAP_CLUSTER_SPACE_COLS) 2907 2908 static int setup_swap_map_and_extents(struct swap_info_struct *p, 2909 union swap_header *swap_header, 2910 unsigned char *swap_map, 2911 struct swap_cluster_info *cluster_info, 2912 unsigned long maxpages, 2913 sector_t *span) 2914 { 2915 unsigned int j, k; 2916 unsigned int nr_good_pages; 2917 int nr_extents; 2918 unsigned long nr_clusters = DIV_ROUND_UP(maxpages, SWAPFILE_CLUSTER); 2919 unsigned long col = p->cluster_next / SWAPFILE_CLUSTER % SWAP_CLUSTER_COLS; 2920 unsigned long i, idx; 2921 2922 nr_good_pages = maxpages - 1; /* omit header page */ 2923 2924 cluster_list_init(&p->free_clusters); 2925 cluster_list_init(&p->discard_clusters); 2926 2927 for (i = 0; i < swap_header->info.nr_badpages; i++) { 2928 unsigned int page_nr = swap_header->info.badpages[i]; 2929 if (page_nr == 0 || page_nr > swap_header->info.last_page) 2930 return -EINVAL; 2931 if (page_nr < maxpages) { 2932 swap_map[page_nr] = SWAP_MAP_BAD; 2933 nr_good_pages--; 2934 /* 2935 * Haven't marked the cluster free yet, no list 2936 * operation involved 2937 */ 2938 inc_cluster_info_page(p, cluster_info, page_nr); 2939 } 2940 } 2941 2942 /* Haven't marked the cluster free yet, no list operation involved */ 2943 for (i = maxpages; i < round_up(maxpages, SWAPFILE_CLUSTER); i++) 2944 inc_cluster_info_page(p, cluster_info, i); 2945 2946 if (nr_good_pages) { 2947 swap_map[0] = SWAP_MAP_BAD; 2948 /* 2949 * Not mark the cluster free yet, no list 2950 * operation involved 2951 */ 2952 inc_cluster_info_page(p, cluster_info, 0); 2953 p->max = maxpages; 2954 p->pages = nr_good_pages; 2955 nr_extents = setup_swap_extents(p, span); 2956 if (nr_extents < 0) 2957 return nr_extents; 2958 nr_good_pages = p->pages; 2959 } 2960 if (!nr_good_pages) { 2961 pr_warn("Empty swap-file\n"); 2962 return -EINVAL; 2963 } 2964 2965 if (!cluster_info) 2966 return nr_extents; 2967 2968 2969 /* 2970 * Reduce false cache line sharing between cluster_info and 2971 * sharing same address space. 2972 */ 2973 for (k = 0; k < SWAP_CLUSTER_COLS; k++) { 2974 j = (k + col) % SWAP_CLUSTER_COLS; 2975 for (i = 0; i < DIV_ROUND_UP(nr_clusters, SWAP_CLUSTER_COLS); i++) { 2976 idx = i * SWAP_CLUSTER_COLS + j; 2977 if (idx >= nr_clusters) 2978 continue; 2979 if (cluster_count(&cluster_info[idx])) 2980 continue; 2981 cluster_set_flag(&cluster_info[idx], CLUSTER_FLAG_FREE); 2982 cluster_list_add_tail(&p->free_clusters, cluster_info, 2983 idx); 2984 } 2985 } 2986 return nr_extents; 2987 } 2988 2989 SYSCALL_DEFINE2(swapon, const char __user *, specialfile, int, swap_flags) 2990 { 2991 struct swap_info_struct *p; 2992 struct filename *name; 2993 struct file *swap_file = NULL; 2994 struct address_space *mapping; 2995 struct dentry *dentry; 2996 int prio; 2997 int error; 2998 union swap_header *swap_header; 2999 int nr_extents; 3000 sector_t span; 3001 unsigned long maxpages; 3002 unsigned char *swap_map = NULL; 3003 struct swap_cluster_info *cluster_info = NULL; 3004 struct page *page = NULL; 3005 struct inode *inode = NULL; 3006 bool inced_nr_rotate_swap = false; 3007 3008 if (swap_flags & ~SWAP_FLAGS_VALID) 3009 return -EINVAL; 3010 3011 if (!capable(CAP_SYS_ADMIN)) 3012 return -EPERM; 3013 3014 if (!swap_avail_heads) 3015 return -ENOMEM; 3016 3017 p = alloc_swap_info(); 3018 if (IS_ERR(p)) 3019 return