xref: /openbmc/linux/mm/swapfile.c (revision c997aabb)
1 /*
2  *  linux/mm/swapfile.c
3  *
4  *  Copyright (C) 1991, 1992, 1993, 1994  Linus Torvalds
5  *  Swap reorganised 29.12.95, Stephen Tweedie
6  */
7 
8 #include <linux/mm.h>
9 #include <linux/sched/mm.h>
10 #include <linux/sched/task.h>
11 #include <linux/hugetlb.h>
12 #include <linux/mman.h>
13 #include <linux/slab.h>
14 #include <linux/kernel_stat.h>
15 #include <linux/swap.h>
16 #include <linux/vmalloc.h>
17 #include <linux/pagemap.h>
18 #include <linux/namei.h>
19 #include <linux/shmem_fs.h>
20 #include <linux/blkdev.h>
21 #include <linux/random.h>
22 #include <linux/writeback.h>
23 #include <linux/proc_fs.h>
24 #include <linux/seq_file.h>
25 #include <linux/init.h>
26 #include <linux/ksm.h>
27 #include <linux/rmap.h>
28 #include <linux/security.h>
29 #include <linux/backing-dev.h>
30 #include <linux/mutex.h>
31 #include <linux/capability.h>
32 #include <linux/syscalls.h>
33 #include <linux/memcontrol.h>
34 #include <linux/poll.h>
35 #include <linux/oom.h>
36 #include <linux/frontswap.h>
37 #include <linux/swapfile.h>
38 #include <linux/export.h>
39 #include <linux/swap_slots.h>
40 #include <linux/sort.h>
41 
42 #include <asm/pgtable.h>
43 #include <asm/tlbflush.h>
44 #include <linux/swapops.h>
45 #include <linux/swap_cgroup.h>
46 
47 static bool swap_count_continued(struct swap_info_struct *, pgoff_t,
48 				 unsigned char);
49 static void free_swap_count_continuations(struct swap_info_struct *);
50 static sector_t map_swap_entry(swp_entry_t, struct block_device**);
51 
52 DEFINE_SPINLOCK(swap_lock);
53 static unsigned int nr_swapfiles;
54 atomic_long_t nr_swap_pages;
55 /*
56  * Some modules use swappable objects and may try to swap them out under
57  * memory pressure (via the shrinker). Before doing so, they may wish to
58  * check to see if any swap space is available.
59  */
60 EXPORT_SYMBOL_GPL(nr_swap_pages);
61 /* protected with swap_lock. reading in vm_swap_full() doesn't need lock */
62 long total_swap_pages;
63 static int least_priority;
64 
65 static const char Bad_file[] = "Bad swap file entry ";
66 static const char Unused_file[] = "Unused swap file entry ";
67 static const char Bad_offset[] = "Bad swap offset entry ";
68 static const char Unused_offset[] = "Unused swap offset entry ";
69 
70 /*
71  * all active swap_info_structs
72  * protected with swap_lock, and ordered by priority.
73  */
74 PLIST_HEAD(swap_active_head);
75 
76 /*
77  * all available (active, not full) swap_info_structs
78  * protected with swap_avail_lock, ordered by priority.
79  * This is used by get_swap_page() instead of swap_active_head
80  * because swap_active_head includes all swap_info_structs,
81  * but get_swap_page() doesn't need to look at full ones.
82  * This uses its own lock instead of swap_lock because when a
83  * swap_info_struct changes between not-full/full, it needs to
84  * add/remove itself to/from this list, but the swap_info_struct->lock
85  * is held and the locking order requires swap_lock to be taken
86  * before any swap_info_struct->lock.
87  */
88 static PLIST_HEAD(swap_avail_head);
89 static DEFINE_SPINLOCK(swap_avail_lock);
90 
91 struct swap_info_struct *swap_info[MAX_SWAPFILES];
92 
93 static DEFINE_MUTEX(swapon_mutex);
94 
95 static DECLARE_WAIT_QUEUE_HEAD(proc_poll_wait);
96 /* Activity counter to indicate that a swapon or swapoff has occurred */
97 static atomic_t proc_poll_event = ATOMIC_INIT(0);
98 
99 static inline unsigned char swap_count(unsigned char ent)
100 {
101 	return ent & ~SWAP_HAS_CACHE;	/* may include SWAP_HAS_CONT flag */
102 }
103 
104 /* returns 1 if swap entry is freed */
105 static int
106 __try_to_reclaim_swap(struct swap_info_struct *si, unsigned long offset)
107 {
108 	swp_entry_t entry = swp_entry(si->type, offset);
109 	struct page *page;
110 	int ret = 0;
111 
112 	page = find_get_page(swap_address_space(entry), swp_offset(entry));
113 	if (!page)
114 		return 0;
115 	/*
116 	 * This function is called from scan_swap_map() and it's called
117 	 * by vmscan.c at reclaiming pages. So, we hold a lock on a page, here.
118 	 * We have to use trylock for avoiding deadlock. This is a special
119 	 * case and you should use try_to_free_swap() with explicit lock_page()
120 	 * in usual operations.
121 	 */
122 	if (trylock_page(page)) {
123 		ret = try_to_free_swap(page);
124 		unlock_page(page);
125 	}
126 	put_page(page);
127 	return ret;
128 }
129 
130 /*
131  * swapon tell device that all the old swap contents can be discarded,
132  * to allow the swap device to optimize its wear-levelling.
133  */
134 static int discard_swap(struct swap_info_struct *si)
135 {
136 	struct swap_extent *se;
137 	sector_t start_block;
138 	sector_t nr_blocks;
139 	int err = 0;
140 
141 	/* Do not discard the swap header page! */
142 	se = &si->first_swap_extent;
143 	start_block = (se->start_block + 1) << (PAGE_SHIFT - 9);
144 	nr_blocks = ((sector_t)se->nr_pages - 1) << (PAGE_SHIFT - 9);
145 	if (nr_blocks) {
146 		err = blkdev_issue_discard(si->bdev, start_block,
147 				nr_blocks, GFP_KERNEL, 0);
148 		if (err)
149 			return err;
150 		cond_resched();
151 	}
152 
153 	list_for_each_entry(se, &si->first_swap_extent.list, list) {
154 		start_block = se->start_block << (PAGE_SHIFT - 9);
155 		nr_blocks = (sector_t)se->nr_pages << (PAGE_SHIFT - 9);
156 
157 		err = blkdev_issue_discard(si->bdev, start_block,
158 				nr_blocks, GFP_KERNEL, 0);
159 		if (err)
160 			break;
161 
162 		cond_resched();
163 	}
164 	return err;		/* That will often be -EOPNOTSUPP */
165 }
166 
167 /*
168  * swap allocation tell device that a cluster of swap can now be discarded,
169  * to allow the swap device to optimize its wear-levelling.
170  */
171 static void discard_swap_cluster(struct swap_info_struct *si,
172 				 pgoff_t start_page, pgoff_t nr_pages)
173 {
174 	struct swap_extent *se = si->curr_swap_extent;
175 	int found_extent = 0;
176 
177 	while (nr_pages) {
178 		if (se->start_page <= start_page &&
179 		    start_page < se->start_page + se->nr_pages) {
180 			pgoff_t offset = start_page - se->start_page;
181 			sector_t start_block = se->start_block + offset;
182 			sector_t nr_blocks = se->nr_pages - offset;
183 
184 			if (nr_blocks > nr_pages)
185 				nr_blocks = nr_pages;
186 			start_page += nr_blocks;
187 			nr_pages -= nr_blocks;
188 
189 			if (!found_extent++)
190 				si->curr_swap_extent = se;
191 
192 			start_block <<= PAGE_SHIFT - 9;
193 			nr_blocks <<= PAGE_SHIFT - 9;
194 			if (blkdev_issue_discard(si->bdev, start_block,
195 				    nr_blocks, GFP_NOIO, 0))
196 				break;
197 		}
198 
199 		se = list_next_entry(se, list);
200 	}
201 }
202 
203 #ifdef CONFIG_THP_SWAP
204 #define SWAPFILE_CLUSTER	HPAGE_PMD_NR
205 #else
206 #define SWAPFILE_CLUSTER	256
207 #endif
208 #define LATENCY_LIMIT		256
209 
210 static inline void cluster_set_flag(struct swap_cluster_info *info,
211 	unsigned int flag)
212 {
213 	info->flags = flag;
214 }
215 
216 static inline unsigned int cluster_count(struct swap_cluster_info *info)
217 {
218 	return info->data;
219 }
220 
221 static inline void cluster_set_count(struct swap_cluster_info *info,
222 				     unsigned int c)
223 {
224 	info->data = c;
225 }
226 
227 static inline void cluster_set_count_flag(struct swap_cluster_info *info,
228 					 unsigned int c, unsigned int f)
229 {
230 	info->flags = f;
231 	info->data = c;
232 }
233 
234 static inline unsigned int cluster_next(struct swap_cluster_info *info)
235 {
236 	return info->data;
237 }
238 
239 static inline void cluster_set_next(struct swap_cluster_info *info,
240 				    unsigned int n)
241 {
242 	info->data = n;
243 }
244 
245 static inline void cluster_set_next_flag(struct swap_cluster_info *info,
246 					 unsigned int n, unsigned int f)
247 {
248 	info->flags = f;
249 	info->data = n;
250 }
251 
252 static inline bool cluster_is_free(struct swap_cluster_info *info)
253 {
254 	return info->flags & CLUSTER_FLAG_FREE;
255 }
256 
257 static inline bool cluster_is_null(struct swap_cluster_info *info)
258 {
259 	return info->flags & CLUSTER_FLAG_NEXT_NULL;
260 }
261 
262 static inline void cluster_set_null(struct swap_cluster_info *info)
263 {
264 	info->flags = CLUSTER_FLAG_NEXT_NULL;
265 	info->data = 0;
266 }
267 
268 static inline struct swap_cluster_info *lock_cluster(struct swap_info_struct *si,
269 						     unsigned long offset)
270 {
271 	struct swap_cluster_info *ci;
272 
273 	ci = si->cluster_info;
274 	if (ci) {
275 		ci += offset / SWAPFILE_CLUSTER;
276 		spin_lock(&ci->lock);
277 	}
278 	return ci;
279 }
280 
281 static inline void unlock_cluster(struct swap_cluster_info *ci)
282 {
283 	if (ci)
284 		spin_unlock(&ci->lock);
285 }
286 
287 static inline struct swap_cluster_info *lock_cluster_or_swap_info(
288 	struct swap_info_struct *si,
289 	unsigned long offset)
290 {
291 	struct swap_cluster_info *ci;
292 
293 	ci = lock_cluster(si, offset);
294 	if (!ci)
295 		spin_lock(&si->lock);
296 
297 	return ci;
298 }
299 
300 static inline void unlock_cluster_or_swap_info(struct swap_info_struct *si,
301 					       struct swap_cluster_info *ci)
302 {
303 	if (ci)
304 		unlock_cluster(ci);
305 	else
306 		spin_unlock(&si->lock);
307 }
308 
309 static inline bool cluster_list_empty(struct swap_cluster_list *list)
310 {
311 	return cluster_is_null(&list->head);
312 }
313 
314 static inline unsigned int cluster_list_first(struct swap_cluster_list *list)
315 {
316 	return cluster_next(&list->head);
317 }
318 
319 static void cluster_list_init(struct swap_cluster_list *list)
320 {
321 	cluster_set_null(&list->head);
322 	cluster_set_null(&list->tail);
323 }
324 
325 static void cluster_list_add_tail(struct swap_cluster_list *list,
326 				  struct swap_cluster_info *ci,
327 				  unsigned int idx)
328 {
329 	if (cluster_list_empty(list)) {
330 		cluster_set_next_flag(&list->head, idx, 0);
331 		cluster_set_next_flag(&list->tail, idx, 0);
332 	} else {
333 		struct swap_cluster_info *ci_tail;
334 		unsigned int tail = cluster_next(&list->tail);
335 
336 		/*
337 		 * Nested cluster lock, but both cluster locks are
338 		 * only acquired when we held swap_info_struct->lock
339 		 */
340 		ci_tail = ci + tail;
341 		spin_lock_nested(&ci_tail->lock, SINGLE_DEPTH_NESTING);
342 		cluster_set_next(ci_tail, idx);
343 		spin_unlock(&ci_tail->lock);
344 		cluster_set_next_flag(&list->tail, idx, 0);
345 	}
346 }
347 
348 static unsigned int cluster_list_del_first(struct swap_cluster_list *list,
349 					   struct swap_cluster_info *ci)
350 {
351 	unsigned int idx;
352 
353 	idx = cluster_next(&list->head);
354 	if (cluster_next(&list->tail) == idx) {
355 		cluster_set_null(&list->head);
356 		cluster_set_null(&list->tail);
357 	} else
358 		cluster_set_next_flag(&list->head,
359 				      cluster_next(&ci[idx]), 0);
360 
361 	return idx;
362 }
363 
364 /* Add a cluster to discard list and schedule it to do discard */
365 static void swap_cluster_schedule_discard(struct swap_info_struct *si,
366 		unsigned int idx)
367 {
368 	/*
369 	 * If scan_swap_map() can't find a free cluster, it will check
370 	 * si->swap_map directly. To make sure the discarding cluster isn't
371 	 * taken by scan_swap_map(), mark the swap entries bad (occupied). It
372 	 * will be cleared after discard
373 	 */
374 	memset(si->swap_map + idx * SWAPFILE_CLUSTER,
375 			SWAP_MAP_BAD, SWAPFILE_CLUSTER);
376 
377 	cluster_list_add_tail(&si->discard_clusters, si->cluster_info, idx);
378 
379 	schedule_work(&si->discard_work);
380 }
381 
382 static void __free_cluster(struct swap_info_struct *si, unsigned long idx)
383 {
384 	struct swap_cluster_info *ci = si->cluster_info;
385 
386 	cluster_set_flag(ci + idx, CLUSTER_FLAG_FREE);
387 	cluster_list_add_tail(&si->free_clusters, ci, idx);
388 }
389 
390 /*
391  * Doing discard actually. After a cluster discard is finished, the cluster
392  * will be added to free cluster list. caller should hold si->lock.
393 */
394 static void swap_do_scheduled_discard(struct swap_info_struct *si)
395 {
396 	struct swap_cluster_info *info, *ci;
397 	unsigned int idx;
398 
399 	info = si->cluster_info;
400 
401 	while (!cluster_list_empty(&si->discard_clusters)) {
402 		idx = cluster_list_del_first(&si->discard_clusters, info);
403 		spin_unlock(&si->lock);
404 
405 		discard_swap_cluster(si, idx * SWAPFILE_CLUSTER,
406 				SWAPFILE_CLUSTER);
407 
408 		spin_lock(&si->lock);
409 		ci = lock_cluster(si, idx * SWAPFILE_CLUSTER);
410 		__free_cluster(si, idx);
411 		memset(si->swap_map + idx * SWAPFILE_CLUSTER,
412 				0, SWAPFILE_CLUSTER);
413 		unlock_cluster(ci);
414 	}
415 }
416 
417 static void swap_discard_work(struct work_struct *work)
418 {
419 	struct swap_info_struct *si;
420 
421 	si = container_of(work, struct swap_info_struct, discard_work);
422 
423 	spin_lock(&si->lock);
424 	swap_do_scheduled_discard(si);
425 	spin_unlock(&si->lock);
426 }
427 
428 static void alloc_cluster(struct swap_info_struct *si, unsigned long idx)
429 {
430 	struct swap_cluster_info *ci = si->cluster_info;
431 
432 	VM_BUG_ON(cluster_list_first(&si->free_clusters) != idx);
433 	cluster_list_del_first(&si->free_clusters, ci);
434 	cluster_set_count_flag(ci + idx, 0, 0);
435 }
436 
437 static void free_cluster(struct swap_info_struct *si, unsigned long idx)
438 {
439 	struct swap_cluster_info *ci = si->cluster_info + idx;
440 
441 	VM_BUG_ON(cluster_count(ci) != 0);
442 	/*
443 	 * If the swap is discardable, prepare discard the cluster
444 	 * instead of free it immediately. The cluster will be freed
445 	 * after discard.
446 	 */
447 	if ((si->flags & (SWP_WRITEOK | SWP_PAGE_DISCARD)) ==
448 	    (SWP_WRITEOK | SWP_PAGE_DISCARD)) {
449 		swap_cluster_schedule_discard(si, idx);
450 		return;
451 	}
452 
453 	__free_cluster(si, idx);
454 }
455 
456 /*
457  * The cluster corresponding to page_nr will be used. The cluster will be
458  * removed from free cluster list and its usage counter will be increased.
