xref: /openbmc/linux/mm/swapfile.c (revision c67ce71d)
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  *  linux/mm/swapfile.c
4  *
5  *  Copyright (C) 1991, 1992, 1993, 1994  Linus Torvalds
6  *  Swap reorganised 29.12.95, Stephen Tweedie
7  */
8 
9 #include <linux/blkdev.h>
10 #include <linux/mm.h>
11 #include <linux/sched/mm.h>
12 #include <linux/sched/task.h>
13 #include <linux/hugetlb.h>
14 #include <linux/mman.h>
15 #include <linux/slab.h>
16 #include <linux/kernel_stat.h>
17 #include <linux/swap.h>
18 #include <linux/vmalloc.h>
19 #include <linux/pagemap.h>
20 #include <linux/namei.h>
21 #include <linux/shmem_fs.h>
22 #include <linux/blk-cgroup.h>
23 #include <linux/random.h>
24 #include <linux/writeback.h>
25 #include <linux/proc_fs.h>
26 #include <linux/seq_file.h>
27 #include <linux/init.h>
28 #include <linux/ksm.h>
29 #include <linux/rmap.h>
30 #include <linux/security.h>
31 #include <linux/backing-dev.h>
32 #include <linux/mutex.h>
33 #include <linux/capability.h>
34 #include <linux/syscalls.h>
35 #include <linux/memcontrol.h>
36 #include <linux/poll.h>
37 #include <linux/oom.h>
38 #include <linux/swapfile.h>
39 #include <linux/export.h>
40 #include <linux/swap_slots.h>
41 #include <linux/sort.h>
42 #include <linux/completion.h>
43 #include <linux/suspend.h>
44 #include <linux/zswap.h>
45 
46 #include <asm/tlbflush.h>
47 #include <linux/swapops.h>
48 #include <linux/swap_cgroup.h>
49 #include "internal.h"
50 #include "swap.h"
51 
52 static bool swap_count_continued(struct swap_info_struct *, pgoff_t,
53 				 unsigned char);
54 static void free_swap_count_continuations(struct swap_info_struct *);
55 
56 static DEFINE_SPINLOCK(swap_lock);
57 static unsigned int nr_swapfiles;
58 atomic_long_t nr_swap_pages;
59 /*
60  * Some modules use swappable objects and may try to swap them out under
61  * memory pressure (via the shrinker). Before doing so, they may wish to
62  * check to see if any swap space is available.
63  */
64 EXPORT_SYMBOL_GPL(nr_swap_pages);
65 /* protected with swap_lock. reading in vm_swap_full() doesn't need lock */
66 long total_swap_pages;
67 static int least_priority = -1;
68 unsigned long swapfile_maximum_size;
69 #ifdef CONFIG_MIGRATION
70 bool swap_migration_ad_supported;
71 #endif	/* CONFIG_MIGRATION */
72 
73 static const char Bad_file[] = "Bad swap file entry ";
74 static const char Unused_file[] = "Unused swap file entry ";
75 static const char Bad_offset[] = "Bad swap offset entry ";
76 static const char Unused_offset[] = "Unused swap offset entry ";
77 
78 /*
79  * all active swap_info_structs
80  * protected with swap_lock, and ordered by priority.
81  */
82 static PLIST_HEAD(swap_active_head);
83 
84 /*
85  * all available (active, not full) swap_info_structs
86  * protected with swap_avail_lock, ordered by priority.
87  * This is used by folio_alloc_swap() instead of swap_active_head
88  * because swap_active_head includes all swap_info_structs,
89  * but folio_alloc_swap() doesn't need to look at full ones.
90  * This uses its own lock instead of swap_lock because when a
91  * swap_info_struct changes between not-full/full, it needs to
92  * add/remove itself to/from this list, but the swap_info_struct->lock
93  * is held and the locking order requires swap_lock to be taken
94  * before any swap_info_struct->lock.