PTR_ERR(p); 3020 3021 INIT_WORK(&p->discard_work, swap_discard_work); 3022 3023 name = getname(specialfile); 3024 if (IS_ERR(name)) { 3025 error = PTR_ERR(name); 3026 name = NULL; 3027 goto bad_swap; 3028 } 3029 swap_file = file_open_name(name, O_RDWR|O_LARGEFILE, 0); 3030 if (IS_ERR(swap_file)) { 3031 error = PTR_ERR(swap_file); 3032 swap_file = NULL; 3033 goto bad_swap; 3034 } 3035 3036 p->swap_file = swap_file; 3037 mapping = swap_file->f_mapping; 3038 dentry = swap_file->f_path.dentry; 3039 inode = mapping->host; 3040 3041 error = claim_swapfile(p, inode); 3042 if (unlikely(error)) 3043 goto bad_swap; 3044 3045 inode_lock(inode); 3046 if (d_unlinked(dentry) || cant_mount(dentry)) { 3047 error = -ENOENT; 3048 goto bad_swap_unlock_inode; 3049 } 3050 if (IS_SWAPFILE(inode)) { 3051 error = -EBUSY; 3052 goto bad_swap_unlock_inode; 3053 } 3054 3055 /* 3056 * Read the swap header. 3057 */ 3058 if (!mapping->a_ops->read_folio) { 3059 error = -EINVAL; 3060 goto bad_swap_unlock_inode; 3061 } 3062 page = read_mapping_page(mapping, 0, swap_file); 3063 if (IS_ERR(page)) { 3064 error = PTR_ERR(page); 3065 goto bad_swap_unlock_inode; 3066 } 3067 swap_header = kmap(page); 3068 3069 maxpages = read_swap_header(p, swap_header, inode); 3070 if (unlikely(!maxpages)) { 3071 error = -EINVAL; 3072 goto bad_swap_unlock_inode; 3073 } 3074 3075 /* OK, set up the swap map and apply the bad block list */ 3076 swap_map = vzalloc(maxpages); 3077 if (!swap_map) { 3078 error = -ENOMEM; 3079 goto bad_swap_unlock_inode; 3080 } 3081 3082 if (p->bdev && bdev_stable_writes(p->bdev)) 3083 p->flags |= SWP_STABLE_WRITES; 3084 3085 if (p->bdev && bdev_synchronous(p->bdev)) 3086 p->flags |= SWP_SYNCHRONOUS_IO; 3087 3088 if (p->bdev && bdev_nonrot(p->bdev)) { 3089 int cpu; 3090 unsigned long ci, nr_cluster; 3091 3092 p->flags |= SWP_SOLIDSTATE; 3093 p->cluster_next_cpu = alloc_percpu(unsigned int); 3094 if (!p->cluster_next_cpu) { 3095 error = -ENOMEM; 3096 goto bad_swap_unlock_inode; 3097 } 3098 /* 3099 * select a random position to start with to help wear leveling 3100 * SSD 3101 */ 3102 for_each_possible_cpu(cpu) { 3103 per_cpu(*p->cluster_next_cpu, cpu) = 3104 get_random_u32_inclusive(1, p->highest_bit); 3105 } 3106 nr_cluster = DIV_ROUND_UP(maxpages, SWAPFILE_CLUSTER); 3107 3108 cluster_info = kvcalloc(nr_cluster, sizeof(*cluster_info), 3109 GFP_KERNEL); 3110 if (!cluster_info) { 3111 error = -ENOMEM; 3112 goto bad_swap_unlock_inode; 3113 } 3114 3115 for (ci = 0; ci < nr_cluster; ci++) 3116 spin_lock_init(&((cluster_info + ci)->lock)); 3117 3118 p->percpu_cluster = alloc_percpu(struct percpu_cluster); 3119 if (!p->percpu_cluster) { 3120 error = -ENOMEM; 3121 goto bad_swap_unlock_inode; 3122 } 3123 for_each_possible_cpu(cpu) { 3124 struct percpu_cluster *cluster; 3125 cluster = per_cpu_ptr(p->percpu_cluster, cpu); 3126 cluster_set_null(&cluster->index); 3127 } 3128 } else { 3129 atomic_inc(&nr_rotate_swap); 3130 inced_nr_rotate_swap = true; 3131 } 3132 3133 error = swap_cgroup_swapon(p->type, maxpages); 3134 if (error) 3135 goto bad_swap_unlock_inode; 3136 3137 nr_extents = setup_swap_map_and_extents(p, swap_header, swap_map, 3138 cluster_info, maxpages, &span); 3139 if (unlikely(nr_extents < 0)) { 3140 error = nr_extents; 3141 goto bad_swap_unlock_inode; 3142 } 3143 3144 if ((swap_flags & SWAP_FLAG_DISCARD) && 3145 p->bdev && bdev_max_discard_sectors(p->bdev)) { 3146 /* 3147 * When discard is enabled for swap with no particular 3148 * policy flagged, we set all swap discard flags here in 3149 * order to sustain backward compatibility with older 3150 * swapon(8) releases. 