459  */
460 static void inc_cluster_info_page(struct swap_info_struct *p,
461 	struct swap_cluster_info *cluster_info, unsigned long page_nr)
462 {
463 	unsigned long idx = page_nr / SWAPFILE_CLUSTER;
464 
465 	if (!cluster_info)
466 		return;
467 	if (cluster_is_free(&cluster_info[idx]))
468 		alloc_cluster(p, idx);
469 
470 	VM_BUG_ON(cluster_count(&cluster_info[idx]) >= SWAPFILE_CLUSTER);
471 	cluster_set_count(&cluster_info[idx],
472 		cluster_count(&cluster_info[idx]) + 1);
473 }
474 
475 /*
476  * The cluster corresponding to page_nr decreases one usage. If the usage
477  * counter becomes 0, which means no page in the cluster is in using, we can
478  * optionally discard the cluster and add it to free cluster list.
479  */
480 static void dec_cluster_info_page(struct swap_info_struct *p,
481 	struct swap_cluster_info *cluster_info, unsigned long page_nr)
482 {
483 	unsigned long idx = page_nr / SWAPFILE_CLUSTER;
484 
485 	if (!cluster_info)
486 		return;
487 
488 	VM_BUG_ON(cluster_count(&cluster_info[idx]) == 0);
489 	cluster_set_count(&cluster_info[idx],
490 		cluster_count(&cluster_info[idx]) - 1);
491 
492 	if (cluster_count(&cluster_info[idx]) == 0)
493 		free_cluster(p, idx);
494 }
495 
496 /*
497  * It's possible scan_swap_map() uses a free cluster in the middle of free
498  * cluster list. Avoiding such abuse to avoid list corruption.
499  */
500 static bool
501 scan_swap_map_ssd_cluster_conflict(struct swap_info_struct *si,
502 	unsigned long offset)
503 {
504 	struct percpu_cluster *percpu_cluster;
505 	bool conflict;
506 
507 	offset /= SWAPFILE_CLUSTER;
508 	conflict = !cluster_list_empty(&si->free_clusters) &&
509 		offset != cluster_list_first(&si->free_clusters) &&
510 		cluster_is_free(&si->cluster_info[offset]);
511 
512 	if (!conflict)
513 		return false;
514 
515 	percpu_cluster = this_cpu_ptr(si->percpu_cluster);
516 	cluster_set_null(&percpu_cluster->index);
517 	return true;
518 }
519 
520 /*
521  * Try to get a swap entry from current cpu's swap entry pool (a cluster). This
522  * might involve allocating a new cluster for current CPU too.
523  */
524 static bool scan_swap_map_try_ssd_cluster(struct swap_info_struct *si,
525 	unsigned long *offset, unsigned long *scan_base)
526 {
527 	struct percpu_cluster *cluster;
528 	struct swap_cluster_info *ci;
529 	bool found_free;
530 	unsigned long tmp, max;
531 
532 new_cluster:
533 	cluster = this_cpu_ptr(si->percpu_cluster);
534 	if (cluster_is_null(&cluster->index)) {
535 		if (!cluster_list_empty(&si->free_clusters)) {
536 			cluster->index = si->free_clusters.head;
537 			cluster->next = cluster_next(&cluster->index) *
538 					SWAPFILE_CLUSTER;
539 		} else if (!cluster_list_empty(&si->discard_clusters)) {
540 			/*
541 			 * we don't have free cluster but have some clusters in
542 			 * discarding, do discard now and reclaim them
543 			 */
544 			swap_do_scheduled_discard(si);
545 			*scan_base = *offset = si->cluster_next;
546 			goto new_cluster;
547 		} else
548 			return false;
549 	}
550 
551 	found_free = false;
552 
553 	/*
554 	 * Other CPUs can use our cluster if they can't find a free cluster,
555 	 * check if there is still free entry in the cluster
556 	 */
557 	tmp = cluster->next;
558 	max = min_t(unsigned long, si->max,
559 		    (cluster_next(&cluster->index) + 1) * SWAPFILE_CLUSTER);
560 	if (tmp >= max) {
561 		cluster_set_null(&cluster->index);
562 		goto new_cluster;
563 	}
564 	ci = lock_cluster(si, tmp);
565 	while (tmp < max) {
566 		if (!si->swap_map[tmp]) {
567 			found_free = true;
568 			break;
569 		}
570 		tmp++;
571 	}
572 	unlock_cluster(ci);
573 	if (!found_free) {
574 		cluster_set_null(&cluster->index);
575 		goto new_cluster;
576 	}
577 	cluster->next = tmp + 1;
578 	*offset = tmp;
579 	*scan_base = tmp;
580 	return found_free;
581 }
582 
583 static void swap_range_alloc(struct swap_info_struct *si, unsigned long offset,
584 			     unsigned int nr_entries)
585 {
586 	unsigned int end = offset + nr_entries - 1;
587 
588 	if (offset == si->lowest_bit)
589 		si->lowest_bit += nr_entries;
590 	if (end == si->highest_bit)
591 		si->highest_bit -= nr_entries;
592 	si->inuse_pages += nr_entries;
593 	if (si->inuse_pages == si->pages) {
594 		si->lowest_bit = si->max;
595 		si->highest_bit = 0;
596 		spin_lock(&swap_avail_lock);
597 		plist_del(&si->avail_list, &swap_avail_head);
598 		spin_unlock(&swap_avail_lock);
599 	}
600 }
601 
602 static void swap_range_free(struct swap_info_struct *si, unsigned long offset,
603 			    unsigned int nr_entries)
604 {
605 	unsigned long end = offset + nr_entries - 1;
606 	void (*swap_slot_free_notify)(struct block_device *, unsigned long);
607 
608 	if (offset < si->lowest_bit)
609 		si->lowest_bit = offset;
610 	if (end > si->highest_bit) {
611 		bool was_full = !si->highest_bit;
612 
613 		si->highest_bit = end;
614 		if (was_full && (si->flags & SWP_WRITEOK)) {
615 			spin_lock(&swap_avail_lock);
616 			WARN_ON(!plist_node_empty(&si->avail_list));
617 			if (plist_node_empty(&si->avail_list))
618 				plist_add(&si->avail_list, &swap_avail_head);
619 			spin_unlock(&swap_avail_lock);
620 		}
621 	}
622 	atomic_long_add(nr_entries, &nr_swap_pages);
623 	si->inuse_pages -= nr_entries;
624 	if (si->flags & SWP_BLKDEV)
625 		swap_slot_free_notify =
626 			si->bdev->bd_disk->fops->swap_slot_free_notify;
627 	else
628 		swap_slot_free_notify = NULL;
629 	while (offset <= end) {
630 		frontswap_invalidate_page(si->type, offset);
631 		if (swap_slot_free_notify)
632 			swap_slot_free_notify(si->bdev, offset);
633 		offset++;
634 	}
635 }
636 
637 static int scan_swap_map_slots(struct swap_info_struct *si,
638 			       unsigned char usage, int nr,
639 			       swp_entry_t slots[])
640 {
641 	struct swap_cluster_info *ci;
642 	unsigned long offset;
643 	unsigned long scan_base;
644 	unsigned long last_in_cluster = 0;
645 	int latency_ration = LATENCY_LIMIT;
646 	int n_ret = 0;
647 
648 	if (nr > SWAP_BATCH)
649 		nr = SWAP_BATCH;
650 
651 	/*
652 	 * We try to cluster swap pages by allocating them sequentially
653 	 * in swap.  Once we've allocated SWAPFILE_CLUSTER pages this
654 	 * way, however, we resort to first-free allocation, starting
655 	 * a new cluster.  This prevents us from scattering swap pages
656 	 * all over the entire swap partition, so that we reduce
657 	 * overall disk seek times between swap pages.  -- sct
658 	 * But we do now try to find an empty cluster.  -Andrea
659 	 * And we let swap pages go all over an SSD partition.  Hugh
660 	 */
661 
662 	si->flags += SWP_SCANNING;
663 	scan_base = offset = si->cluster_next;
664 
665 	/* SSD algorithm */
666 	if (si->cluster_info) {
667 		if (scan_swap_map_try_ssd_cluster(si, &offset, &scan_base))
668 			goto checks;
669 		else
670 			goto scan;
671 	}
672 
673 	if (unlikely(!si->cluster_nr--)) {
674 		if (si->pages - si->inuse_pages < SWAPFILE_CLUSTER) {
675 			si->cluster_nr = SWAPFILE_CLUSTER - 1;
676 			goto checks;
677 		}
678 
679 		spin_unlock(&si->lock);
680 
681 		/*
682 		 * If seek is expensive, start searching for new cluster from
683 		 * start of partition, to minimize the span of allocated swap.
684 		 * If seek is cheap, that is the SWP_SOLIDSTATE si->cluster_info
685 		 * case, just handled by scan_swap_map_try_ssd_cluster() above.
686 		 */
687 		scan_base = offset = si->lowest_bit;
688 		last_in_cluster = offset + SWAPFILE_CLUSTER - 1;
689 
690 		/* Locate the first empty (unaligned) cluster */
691 		for (; last_in_cluster <= si->highest_bit; offset++) {
692 			if (si->swap_map[offset])
693 				last_in_cluster = offset + SWAPFILE_CLUSTER;
694 			else if (offset == last_in_cluster) {
695 				spin_lock(&si->lock);
696 				offset -= SWAPFILE_CLUSTER - 1;
697 				si->cluster_next = offset;
698 				si->cluster_nr = SWAPFILE_CLUSTER - 1;
699 				goto checks;
700 			}
701 			if (unlikely(--latency_ration < 0)) {
702 				cond_resched();
703 				latency_ration = LATENCY_LIMIT;
704 			}
705 		}
706 
707 		offset = scan_base;
708 		spin_lock(&si->lock);
709 		si->cluster_nr = SWAPFILE_CLUSTER - 1;
710 	}
711 
712 checks:
713 	if (si->cluster_info) {
714 		while (scan_swap_map_ssd_cluster_conflict(si, offset)) {
715 		/* take a break if we already got some slots */
716 			if (n_ret)
717 				goto done;
718 			if (!scan_swap_map_try_ssd_cluster(si, &offset,
719 							&scan_base))
720 				goto scan;
721 		}
722 	}
723 	if (!(si->flags & SWP_WRITEOK))
724 		goto no_page;
725 	if (!si->highest_bit)
726 		goto no_page;
727 	if (offset > si->highest_bit)
728 		scan_base = offset = si->lowest_bit;
729 
730 	ci = lock_cluster(si, offset);
731 	/* reuse swap entry of cache-only swap if not busy. */
732 	if (vm_swap_full() && si->swap_map[offset] == SWAP_HAS_CACHE) {
733 		int swap_was_freed;
734 		unlock_cluster(ci);
735 		spin_unlock(&si->lock);
736 		swap_was_freed = __try_to_reclaim_swap(si, offset);
737 		spin_lock(&si->lock);
738 		/* entry was freed successfully, try to use this again */
739 		if (swap_was_freed)
740 			goto checks;
741 		goto scan; /* check next one */
742 	}
743 
744 	if (si->swap_map[offset]) {
745 		unlock_cluster(ci);
746 		if (!n_ret)
747 			goto scan;
748 		else
749 			goto done;
750 	}
751 	si->swap_map[offset] = usage;
752 	inc_cluster_info_page(si, si->cluster_info, offset);
753 	unlock_cluster(ci);
754 
755 	swap_range_alloc(si, offset, 1);
756 	si->cluster_next = offset + 1;
757 	slots[n_ret++] = swp_entry(si->type, offset);
758 
759 	/* got enough slots or reach max slots? */
760 	if ((n_ret == nr) || (offset >= si->highest_bit))
761 		goto done;
762 
763 	/* search for next available slot */
764 
765 	/* time to take a break? */
766 	if (unlikely(--latency_ration < 0)) {
767 		if (n_ret)
768 			goto done;
769 		spin_unlock(&si->lock);
770 		cond_resched();
771 		spin_lock(&si->lock);
772 		latency_ration = LATENCY_LIMIT;
773 	}
774 
775 	/* try to get more slots in cluster */
776 	if (si->cluster_info) {
777 		if (scan_swap_map_try_ssd_cluster(si, &offset, &scan_base))
778 			goto checks;
779 		else
780 			goto done;
781 	}
782 	/* non-ssd case */
783 	++offset;
784 
785 	/* non-ssd case, still more slots in cluster? */
786 	if (si->cluster_nr && !si->swap_map[offset]) {
787 		--si->cluster_nr;
788 		goto checks;
789 	}
790 
791 done:
792 	si->flags -= SWP_SCANNING;
793 	return n_ret;
794 
795 scan:
796 	spin_unlock(&si->lock);
797 	while (++offset <= si->highest_bit) {
798 		if (!si->swap_map[offset]) {
799 			spin_lock(&si->lock);
800 			goto checks;
801 		}
802 		if (vm_swap_full() && si->swap_map[offset] == SWAP_HAS_CACHE) {
803 			spin_lock(&si->lock);
804 			goto checks;
805 		}
806 		if (unlikely(--latency_ration < 0)) {
807 			cond_resched();
808 			latency_ration = LATENCY_LIMIT;
809 		}
810 	}
811 	offset = si->lowest_bit;
812 	while (offset < scan_base) {
813 		if (!si->swap_map[offset]) {
814 			spin_lock(&si->lock);
815 			goto checks;
816 		}
817 		if (vm_swap_full() && si->swap_map[offset] == SWAP_HAS_CACHE) {
818 			spin_lock(&si->lock);
819 			goto checks;
820 		}
821 		if (unlikely(--latency_ration < 0)) {
822 			cond_resched();
823 			latency_ration = LATENCY_LIMIT;
824 		}
825 		offset++;
826 	}
827 	spin_lock(&si->lock);
828 
829 no_page:
830 	si->flags -= SWP_SCANNING;
831 	return n_ret;
832 }
833 
834 #ifdef CONFIG_THP_SWAP
835 static int swap_alloc_cluster(struct swap_info_struct *si, swp_entry_t *slot)
836 {
837 	unsigned long idx;
838 	struct swap_cluster_info *ci;
839 	unsigned long offset, i;
840 	unsigned char *map;
841 
842 	if (cluster_list_empty(&si->free_clusters))
843 		return 0;
844 
845 	idx = cluster_list_first(&si->free_clusters);
846 	offset = idx * SWAPFILE_CLUSTER;
847 	ci = lock_cluster(si, offset);
848 	alloc_cluster(si, idx);
849 	cluster_set_count_flag(ci, SWAPFILE_CLUSTER, 0);
850 
851 	map = si->swap_map + offset;
852 	for (i = 0; i < SWAPFILE_CLUSTER; i++)
853 		map[i] = SWAP_HAS_CACHE;
854 	unlock_cluster(ci);
855 	swap_range_alloc(si, offset, SWAPFILE_CLUSTER);
856 	*slot = swp_entry(si->type, offset);
857 
858 	return 1;
859 }
860 
861 static void swap_free_cluster(struct swap_info_struct *si, unsigned long idx)
862 {
863 	unsigned long offset = idx * SWAPFILE_CLUSTER;
864 	struct swap_cluster_info *ci;
865 
866 	ci = lock_cluster(si, offset);
867 	cluster_set_count_flag(ci, 0, 0);
868 	free_cluster(si, idx);
869 	unlock_cluster(ci);
870 	swap_range_free(si, offset, SWAPFILE_CLUSTER);
871 }
872 #else
873 static int swap_alloc_cluster(struct swap_info_struct *si, swp_entry_t *slot)
874 {
875 	VM_WARN_ON_ONCE(1);
876 	return 0;
877 }
878 #endif /* CONFIG_THP_SWAP */
879 
880 static unsigned long scan_swap_map(struct swap_info_struct *si,
881 				   unsigned char usage)
882 {
883 	swp_entry_t entry;
884 	int n_ret;
885 
886 	n_ret = scan_swap_map_slots(si, usage, 1, &entry);
887 
888 	if (n_ret)
889 		return swp_offset(entry);
890 	else
891 		return 0;
892 
893 }
894 
895 int get_swap_pages(int n_goal, bool cluster, swp_entry_t swp_entries[])
896 {
897 	unsigned long nr_pages = cluster ? SWAPFILE_CLUSTER : 1;
898 	struct swap_info_struct *si, *next;
899 	long avail_pgs;
900 	int n_ret = 0;
901 
902 	/* Only single cluster request supported */
903 	WARN_ON_ONCE(n_goal > 1 && cluster);
904 
905 	avail_pgs = atomic_long_read(&nr_swap_pages) / nr_pages;
906 	if (avail_pgs <= 0)
907 		goto noswap;
908 
909 	if (n_goal > SWAP_BATCH)
910 		n_goal = SWAP_BATCH;
911 
912 	if (n_goal > avail_pgs)
913 		n_goal = avail_pgs;
914 
915 	atomic_long_sub(n_goal * nr_pages, &nr_swap_pages);
916 
917 	spin_lock(&swap_avail_lock);
918 
919 start_over:
920 	plist_for_each_entry_safe(si, next, &swap_avail_head, avail_list) {
921 		/* requeue si to after same-priority siblings */
922 		plist_requeue(&si->avail_list, &swap_avail_head);
923 		spin_unlock(&swap_avail_lock);
924 		spin_lock(&si->lock);
925 		if (!si->highest_bit || !(si->flags & SWP_WRITEOK)) {
926 			spin_lock(&swap_avail_lock);
927 			if (plist_node_empty(&si->avail_list)) {
928 				spin_unlock(&si->lock);
929 				goto nextsi;
930 			}
931 			WARN(!si->highest_bit,
932 			     "swap_info %d in list but !highest_bit\n",
933 			     si->type);
934 			WARN(!(si->flags & SWP_WRITEOK),
935 			     "swap_info %d in list but !SWP_WRITEOK\n",
936 			     si->type);
937 			plist_del(&si->avail_list, &swap_avail_head);
938 			spin_unlock(&si->lock);
939 			goto nextsi;
940 		}
941 		if (cluster)
942 			n_ret = swap_alloc_cluster(si, swp_entries);
943 		else
944 			n_ret = scan_swap_map_slots(si, SWAP_HAS_CACHE,
945 						    n_goal, swp_entries);
946 		spin_unlock(&si->lock);
947 		if (n_ret || cluster)
948 			goto check_out;
949 		pr_debug("scan_swap_map of si %d failed to find offset\n",
950 			si->type);
951 
952 		spin_lock(&swap_avail_lock);
953 nextsi:
954 		/*
955 		 * if we got here, it's likely that si was almost full before,
956 		 * and since scan_swap_map() can drop the si->lock, multiple
957 		 * callers probably all tried to get a page from the same si
958 		 * and it filled up before we could get one; or, the si filled
959 		 * up between us dropping swap_avail_lock and taking si->lock.