95  */
96 static struct plist_head *swap_avail_heads;
97 static DEFINE_SPINLOCK(swap_avail_lock);
98 
99 static struct swap_info_struct *swap_info[MAX_SWAPFILES];
100 
101 static DEFINE_MUTEX(swapon_mutex);
102 
103 static DECLARE_WAIT_QUEUE_HEAD(proc_poll_wait);
104 /* Activity counter to indicate that a swapon or swapoff has occurred */
105 static atomic_t proc_poll_event = ATOMIC_INIT(0);
106 
107 atomic_t nr_rotate_swap = ATOMIC_INIT(0);
108 
109 static struct swap_info_struct *swap_type_to_swap_info(int type)
110 {
111 	if (type >= MAX_SWAPFILES)
112 		return NULL;
113 
114 	return READ_ONCE(swap_info[type]); /* rcu_dereference() */
115 }
116 
117 static inline unsigned char swap_count(unsigned char ent)
118 {
119 	return ent & ~SWAP_HAS_CACHE;	/* may include COUNT_CONTINUED flag */
120 }
121 
122 /* Reclaim the swap entry anyway if possible */
123 #define TTRS_ANYWAY		0x1
124 /*
125  * Reclaim the swap entry if there are no more mappings of the
126  * corresponding page
127  */
128 #define TTRS_UNMAPPED		0x2
129 /* Reclaim the swap entry if swap is getting full*/
130 #define TTRS_FULL		0x4
131 
132 /* returns 1 if swap entry is freed */
133 static int __try_to_reclaim_swap(struct swap_info_struct *si,
134 				 unsigned long offset, unsigned long flags)
135 {
136 	swp_entry_t entry = swp_entry(si->type, offset);
137 	struct folio *folio;
138 	int ret = 0;
139 
140 	folio = filemap_get_folio(swap_address_space(entry), offset);
141 	if (IS_ERR(folio))
142 		return 0;
143 	/*
144 	 * When this function is called from scan_swap_map_slots() and it's
145 	 * called by vmscan.c at reclaiming folios. So we hold a folio lock
146 	 * here. We have to use trylock for avoiding deadlock. This is a special
147 	 * case and you should use folio_free_swap() with explicit folio_lock()
148 	 * in usual operations.
149 	 */
150 	if (folio_trylock(folio)) {
151 		if ((flags & TTRS_ANYWAY) ||
152 		    ((flags & TTRS_UNMAPPED) && !folio_mapped(folio)) ||
153 		    ((flags & TTRS_FULL) && mem_cgroup_swap_full(folio)))
154 			ret = folio_free_swap(folio);
155 		folio_unlock(folio);
156 	}
157 	folio_put(folio);
158 	return ret;
159 }
160 
161 static inline struct swap_extent *first_se(struct swap_info_struct *sis)
162 {
163 	struct rb_node *rb = rb_first(&sis->swap_extent_root);
164 	return rb_entry(rb, struct swap_extent, rb_node);
165 }
166 
167 static inline struct swap_extent *next_se(struct swap_extent *se)
168 {
169 	struct rb_node *rb = rb_next(&se->rb_node);
170 	return rb ? rb_entry(rb, struct swap_extent, rb_node) : NULL;
171 }
172 
173 /*
174  * swapon tell device that all the old swap contents can be discarded,
175  * to allow the swap device to optimize its wear-levelling.
176  */
177 static int discard_swap(struct swap_info_struct *si)
178 {
179 	struct swap_extent *se;
180 	sector_t start_block;
181 	sector_t nr_blocks;
182 	int err = 0;
183 
184 	/* Do not discard the swap header page! */
185 	se = first_se(si);
186 	start_block = (se->start_block + 1) << (PAGE_SHIFT - 9);
187 	nr_blocks = ((sector_t)se->nr_pages - 1) << (PAGE_SHIFT - 9);
188 	if (nr_blocks) {
189 		err = blkdev_issue_discard(si->bdev, start_block,
190 				nr_blocks, GFP_KERNEL);
191 		if (err)
192 			return err;
193 		cond_resched();
194 	}
195 
196 	for (se = next_se(se); se; se = next_se(se)) {
197 		start_block = se->start_block << (PAGE_SHIFT - 9);
198 		nr_blocks = (sector_t)se->nr_pages << (PAGE_SHIFT - 9);
199 
200 		err = blkdev_issue_discard(si->bdev, start_block,
201 				nr_blocks, GFP_KERNEL);
202 		if (err)
203 			break;
204 
205 		cond_resched();
206 	}
207 	return err;		/* That will often be -EOPNOTSUPP */
208 }
209 
210 static struct swap_extent *
211 offset_to_swap_extent(struct swap_info_struct *sis, unsigned long offset)
212 {
213 	struct swap_extent *se;
214 	struct rb_node *rb;
215 
216 	rb = sis->swap_extent_root.rb_node;
217 	while (rb) {
218 		se = rb_entry(rb, struct swap_extent, rb_node);
219 		if (offset < se->start_page)
220 			rb = rb->rb_left;
221 		else if (offset >= se->start_page + se->nr_pages)
222 			rb = rb->rb_right;
223 		else
224 			return se;
225 	}
226 	/* It *must* be present */
227 	BUG();
228 }
229 
230 sector_t swap_page_sector(struct page *page)
231 {
232 	struct swap_info_struct *sis = page_swap_info(page);
233 	struct swap_extent *se;
234 	sector_t sector;
235 	pgoff_t offset;
236 
237 	offset = __page_file_index(page);
238 	se = offset_to_swap_extent(sis, offset);
239 	sector = se->start_block + (offset - se->start_page);
240 	return sector << (PAGE_SHIFT - 9);
241 }
242 
243 /*
244  * swap allocation tell device that a cluster of swap can now be discarded,
245  * to allow the swap device to optimize its wear-levelling.