3151 */ 3152 p->flags |= (SWP_DISCARDABLE | SWP_AREA_DISCARD | 3153 SWP_PAGE_DISCARD); 3154 3155 /* 3156 * By flagging sys_swapon, a sysadmin can tell us to 3157 * either do single-time area discards only, or to just 3158 * perform discards for released swap page-clusters. 3159 * Now it's time to adjust the p->flags accordingly. 3160 */ 3161 if (swap_flags & SWAP_FLAG_DISCARD_ONCE) 3162 p->flags &= ~SWP_PAGE_DISCARD; 3163 else if (swap_flags & SWAP_FLAG_DISCARD_PAGES) 3164 p->flags &= ~SWP_AREA_DISCARD; 3165 3166 /* issue a swapon-time discard if it's still required */ 3167 if (p->flags & SWP_AREA_DISCARD) { 3168 int err = discard_swap(p); 3169 if (unlikely(err)) 3170 pr_err("swapon: discard_swap(%p): %d\n", 3171 p, err); 3172 } 3173 } 3174 3175 error = init_swap_address_space(p->type, maxpages); 3176 if (error) 3177 goto bad_swap_unlock_inode; 3178 3179 /* 3180 * Flush any pending IO and dirty mappings before we start using this 3181 * swap device. 3182 */ 3183 inode->i_flags |= S_SWAPFILE; 3184 error = inode_drain_writes(inode); 3185 if (error) { 3186 inode->i_flags &= ~S_SWAPFILE; 3187 goto free_swap_address_space; 3188 } 3189 3190 mutex_lock(&swapon_mutex); 3191 prio = -1; 3192 if (swap_flags & SWAP_FLAG_PREFER) 3193 prio = 3194 (swap_flags & SWAP_FLAG_PRIO_MASK) >> SWAP_FLAG_PRIO_SHIFT; 3195 enable_swap_info(p, prio, swap_map, cluster_info); 3196 3197 pr_info("Adding %uk swap on %s. Priority:%d extents:%d across:%lluk %s%s%s%s\n", 3198 K(p->pages), name->name, p->prio, nr_extents, 3199 K((unsigned long long)span), 3200 (p->flags & SWP_SOLIDSTATE) ? "SS" : "", 3201 (p->flags & SWP_DISCARDABLE) ? "D" : "", 3202 (p->flags & SWP_AREA_DISCARD) ? "s" : "", 3203 (p->flags & SWP_PAGE_DISCARD) ? "c" : ""); 3204 3205 mutex_unlock(&swapon_mutex); 3206 atomic_inc(&proc_poll_event); 3207 wake_up_interruptible(&proc_poll_wait); 3208 3209 error = 0; 3210 goto out; 3211 free_swap_address_space: 3212 exit_swap_address_space(p->type); 3213 bad_swap_unlock_inode: 3214 inode_unlock(inode); 3215 bad_swap: 3216 free_percpu(p->percpu_cluster); 3217 p->percpu_cluster = NULL; 3218 free_percpu(p->cluster_next_cpu); 3219 p->cluster_next_cpu = NULL; 3220 if (inode && S_ISBLK(inode->i_mode) && p->bdev) { 3221 set_blocksize(p->bdev, p->old_block_size); 3222 blkdev_put(p->bdev, p); 3223 } 3224 inode = NULL; 3225 destroy_swap_extents(p); 3226 swap_cgroup_swapoff(p->type); 3227 spin_lock(&swap_lock); 3228 p->swap_file = NULL; 3229 p->flags = 0; 3230 spin_unlock(&swap_lock); 3231 vfree(swap_map); 3232 kvfree(cluster_info); 3233 if (inced_nr_rotate_swap) 3234 atomic_dec(&nr_rotate_swap); 3235 if (swap_file) 3236 filp_close(swap_file, NULL); 3237 out: 3238 if (page && !IS_ERR(page)) { 3239 kunmap(page); 3240 put_page(page); 3241 } 3242 if (name) 3243 putname(name); 3244 if (inode) 3245 inode_unlock(inode); 3246 if (!error) 3247 enable_swap_slots_cache(); 3248 return error; 3249 } 3250 3251 void si_swapinfo(struct sysinfo *val) 3252 { 3253 unsigned int type; 3254 unsigned long nr_to_be_unused = 0; 3255 3256 spin_lock(&swap_lock); 3257 for (type = 0; type < nr_swapfiles; type++) { 3258 struct swap_info_struct *si = swap_info[type]; 3259 3260 if ((si->flags & SWP_USED) && !