960 		 * Since we dropped the swap_avail_lock, the swap_avail_head
961 		 * list may have been modified; so if next is still in the
962 		 * swap_avail_head list then try it, otherwise start over
963 		 * if we have not gotten any slots.
964 		 */
965 		if (plist_node_empty(&next->avail_list))
966 			goto start_over;
967 	}
968 
969 	spin_unlock(&swap_avail_lock);
970 
971 check_out:
972 	if (n_ret < n_goal)
973 		atomic_long_add((long)(n_goal - n_ret) * nr_pages,
974 				&nr_swap_pages);
975 noswap:
976 	return n_ret;
977 }
978 
979 /* The only caller of this function is now suspend routine */
980 swp_entry_t get_swap_page_of_type(int type)
981 {
982 	struct swap_info_struct *si;
983 	pgoff_t offset;
984 
985 	si = swap_info[type];
986 	spin_lock(&si->lock);
987 	if (si && (si->flags & SWP_WRITEOK)) {
988 		atomic_long_dec(&nr_swap_pages);
989 		/* This is called for allocating swap entry, not cache */
990 		offset = scan_swap_map(si, 1);
991 		if (offset) {
992 			spin_unlock(&si->lock);
993 			return swp_entry(type, offset);
994 		}
995 		atomic_long_inc(&nr_swap_pages);
996 	}
997 	spin_unlock(&si->lock);
998 	return (swp_entry_t) {0};
999 }
1000 
1001 static struct swap_info_struct *__swap_info_get(swp_entry_t entry)
1002 {
1003 	struct swap_info_struct *p;
1004 	unsigned long offset, type;
1005 
1006 	if (!entry.val)
1007 		goto out;
1008 	type = swp_type(entry);
1009 	if (type >= nr_swapfiles)
1010 		goto bad_nofile;
1011 	p = swap_info[type];
1012 	if (!(p->flags & SWP_USED))
1013 		goto bad_device;
1014 	offset = swp_offset(entry);
1015 	if (offset >= p->max)
1016 		goto bad_offset;
1017 	return p;
1018 
1019 bad_offset:
1020 	pr_err("swap_info_get: %s%08lx\n", Bad_offset, entry.val);
1021 	goto out;
1022 bad_device:
1023 	pr_err("swap_info_get: %s%08lx\n", Unused_file, entry.val);
1024 	goto out;
1025 bad_nofile:
1026 	pr_err("swap_info_get: %s%08lx\n", Bad_file, entry.val);
1027 out:
1028 	return NULL;
1029 }
1030 
1031 static struct swap_info_struct *_swap_info_get(swp_entry_t entry)
1032 {
1033 	struct swap_info_struct *p;
1034 
1035 	p = __swap_info_get(entry);
1036 	if (!p)
1037 		goto out;
1038 	if (!p->swap_map[swp_offset(entry)])
1039 		goto bad_free;
1040 	return p;
1041 
1042 bad_free:
1043 	pr_err("swap_info_get: %s%08lx\n", Unused_offset, entry.val);
1044 	goto out;
1045 out:
1046 	return NULL;
1047 }
1048 
1049 static struct swap_info_struct *swap_info_get(swp_entry_t entry)
1050 {
1051 	struct swap_info_struct *p;
1052 
1053 	p = _swap_info_get(entry);
1054 	if (p)
1055 		spin_lock(&p->lock);
1056 	return p;
1057 }
1058 
1059 static struct swap_info_struct *swap_info_get_cont(swp_entry_t entry,
1060 					struct swap_info_struct *q)
1061 {
1062 	struct swap_info_struct *p;
1063 
1064 	p = _swap_info_get(entry);
1065 
1066 	if (p != q) {
1067 		if (q != NULL)
1068 			spin_unlock(&q->lock);
1069 		if (p != NULL)
1070 			spin_lock(&p->lock);
1071 	}
1072 	return p;
1073 }
1074 
1075 static unsigned char __swap_entry_free(struct swap_info_struct *p,
1076 				       swp_entry_t entry, unsigned char usage)
1077 {
1078 	struct swap_cluster_info *ci;
1079 	unsigned long offset = swp_offset(entry);
1080 	unsigned char count;
1081 	unsigned char has_cache;
1082 
1083 	ci = lock_cluster_or_swap_info(p, offset);
1084 
1085 	count = p->swap_map[offset];
1086 
1087 	has_cache = count & SWAP_HAS_CACHE;
1088 	count &= ~SWAP_HAS_CACHE;
1089 
1090 	if (usage == SWAP_HAS_CACHE) {
1091 		VM_BUG_ON(!has_cache);
1092 		has_cache = 0;
1093 	} else if (count == SWAP_MAP_SHMEM) {
1094 		/*
1095 		 * Or we could insist on shmem.c using a special
1096 		 * swap_shmem_free() and free_shmem_swap_and_cache()...
1097 		 */
1098 		count = 0;
1099 	} else if ((count & ~COUNT_CONTINUED) <= SWAP_MAP_MAX) {
1100 		if (count == COUNT_CONTINUED) {
1101 			if (swap_count_continued(p, offset, count))
1102 				count = SWAP_MAP_MAX | COUNT_CONTINUED;
1103 			else
1104 				count = SWAP_MAP_MAX;
1105 		} else
1106 			count--;
1107 	}
1108 
1109 	usage = count | has_cache;
1110 	p->swap_map[offset] = usage ? : SWAP_HAS_CACHE;
1111 
1112 	unlock_cluster_or_swap_info(p, ci);
1113 
1114 	return usage;
1115 }
1116 
1117 static void swap_entry_free(struct swap_info_struct *p, swp_entry_t entry)
1118 {
1119 	struct swap_cluster_info *ci;
1120 	unsigned long offset = swp_offset(entry);
1121 	unsigned char count;
1122 
1123 	ci = lock_cluster(p, offset);
1124 	count = p->swap_map[offset];
1125 	VM_BUG_ON(count != SWAP_HAS_CACHE);
1126 	p->swap_map[offset] = 0;
1127 	dec_cluster_info_page(p, p->cluster_info, offset);
1128 	unlock_cluster(ci);
1129 
1130 	mem_cgroup_uncharge_swap(entry, 1);
1131 	swap_range_free(p, offset, 1);
1132 }
1133 
1134 /*
1135  * Caller has made sure that the swap device corresponding to entry
1136  * is still around or has not been recycled.
1137  */
1138 void swap_free(swp_entry_t entry)
1139 {
1140 	struct swap_info_struct *p;
1141 
1142 	p = _swap_info_get(entry);
1143 	if (p) {
1144 		if (!__swap_entry_free(p, entry, 1))
1145 			free_swap_slot(entry);
1146 	}
1147 }
1148 
1149 /*
1150  * Called after dropping swapcache to decrease refcnt to swap entries.
1151  */
1152 static void swapcache_free(swp_entry_t entry)
1153 {
1154 	struct swap_info_struct *p;
1155 
1156 	p = _swap_info_get(entry);
1157 	if (p) {
1158 		if (!__swap_entry_free(p, entry, SWAP_HAS_CACHE))
1159 			free_swap_slot(entry);
1160 	}
1161 }
1162 
1163 #ifdef CONFIG_THP_SWAP
1164 static void swapcache_free_cluster(swp_entry_t entry)
1165 {
1166 	unsigned long offset = swp_offset(entry);
1167 	unsigned long idx = offset / SWAPFILE_CLUSTER;
1168 	struct swap_cluster_info *ci;
1169 	struct swap_info_struct *si;
1170 	unsigned char *map;
1171 	unsigned int i;
1172 
1173 	si = swap_info_get(entry);
1174 	if (!si)
1175 		return;
1176 
1177 	ci = lock_cluster(si, offset);
1178 	map = si->swap_map + offset;
1179 	for (i = 0; i < SWAPFILE_CLUSTER; i++) {
1180 		VM_BUG_ON(map[i] != SWAP_HAS_CACHE);
1181 		map[i] = 0;
1182 	}
1183 	unlock_cluster(ci);
1184 	mem_cgroup_uncharge_swap(entry, SWAPFILE_CLUSTER);
1185 	swap_free_cluster(si, idx);
1186 	spin_unlock(&si->lock);
1187 }
1188 #else
1189 static inline void swapcache_free_cluster(swp_entry_t entry)
1190 {
1191 }
1192 #endif /* CONFIG_THP_SWAP */
1193 
1194 void put_swap_page(struct page *page, swp_entry_t entry)
1195 {
1196 	if (!PageTransHuge(page))
1197 		swapcache_free(entry);
1198 	else
1199 		swapcache_free_cluster(entry);
1200 }
1201 
1202 static int swp_entry_cmp(const void *ent1, const void *ent2)
1203 {
1204 	const swp_entry_t *e1 = ent1, *e2 = ent2;
1205 
1206 	return (int)swp_type(*e1) - (int)swp_type(*e2);
1207 }
1208 
1209 void swapcache_free_entries(swp_entry_t *entries, int n)
1210 {
1211 	struct swap_info_struct *p, *prev;
1212 	int i;
1213 
1214 	if (n <= 0)
1215 		return;
1216 
1217 	prev = NULL;
1218 	p = NULL;
1219 
1220 	/*
1221 	 * Sort swap entries by swap device, so each lock is only taken once.
1222 	 * nr_swapfiles isn't absolutely correct, but the overhead of sort() is
1223 	 * so low that it isn't necessary to optimize further.
1224 	 */
1225 	if (nr_swapfiles > 1)
1226 		sort(entries, n, sizeof(entries[0]), swp_entry_cmp, NULL);
1227 	for (i = 0; i < n; ++i) {
1228 		p = swap_info_get_cont(entries[i], prev);
1229 		if (p)
1230 			swap_entry_free(p, entries[i]);
1231 		prev = p;
1232 	}
1233 	if (p)
1234 		spin_unlock(&p->lock);
1235 }
1236 
1237 /*
1238  * How many references to page are currently swapped out?
1239  * This does not give an exact answer when swap count is continued,
1240  * but does include the high COUNT_CONTINUED flag to allow for that.
1241  */
1242 int page_swapcount(struct page *page)
1243 {
1244 	int count = 0;
1245 	struct swap_info_struct *p;
1246 	struct swap_cluster_info *ci;
1247 	swp_entry_t entry;
1248 	unsigned long offset;
1249 
1250 	entry.val = page_private(page);
1251 	p = _swap_info_get(entry);
1252 	if (p) {
1253 		offset = swp_offset(entry);
1254 		ci = lock_cluster_or_swap_info(p, offset);
1255 		count = swap_count(p->swap_map[offset]);
1256 		unlock_cluster_or_swap_info(p, ci);
1257 	}
1258 	return count;
1259 }
1260 
1261 static int swap_swapcount(struct swap_info_struct *si, swp_entry_t entry)
1262 {
1263 	int count = 0;
1264 	pgoff_t offset = swp_offset(entry);
1265 	struct swap_cluster_info *ci;
1266 
1267 	ci = lock_cluster_or_swap_info(si, offset);
1268 	count = swap_count(si->swap_map[offset]);
1269 	unlock_cluster_or_swap_info(si, ci);
1270 	return count;
1271 }
1272 
1273 /*
1274  * How many references to @entry are currently swapped out?
1275  * This does not give an exact answer when swap count is continued,
1276  * but does include the high COUNT_CONTINUED flag to allow for that.
1277  */
1278 int __swp_swapcount(swp_entry_t entry)
1279 {
1280 	int count = 0;
1281 	struct swap_info_struct *si;
1282 
1283 	si = __swap_info_get(entry);
1284 	if (si)
1285 		count = swap_swapcount(si, entry);
1286 	return count;
1287 }
1288 
1289 /*
1290  * How many references to @entry are currently swapped out?
1291  * This considers COUNT_CONTINUED so it returns exact answer.
1292  */
1293 int swp_swapcount(swp_entry_t entry)
1294 {
1295 	int count, tmp_count, n;
1296 	struct swap_info_struct *p;
1297 	struct swap_cluster_info *ci;
1298 	struct page *page;
1299 	pgoff_t offset;
1300 	unsigned char *map;
1301 
1302 	p = _swap_info_get(entry);
1303 	if (!p)
1304 		return 0;
1305 
1306 	offset = swp_offset(entry);
1307 
1308 	ci = lock_cluster_or_swap_info(p, offset);
1309 
1310 	count = swap_count(p->swap_map[offset]);
1311 	if (!(count & COUNT_CONTINUED))
1312 		goto out;
1313 
1314 	count &= ~COUNT_CONTINUED;
1315 	n = SWAP_MAP_MAX + 1;
1316 
1317 	page = vmalloc_to_page(p->swap_map + offset);
1318 	offset &= ~PAGE_MASK;
1319 	VM_BUG_ON(page_private(page) != SWP_CONTINUED);
1320 
1321 	do {
1322 		page = list_next_entry(page, lru);
1323 		map = kmap_atomic(page);
1324 		tmp_count = map[offset];
1325 		kunmap_atomic(map);
1326 
1327 		count += (tmp_count & ~COUNT_CONTINUED) * n;
1328 		n *= (SWAP_CONT_MAX + 1);
1329 	} while (tmp_count & COUNT_CONTINUED);
1330 out:
1331 	unlock_cluster_or_swap_info(p, ci);
1332 	return count;
1333 }
1334 
1335 /*
1336  * We can write to an anon page without COW if there are no other references
1337  * to it.  And as a side-effect, free up its swap: because the old content
1338  * on disk will never be read, and seeking back there to write new content
1339  * later would only waste time away from clustering.
1340  *
1341  * NOTE: total_mapcount should not be relied upon by the caller if
1342  * reuse_swap_page() returns false, but it may be always overwritten
1343  * (see the other implementation for CONFIG_SWAP=n).