246  */
247 static void discard_swap_cluster(struct swap_info_struct *si,
248 				 pgoff_t start_page, pgoff_t nr_pages)
249 {
250 	struct swap_extent *se = offset_to_swap_extent(si, start_page);
251 
252 	while (nr_pages) {
253 		pgoff_t offset = start_page - se->start_page;
254 		sector_t start_block = se->start_block + offset;
255 		sector_t nr_blocks = se->nr_pages - offset;
256 
257 		if (nr_blocks > nr_pages)
258 			nr_blocks = nr_pages;
259 		start_page += nr_blocks;
260 		nr_pages -= nr_blocks;
261 
262 		start_block <<= PAGE_SHIFT - 9;
263 		nr_blocks <<= PAGE_SHIFT - 9;
264 		if (blkdev_issue_discard(si->bdev, start_block,
265 					nr_blocks, GFP_NOIO))
266 			break;
267 
268 		se = next_se(se);
269 	}
270 }
271 
272 #ifdef CONFIG_THP_SWAP
273 #define SWAPFILE_CLUSTER	HPAGE_PMD_NR
274 
275 #define swap_entry_size(size)	(size)
276 #else
277 #define SWAPFILE_CLUSTER	256
278 
279 /*
280  * Define swap_entry_size() as constant to let compiler to optimize
281  * out some code if !CONFIG_THP_SWAP
282  */
283 #define swap_entry_size(size)	1
284 #endif
285 #define LATENCY_LIMIT		256
286 
287 static inline void cluster_set_flag(struct swap_cluster_info *info,
288 	unsigned int flag)
289 {
290 	info->flags = flag;
291 }
292 
293 static inline unsigned int cluster_count(struct swap_cluster_info *info)
294 {
295 	return info->data;
296 }
297 
298 static inline void cluster_set_count(struct swap_cluster_info *info,
299 				     unsigned int c)
300 {
301 	info->data = c;
302 }
303 
304 static inline void cluster_set_count_flag(struct swap_cluster_info *info,
305 					 unsigned int c, unsigned int f)
306 {
307 	info->flags = f;
308 	info->data = c;
309 }
310 
311 static inline unsigned int cluster_next(struct swap_cluster_info *info)
312 {
313 	return info->data;
314 }
315 
316 static inline void cluster_set_next(struct swap_cluster_info *info,
317 				    unsigned int n)
318 {
319 	info->data = n;
320 }
321 
322 static inline void cluster_set_next_flag(struct swap_cluster_info *info,
323 					 unsigned int n, unsigned int f)
324 {
325 	info->flags = f;
326 	info->data = n;
327 }
328 
329 static inline bool cluster_is_free(struct swap_cluster_info *info)
330 {
331 	return info->flags & CLUSTER_FLAG_FREE;
332 }
333 
334 static inline bool cluster_is_null(struct swap_cluster_info *info)
335 {
336 	return info->flags & CLUSTER_FLAG_NEXT_NULL;
337 }
338 
339 static inline void cluster_set_null(struct swap_cluster_info *info)
340 {
341 	info->flags = CLUSTER_FLAG_NEXT_NULL;
342 	info->data = 0;
343 }
344 
345 static inline bool cluster_is_huge(struct swap_cluster_info *info)
346 {
347 	if (IS_ENABLED(CONFIG_THP_SWAP))
348 		return info->flags & CLUSTER_FLAG_HUGE;
349 	return false;
350 }
351 
352 static inline void cluster_clear_huge(struct swap_cluster_info *info)
353 {
354 	info->flags &= ~CLUSTER_FLAG_HUGE;
355 }
356 
357 static inline struct swap_cluster_info *lock_cluster(struct swap_info_struct *si,
358 						     unsigned long offset)
359 {
360 	struct swap_cluster_info *ci;
361 
362 	ci = si->cluster_info;
363 	if (ci) {
364 		ci += offset / SWAPFILE_CLUSTER;
365 		spin_lock(&ci->lock);
366 	}
367 	return ci;
368 }
369 
370 static inline void unlock_cluster(struct swap_cluster_info *ci)
371 {
372 	if (ci)
373 		spin_unlock(&ci->lock);
374 }
375 
376 /*
377  * Determine the locking method in use for this device.  Return
378  * swap_cluster_info if SSD-style cluster-based locking is in place.