(si->flags & SWP_WRITEOK)) 3261 nr_to_be_unused += READ_ONCE(si->inuse_pages); 3262 } 3263 val->freeswap = atomic_long_read(&nr_swap_pages) + nr_to_be_unused; 3264 val->totalswap = total_swap_pages + nr_to_be_unused; 3265 spin_unlock(&swap_lock); 3266 } 3267 3268 /* 3269 * Verify that a swap entry is valid and increment its swap map count. 3270 * 3271 * Returns error code in following case. 3272 * - success -> 0 3273 * - swp_entry is invalid -> EINVAL 3274 * - swp_entry is migration entry -> EINVAL 3275 * - swap-cache reference is requested but there is already one. -> EEXIST 3276 * - swap-cache reference is requested but the entry is not used. -> ENOENT 3277 * - swap-mapped reference requested but needs continued swap count. -> ENOMEM 3278 */ 3279 static int __swap_duplicate(swp_entry_t entry, unsigned char usage) 3280 { 3281 struct swap_info_struct *p; 3282 struct swap_cluster_info *ci; 3283 unsigned long offset; 3284 unsigned char count; 3285 unsigned char has_cache; 3286 int err; 3287 3288 p = swp_swap_info(entry); 3289 3290 offset = swp_offset(entry); 3291 ci = lock_cluster_or_swap_info(p, offset); 3292 3293 count = p->swap_map[offset]; 3294 3295 /* 3296 * swapin_readahead() doesn't check if a swap entry is valid, so the 3297 * swap entry could be SWAP_MAP_BAD. Check here with lock held. 3298 */ 3299 if (unlikely(swap_count(count) == SWAP_MAP_BAD)) { 3300 err = -ENOENT; 3301 goto unlock_out; 3302 } 3303 3304 has_cache = count & SWAP_HAS_CACHE; 3305 count &= ~SWAP_HAS_CACHE; 3306 err = 0; 3307 3308 if (usage == SWAP_HAS_CACHE) { 3309 3310 /* set SWAP_HAS_CACHE if there is no cache and entry is used */ 3311 if (!has_cache && count) 3312 has_cache = SWAP_HAS_CACHE; 3313 else if (has_cache) /* someone else added cache */ 3314 err = -EEXIST; 3315 else /* no users remaining */ 3316 err = -ENOENT; 3317 3318 } else if (count || has_cache) { 3319 3320 if ((count & ~COUNT_CONTINUED) < SWAP_MAP_MAX) 3321 count += usage; 3322 else if ((count & ~COUNT_CONTINUED) > SWAP_MAP_MAX) 3323 err = -EINVAL; 3324 else if (swap_count_continued(p, offset, count)) 3325 count = COUNT_CONTINUED; 3326 else 3327 err = -ENOMEM; 3328 } else 3329 err = -ENOENT; /* unused swap entry */ 3330 3331 WRITE_ONCE(p->swap_map[offset], count | has_cache); 3332 3333 unlock_out: 3334 unlock_cluster_or_swap_info(p, ci); 3335 return err; 3336 } 3337 3338 /* 3339 * Help swapoff by noting that swap entry belongs to shmem/tmpfs 3340 * (in which case its reference count is never incremented). 3341 */ 3342 void swap_shmem_alloc(swp_entry_t entry) 3343 { 3344 __swap_duplicate(entry, SWAP_MAP_SHMEM); 3345 } 3346 3347 /* 3348 * Increase reference count of swap entry by 1. 3349 * Returns 0 for success, or -ENOMEM if a swap_count_continuation is required 3350 * but could not be atomically allocated. Returns 0, just as if it succeeded, 3351 * if __swap_duplicate() fails for another reason (-EINVAL or -ENOENT), which 3352 * might occur if a page table entry has got corrupted. 3353 */ 3354 int swap_duplicate(swp_entry_t entry) 3355 { 3356 int err = 0; 3357 3358 while (!err && __swap_duplicate(entry, 1) == -ENOMEM) 3359 err = add_swap_count_continuation(entry, GFP_ATOMIC); 3360 return err; 3361 } 3362 3363 /* 3364 * @entry: swap entry for which we allocate swap cache. 