1344  */
1345 bool reuse_swap_page(struct page *page, int *total_mapcount)
1346 {
1347 	int count;
1348 
1349 	VM_BUG_ON_PAGE(!PageLocked(page), page);
1350 	if (unlikely(PageKsm(page)))
1351 		return false;
1352 	count = page_trans_huge_mapcount(page, total_mapcount);
1353 	if (count <= 1 && PageSwapCache(page)) {
1354 		count += page_swapcount(page);
1355 		if (count != 1)
1356 			goto out;
1357 		if (!PageWriteback(page)) {
1358 			delete_from_swap_cache(page);
1359 			SetPageDirty(page);
1360 		} else {
1361 			swp_entry_t entry;
1362 			struct swap_info_struct *p;
1363 
1364 			entry.val = page_private(page);
1365 			p = swap_info_get(entry);
1366 			if (p->flags & SWP_STABLE_WRITES) {
1367 				spin_unlock(&p->lock);
1368 				return false;
1369 			}
1370 			spin_unlock(&p->lock);
1371 		}
1372 	}
1373 out:
1374 	return count <= 1;
1375 }
1376 
1377 /*
1378  * If swap is getting full, or if there are no more mappings of this page,
1379  * then try_to_free_swap is called to free its swap space.
1380  */
1381 int try_to_free_swap(struct page *page)
1382 {
1383 	VM_BUG_ON_PAGE(!PageLocked(page), page);
1384 
1385 	if (!PageSwapCache(page))
1386 		return 0;
1387 	if (PageWriteback(page))
1388 		return 0;
1389 	if (page_swapcount(page))
1390 		return 0;
1391 
1392 	/*
1393 	 * Once hibernation has begun to create its image of memory,
1394 	 * there's a danger that one of the calls to try_to_free_swap()
1395 	 * - most probably a call from __try_to_reclaim_swap() while
1396 	 * hibernation is allocating its own swap pages for the image,
1397 	 * but conceivably even a call from memory reclaim - will free
1398 	 * the swap from a page which has already been recorded in the
1399 	 * image as a clean swapcache page, and then reuse its swap for
1400 	 * another page of the image.  On waking from hibernation, the
1401 	 * original page might be freed under memory pressure, then
1402 	 * later read back in from swap, now with the wrong data.
1403 	 *
1404 	 * Hibernation suspends storage while it is writing the image
1405 	 * to disk so check that here.
1406 	 */
1407 	if (pm_suspended_storage())
1408 		return 0;
1409 
1410 	delete_from_swap_cache(page);
1411 	SetPageDirty(page);
1412 	return 1;
1413 }
1414 
1415 /*
1416  * Free the swap entry like above, but also try to
1417  * free the page cache entry if it is the last user.
1418  */
1419 int free_swap_and_cache(swp_entry_t entry)
1420 {
1421 	struct swap_info_struct *p;
1422 	struct page *page = NULL;
1423 	unsigned char count;
1424 
1425 	if (non_swap_entry(entry))
1426 		return 1;
1427 
1428 	p = _swap_info_get(entry);
1429 	if (p) {
1430 		count = __swap_entry_free(p, entry, 1);
1431 		if (count == SWAP_HAS_CACHE) {
1432 			page = find_get_page(swap_address_space(entry),
1433 					     swp_offset(entry));
1434 			if (page && !trylock_page(page)) {
1435 				put_page(page);
1436 				page = NULL;
1437 			}
1438 		} else if (!count)
1439 			free_swap_slot(entry);
1440 	}
1441 	if (page) {
1442 		/*
1443 		 * Not mapped elsewhere, or swap space full? Free it!
1444 		 * Also recheck PageSwapCache now page is locked (above).
1445 		 */
1446 		if (PageSwapCache(page) && !PageWriteback(page) &&
1447 		    (!page_mapped(page) || mem_cgroup_swap_full(page)) &&
1448 		    !swap_swapcount(p, entry)) {
1449 			delete_from_swap_cache(page);
1450 			SetPageDirty(page);
1451 		}
1452 		unlock_page(page);
1453 		put_page(page);
1454 	}
1455 	return p != NULL;
1456 }
1457 
1458 #ifdef CONFIG_HIBERNATION
1459 /*
1460  * Find the swap type that corresponds to given device (if any).
1461  *
1462  * @offset - number of the PAGE_SIZE-sized block of the device, starting
1463  * from 0, in which the swap header is expected to be located.
1464  *
1465  * This is needed for the suspend to disk (aka swsusp).
1466  */
1467 int swap_type_of(dev_t device, sector_t offset, struct block_device **bdev_p)
1468 {
1469 	struct block_device *bdev = NULL;
1470 	int type;
1471 
1472 	if (device)
1473 		bdev = bdget(device);
1474 
1475 	spin_lock(&swap_lock);
1476 	for (type = 0; type < nr_swapfiles; type++) {
1477 		struct swap_info_struct *sis = swap_info[type];
1478 
1479 		if (!(sis->flags & SWP_WRITEOK))
1480 			continue;
1481 
1482 		if (!bdev) {
1483 			if (bdev_p)
1484 				*bdev_p = bdgrab(sis->bdev);
1485 
1486 			spin_unlock(&swap_lock);
1487 			return type;
1488 		}
1489 		if (bdev == sis->bdev) {
1490 			struct swap_extent *se = &sis->first_swap_extent;
1491 
1492 			if (se->start_block == offset) {
1493 				if (bdev_p)
1494 					*bdev_p = bdgrab(sis->bdev);
1495 
1496 				spin_unlock(&swap_lock);
1497 				bdput(bdev);
1498 				return type;
1499 			}
1500 		}
1501 	}
1502 	spin_unlock(&swap_lock);
1503 	if (bdev)
1504 		bdput(bdev);
1505 
1506 	return -ENODEV;
1507 }
1508 
1509 /*
1510  * Get the (PAGE_SIZE) block corresponding to given offset on the swapdev
1511  * corresponding to given index in swap_info (swap type).
1512  */
1513 sector_t swapdev_block(int type, pgoff_t offset)
1514 {
1515 	struct block_device *bdev;
1516 
1517 	if ((unsigned int)type >= nr_swapfiles)
1518 		return 0;
1519 	if (!(swap_info[type]->flags & SWP_WRITEOK))
1520 		return 0;
1521 	return map_swap_entry(swp_entry(type, offset), &bdev);
1522 }
1523 
1524 /*
1525  * Return either the total number of swap pages of given type, or the number
1526  * of free pages of that type (depending on @free)
1527  *
1528  * This is needed for software suspend
1529  */
1530 unsigned int count_swap_pages(int type, int free)
1531 {
1532 	unsigned int n = 0;
1533 
1534 	spin_lock(&swap_lock);
1535 	if ((unsigned int)type < nr_swapfiles) {
1536 		struct swap_info_struct *sis = swap_info[type];
1537 
1538 		spin_lock(&sis->lock);
1539 		if (sis->flags & SWP_WRITEOK) {
1540 			n = sis->pages;
1541 			if (free)
1542 				n -= sis->inuse_pages;
1543 		}
1544 		spin_unlock(&sis->lock);
1545 	}
1546 	spin_unlock(&swap_lock);
1547 	return n;
1548 }
1549 #endif /* CONFIG_HIBERNATION */
1550 
1551 static inline int pte_same_as_swp(pte_t pte, pte_t swp_pte)
1552 {
1553 	return pte_same(pte_swp_clear_soft_dirty(pte), swp_pte);
1554 }
1555 
1556 /*
1557  * No need to decide whether this PTE shares the swap entry with others,
1558  * just let do_wp_page work it out if a write is requested later - to
1559  * force COW, vm_page_prot omits write permission from any private vma.
1560  */
1561 static int unuse_pte(struct vm_area_struct *vma, pmd_t *pmd,
1562 		unsigned long addr, swp_entry_t entry, struct page *page)
1563 {
1564 	struct page *swapcache;
1565 	struct mem_cgroup *memcg;
1566 	spinlock_t *ptl;
1567 	pte_t *pte;
1568 	int ret = 1;
1569 
1570 	swapcache = page;
1571 	page = ksm_might_need_to_copy(page, vma, addr);
1572 	if (unlikely(!page))
1573 		return -ENOMEM;
1574 
1575 	if (mem_cgroup_try_charge(page, vma->vm_mm, GFP_KERNEL,
1576 				&memcg, false)) {
1577 		ret = -ENOMEM;
1578 		goto out_nolock;
1579 	}
1580 
1581 	pte = pte_offset_map_lock(vma->vm_mm, pmd, addr, &ptl);
1582 	if (unlikely(!pte_same_as_swp(*pte, swp_entry_to_pte(entry)))) {
1583 		mem_cgroup_cancel_charge(page, memcg, false);
1584 		ret = 0;
1585 		goto out;
1586 	}
1587 
1588 	dec_mm_counter(vma->vm_mm, MM_SWAPENTS);
1589 	inc_mm_counter(vma->vm_mm, MM_ANONPAGES);
1590 	get_page(page);
1591 	set_pte_at(vma->vm_mm, addr, pte,
1592 		   pte_mkold(mk_pte(page, vma->vm_page_prot)));
1593 	if (page == swapcache) {
1594 		page_add_anon_rmap(page, vma, addr, false);
1595 		mem_cgroup_commit_charge(page, memcg, true, false);
1596 	} else { /* ksm created a completely new copy */
1597 		page_add_new_anon_rmap(page, vma, addr, false);
1598 		mem_cgroup_commit_charge(page, memcg, false, false);
1599 		lru_cache_add_active_or_unevictable(page, vma);
1600 	}
1601 	swap_free(entry);
1602 	/*
1603 	 * Move the page to the active list so it is not
1604 	 * immediately swapped out again after swapon.
1605 	 */
1606 	activate_page(page);
1607 out:
1608 	pte_unmap_unlock(pte, ptl);
1609 out_nolock:
1610 	if (page != swapcache) {
1611 		unlock_page(page);
1612 		put_page(page);
1613 	}
1614 	return ret;
1615 }
1616 
1617 static int unuse_pte_range(struct vm_area_struct *vma, pmd_t *pmd,
1618 				unsigned long addr, unsigned long end,
1619 				swp_entry_t entry, struct page *page)
1620 {
1621 	pte_t swp_pte = swp_entry_to_pte(entry);
1622 	pte_t *pte;
1623 	int ret = 0;
1624 
1625 	/*
1626 	 * We don't actually need pte lock while scanning for swp_pte: since
1627 	 * we hold page lock and mmap_sem, swp_pte cannot be inserted into the
1628 	 * page table while we're scanning; though it could get zapped, and on
1629 	 * some architectures (e.g. x86_32 with PAE) we might catch a glimpse
1630 	 * of unmatched parts which look like swp_pte, so unuse_pte must
1631 	 * recheck under pte lock.  Scanning without pte lock lets it be
1632 	 * preemptable whenever CONFIG_PREEMPT but not CONFIG_HIGHPTE.
1633 	 */
1634 	pte = pte_offset_map(pmd, addr);
1635 	do {
1636 		/*
1637 		 * swapoff spends a _lot_ of time in this loop!
1638 		 * Test inline before going to call unuse_pte.
1639 		 */
1640 		if (unlikely(pte_same_as_swp(*pte, swp_pte))) {
1641 			pte_unmap(pte);
1642 			ret = unuse_pte(vma, pmd, addr, entry, page);
1643 			if (ret)
1644 				goto out;
1645 			pte = pte_offset_map(pmd, addr);
1646 		}
1647 	} while (pte++, addr += PAGE_SIZE, addr != end);
1648 	pte_unmap(pte - 1);
1649 out:
1650 	return ret;
1651 }
1652 
1653 static inline int unuse_pmd_range(struct vm_area_struct *vma, pud_t *pud,
1654 				unsigned long addr, unsigned long end,
1655 				swp_entry_t entry, struct page *page)
1656 {
1657 	pmd_t *pmd;
1658 	unsigned long next;
1659 	int ret;
1660 
1661 	pmd = pmd_offset(pud, addr);
1662 	do {
1663 		cond_resched();
1664 		next = pmd_addr_end(addr, end);
1665 		if (pmd_none_or_trans_huge_or_clear_bad(pmd))
1666 			continue;
1667 		ret = unuse_pte_range(vma, pmd, addr, next, entry, page);
1668 		if (ret)
1669 			return ret;
1670 	} while (pmd++, addr = next, addr != end);
1671 	return 0;
1672 }
1673 
1674 static inline int unuse_pud_range(struct vm_area_struct *vma, p4d_t *p4d,
1675 				unsigned long addr, unsigned long end,
1676 				swp_entry_t entry, struct page *page)
1677 {
1678 	pud_t *pud;
1679 	unsigned long next;
1680 	int ret;
1681 
1682 	pud = pud_offset(p4d, addr);
1683 	do {
1684 		next = pud_addr_end(addr, end);
1685 		if (pud_none_or_clear_bad(pud))
1686 			continue;
1687 		ret = unuse_pmd_range(vma, pud, addr, next, entry, page);
1688 		if (ret)
1689 			return ret;
1690 	} while (pud++, addr = next, addr != end);
1691 	return 0;
1692 }
1693 
1694 static inline int unuse_p4d_range(struct vm_area_struct *vma, pgd_t *pgd,
1695 				unsigned long addr, unsigned long end,
1696 				swp_entry_t entry, struct page *page)
1697 {
1698 	p4d_t *p4d;
1699 	unsigned long next;
1700 	int ret;
1701 
1702 	p4d = p4d_offset(pgd, addr);
1703 	do {
1704 		next = p4d_addr_end(addr, end);
1705 		if (p4d_none_or_clear_bad(p4d))
1706 			continue;
1707 		ret = unuse_pud_range(vma, p4d, addr, next, entry, page);
1708 		if (ret)
1709 			return ret;
1710 	} while (p4d++, addr = next, addr != end);
1711 	return 0;
1712 }
1713 
1714 static int unuse_vma(struct vm_area_struct *vma,
1715 				swp_entry_t entry, struct page *page)
1716 {
1717 	pgd_t *pgd;
1718 	unsigned long addr, end, next;
1719 	int ret;
1720 
1721 	if (page_anon_vma(page)) {
1722 		addr = page_address_in_vma(page, vma);
1723 		if (addr == -EFAULT)
1724 			return 0;
1725 		else
1726 			end = addr + PAGE_SIZE;
1727 	} else {
1728 		addr = vma->vm_start;
1729 		end = vma->vm_end;
1730 	}
1731 
1732 	pgd = pgd_offset(vma->vm_mm, addr);
1733 	do {
1734 		next = pgd_addr_end(addr, end);
1735 		if (pgd_none_or_clear_bad(pgd))
1736 			continue;
1737 		ret = unuse_p4d_range(vma, pgd, addr, next, entry, page);
1738 		if (ret)
1739 			return ret;
1740 	} while (pgd++, addr = next, addr != end);
1741 	return 0;
1742 }
1743 
1744 static int unuse_mm(struct mm_struct *mm,
1745 				swp_entry_t entry, struct page *page)
1746 {
1747 	struct vm_area_struct *vma;
1748 	int ret = 0;
1749 
1750 	if (!down_read_trylock(&mm->mmap_sem)) {
1751 		/*
1752 		 * Activate page so shrink_inactive_list is unlikely to unmap
1753 		 * its ptes while lock is dropped, so swapoff can make progress.
1754 		 */
1755 		activate_page(page);
1756 		unlock_page(page);
1757 		down_read(&mm->mmap_sem);
1758 		lock_page(page);
1759 	}
1760 	for (vma = mm->mmap; vma; vma = vma->vm_next) {
1761 		if (vma->anon_vma && (ret = unuse_vma(vma, entry, page)))
1762 			break;
1763 		cond_resched();
1764 	}
1765 	up_read(&mm->mmap_sem);
1766 	return (ret < 0)? ret: 0;
1767 }
1768 
1769 /*
1770  * Scan swap_map (or frontswap_map if frontswap parameter is true)
1771  * from current position to next entry still in use.
1772  * Recycle to start on reaching the end, returning 0 when empty.
1773  */
1774 static unsigned int find_next_to_unuse(struct swap_info_struct *si,
1775 					unsigned int prev, bool frontswap)
1776 {
1777 	unsigned int max = si->max;
1778 	unsigned int i = prev;
1779 	unsigned char count;
1780 
1781 	/*
1782 	 * No need for swap_lock here: we're just looking
1783 	 * for whether an entry is in use, not modifying it; false
1784 	 * hits are okay, and sys_swapoff() has already prevented new
1785 	 * allocations from this area (while holding swap_lock).
1786 	 */
1787 	for (;;) {
1788 		if (++i >= max) {
1789 			if (!prev) {
1790 				i = 0;
1791 				break;
1792 			}
1793 			/*
1794 			 * No entries in use at top of swap_map,
1795 			 * loop back to start and recheck there.