379  */
380 static inline struct swap_cluster_info *lock_cluster_or_swap_info(
381 		struct swap_info_struct *si, unsigned long offset)
382 {
383 	struct swap_cluster_info *ci;
384 
385 	/* Try to use fine-grained SSD-style locking if available: */
386 	ci = lock_cluster(si, offset);
387 	/* Otherwise, fall back to traditional, coarse locking: */
388 	if (!ci)
389 		spin_lock(&si->lock);
390 
391 	return ci;
392 }
393 
394 static inline void unlock_cluster_or_swap_info(struct swap_info_struct *si,
395 					       struct swap_cluster_info *ci)
396 {
397 	if (ci)
398 		unlock_cluster(ci);
399 	else
400 		spin_unlock(&si->lock);
401 }
402 
403 static inline bool cluster_list_empty(struct swap_cluster_list *list)
404 {
405 	return cluster_is_null(&list->head);
406 }
407 
408 static inline unsigned int cluster_list_first(struct swap_cluster_list *list)
409 {
410 	return cluster_next(&list->head);
411 }
412 
413 static void cluster_list_init(struct swap_cluster_list *list)
414 {
415 	cluster_set_null(&list->head);
416 	cluster_set_null(&list->tail);
417 }
418 
419 static void cluster_list_add_tail(struct swap_cluster_list *list,
420 				  struct swap_cluster_info *ci,
421 				  unsigned int idx)
422 {
423 	if (cluster_list_empty(list)) {
424 		cluster_set_next_flag(&list->head, idx, 0);
425 		cluster_set_next_flag(&list->tail, idx, 0);
426 	} else {
427 		struct swap_cluster_info *ci_tail;
428 		unsigned int tail = cluster_next(&list->tail);
429 
430 		/*
431 		 * Nested cluster lock, but both cluster locks are
432 		 * only acquired when we held swap_info_struct->lock
433 		 */
434 		ci_tail = ci + tail;
435 		spin_lock_nested(&ci_tail->lock, SINGLE_DEPTH_NESTING);
436 		cluster_set_next(ci_tail, idx);
437 		spin_unlock(&ci_tail->lock);
438 		cluster_set_next_flag(&list->tail, idx, 0);
439 	}
440 }
441 
442 static unsigned int cluster_list_del_first(struct swap_cluster_list *list,
443 					   struct swap_cluster_info *ci)
444 {
445 	unsigned int idx;
446 
447 	idx = cluster_next(&list->head);
448 	if (cluster_next(&list->tail) == idx) {
449 		cluster_set_null(&list->head);
450 		cluster_set_null(&list->tail);
451 	} else
452 		cluster_set_next_flag(&list->head,
453 				      cluster_next(&ci[idx]), 0);
454 
455 	return idx;
456 }
457 
458 /* Add a cluster to discard list and schedule it to do discard */
459 static void swap_cluster_schedule_discard(struct swap_info_struct *si,
460 		unsigned int idx)
461 {
462 	/*
463 	 * If scan_swap_map_slots() can't find a free cluster, it will check
464 	 * si->swap_map directly. To make sure the discarding cluster isn't
465 	 * taken by scan_swap_map_slots(), mark the swap entries bad (occupied).