3365 * 3366 * Called when allocating swap cache for existing swap entry, 3367 * This can return error codes. Returns 0 at success. 3368 * -EEXIST means there is a swap cache. 3369 * Note: return code is different from swap_duplicate(). 3370 */ 3371 int swapcache_prepare(swp_entry_t entry) 3372 { 3373 return __swap_duplicate(entry, SWAP_HAS_CACHE); 3374 } 3375 3376 void swapcache_clear(struct swap_info_struct *si, swp_entry_t entry) 3377 { 3378 struct swap_cluster_info *ci; 3379 unsigned long offset = swp_offset(entry); 3380 unsigned char usage; 3381 3382 ci = lock_cluster_or_swap_info(si, offset); 3383 usage = __swap_entry_free_locked(si, offset, SWAP_HAS_CACHE); 3384 unlock_cluster_or_swap_info(si, ci); 3385 if (!usage) 3386 free_swap_slot(entry); 3387 } 3388 3389 struct swap_info_struct *swp_swap_info(swp_entry_t entry) 3390 { 3391 return swap_type_to_swap_info(swp_type(entry)); 3392 } 3393 3394 struct swap_info_struct *page_swap_info(struct page *page) 3395 { 3396 swp_entry_t entry = page_swap_entry(page); 3397 return swp_swap_info(entry); 3398 } 3399 3400 /* 3401 * out-of-line methods to avoid include hell. 3402 */ 3403 struct address_space *swapcache_mapping(struct folio *folio) 3404 { 3405 return page_swap_info(&folio->page)->swap_file->f_mapping; 3406 } 3407 EXPORT_SYMBOL_GPL(swapcache_mapping); 3408 3409 pgoff_t __page_file_index(struct page *page) 3410 { 3411 swp_entry_t swap = page_swap_entry(page); 3412 return swp_offset(swap); 3413 } 3414 EXPORT_SYMBOL_GPL(__page_file_index); 3415 3416 /* 3417 * add_swap_count_continuation - called when a swap count is duplicated 3418 * beyond SWAP_MAP_MAX, it allocates a new page and links that to the entry's 3419 * page of the original vmalloc'ed swap_map, to hold the continuation count 3420 * (for that entry and for its neighbouring PAGE_SIZE swap entries). Called 3421 * again when count is duplicated beyond SWAP_MAP_MAX * SWAP_CONT_MAX, etc. 3422 * 3423 * These continuation pages are seldom referenced: the common paths all work 3424 * on the original swap_map, only referring to a continuation page when the 3425 * low "digit" of a count is incremented or decremented through SWAP_MAP_MAX. 3426 * 3427 * add_swap_count_continuation(, GFP_ATOMIC) can be called while holding 3428 * page table locks; if it fails, add_swap_count_continuation(, GFP_KERNEL) 3429 * can be called after dropping locks. 3430 */ 3431 int add_swap_count_continuation(swp_entry_t entry, gfp_t gfp_mask) 3432 { 3433 struct swap_info_struct *si; 3434 struct swap_cluster_info *ci; 3435 struct page *head; 3436 struct page *page; 3437 struct page *list_page; 3438 pgoff_t offset; 3439 unsigned char count; 3440 int ret = 0; 3441 3442 /* 3443 * When debugging, it's easier to use __GFP_ZERO here; but it's better 3444 * for latency not to zero a page while GFP_ATOMIC and holding locks. 3445 */ 3446 page = alloc_page(gfp_mask | __GFP_HIGHMEM); 3447 3448 si = get_swap_device(entry); 3449 if (!si) { 3450 /* 3451 * An acceptable race has occurred since the failing 3452 * __swap_duplicate(): the swap device may be swapoff 3453 */ 3454 goto outer; 3455 } 3456 spin_lock(&si->lock); 3457 3458 offset = swp_offset(entry); 3459 3460 ci = lock_cluster(si, offset); 3461 3462 count = swap_count(si->swap_map[offset]); 3463 3464 if ((count & ~COUNT_CONTINUED) != SWAP_MAP_MAX) { 3465 /* 3466 * The higher the swap count, the more likely it is that tasks 3467 * will race to add swap count continuation: we need to avoid 3468 * over-provisioning. 