1796 			 */
1797 			max = prev + 1;
1798 			prev = 0;
1799 			i = 1;
1800 		}
1801 		count = READ_ONCE(si->swap_map[i]);
1802 		if (count && swap_count(count) != SWAP_MAP_BAD)
1803 			if (!frontswap || frontswap_test(si, i))
1804 				break;
1805 		if ((i % LATENCY_LIMIT) == 0)
1806 			cond_resched();
1807 	}
1808 	return i;
1809 }
1810 
1811 /*
1812  * We completely avoid races by reading each swap page in advance,
1813  * and then search for the process using it.  All the necessary
1814  * page table adjustments can then be made atomically.
1815  *
1816  * if the boolean frontswap is true, only unuse pages_to_unuse pages;
1817  * pages_to_unuse==0 means all pages; ignored if frontswap is false
1818  */
1819 int try_to_unuse(unsigned int type, bool frontswap,
1820 		 unsigned long pages_to_unuse)
1821 {
1822 	struct swap_info_struct *si = swap_info[type];
1823 	struct mm_struct *start_mm;
1824 	volatile unsigned char *swap_map; /* swap_map is accessed without
1825 					   * locking. Mark it as volatile
1826 					   * to prevent compiler doing
1827 					   * something odd.
1828 					   */
1829 	unsigned char swcount;
1830 	struct page *page;
1831 	swp_entry_t entry;
1832 	unsigned int i = 0;
1833 	int retval = 0;
1834 
1835 	/*
1836 	 * When searching mms for an entry, a good strategy is to
1837 	 * start at the first mm we freed the previous entry from
1838 	 * (though actually we don't notice whether we or coincidence
1839 	 * freed the entry).  Initialize this start_mm with a hold.
1840 	 *
1841 	 * A simpler strategy would be to start at the last mm we
1842 	 * freed the previous entry from; but that would take less
1843 	 * advantage of mmlist ordering, which clusters forked mms
1844 	 * together, child after parent.  If we race with dup_mmap(), we
1845 	 * prefer to resolve parent before child, lest we miss entries
1846 	 * duplicated after we scanned child: using last mm would invert
1847 	 * that.
1848 	 */
1849 	start_mm = &init_mm;
1850 	mmget(&init_mm);
1851 
1852 	/*
1853 	 * Keep on scanning until all entries have gone.  Usually,
1854 	 * one pass through swap_map is enough, but not necessarily:
1855 	 * there are races when an instance of an entry might be missed.
1856 	 */
1857 	while ((i = find_next_to_unuse(si, i, frontswap)) != 0) {
1858 		if (signal_pending(current)) {
1859 			retval = -EINTR;
1860 			break;
1861 		}
1862 
1863 		/*
1864 		 * Get a page for the entry, using the existing swap
1865 		 * cache page if there is one.  Otherwise, get a clean
1866 		 * page and read the swap into it.
1867 		 */
1868 		swap_map = &si->swap_map[i];
1869 		entry = swp_entry(type, i);
1870 		page = read_swap_cache_async(entry,
1871 					GFP_HIGHUSER_MOVABLE, NULL, 0, false);
1872 		if (!page) {
1873 			/*
1874 			 * Either swap_duplicate() failed because entry
1875 			 * has been freed independently, and will not be
1876 			 * reused since sys_swapoff() already disabled
1877 			 * allocation from here, or alloc_page() failed.
1878 			 */
1879 			swcount = *swap_map;
1880 			/*
1881 			 * We don't hold lock here, so the swap entry could be
1882 			 * SWAP_MAP_BAD (when the cluster is discarding).
1883 			 * Instead of fail out, We can just skip the swap
1884 			 * entry because swapoff will wait for discarding
1885 			 * finish anyway.
1886 			 */
1887 			if (!swcount || swcount == SWAP_MAP_BAD)
1888 				continue;
1889 			retval = -ENOMEM;
1890 			break;
1891 		}
1892 
1893 		/*
1894 		 * Don't hold on to start_mm if it looks like exiting.
1895 		 */
1896 		if (atomic_read(&start_mm->mm_users) == 1) {
1897 			mmput(start_mm);
1898 			start_mm = &init_mm;
1899 			mmget(&init_mm);
1900 		}
1901 
1902 		/*
1903 		 * Wait for and lock page.  When do_swap_page races with
1904 		 * try_to_unuse, do_swap_page can handle the fault much
1905 		 * faster than try_to_unuse can locate the entry.  This
1906 		 * apparently redundant "wait_on_page_locked" lets try_to_unuse
1907 		 * defer to do_swap_page in such a case - in some tests,
1908 		 * do_swap_page and try_to_unuse repeatedly compete.
1909 		 */
1910 		wait_on_page_locked(page);
1911 		wait_on_page_writeback(page);
1912 		lock_page(page);
1913 		wait_on_page_writeback(page);
1914 
1915 		/*
1916 		 * Remove all references to entry.
1917 		 */
1918 		swcount = *swap_map;
1919 		if (swap_count(swcount) == SWAP_MAP_SHMEM) {
1920 			retval = shmem_unuse(entry, page);
1921 			/* page has already been unlocked and released */
1922 			if (retval < 0)
1923 				break;
1924 			continue;
1925 		}
1926 		if (swap_count(swcount) && start_mm != &init_mm)
1927 			retval = unuse_mm(start_mm, entry, page);
1928 
1929 		if (swap_count(*swap_map)) {
1930 			int set_start_mm = (*swap_map >= swcount);
1931 			struct list_head *p = &start_mm->mmlist;
1932 			struct mm_struct *new_start_mm = start_mm;
1933 			struct mm_struct *prev_mm = start_mm;
1934 			struct mm_struct *mm;
1935 
1936 			mmget(new_start_mm);
1937 			mmget(prev_mm);
1938 			spin_lock(&mmlist_lock);
1939 			while (swap_count(*swap_map) && !retval &&
1940 					(p = p->next) != &start_mm->mmlist) {
1941 				mm = list_entry(p, struct mm_struct, mmlist);
1942 				if (!mmget_not_zero(mm))
1943 					continue;
1944 				spin_unlock(&mmlist_lock);
1945 				mmput(prev_mm);
1946 				prev_mm = mm;
1947 
1948 				cond_resched();
1949 
1950 				swcount = *swap_map;
1951 				if (!swap_count(swcount)) /* any usage ? */
1952 					;
1953 				else if (mm == &init_mm)
1954 					set_start_mm = 1;
1955 				else
1956 					retval = unuse_mm(mm, entry, page);
1957 
1958 				if (set_start_mm && *swap_map < swcount) {
1959 					mmput(new_start_mm);
1960 					mmget(mm);
1961 					new_start_mm = mm;
1962 					set_start_mm = 0;
1963 				}
1964 				spin_lock(&mmlist_lock);
1965 			}
1966 			spin_unlock(&mmlist_lock);
1967 			mmput(prev_mm);
1968 			mmput(start_mm);
1969 			start_mm = new_start_mm;
1970 		}
1971 		if (retval) {
1972 			unlock_page(page);
1973 			put_page(page);
1974 			break;
1975 		}
1976 
1977 		/*
1978 		 * If a reference remains (rare), we would like to leave
1979 		 * the page in the swap cache; but try_to_unmap could
1980 		 * then re-duplicate the entry once we drop page lock,
1981 		 * so we might loop indefinitely; also, that page could
1982 		 * not be swapped out to other storage meanwhile.  So:
1983 		 * delete from cache even if there's another reference,
1984 		 * after ensuring that the data has been saved to disk -
1985 		 * since if the reference remains (rarer), it will be
1986 		 * read from disk into another page.  Splitting into two
1987 		 * pages would be incorrect if swap supported "shared
1988 		 * private" pages, but they are handled by tmpfs files.
1989 		 *
1990 		 * Given how unuse_vma() targets one particular offset
1991 		 * in an anon_vma, once the anon_vma has been determined,
1992 		 * this splitting happens to be just what is needed to
1993 		 * handle where KSM pages have been swapped out: re-reading
1994 		 * is unnecessarily slow, but we can fix that later on.
1995 		 */
1996 		if (swap_count(*swap_map) &&
1997 		     PageDirty(page) && PageSwapCache(page)) {
1998 			struct writeback_control wbc = {
1999 				.sync_mode = WB_SYNC_NONE,
2000 			};
2001 
2002 			swap_writepage(page, &wbc);
2003 			lock_page(page);
2004 			wait_on_page_writeback(page);
2005 		}
2006 
2007 		/*
2008 		 * It is conceivable that a racing task removed this page from
2009 		 * swap cache just before we acquired the page lock at the top,
2010 		 * or while we dropped it in unuse_mm().  The page might even
2011 		 * be back in swap cache on another swap area: that we must not
2012 		 * delete, since it may not have been written out to swap yet.
2013 		 */
2014 		if (PageSwapCache(page) &&
2015 		    likely(page_private(page) == entry.val))
2016 			delete_from_swap_cache(page);
2017 
2018 		/*
2019 		 * So we could skip searching mms once swap count went
2020 		 * to 1, we did not mark any present ptes as dirty: must
2021 		 * mark page dirty so shrink_page_list will preserve it.
2022 		 */
2023 		SetPageDirty(page);
2024 		unlock_page(page);
2025 		put_page(page);
2026 
2027 		/*
2028 		 * Make sure that we aren't completely killing
2029 		 * interactive performance.
2030 		 */
2031 		cond_resched();
2032 		if (frontswap && pages_to_unuse > 0) {
2033 			if (!--pages_to_unuse)
2034 				break;
2035 		}
2036 	}
2037 
2038 	mmput(start_mm);
2039 	return retval;
2040 }
2041 
2042 /*
2043  * After a successful try_to_unuse, if no swap is now in use, we know
2044  * we can empty the mmlist.  swap_lock must be held on entry and exit.
2045  * Note that mmlist_lock nests inside swap_lock, and an mm must be
2046  * added to the mmlist just after page_duplicate - before would be racy.
2047  */
2048 static void drain_mmlist(void)
2049 {
2050 	struct list_head *p, *next;
2051 	unsigned int type;
2052 
2053 	for (type = 0; type < nr_swapfiles; type++)
2054 		if (swap_info[type]->inuse_pages)
2055 			return;
2056 	spin_lock(&mmlist_lock);
2057 	list_for_each_safe(p, next, &init_mm.mmlist)
2058 		list_del_init(p);
2059 	spin_unlock(&mmlist_lock);
2060 }
2061 
2062 /*
2063  * Use this swapdev's extent info to locate the (PAGE_SIZE) block which
2064  * corresponds to page offset for the specified swap entry.
2065  * Note that the type of this function is sector_t, but it returns page offset
2066  * into the bdev, not sector offset.
2067  */
2068 static sector_t map_swap_entry(swp_entry_t entry, struct block_device **bdev)
2069 {
2070 	struct swap_info_struct *sis;
2071 	struct swap_extent *start_se;
2072 	struct swap_extent *se;
2073 	pgoff_t offset;
2074 
2075 	sis = swap_info[swp_type(entry)];
2076 	*bdev = sis->bdev;
2077 
2078 	offset = swp_offset(entry);
2079 	start_se = sis->curr_swap_extent;
2080 	se = start_se;
2081 
2082 	for ( ; ; ) {
2083 		if (se->start_page <= offset &&
2084 				offset < (se->start_page + se->nr_pages)) {
2085 			return se->start_block + (offset - se->start_page);
2086 		}
2087 		se = list_next_entry(se, list);
2088 		sis->curr_swap_extent = se;
2089 		BUG_ON(se == start_se);		/* It *must* be present */
2090 	}
2091 }
2092 
2093 /*
2094  * Returns the page offset into bdev for the specified page's swap entry.
2095  */
2096 sector_t map_swap_page(struct page *page, struct block_device **bdev)
2097 {
2098 	swp_entry_t entry;
2099 	entry.val = page_private(page);
2100 	return map_swap_entry(entry, bdev);
2101 }
2102 
2103 /*
2104  * Free all of a swapdev's extent information
2105  */
2106 static void destroy_swap_extents(struct swap_info_struct *sis)
2107 {
2108 	while (!list_empty(&sis->first_swap_extent.list)) {
2109 		struct swap_extent *se;
2110 
2111 		se = list_first_entry(&sis->first_swap_extent.list,
2112 				struct swap_extent, list);
2113 		list_del(&se->list);
2114 		kfree(se);
2115 	}
2116 
2117 	if (sis->flags & SWP_FILE) {
2118 		struct file *swap_file = sis->swap_file;
2119 		struct address_space *mapping = swap_file->f_mapping;
2120 
2121 		sis->flags &= ~SWP_FILE;
2122 		mapping->a_ops->swap_deactivate(swap_file);
2123 	}
2124 }
2125 
2126 /*
2127  * Add a block range (and the corresponding page range) into this swapdev's
2128  * extent list.  The extent list is kept sorted in page order.
2129  *
2130  * This function rather assumes that it is called in ascending page order.
2131  */
2132 int
2133 add_swap_extent(struct swap_info_struct *sis, unsigned long start_page,
2134 		unsigned long nr_pages, sector_t start_block)
2135 {
2136 	struct swap_extent *se;
2137 	struct swap_extent *new_se;
2138 	struct list_head *lh;
2139 
2140 	if (start_page == 0) {
2141 		se = &sis->first_swap_extent;
2142 		sis->curr_swap_extent = se;
2143 		se->start_page = 0;
2144 		se->nr_pages = nr_pages;
2145 		se->start_block = start_block;
2146 		return 1;
2147 	} else {
2148 		lh = sis->first_swap_extent.list.prev;	/* Highest extent */
2149 		se = list_entry(lh, struct swap_extent, list);
2150 		BUG_ON(se->start_page + se->nr_pages != start_page);
2151 		if (se->start_block + se->nr_pages == start_block) {
2152 			/* Merge it */
2153 			se->nr_pages += nr_pages;
2154 			return 0;
2155 		}
2156 	}
2157 
2158 	/*
2159 	 * No merge.  Insert a new extent, preserving ordering.
2160 	 */
2161 	new_se = kmalloc(sizeof(*se), GFP_KERNEL);
2162 	if (new_se == NULL)
2163 		return -ENOMEM;
2164 	new_se->start_page = start_page;
2165 	new_se->nr_pages = nr_pages;
2166 	new_se->start_block = start_block;
2167 
2168 	list_add_tail(&new_se->list, &sis->first_swap_extent.list);
2169 	return 1;
2170 }
2171 
2172 /*
2173  * A `swap extent' is a simple thing which maps a contiguous range of pages
2174  * onto a contiguous range of disk blocks.  An ordered list of swap extents
2175  * is built at swapon time and is then used at swap_writepage/swap_readpage
2176  * time for locating where on disk a page belongs.
2177  *
2178  * If the swapfile is an S_ISBLK block device, a single extent is installed.
2179  * This is done so that the main operating code can treat S_ISBLK and S_ISREG
2180  * swap files identically.
2181  *
2182  * Whether the swapdev is an S_ISREG file or an S_ISBLK blockdev, the swap
2183  * extent list operates in PAGE_SIZE disk blocks.  Both S_ISREG and S_ISBLK
2184  * swapfiles are handled *identically* after swapon time.
2185  *
2186  * For S_ISREG swapfiles, setup_swap_extents() will walk all the file's blocks
2187  * and will parse them into an ordered extent list, in PAGE_SIZE chunks.  If
2188  * some stray blocks are found which do not fall within the PAGE_SIZE alignment
2189  * requirements, they are simply tossed out - we will never use those blocks
2190  * for swapping.
2191  *
2192  * For S_ISREG swapfiles we set S_SWAPFILE across the life of the swapon.  This
2193  * prevents root from shooting her foot off by ftruncating an in-use swapfile,
2194  * which will scribble on the fs.
2195  *
2196  * The amount of disk space which a single swap extent represents varies.
2197  * Typically it is in the 1-4 megabyte range.  So we can have hundreds of
2198  * extents in the list.  To avoid much list walking, we cache the previous
2199  * search location in `curr_swap_extent', and start new searches from there.
2200  * This is extremely effective.  The average number of iterations in
2201  * map_swap_page() has been measured at about 0.3 per page.  - akpm.