466 	 * It will be cleared after discard
467 	 */
468 	memset(si->swap_map + idx * SWAPFILE_CLUSTER,
469 			SWAP_MAP_BAD, SWAPFILE_CLUSTER);
470 
471 	cluster_list_add_tail(&si->discard_clusters, si->cluster_info, idx);
472 
473 	schedule_work(&si->discard_work);
474 }
475 
476 static void __free_cluster(struct swap_info_struct *si, unsigned long idx)
477 {
478 	struct swap_cluster_info *ci = si->cluster_info;
479 
480 	cluster_set_flag(ci + idx, CLUSTER_FLAG_FREE);
481 	cluster_list_add_tail(&si->free_clusters, ci, idx);
482 }
483 
484 /*
485  * Doing discard actually. After a cluster discard is finished, the cluster
486  * will be added to free cluster list. caller should hold si->lock.
487 */
488 static void swap_do_scheduled_discard(struct swap_info_struct *si)
489 {
490 	struct swap_cluster_info *info, *ci;
491 	unsigned int idx;
492 
493 	info = si->cluster_info;
494 
495 	while (!cluster_list_empty(&si->discard_clusters)) {
496 		idx = cluster_list_del_first(&si->discard_clusters, info);
497 		spin_unlock(&si->lock);
498 
499 		discard_swap_cluster(si, idx * SWAPFILE_CLUSTER,
500 				SWAPFILE_CLUSTER);
501 
502 		spin_lock(&si->lock);
503 		ci = lock_cluster(si, idx * SWAPFILE_CLUSTER);
504 		__free_cluster(si, idx);
505 		memset(si->swap_map + idx * SWAPFILE_CLUSTER,
506 				0, SWAPFILE_CLUSTER);
507 		unlock_cluster(ci);
508 	}
509 }
510 
511 static void swap_discard_work(struct work_struct *work)
512 {
513 	struct swap_info_struct *si;
514 
515 	si = container_of(work, struct swap_info_struct, discard_work);
516 
517 	spin_lock(&si->lock);
518 	swap_do_scheduled_discard(si);
519 	spin_unlock(&si->lock);
520 }
521 
522 static void swap_users_ref_free(struct percpu_ref *ref)
523 {
524 	struct swap_info_struct *si;
525 
526 	si = container_of(ref, struct swap_info_struct, users);
527 	complete(&si->comp);
528 }
529 
530 static void alloc_cluster(struct swap_info_struct *si, unsigned long idx)
531 {
532 	struct swap_cluster_info *ci = si->cluster_info;
533 
534 	VM_BUG_ON(cluster_list_first(&si->free_clusters) != idx);
535 	cluster_list_del_first(&si->free_clusters, ci);
536 	cluster_set_count_flag(ci + idx, 0, 0);
537 }
538 
539 static void free_cluster(struct swap_info_struct *si, unsigned long idx)
540 {
541 	struct swap_cluster_info *ci = si->cluster_info + idx;
542 
543 	VM_BUG_ON(cluster_count(ci) != 0);
544 	/*
545 	 * If the swap is discardable, prepare discard the cluster
546 	 * instead of free it immediately. The cluster will be freed
547 	 * after discard.
548 	 */
549 	if ((si->flags & (SWP_WRITEOK | SWP_PAGE_DISCARD)) ==
550 	    (SWP_WRITEOK | SWP_PAGE_DISCARD)) {
551 		swap_cluster_schedule_discard(si, idx);
552 		return;
553 	}
554 
555 	__free_cluster(si, idx);
556 }
557 
558 /*
559  * The cluster corresponding to page_nr will be used. The cluster will be
560  * removed from free cluster list and its usage counter will be increased.
561  */
562 static void inc_cluster_info_page(struct swap_info_struct *p,
563 	struct swap_cluster_info *cluster_info, unsigned long page_nr)
564 {
565 	unsigned long idx = page_nr / SWAPFILE_CLUSTER;
566 
567 	if (!cluster_info)
568 		return;
569 	if (cluster_is_free(&cluster_info[idx]))
570 		alloc_cluster(p, idx);
571 
572 	VM_BUG_ON(cluster_count(&cluster_info[idx]) >= SWAPFILE_CLUSTER);
573 	cluster_set_count(&cluster_info[idx],
574 		cluster_count(&cluster_info[idx]) + 1);
575 }
576 
577 /*
578  * The cluster corresponding to page_nr decreases one usage. If the usage
579  * counter becomes 0, which means no page in the cluster is in using, we can
580  * optionally discard the cluster and add it to free cluster list.