3469 */ 3470 goto out; 3471 } 3472 3473 if (!page) { 3474 ret = -ENOMEM; 3475 goto out; 3476 } 3477 3478 head = vmalloc_to_page(si->swap_map + offset); 3479 offset &= ~PAGE_MASK; 3480 3481 spin_lock(&si->cont_lock); 3482 /* 3483 * Page allocation does not initialize the page's lru field, 3484 * but it does always reset its private field. 3485 */ 3486 if (!page_private(head)) { 3487 BUG_ON(count & COUNT_CONTINUED); 3488 INIT_LIST_HEAD(&head->lru); 3489 set_page_private(head, SWP_CONTINUED); 3490 si->flags |= SWP_CONTINUED; 3491 } 3492 3493 list_for_each_entry(list_page, &head->lru, lru) { 3494 unsigned char *map; 3495 3496 /* 3497 * If the previous map said no continuation, but we've found 3498 * a continuation page, free our allocation and use this one. 3499 */ 3500 if (!(count & COUNT_CONTINUED)) 3501 goto out_unlock_cont; 3502 3503 map = kmap_atomic(list_page) + offset; 3504 count = *map; 3505 kunmap_atomic(map); 3506 3507 /* 3508 * If this continuation count now has some space in it, 3509 * free our allocation and use this one. 3510 */ 3511 if ((count & ~COUNT_CONTINUED) != SWAP_CONT_MAX) 3512 goto out_unlock_cont; 3513 } 3514 3515 list_add_tail(&page->lru, &head->lru); 3516 page = NULL; /* now it's attached, don't free it */ 3517 out_unlock_cont: 3518 spin_unlock(&si->cont_lock); 3519 out: 3520 unlock_cluster(ci); 3521 spin_unlock(&si->lock); 3522 put_swap_device(si); 3523 outer: 3524 if (page) 3525 __free_page(page); 3526 return ret; 3527 } 3528 3529 /* 3530 * swap_count_continued - when the original swap_map count is incremented 3531 * from SWAP_MAP_MAX, check if there is already a continuation page to carry 3532 * into, carry if so, or else fail until a new continuation page is allocated; 3533 * when the original swap_map count is decremented from 0 with continuation, 3534 * borrow from the continuation and report whether it still holds more. 3535 * Called while __swap_duplicate() or swap_entry_free() holds swap or cluster 3536 * lock. 3537 */ 3538 static bool swap_count_continued(struct swap_info_struct *si, 3539 pgoff_t offset, unsigned char count) 3540 { 3541 struct page *head; 3542 struct page *page; 3543 unsigned char *map; 3544 bool ret; 3545 3546 head = vmalloc_to_page(si->swap_map + offset); 3547 if (page_private(head) != SWP_CONTINUED) { 3548 BUG_ON(count & COUNT_CONTINUED); 3549 return false; /* need to add count continuation */ 3550 } 3551 3552 spin_lock(&si->cont_lock); 3553 offset &= ~PAGE_MASK; 3554 page = list_next_entry(head, lru); 3555 map = kmap_atomic(page) + offset; 3556 3557 if (count == SWAP_MAP_MAX) /* initial increment from swap_map */ 3558 goto init_map; /* jump over SWAP_CONT_MAX checks */ 3559 3560 if (count == (SWAP_MAP_MAX | COUNT_CONTINUED)) { /* incrementing */ 3561 /* 3562 * Think of how you add 1 to 999 3563 */ 3564 while (*map == (SWAP_CONT_MAX | COUNT_CONTINUED)) { 3565 kunmap_atomic(map); 3566 page = list_next_entry(page, lru); 3567 BUG_ON(page == head); 3568 map = kmap_atomic(page) + offset; 3569 } 