2202  */
2203 static int setup_swap_extents(struct swap_info_struct *sis, sector_t *span)
2204 {
2205 	struct file *swap_file = sis->swap_file;
2206 	struct address_space *mapping = swap_file->f_mapping;
2207 	struct inode *inode = mapping->host;
2208 	int ret;
2209 
2210 	if (S_ISBLK(inode->i_mode)) {
2211 		ret = add_swap_extent(sis, 0, sis->max, 0);
2212 		*span = sis->pages;
2213 		return ret;
2214 	}
2215 
2216 	if (mapping->a_ops->swap_activate) {
2217 		ret = mapping->a_ops->swap_activate(sis, swap_file, span);
2218 		if (!ret) {
2219 			sis->flags |= SWP_FILE;
2220 			ret = add_swap_extent(sis, 0, sis->max, 0);
2221 			*span = sis->pages;
2222 		}
2223 		return ret;
2224 	}
2225 
2226 	return generic_swapfile_activate(sis, swap_file, span);
2227 }
2228 
2229 static void _enable_swap_info(struct swap_info_struct *p, int prio,
2230 				unsigned char *swap_map,
2231 				struct swap_cluster_info *cluster_info)
2232 {
2233 	if (prio >= 0)
2234 		p->prio = prio;
2235 	else
2236 		p->prio = --least_priority;
2237 	/*
2238 	 * the plist prio is negated because plist ordering is
2239 	 * low-to-high, while swap ordering is high-to-low
2240 	 */
2241 	p->list.prio = -p->prio;
2242 	p->avail_list.prio = -p->prio;
2243 	p->swap_map = swap_map;
2244 	p->cluster_info = cluster_info;
2245 	p->flags |= SWP_WRITEOK;
2246 	atomic_long_add(p->pages, &nr_swap_pages);
2247 	total_swap_pages += p->pages;
2248 
2249 	assert_spin_locked(&swap_lock);
2250 	/*
2251 	 * both lists are plists, and thus priority ordered.
2252 	 * swap_active_head needs to be priority ordered for swapoff(),
2253 	 * which on removal of any swap_info_struct with an auto-assigned
2254 	 * (i.e. negative) priority increments the auto-assigned priority
2255 	 * of any lower-priority swap_info_structs.
2256 	 * swap_avail_head needs to be priority ordered for get_swap_page(),
2257 	 * which allocates swap pages from the highest available priority
2258 	 * swap_info_struct.
2259 	 */
2260 	plist_add(&p->list, &swap_active_head);
2261 	spin_lock(&swap_avail_lock);
2262 	plist_add(&p->avail_list, &swap_avail_head);
2263 	spin_unlock(&swap_avail_lock);
2264 }
2265 
2266 static void enable_swap_info(struct swap_info_struct *p, int prio,
2267 				unsigned char *swap_map,
2268 				struct swap_cluster_info *cluster_info,
2269 				unsigned long *frontswap_map)
2270 {
2271 	frontswap_init(p->type, frontswap_map);
2272 	spin_lock(&swap_lock);
2273 	spin_lock(&p->lock);
2274 	 _enable_swap_info(p, prio, swap_map, cluster_info);
2275 	spin_unlock(&p->lock);
2276 	spin_unlock(&swap_lock);
2277 }
2278 
2279 static void reinsert_swap_info(struct swap_info_struct *p)
2280 {
2281 	spin_lock(&swap_lock);
2282 	spin_lock(&p->lock);
2283 	_enable_swap_info(p, p->prio, p->swap_map, p->cluster_info);
2284 	spin_unlock(&p->lock);
2285 	spin_unlock(&swap_lock);
2286 }
2287 
2288 bool has_usable_swap(void)
2289 {
2290 	bool ret = true;
2291 
2292 	spin_lock(&swap_lock);
2293 	if (plist_head_empty(&swap_active_head))
2294 		ret = false;
2295 	spin_unlock(&swap_lock);
2296 	return ret;
2297 }
2298 
2299 SYSCALL_DEFINE1(swapoff, const char __user *, specialfile)
2300 {
2301 	struct swap_info_struct *p = NULL;
2302 	unsigned char *swap_map;
2303 	struct swap_cluster_info *cluster_info;
2304 	unsigned long *frontswap_map;
2305 	struct file *swap_file, *victim;
2306 	struct address_space *mapping;
2307 	struct inode *inode;
2308 	struct filename *pathname;
2309 	int err, found = 0;
2310 	unsigned int old_block_size;
2311 
2312 	if (!capable(CAP_SYS_ADMIN))
2313 		return -EPERM;
2314 
2315 	BUG_ON(!current->mm);
2316 
2317 	pathname = getname(specialfile);
2318 	if (IS_ERR(pathname))
2319 		return PTR_ERR(pathname);
2320 
2321 	victim = file_open_name(pathname, O_RDWR|O_LARGEFILE, 0);
2322 	err = PTR_ERR(victim);
2323 	if (IS_ERR(victim))
2324 		goto out;
2325 
2326 	mapping = victim->f_mapping;
2327 	spin_lock(&swap_lock);
2328 	plist_for_each_entry(p, &swap_active_head, list) {
2329 		if (p->flags & SWP_WRITEOK) {
2330 			if (p->swap_file->f_mapping == mapping) {
2331 				found = 1;
2332 				break;
2333 			}
2334 		}
2335 	}
2336 	if (!found) {
2337 		err = -EINVAL;
2338 		spin_unlock(&swap_lock);
2339 		goto out_dput;
2340 	}
2341 	if (!security_vm_enough_memory_mm(current->mm, p->pages))
2342 		vm_unacct_memory(p->pages);
2343 	else {
2344 		err = -ENOMEM;
2345 		spin_unlock(&swap_lock);
2346 		goto out_dput;
2347 	}
2348 	spin_lock(&swap_avail_lock);
2349 	plist_del(&p->avail_list, &swap_avail_head);
2350 	spin_unlock(&swap_avail_lock);
2351 	spin_lock(&p->lock);
2352 	if (p->prio < 0) {
2353 		struct swap_info_struct *si = p;
2354 
2355 		plist_for_each_entry_continue(si, &swap_active_head, list) {
2356 			si->prio++;
2357 			si->list.prio--;
2358 			si->avail_list.prio--;
2359 		}
2360 		least_priority++;
2361 	}
2362 	plist_del(&p->list, &swap_active_head);
2363 	atomic_long_sub(p->pages, &nr_swap_pages);
2364 	total_swap_pages -= p->pages;
2365 	p->flags &= ~SWP_WRITEOK;
2366 	spin_unlock(&p->lock);
2367 	spin_unlock(&swap_lock);
2368 
2369 	disable_swap_slots_cache_lock();
2370 
2371 	set_current_oom_origin();
2372 	err = try_to_unuse(p->type, false, 0); /* force unuse all pages */
2373 	clear_current_oom_origin();
2374 
2375 	if (err) {
2376 		/* re-insert swap space back into swap_list */
2377 		reinsert_swap_info(p);
2378 		reenable_swap_slots_cache_unlock();
2379 		goto out_dput;
2380 	}
2381 
2382 	reenable_swap_slots_cache_unlock();
2383 
2384 	flush_work(&p->discard_work);
2385 
2386 	destroy_swap_extents(p);
2387 	if (p->flags & SWP_CONTINUED)
2388 		free_swap_count_continuations(p);
2389 
2390 	mutex_lock(&swapon_mutex);
2391 	spin_lock(&swap_lock);
2392 	spin_lock(&p->lock);
2393 	drain_mmlist();
2394 
2395 	/* wait for anyone still in scan_swap_map */
2396 	p->highest_bit = 0;		/* cuts scans short */
2397 	while (p->flags >= SWP_SCANNING) {
2398 		spin_unlock(&p->lock);
2399 		spin_unlock(&swap_lock);
2400 		schedule_timeout_uninterruptible(1);
2401 		spin_lock(&swap_lock);
2402 		spin_lock(&p->lock);
2403 	}
2404 
2405 	swap_file = p->swap_file;
2406 	old_block_size = p->old_block_size;
2407 	p->swap_file = NULL;
2408 	p->max = 0;
2409 	swap_map = p->swap_map;
2410 	p->swap_map = NULL;
2411 	cluster_info = p->cluster_info;
2412 	p->cluster_info = NULL;
2413 	frontswap_map = frontswap_map_get(p);
2414 	spin_unlock(&p->lock);
2415 	spin_unlock(&swap_lock);
2416 	frontswap_invalidate_area(p->type);
2417 	frontswap_map_set(p, NULL);
2418 	mutex_unlock(&swapon_mutex);
2419 	free_percpu(p->percpu_cluster);
2420 	p->percpu_cluster = NULL;
2421 	vfree(swap_map);
2422 	kvfree(cluster_info);
2423 	kvfree(frontswap_map);
2424 	/* Destroy swap account information */
2425 	swap_cgroup_swapoff(p->type);
2426 	exit_swap_address_space(p->type);
2427 
2428 	inode = mapping->host;
2429 	if (S_ISBLK(inode->i_mode)) {
2430 		struct block_device *bdev = I_BDEV(inode);
2431 		set_blocksize(bdev, old_block_size);
2432 		blkdev_put(bdev, FMODE_READ | FMODE_WRITE | FMODE_EXCL);
2433 	} else {
2434 		inode_lock(inode);
2435 		inode->i_flags &= ~S_SWAPFILE;
2436 		inode_unlock(inode);
2437 	}
2438 	filp_close(swap_file, NULL);
2439 
2440 	/*
2441 	 * Clear the SWP_USED flag after all resources are freed so that swapon
2442 	 * can reuse this swap_info in alloc_swap_info() safely.  It is ok to
2443 	 * not hold p->lock after we cleared its SWP_WRITEOK.
2444 	 */
2445 	spin_lock(&swap_lock);
2446 	p->flags = 0;
2447 	spin_unlock(&swap_lock);
2448 
2449 	err = 0;
2450 	atomic_inc(&proc_poll_event);
2451 	wake_up_interruptible(&proc_poll_wait);
2452 
2453 out_dput:
2454 	filp_close(victim, NULL);
2455 out:
2456 	putname(pathname);
2457 	return err;
2458 }
2459 
2460 #ifdef CONFIG_PROC_FS
2461 static unsigned swaps_poll(struct file *file, poll_table *wait)
2462 {
2463 	struct seq_file *seq = file->private_data;
2464 
2465 	poll_wait(file, &proc_poll_wait, wait);
2466 
2467 	if (seq->poll_event != atomic_read(&proc_poll_event)) {
2468 		seq->poll_event = atomic_read(&proc_poll_event);
2469 		return POLLIN | POLLRDNORM | POLLERR | POLLPRI;
2470 	}
2471 
2472 	return POLLIN | POLLRDNORM;
2473 }
2474 
2475 /* iterator */
2476 static void *swap_start(struct seq_file *swap, loff_t *pos)
2477 {
2478 	struct swap_info_struct *si;
2479 	int type;
2480 	loff_t l = *pos;
2481 
2482 	mutex_lock(&swapon_mutex);
2483 
2484 	if (!l)
2485 		return SEQ_START_TOKEN;
2486 
2487 	for (type = 0; type < nr_swapfiles; type++) {
2488 		smp_rmb();	/* read nr_swapfiles before swap_info[type] */
2489 		si = swap_info[type];
2490 		if (!(si->flags & SWP_USED) || !si->swap_map)
2491 			continue;
2492 		if (!--l)
2493 			return si;
2494 	}
2495 
2496 	return NULL;
2497 }
2498 
2499 static void *swap_next(struct seq_file *swap, void *v, loff_t *pos)
2500 {
2501 	struct swap_info_struct *si = v;
2502 	int type;
2503 
2504 	if (v == SEQ_START_TOKEN)
2505 		type = 0;
2506 	else
2507 		type = si->type + 1;
2508 
2509 	for (; type < nr_swapfiles; type++) {
2510 		smp_rmb();	/* read nr_swapfiles before swap_info[type] */
2511 		si = swap_info[type];
2512 		if (!(si->flags & SWP_USED) || !si->swap_map)
2513 			continue;
2514 		++*pos;
2515 		return si;
2516 	}
2517 
2518 	return NULL;
2519 }
2520 
2521 static void swap_stop(struct seq_file *swap, void *v)
2522 {
2523 	mutex_unlock(&swapon_mutex);
2524 }
2525 
2526 static int swap_show(struct seq_file *swap, void *v)
2527 {
2528 	struct swap_info_struct *si = v;
2529 	struct file *file;
2530 	int len;
2531 
2532 	if (si == SEQ_START_TOKEN) {
2533 		seq_puts(swap,"Filename\t\t\t\tType\t\tSize\tUsed\tPriority\n");
2534 		return 0;
2535 	}
2536 
2537 	file = si->swap_file;
2538 	len = seq_file_path(swap, file, " \t\n\\");
2539 	seq_printf(swap, "%*s%s\t%u\t%u\t%d\n",
2540 			len < 40 ? 40 - len : 1, " ",
2541 			S_ISBLK(file_inode(file)->i_mode) ?
2542 				"partition" : "file\t",
2543 			si->pages << (PAGE_SHIFT - 10),
2544 			si->inuse_pages << (PAGE_SHIFT - 10),
2545 			si->prio);
2546 	return 0;
2547 }
2548 
2549 static const struct seq_operations swaps_op = {
2550 	.start =	swap_start,
2551 	.next =		swap_next,
2552 	.stop =		swap_stop,
2553 	.show =		swap_show
2554 };
2555 
2556 static int swaps_open(struct inode *inode, struct file *file)
2557 {
2558 	struct seq_file *seq;
2559 	int ret;
2560 
2561 	ret = seq_open(file, &swaps_op);
2562 	if (ret)
2563 		return ret;
2564 
2565 	seq = file->private_data;
2566 	seq->poll_event = atomic_read(&proc_poll_event);
2567 	return 0;
2568 }
2569 
2570 static const struct file_operations proc_swaps_operations = {
2571 	.open		= swaps_open,
2572 	.read		= seq_read,
2573 	.llseek		= seq_lseek,
2574 	.release	= seq_release,
2575 	.poll		= swaps_poll,
2576 };
2577 
2578 static int __init procswaps_init(void)
2579 {
2580 	proc_create("swaps", 0, NULL, &proc_swaps_operations);
2581 	return 0;
2582 }
2583 __initcall(procswaps_init);
2584 #endif /* CONFIG_PROC_FS */
2585 
2586 #ifdef MAX_SWAPFILES_CHECK
2587 static int __init max_swapfiles_check(void)
2588 {
2589 	MAX_SWAPFILES_CHECK();
2590 	return 0;
2591 }
2592 late_initcall(max_swapfiles_check);
2593 #endif
2594 
2595 static struct swap_info_struct *alloc_swap_info(void)
2596 {
2597 	struct swap_info_struct *p;
2598 	unsigned int type;
2599 
2600 	p = kzalloc(sizeof(*p), GFP_KERNEL);
2601 	if (!p)
2602 		return ERR_PTR(-ENOMEM);
2603 
2604 	spin_lock(&swap_lock);
2605 	for (type = 0; type < nr_swapfiles; type++) {
2606 		if (!(swap_info[type]->flags & SWP_USED))
2607 			break;
2608 	}
2609 	if (type >= MAX_SWAPFILES) {
2610 		spin_unlock(&swap_lock);
2611 		kfree(p);
2612 		return ERR_PTR(-EPERM);
2613 	}
2614 	if (type >= nr_swapfiles) {
2615 		p->type = type;
2616 		swap_info[type] = p;
2617 		/*
2618 		 * Write swap_info[type] before nr_swapfiles, in case a
2619 		 * racing procfs swap_start() or swap_next() is reading them.
2620 		 * (We never shrink nr_swapfiles, we never free this entry.)
2621 		 */
2622 		smp_wmb();
2623 		nr_swapfiles++;
2624 	} else {
2625 		kfree(p);
2626 		p = swap_info[type];
2627 		/*
2628 		 * Do not memset this entry: a racing procfs swap_next()
2629 		 * would be relying on p->type to remain valid.