581  */
582 static void dec_cluster_info_page(struct swap_info_struct *p,
583 	struct swap_cluster_info *cluster_info, unsigned long page_nr)
584 {
585 	unsigned long idx = page_nr / SWAPFILE_CLUSTER;
586 
587 	if (!cluster_info)
588 		return;
589 
590 	VM_BUG_ON(cluster_count(&cluster_info[idx]) == 0);
591 	cluster_set_count(&cluster_info[idx],
592 		cluster_count(&cluster_info[idx]) - 1);
593 
594 	if (cluster_count(&cluster_info[idx]) == 0)
595 		free_cluster(p, idx);
596 }
597 
598 /*
599  * It's possible scan_swap_map_slots() uses a free cluster in the middle of free
600  * cluster list. Avoiding such abuse to avoid list corruption.
601  */
602 static bool
603 scan_swap_map_ssd_cluster_conflict(struct swap_info_struct *si,
604 	unsigned long offset)
605 {
606 	struct percpu_cluster *percpu_cluster;
607 	bool conflict;
608 
609 	offset /= SWAPFILE_CLUSTER;
610 	conflict = !cluster_list_empty(&si->free_clusters) &&
611 		offset != cluster_list_first(&si->free_clusters) &&
612 		cluster_is_free(&si->cluster_info[offset]);
613 
614 	if (!conflict)
615 		return false;
616 
617 	percpu_cluster = this_cpu_ptr(si->percpu_cluster);
618 	cluster_set_null(&percpu_cluster->index);
619 	return true;
620 }
621 
622 /*
623  * Try to get a swap entry from current cpu's swap entry pool (a cluster). This
624  * might involve allocating a new cluster for current CPU too.
625  */
626 static bool scan_swap_map_try_ssd_cluster(struct swap_info_struct *si,
627 	unsigned long *offset, unsigned long *scan_base)
628 {
629 	struct percpu_cluster *cluster;
630 	struct swap_cluster_info *ci;
631 	unsigned long tmp, max;
632 
633 new_cluster:
634 	cluster = this_cpu_ptr(si->percpu_cluster);
635 	if (cluster_is_null(&cluster->index)) {
636 		if (!cluster_list_empty(&si->free_clusters)) {
637 			cluster->index = si->free_clusters.head;
638 			cluster->next = cluster_next(&cluster->index) *
639 					SWAPFILE_CLUSTER;
640 		} else if (!cluster_list_empty(&si->discard_clusters)) {
641 			/*
642 			 * we don't have free cluster but have some clusters in
643 			 * discarding, do discard now and reclaim them, then
644 			 * reread cluster_next_cpu since we dropped si->lock
645 			 */
646 			swap_do_scheduled_discard(si);
647 			*scan_base = this_cpu_read(*si->cluster_next_cpu);
648 			*offset = *scan_base;
649 			goto new_cluster;
650 		} else
651 			return false;
652 	}
653 
654 	/*
655 	 * Other CPUs can use our cluster if they can't find a free cluster,
656 	 * check if there is still free entry in the cluster
657 	 */
658 	tmp = cluster->next;
659 	max = min_t(unsigned long, si->max,
660 		    (cluster_next(&cluster->index) + 1) * SWAPFILE_CLUSTER);
661 	if (tmp < max) {
662 		ci = lock_cluster(si, tmp);
663 		while (tmp < max) {
664 			if (!si->swap_map[tmp])
665 				break;
666 			tmp++;
667 		}
668 		unlock_cluster(ci);
669 	}
670 	if (tmp >= max) {
671 		cluster_set_null(&cluster->index);
672 		goto new_cluster;
673 	}
674 	cluster->next = tmp + 1;
675 	*offset = tmp;
676 	*scan_base = tmp;
677 	return true;
678 }
679 
680 static void __del_from_avail_list(struct swap_info_struct *p)
681 {
682 	int nid;
683 
684 	assert_spin_locked(&p->lock);
685 	for_each_node(nid)
686 		plist_del(&p->avail_lists[nid], &swap_avail_heads[nid]);
687 }
688 
689 static void del_from_avail_list(struct swap_info_struct *p)
690 {
691 	spin_lock(&swap_avail_lock);
692 	__del_from_avail_list(p);
693 	spin_unlock(&swap_avail_lock);
694 }
695 