3570 if (*map == SWAP_CONT_MAX) { 3571 kunmap_atomic(map); 3572 page = list_next_entry(page, lru); 3573 if (page == head) { 3574 ret = false; /* add count continuation */ 3575 goto out; 3576 } 3577 map = kmap_atomic(page) + offset; 3578 init_map: *map = 0; /* we didn't zero the page */ 3579 } 3580 *map += 1; 3581 kunmap_atomic(map); 3582 while ((page = list_prev_entry(page, lru)) != head) { 3583 map = kmap_atomic(page) + offset; 3584 *map = COUNT_CONTINUED; 3585 kunmap_atomic(map); 3586 } 3587 ret = true; /* incremented */ 3588 3589 } else { /* decrementing */ 3590 /* 3591 * Think of how you subtract 1 from 1000 3592 */ 3593 BUG_ON(count != COUNT_CONTINUED); 3594 while (*map == COUNT_CONTINUED) { 3595 kunmap_atomic(map); 3596 page = list_next_entry(page, lru); 3597 BUG_ON(page == head); 3598 map = kmap_atomic(page) + offset; 3599 } 3600 BUG_ON(*map == 0); 3601 *map -= 1; 3602 if (*map == 0) 3603 count = 0; 3604 kunmap_atomic(map); 3605 while ((page = list_prev_entry(page, lru)) != head) { 3606 map = kmap_atomic(page) + offset; 3607 *map = SWAP_CONT_MAX | count; 3608 count = COUNT_CONTINUED; 3609 kunmap_atomic(map); 3610 } 3611 ret = count == COUNT_CONTINUED; 3612 } 3613 out: 3614 spin_unlock(&si->cont_lock); 3615 return ret; 3616 } 3617 3618 /* 3619 * free_swap_count_continuations - swapoff free all the continuation pages 3620 * appended to the swap_map, after swap_map is quiesced, before vfree'ing it. 3621 */ 3622 static void free_swap_count_continuations(struct swap_info_struct *si) 3623 { 3624 pgoff_t offset; 3625 3626 for (offset = 0; offset < si->max; offset += PAGE_SIZE) { 3627 struct page *head; 3628 head = vmalloc_to_page(si->swap_map + offset); 3629 if (page_private(head)) { 3630 struct page *page, *next; 3631 3632 list_for_each_entry_safe(page, next, &head->lru, lru) { 3633 list_del(&page->lru); 3634 __free_page(page); 3635 } 3636 } 3637 } 3638 } 3639 3640 #if defined(CONFIG_MEMCG) && defined(CONFIG_BLK_CGROUP) 3641 void __folio_throttle_swaprate(struct folio *folio, gfp_t gfp) 3642 { 3643 struct swap_info_struct *si, *next; 3644 int nid = folio_nid(folio); 3645 3646 if (!(gfp & __GFP_IO)) 3647 return; 3648 3649 if (!blk_cgroup_congested()) 3650 return; 3651 3652 /* 3653 * We've already scheduled a throttle, avoid taking the global swap 3654 * lock. 3655 */ 3656 if (current->throttle_disk) 3657 return; 3658 3659 spin_lock(&swap_avail_lock); 3660 plist_for_each_entry_safe(si, next, &swap_avail_heads[nid], 3661 avail_lists[nid]) { 3662 if (si->bdev) { 3663 blkcg_schedule_throttle(si->bdev->bd_disk, true); 3664 break; 3665 } 3666 } 3667 spin_unlock(&swap_avail_lock); 3668 } 3669 #endif 3670 3671 static int __init swapfile_init(void) 3672 { 3673 int nid; 3674 3675 swap_avail_heads = kmalloc_array(nr_node_ids, sizeof(struct plist_head), 3676 GFP_KERNEL); 3677 if (!swap_avail_heads) { 3678 pr_emerg("Not enough memory for swap heads, swap is disabled\n"); 3679 return -ENOMEM; 3680 } 3681 3682 for_each_node(nid) 3683 plist_head_init(&swap_avail_heads[nid]); 3684 3685 swapfile_maximum_size = arch_max_swapfile_size(); 3686 3687 #ifdef CONFIG_MIGRATION 3688 if (swapfile_maximum_size >= (1UL << SWP_MIG_TOTAL_BITS)) 3689 swap_migration_ad_supported = true; 3690 #endif /* CONFIG_MIGRATION */ 3691 3692 return 0; 3693 } 3694 subsys_initcall(swapfile_init); 3695