2630 		 */
2631 	}
2632 	INIT_LIST_HEAD(&p->first_swap_extent.list);
2633 	plist_node_init(&p->list, 0);
2634 	plist_node_init(&p->avail_list, 0);
2635 	p->flags = SWP_USED;
2636 	spin_unlock(&swap_lock);
2637 	spin_lock_init(&p->lock);
2638 
2639 	return p;
2640 }
2641 
2642 static int claim_swapfile(struct swap_info_struct *p, struct inode *inode)
2643 {
2644 	int error;
2645 
2646 	if (S_ISBLK(inode->i_mode)) {
2647 		p->bdev = bdgrab(I_BDEV(inode));
2648 		error = blkdev_get(p->bdev,
2649 				   FMODE_READ | FMODE_WRITE | FMODE_EXCL, p);
2650 		if (error < 0) {
2651 			p->bdev = NULL;
2652 			return error;
2653 		}
2654 		p->old_block_size = block_size(p->bdev);
2655 		error = set_blocksize(p->bdev, PAGE_SIZE);
2656 		if (error < 0)
2657 			return error;
2658 		p->flags |= SWP_BLKDEV;
2659 	} else if (S_ISREG(inode->i_mode)) {
2660 		p->bdev = inode->i_sb->s_bdev;
2661 		inode_lock(inode);
2662 		if (IS_SWAPFILE(inode))
2663 			return -EBUSY;
2664 	} else
2665 		return -EINVAL;
2666 
2667 	return 0;
2668 }
2669 
2670 static unsigned long read_swap_header(struct swap_info_struct *p,
2671 					union swap_header *swap_header,
2672 					struct inode *inode)
2673 {
2674 	int i;
2675 	unsigned long maxpages;
2676 	unsigned long swapfilepages;
2677 	unsigned long last_page;
2678 
2679 	if (memcmp("SWAPSPACE2", swap_header->magic.magic, 10)) {
2680 		pr_err("Unable to find swap-space signature\n");
2681 		return 0;
2682 	}
2683 
2684 	/* swap partition endianess hack... */
2685 	if (swab32(swap_header->info.version) == 1) {
2686 		swab32s(&swap_header->info.version);
2687 		swab32s(&swap_header->info.last_page);
2688 		swab32s(&swap_header->info.nr_badpages);
2689 		if (swap_header->info.nr_badpages > MAX_SWAP_BADPAGES)
2690 			return 0;
2691 		for (i = 0; i < swap_header->info.nr_badpages; i++)
2692 			swab32s(&swap_header->info.badpages[i]);
2693 	}
2694 	/* Check the swap header's sub-version */
2695 	if (swap_header->info.version != 1) {
2696 		pr_warn("Unable to handle swap header version %d\n",
2697 			swap_header->info.version);
2698 		return 0;
2699 	}
2700 
2701 	p->lowest_bit  = 1;
2702 	p->cluster_next = 1;
2703 	p->cluster_nr = 0;
2704 
2705 	/*
2706 	 * Find out how many pages are allowed for a single swap
2707 	 * device. There are two limiting factors: 1) the number
2708 	 * of bits for the swap offset in the swp_entry_t type, and
2709 	 * 2) the number of bits in the swap pte as defined by the
2710 	 * different architectures. In order to find the
2711 	 * largest possible bit mask, a swap entry with swap type 0
2712 	 * and swap offset ~0UL is created, encoded to a swap pte,
2713 	 * decoded to a swp_entry_t again, and finally the swap
2714 	 * offset is extracted. This will mask all the bits from
2715 	 * the initial ~0UL mask that can't be encoded in either
2716 	 * the swp_entry_t or the architecture definition of a
2717 	 * swap pte.
2718 	 */
2719 	maxpages = swp_offset(pte_to_swp_entry(
2720 			swp_entry_to_pte(swp_entry(0, ~0UL)))) + 1;
2721 	last_page = swap_header->info.last_page;
2722 	if (last_page > maxpages) {
2723 		pr_warn("Truncating oversized swap area, only using %luk out of %luk\n",
2724 			maxpages << (PAGE_SHIFT - 10),
2725 			last_page << (PAGE_SHIFT - 10));
2726 	}
2727 	if (maxpages > last_page) {
2728 		maxpages = last_page + 1;
2729 		/* p->max is an unsigned int: don't overflow it */
2730 		if ((unsigned int)maxpages == 0)
2731 			maxpages = UINT_MAX;
2732 	}
2733 	p->highest_bit = maxpages - 1;
2734 
2735 	if (!maxpages)
2736 		return 0;
2737 	swapfilepages = i_size_read(inode) >> PAGE_SHIFT;
2738 	if (swapfilepages && maxpages > swapfilepages) {
2739 		pr_warn("Swap area shorter than signature indicates\n");
2740 		return 0;
2741 	}
2742 	if (swap_header->info.nr_badpages && S_ISREG(inode->i_mode))
2743 		return 0;
2744 	if (swap_header->info.nr_badpages > MAX_SWAP_BADPAGES)
2745 		return 0;
2746 
2747 	return maxpages;
2748 }
2749 
2750 #define SWAP_CLUSTER_INFO_COLS						\
2751 	DIV_ROUND_UP(L1_CACHE_BYTES, sizeof(struct swap_cluster_info))
2752 #define SWAP_CLUSTER_SPACE_COLS						\
2753 	DIV_ROUND_UP(SWAP_ADDRESS_SPACE_PAGES, SWAPFILE_CLUSTER)
2754 #define SWAP_CLUSTER_COLS						\
2755 	max_t(unsigned int, SWAP_CLUSTER_INFO_COLS, SWAP_CLUSTER_SPACE_COLS)
2756 
2757 static int setup_swap_map_and_extents(struct swap_info_struct *p,
2758 					union swap_header *swap_header,
2759 					unsigned char *swap_map,
2760 					struct swap_cluster_info *cluster_info,
2761 					unsigned long maxpages,
2762 					sector_t *span)
2763 {
2764 	unsigned int j, k;
2765 	unsigned int nr_good_pages;
2766 	int nr_extents;
2767 	unsigned long nr_clusters = DIV_ROUND_UP(maxpages, SWAPFILE_CLUSTER);
2768 	unsigned long col = p->cluster_next / SWAPFILE_CLUSTER % SWAP_CLUSTER_COLS;
2769 	unsigned long i, idx;
2770 
2771 	nr_good_pages = maxpages - 1;	/* omit header page */
2772 
2773 	cluster_list_init(&p->free_clusters);
2774 	cluster_list_init(&p->discard_clusters);
2775 
2776 	for (i = 0; i < swap_header->info.nr_badpages; i++) {
2777 		unsigned int page_nr = swap_header->info.badpages[i];
2778 		if (page_nr == 0 || page_nr > swap_header->info.last_page)
2779 			return -EINVAL;
2780 		if (page_nr < maxpages) {
2781 			swap_map[page_nr] = SWAP_MAP_BAD;
2782 			nr_good_pages--;
2783 			/*
2784 			 * Haven't marked the cluster free yet, no list
2785 			 * operation involved
2786 			 */
2787 			inc_cluster_info_page(p, cluster_info, page_nr);
2788 		}
2789 	}
2790 
2791 	/* Haven't marked the cluster free yet, no list operation involved */
2792 	for (i = maxpages; i < round_up(maxpages, SWAPFILE_CLUSTER); i++)
2793 		inc_cluster_info_page(p, cluster_info, i);
2794 
2795 	if (nr_good_pages) {
2796 		swap_map[0] = SWAP_MAP_BAD;
2797 		/*
2798 		 * Not mark the cluster free yet, no list
2799 		 * operation involved
2800 		 */
2801 		inc_cluster_info_page(p, cluster_info, 0);
2802 		p->max = maxpages;
2803 		p->pages = nr_good_pages;
2804 		nr_extents = setup_swap_extents(p, span);
2805 		if (nr_extents < 0)
2806 			return nr_extents;
2807 		nr_good_pages = p->pages;
2808 	}
2809 	if (!nr_good_pages) {
2810 		pr_warn("Empty swap-file\n");
2811 		return -EINVAL;
2812 	}
2813 
2814 	if (!cluster_info)
2815 		return nr_extents;
2816 
2817 
2818 	/*
2819 	 * Reduce false cache line sharing between cluster_info and
2820 	 * sharing same address space.
2821 	 */
2822 	for (k = 0; k < SWAP_CLUSTER_COLS; k++) {
2823 		j = (k + col) % SWAP_CLUSTER_COLS;
2824 		for (i = 0; i < DIV_ROUND_UP(nr_clusters, SWAP_CLUSTER_COLS); i++) {
2825 			idx = i * SWAP_CLUSTER_COLS + j;
2826 			if (idx >= nr_clusters)
2827 				continue;
2828 			if (cluster_count(&cluster_info[idx]))
2829 				continue;
2830 			cluster_set_flag(&cluster_info[idx], CLUSTER_FLAG_FREE);
2831 			cluster_list_add_tail(&p->free_clusters, cluster_info,
2832 					      idx);
2833 		}
2834 	}
2835 	return nr_extents;
2836 }
2837 
2838 /*
2839  * Helper to sys_swapon determining if a given swap
2840  * backing device queue supports DISCARD operations.
2841  */
2842 static bool swap_discardable(struct swap_info_struct *si)
2843 {
2844 	struct request_queue *q = bdev_get_queue(si->bdev);
2845 
2846 	if (!q || !blk_queue_discard(q))
2847 		return false;
2848 
2849 	return true;
2850 }
2851 
2852 SYSCALL_DEFINE2(swapon, const char __user *, specialfile, int, swap_flags)
2853 {
2854 	struct swap_info_struct *p;
2855 	struct filename *name;
2856 	struct file *swap_file = NULL;
2857 	struct address_space *mapping;
2858 	int prio;
2859 	int error;
2860 	union swap_header *swap_header;
2861 	int nr_extents;
2862 	sector_t span;
2863 	unsigned long maxpages;
2864 	unsigned char *swap_map = NULL;
2865 	struct swap_cluster_info *cluster_info = NULL;
2866 	unsigned long *frontswap_map = NULL;
2867 	struct page *page = NULL;
2868 	struct inode *inode = NULL;
2869 
2870 	if (swap_flags & ~SWAP_FLAGS_VALID)
2871 		return -EINVAL;
2872 
2873 	if (!capable(CAP_SYS_ADMIN))
2874 		return -EPERM;
2875 
2876 	p = alloc_swap_info();
2877 	if (IS_ERR(p))
2878 		return PTR_ERR(p);
2879 
2880 	INIT_WORK(&p->discard_work, swap_discard_work);
2881 
2882 	name = getname(specialfile);
2883 	if (IS_ERR(name)) {
2884 		error = PTR_ERR(name);
2885 		name = NULL;
2886 		goto bad_swap;
2887 	}
2888 	swap_file = file_open_name(name, O_RDWR|O_LARGEFILE, 0);
2889 	if (IS_ERR(swap_file)) {
2890 		error = PTR_ERR(swap_file);
2891 		swap_file = NULL;
2892 		goto bad_swap;
2893 	}
2894 
2895 	p->swap_file = swap_file;
2896 	mapping = swap_file->f_mapping;
2897 	inode = mapping->host;
2898 
2899 	/* If S_ISREG(inode->i_mode) will do inode_lock(inode); */
2900 	error = claim_swapfile(p, inode);
2901 	if (unlikely(error))
2902 		goto bad_swap;
2903 
2904 	/*
2905 	 * Read the swap header.
2906 	 */
2907 	if (!mapping->a_ops->readpage) {
2908 		error = -EINVAL;
2909 		goto bad_swap;
2910 	}
2911 	page = read_mapping_page(mapping, 0, swap_file);
2912 	if (IS_ERR(page)) {
2913 		error = PTR_ERR(page);
2914 		goto bad_swap;
2915 	}
2916 	swap_header = kmap(page);
2917 
2918 	maxpages = read_swap_header(p, swap_header, inode);
2919 	if (unlikely(!maxpages)) {
2920 		error = -EINVAL;
2921 		goto bad_swap;
2922 	}
2923 
2924 	/* OK, set up the swap map and apply the bad block list */
2925 	swap_map = vzalloc(maxpages);
2926 	if (!swap_map) {
2927 		error = -ENOMEM;
2928 		goto bad_swap;
2929 	}
2930 
2931 	if (bdi_cap_stable_pages_required(inode_to_bdi(inode)))
2932 		p->flags |= SWP_STABLE_WRITES;
2933 
2934 	if (p->bdev && blk_queue_nonrot(bdev_get_queue(p->bdev))) {
2935 		int cpu;
2936 		unsigned long ci, nr_cluster;
2937 
2938 		p->flags |= SWP_SOLIDSTATE;
2939 		/*
2940 		 * select a random position to start with to help wear leveling
2941 		 * SSD
2942 		 */
2943 		p->cluster_next = 1 + (prandom_u32() % p->highest_bit);
2944 		nr_cluster = DIV_ROUND_UP(maxpages, SWAPFILE_CLUSTER);
2945 
2946 		cluster_info = kvzalloc(nr_cluster * sizeof(*cluster_info),
2947 					GFP_KERNEL);
2948 		if (!cluster_info) {
2949 			error = -ENOMEM;
2950 			goto bad_swap;
2951 		}
2952 
2953 		for (ci = 0; ci < nr_cluster; ci++)
2954 			spin_lock_init(&((cluster_info + ci)->lock));
2955 
2956 		p->percpu_cluster = alloc_percpu(struct percpu_cluster);
2957 		if (!p->percpu_cluster) {
2958 			error = -ENOMEM;
2959 			goto bad_swap;
2960 		}
2961 		for_each_possible_cpu(cpu) {
2962 			struct percpu_cluster *cluster;
2963 			cluster = per_cpu_ptr(p->percpu_cluster, cpu);
2964 			cluster_set_null(&cluster->index);
2965 		}
2966 	}
2967 
2968 	error = swap_cgroup_swapon(p->type, maxpages);
2969 	if (error)
2970 		goto bad_swap;
2971 
2972 	nr_extents = setup_swap_map_and_extents(p, swap_header, swap_map,
2973 		cluster_info, maxpages, &span);
2974 	if (unlikely(nr_extents < 0)) {
2975 		error = nr_extents;
2976 		goto bad_swap;
2977 	}
2978 	/* frontswap enabled? set up bit-per-page map for frontswap */
2979 	if (IS_ENABLED(CONFIG_FRONTSWAP))
2980 		frontswap_map = kvzalloc(BITS_TO_LONGS(maxpages) * sizeof(long),
2981 					 GFP_KERNEL);
2982 
2983 	if (p->bdev &&(swap_flags & SWAP_FLAG_DISCARD) && swap_discardable(p)) {
2984 		/*
2985 		 * When discard is enabled for swap with no particular
2986 		 * policy flagged, we set all swap discard flags here in
2987 		 * order to sustain backward compatibility with older
2988 		 * swapon(8) releases.
2989 		 */
2990 		p->flags |= (SWP_DISCARDABLE | SWP_AREA_DISCARD |
2991 			     SWP_PAGE_DISCARD);
2992 
2993 		/*
2994 		 * By flagging sys_swapon, a sysadmin can tell us to
2995 		 * either do single-time area discards only, or to just
2996 		 * perform discards for released swap page-clusters.
2997 		 * Now it's time to adjust the p->flags accordingly.
2998 		 */
2999 		if (swap_flags & SWAP_FLAG_DISCARD_ONCE)
3000 			p->flags &= ~SWP_PAGE_DISCARD;
3001 		else if (swap_flags & SWAP_FLAG_DISCARD_PAGES)
3002 			p->flags &= ~SWP_AREA_DISCARD;
3003 
3004 		/* issue a swapon-time discard if it's still required */
3005 		if (p->flags & SWP_AREA_DISCARD) {
3006 			int err = discard_swap(p);
3007 			if (unlikely(err))
3008 				pr_err("swapon: discard_swap(%p): %d\n",
3009 					p, err);
3010 		}
3011 	}
3012 
3013 	error = init_swap_address_space(p->type, maxpages);
3014 	if (error)
3015 		goto bad_swap;
3016 
3017 	mutex_lock(&swapon_mutex);
3018 	prio = -1;
3019 	if (swap_flags & SWAP_FLAG_PREFER)
3020 		prio =
3021 		  (swap_flags & SWAP_FLAG_PRIO_MASK) >> SWAP_FLAG_PRIO_SHIFT;
3022 	enable_swap_info(p, prio, swap_map, cluster_info, frontswap_map);
3023 
3024 	pr_info("Adding %uk swap on %s.  Priority:%d extents:%d across:%lluk %s%s%s%s%s\n",
3025 		p->pages<<(PAGE_SHIFT-10), name->name, p->prio,
3026 		nr_extents, (unsigned long long)span<<(PAGE_SHIFT-10),
3027 		(p->flags & SWP_SOLIDSTATE) ? "SS" : "",
3028 		(p->flags & SWP_DISCARDABLE) ? "D" : "",
3029 		(p->flags & SWP_AREA_DISCARD) ? "s" : "",
3030 		(p->flags & SWP_PAGE_DISCARD) ? "c" : "",
3031 		(frontswap_map) ? "FS" : "");
3032 
3033 	mutex_unlock(&swapon_mutex);
3034 	atomic_inc(&proc_poll_event);
3035 	wake_up_interruptible(&proc_poll_wait);
3036 
3037 	if (S_ISREG(inode->i_mode))
3038 		inode->i_flags |= S_SWAPFILE;
3039 	error = 0;
3040 	goto out;
3041 bad_swap:
3042 	free_percpu(p->percpu_cluster);
3043 	p->percpu_cluster = NULL;
3044 	if (inode && S_ISBLK(inode->i_mode) && p->bdev) {
3045 		set_blocksize(p->bdev, p->old_block_size);
3046 		blkdev_put(p->bdev, FMODE_READ | FMODE_WRITE | FMODE_EXCL);
3047 	}
3048 	destroy_swap_extents(p);
3049 	swap_cgroup_swapoff(p->type);
3050 	spin_lock(&swap_lock);
3051 	p->swap_file = NULL;
3052 	p->flags = 0;
3053 	spin_unlock(&swap_lock);
3054 	vfree(swap_map);
3055 	vfree(cluster_info);
3056 	if (swap_file) {
3057 		if (inode && S_ISREG(inode->i_mode)) {
3058 			inode_unlock(inode);
3059 			inode = NULL;
3060 		}
3061 		filp_close(swap_file, NULL);
3062 	}
3063 out:
3064 	if (page && !IS_ERR(page)) {
3065 		kunmap(page);
3066 		put_page(page);
3067 	}
3068 	if (name)
3069 		putname(name);
3070 	if (inode && S_ISREG(inode->i_mode))
3071 		inode_unlock(inode);
3072 	if (!error)
3073 		enable_swap_slots_cache();
3074 	return error;
3075 }
3076 
3077 void si_swapinfo(struct sysinfo *val)
3078 {
3079 	unsigned int type;
3080 	unsigned long nr_to_be_unused = 0;
3081 
3082 	spin_lock(&swap_lock);
3083 	for (type = 0; type < nr_swapfiles; type++) {
3084 		struct swap_info_struct *si = swap_info[type];
3085 
3086 		if ((si->flags & SWP_USED) && !(si->flags & SWP_WRITEOK))
3087 			nr_to_be_unused += si->inuse_pages;
3088 	}
3089 	val->freeswap = atomic_long_read(&nr_swap_pages) + nr_to_be_unused;
3090 	val->totalswap = total_swap_pages + nr_to_be_unused;
3091 	spin_unlock(&swap_lock);
3092 }
3093 
3094 /*
3095  * Verify that a swap entry is valid and increment its swap map count.
3096  *
3097  * Returns error code in following case.
3098  * - success -> 0
3099  * - swp_entry is invalid -> EINVAL
3100  * - swp_entry is migration entry -> EINVAL
3101  * - swap-cache reference is requested but there is already one. -> EEXIST
3102  * - swap-cache reference is requested but the entry is not used. -> ENOENT
3103  * - swap-mapped reference requested but needs continued swap count. -> ENOMEM
3104  */
3105 static int __swap_duplicate(swp_entry_t entry, unsigned char usage)
3106 {
3107 	struct swap_info_struct *p;
3108 	struct swap_cluster_info *ci;
3109 	unsigned long offset, type;
3110 	unsigned char count;
3111 	unsigned char has_cache;
3112 	int err = -EINVAL;
3113 
3114 	if (non_swap_entry(entry))
3115 		goto out;
3116 
3117 	type = swp_type(entry);
3118 	if (type >= nr_swapfiles)
3119 		goto bad_file;
3120 	p = swap_info[type];
3121 	offset = swp_offset(entry);
3122 	if (unlikely(offset >= p->max))
3123 		goto out;
3124 
3125 	ci = lock_cluster_or_swap_info(p, offset);
3126 
3127 	count = p->swap_map[offset];
3128 
3129 	/*
3130 	 * swapin_readahead() doesn't check if a swap entry is valid, so the
3131 	 * swap entry could be SWAP_MAP_BAD. Check here with lock held.
3132 	 */
3133 	if (unlikely(swap_count(count) == SWAP_MAP_BAD)) {
3134 		err = -ENOENT;
3135 		goto unlock_out;
3136 	}
3137 
3138 	has_cache = count & SWAP_HAS_CACHE;
3139 	count &= ~SWAP_HAS_CACHE;
3140 	err = 0;
3141 
3142 	if (usage == SWAP_HAS_CACHE) {
3143 
3144 		/* set SWAP_HAS_CACHE if there is no cache and entry is used */
3145 		if (!has_cache && count)
3146 			has_cache = SWAP_HAS_CACHE;
3147 		else if (has_cache)		/* someone else added cache */
3148 			err = -EEXIST;
3149 		else				/* no users remaining */
3150 			err = -ENOENT;
3151 
3152 	} else if (count || has_cache) {
3153 
3154 		if ((count & ~COUNT_CONTINUED) < SWAP_MAP_MAX)
3155 			count += usage;
3156 		else if ((count & ~COUNT_CONTINUED) > SWAP_MAP_MAX)
3157 			err = -EINVAL;
3158 		else if (swap_count_continued(p, offset, count))
3159 			count = COUNT_CONTINUED;
3160 		else
3161 			err = -ENOMEM;
3162 	} else
3163 		err = -ENOENT;			/* unused swap entry */
3164 
3165 	p->swap_map[offset] = count | has_cache;
3166 
3167 unlock_out:
3168 	unlock_cluster_or_swap_info(p, ci);
3169 out:
3170 	return err;
3171 
3172 bad_file:
3173 	pr_err("swap_dup: %s%08lx\n", Bad_file, entry.val);
3174 	goto out;
3175 }
3176 
3177 /*
3178  * Help swapoff by noting that swap entry belongs to shmem/tmpfs
3179  * (in which case its reference count is never incremented).
3180  */
3181 void swap_shmem_alloc(swp_entry_t entry)
3182 {
3183 	__swap_duplicate(entry, SWAP_MAP_SHMEM);
3184 }
3185 
3186 /*
3187  * Increase reference count of swap entry by 1.
3188  * Returns 0 for success, or -ENOMEM if a swap_count_continuation is required
3189  * but could not be atomically allocated.  Returns 0, just as if it succeeded,
3190  * if __swap_duplicate() fails for another reason (-EINVAL or -ENOENT), which
3191  * might occur if a page table entry has got corrupted.
3192  */
3193 int swap_duplicate(swp_entry_t entry)
3194 {
3195 	int err = 0;
3196 
3197 	while (!err && __swap_duplicate(entry, 1) == -ENOMEM)
3198 		err = add_swap_count_continuation(entry, GFP_ATOMIC);
3199 	return err;
3200 }
3201 
3202 /*
3203  * @entry: swap entry for which we allocate swap cache.
3204  *
3205  * Called when allocating swap cache for existing swap entry,
3206  * This can return error codes. Returns 0 at success.
3207  * -EBUSY means there is a swap cache.
3208  * Note: return code is different from swap_duplicate().
3209  */
3210 int swapcache_prepare(swp_entry_t entry)
3211 {
3212 	return __swap_duplicate(entry, SWAP_HAS_CACHE);
3213 }
3214 
3215 struct swap_info_struct *page_swap_info(struct page *page)
3216 {
3217 	swp_entry_t swap = { .val = page_private(page) };
3218 	return swap_info[swp_type(swap)];
3219 }
3220 
3221 /*
3222  * out-of-line __page_file_ methods to avoid include hell.
3223  */
3224 struct address_space *__page_file_mapping(struct page *page)
3225 {
3226 	VM_BUG_ON_PAGE(!PageSwapCache(page), page);
3227 	return page_swap_info(page)->swap_file->f_mapping;
3228 }
3229 EXPORT_SYMBOL_GPL(__page_file_mapping);
3230 
3231 pgoff_t __page_file_index(struct page *page)
3232 {
3233 	swp_entry_t swap = { .val = page_private(page) };
3234 	VM_BUG_ON_PAGE(!PageSwapCache(page), page);
3235 	return swp_offset(swap);
3236 }
3237 EXPORT_SYMBOL_GPL(__page_file_index);
3238 
3239 /*
3240  * add_swap_count_continuation - called when a swap count is duplicated
3241  * beyond SWAP_MAP_MAX, it allocates a new page and links that to the entry's
3242  * page of the original vmalloc'ed swap_map, to hold the continuation count
3243  * (for that entry and for its neighbouring PAGE_SIZE swap entries).  Called
3244  * again when count is duplicated beyond SWAP_MAP_MAX * SWAP_CONT_MAX, etc.
3245  *
3246  * These continuation pages are seldom referenced: the common paths all work
3247  * on the original swap_map, only referring to a continuation page when the
3248  * low "digit" of a count is incremented or decremented through SWAP_MAP_MAX.
3249  *
3250  * add_swap_count_continuation(, GFP_ATOMIC) can be called while holding
3251  * page table locks; if it fails, add_swap_count_continuation(, GFP_KERNEL)
3252  * can be called after dropping locks.
3253  */
3254 int add_swap_count_continuation(swp_entry_t entry, gfp_t gfp_mask)
3255 {
3256 	struct swap_info_struct *si;
3257 	struct swap_cluster_info *ci;
3258 	struct page *head;
3259 	struct page *page;
3260 	struct page *list_page;
3261 	pgoff_t offset;
3262 	unsigned char count;
3263 
3264 	/*
3265 	 * When debugging, it's easier to use __GFP_ZERO here; but it's better
3266 	 * for latency not to zero a page while GFP_ATOMIC and holding locks.
3267 	 */
3268 	page = alloc_page(gfp_mask | __GFP_HIGHMEM);
3269 
3270 	si = swap_info_get(entry);
3271 	if (!si) {
3272 		/*
3273 		 * An acceptable race has occurred since the failing
3274 		 * __swap_duplicate(): the swap entry has been freed,
3275 		 * perhaps even the whole swap_map cleared for swapoff.
3276 		 */
3277 		goto outer;
3278 	}
3279 
3280 	offset = swp_offset(entry);
3281 
3282 	ci = lock_cluster(si, offset);
3283 
3284 	count = si->swap_map[offset] & ~SWAP_HAS_CACHE;
3285 
3286 	if ((count & ~COUNT_CONTINUED) != SWAP_MAP_MAX) {
3287 		/*
3288 		 * The higher the swap count, the more likely it is that tasks
3289 		 * will race to add swap count continuation: we need to avoid
3290 		 * over-provisioning.
3291 		 */
3292 		goto out;
3293 	}
3294 
3295 	if (!page) {
3296 		unlock_cluster(ci);
3297 		spin_unlock(&si->lock);
3298 		return -ENOMEM;
3299 	}
3300 
3301 	/*
3302 	 * We are fortunate that although vmalloc_to_page uses pte_offset_map,
3303 	 * no architecture is using highmem pages for kernel page tables: so it
3304 	 * will not corrupt the GFP_ATOMIC caller's atomic page table kmaps.
3305 	 */
3306 	head = vmalloc_to_page(si->swap_map + offset);
3307 	offset &= ~PAGE_MASK;
3308 
3309 	/*
3310 	 * Page allocation does not initialize the page's lru field,
3311 	 * but it does always reset its private field.
3312 	 */
3313 	if (!page_private(head)) {
3314 		BUG_ON(count & COUNT_CONTINUED);
3315 		INIT_LIST_HEAD(&head->lru);
3316 		set_page_private(head, SWP_CONTINUED);
3317 		si->flags |= SWP_CONTINUED;
3318 	}
3319 
3320 	list_for_each_entry(list_page, &head->lru, lru) {
3321 		unsigned char *map;
3322 
3323 		/*
3324 		 * If the previous map said no continuation, but we've found
3325 		 * a continuation page, free our allocation and use this one.
3326 		 */
3327 		if (!(count & COUNT_CONTINUED))
3328 			goto out;
3329 
3330 		map = kmap_atomic(list_page) + offset;
3331 		count = *map;
3332 		kunmap_atomic(map);
3333 
3334 		/*
3335 		 * If this continuation count now has some space in it,
3336 		 * free our allocation and use this one.
3337 		 */
3338 		if ((count & ~COUNT_CONTINUED) != SWAP_CONT_MAX)
3339 			goto out;
3340 	}
3341 
3342 	list_add_tail(&page->lru, &head->lru);
3343 	page = NULL;			/* now it's attached, don't free it */
3344 out:
3345 	unlock_cluster(ci);
3346 	spin_unlock(&si->lock);
3347 outer:
3348 	if (page)
3349 		__free_page(page);
3350 	return 0;
3351 }
3352 
3353 /*
3354  * swap_count_continued - when the original swap_map count is incremented
3355  * from SWAP_MAP_MAX, check if there is already a continuation page to carry
3356  * into, carry if so, or else fail until a new continuation page is allocated;
3357  * when the original swap_map count is decremented from 0 with continuation,
3358  * borrow from the continuation and report whether it still holds more.
3359  * Called while __swap_duplicate() or swap_entry_free() holds swap or cluster
3360  * lock.
3361  */
3362 static bool swap_count_continued(struct swap_info_struct *si,
3363 				 pgoff_t offset, unsigned char count)
3364 {
3365 	struct page *head;
3366 	struct page *page;
3367 	unsigned char *map;
3368 
3369 	head = vmalloc_to_page(si->swap_map + offset);
3370 	if (page_private(head) != SWP_CONTINUED) {
3371 		BUG_ON(count & COUNT_CONTINUED);
3372 		return false;		/* need to add count continuation */
3373 	}
3374 
3375 	offset &= ~PAGE_MASK;
3376 	page = list_entry(head->lru.next, struct page, lru);
3377 	map = kmap_atomic(page) + offset;
3378 
3379 	if (count == SWAP_MAP_MAX)	/* initial increment from swap_map */
3380 		goto init_map;		/* jump over SWAP_CONT_MAX checks */
3381 
3382 	if (count == (SWAP_MAP_MAX | COUNT_CONTINUED)) { /* incrementing */
3383 		/*
3384 		 * Think of how you add 1 to 999
3385 		 */
3386 		while (*map == (SWAP_CONT_MAX | COUNT_CONTINUED)) {
3387 			kunmap_atomic(map);
3388 			page = list_entry(page->lru.next, struct page, lru);
3389 			BUG_ON(page == head);
3390 			map = kmap_atomic(page) + offset;
3391 		}
3392 		if (*map == SWAP_CONT_MAX) {
3393 			kunmap_atomic(map);
3394 			page = list_entry(page->lru.next, struct page, lru);
3395 			if (page == head)
3396 				return false;	/* add count continuation */
3397 			map = kmap_atomic(page) + offset;
3398 init_map:		*map = 0;		/* we didn't zero the page */
3399 		}
3400 		*map += 1;
3401 		kunmap_atomic(map);
3402 		page = list_entry(page->lru.prev, struct page, lru);
3403 		while (page != head) {
3404 			map = kmap_atomic(page) + offset;
3405 			*map = COUNT_CONTINUED;
3406 			kunmap_atomic(map);
3407 			page = list_entry(page->lru.prev, struct page, lru);
3408 		}
3409 		return true;			/* incremented */
3410 
3411 	} else {				/* decrementing */
3412 		/*
3413 		 * Think of how you subtract 1 from 1000
3414 		 */
3415 		BUG_ON(count != COUNT_CONTINUED);
3416 		while (*map == COUNT_CONTINUED) {
3417 			kunmap_atomic(map);
3418 			page = list_entry(page->lru.next, struct page, lru);
3419 			BUG_ON(page == head);
3420 			map = kmap_atomic(page) + offset;
3421 		}
3422 		BUG_ON(*map == 0);
3423 		*map -= 1;
3424 		if (*map == 0)
3425 			count = 0;
3426 		kunmap_atomic(map);
3427 		page = list_entry(page->lru.prev, struct page, lru);
3428 		while (page != head) {
3429 			map = kmap_atomic(page) + offset;
3430 			*map = SWAP_CONT_MAX | count;
3431 			count = COUNT_CONTINUED;
3432 			kunmap_atomic(map);
3433 			page = list_entry(page->lru.prev, struct page, lru);
3434 		}
3435 		return count == COUNT_CONTINUED;
3436 	}
3437 }
3438 
3439 /*
3440  * free_swap_count_continuations - swapoff free all the continuation pages
3441  * appended to the swap_map, after swap_map is quiesced, before vfree'ing it.
3442  */
3443 static void free_swap_count_continuations(struct swap_info_struct *si)
3444 {
3445 	pgoff_t offset;
3446 
3447 	for (offset = 0; offset < si->max; offset += PAGE_SIZE) {
3448 		struct page *head;
3449 		head = vmalloc_to_page(si->swap_map + offset);
3450 		if (page_private(head)) {
3451 			struct page *page, *next;
3452 
3453 			list_for_each_entry_safe(page, next, &head->lru, lru) {
3454 				list_del(&page->lru);
3455 				__free_page(page);
3456 			}
3457 		}
3458 	}
3459 }
3460