696 static void swap_range_alloc(struct swap_info_struct *si, unsigned long offset,
697 			     unsigned int nr_entries)
698 {
699 	unsigned int end = offset + nr_entries - 1;
700 
701 	if (offset == si->lowest_bit)
702 		si->lowest_bit += nr_entries;
703 	if (end == si->highest_bit)
704 		WRITE_ONCE(si->highest_bit, si->highest_bit - nr_entries);
705 	WRITE_ONCE(si->inuse_pages, si->inuse_pages + nr_entries);
706 	if (si->inuse_pages == si->pages) {
707 		si->lowest_bit = si->max;
708 		si->highest_bit = 0;
709 		del_from_avail_list(si);
710 	}
711 }
712 
713 static void add_to_avail_list(struct swap_info_struct *p)
714 {
715 	int nid;
716 
717 	spin_lock(&swap_avail_lock);
718 	for_each_node(nid)
719 		plist_add(&p->avail_lists[nid], &swap_avail_heads[nid]);
720 	spin_unlock(&swap_avail_lock);
721 }
722 
723 static void swap_range_free(struct swap_info_struct *si, unsigned long offset,
724 			    unsigned int nr_entries)
725 {
726 	unsigned long begin = offset;
727 	unsigned long end = offset + nr_entries - 1;
728 	void (*swap_slot_free_notify)(struct block_device *, unsigned long);
729 
730 	if (offset < si->lowest_bit)
731 		si->lowest_bit = offset;
732 	if (end > si->highest_bit) {
733 		bool was_full = !si->highest_bit;
734 
735 		WRITE_ONCE(si->highest_bit, end);
736 		if (was_full && (si->flags & SWP_WRITEOK))
737 			add_to_avail_list(si);
738 	}
739 	atomic_long_add(nr_entries, &nr_swap_pages);
740 	WRITE_ONCE(si->inuse_pages, si->inuse_pages - nr_entries);
741 	if (si->flags & SWP_BLKDEV)
742 		swap_slot_free_notify =
743 			si->bdev->bd_disk->fops->swap_slot_free_notify;
744 	else
745 		swap_slot_free_notify = NULL;
746 	while (offset <= end) {
747 		arch_swap_invalidate_page(si->type, offset);
748 		zswap_invalidate(si->type, offset);
749 		if (swap_slot_free_notify)
750 			swap_slot_free_notify(si->bdev, offset);
751 		offset++;
752 	}
753 	clear_shadow_from_swap_cache(si->type, begin, end);
754 }
755 
756 static void set_cluster_next(struct swap_info_struct *si, unsigned long next)
757 {
758 	unsigned long prev;
759 
760 	if (!(si->flags & SWP_SOLIDSTATE)) {
761 		si->cluster_next = next;
762 		return;
763 	}
764 
765 	prev = this_cpu_read(*si->cluster_next_cpu);
766 	/*
767 	 * Cross the swap address space size aligned trunk, choose
768 	 * another trunk randomly to avoid lock contention on swap
769 	 * address space if possible.
770 	 */
771 	if ((prev >> SWAP_ADDRESS_SPACE_SHIFT) !=
772 	    (next >> SWAP_ADDRESS_SPACE_SHIFT)) {
773 		/* No free swap slots available */
774 		if (si->highest_bit <= si->lowest_bit)
775 			return;
776 		next = get_random_u32_inclusive(si->lowest_bit, si->highest_bit);
777 		next = ALIGN_DOWN(next, SWAP_ADDRESS_SPACE_PAGES);
778 		next = max_t(unsigned int, next, si->lowest_bit);
779 	}
780 	this_cpu_write(*si->cluster_next_cpu, next);
781 }
782 
783 static bool swap_offset_available_and_locked(struct swap_info_struct *si,
784 					     unsigned long offset)
785 {
786 	if (data_race(!si->swap_map[offset])) {
787 		spin_lock(&si->lock);
788 		return true;
789 	}
790 
791 	if (vm_swap_full() && READ_ONCE(si->swap_map[offset]) == SWAP_HAS_CACHE) {
792 		spin_lock(&si->lock);
793 		return true;
794 	}
795 
796 	return false;
797 }
798 
799 static int scan_swap_map_slots(struct swap_info_struct *si,
800 			       unsigned char usage, int nr,
801 			       swp_entry_t slots[])
802 {
803 	struct swap_cluster_info *ci;
804 	unsigned long offset;
805 	unsigned long scan_base;
806 	unsigned long last_in_cluster = 0;
807 	int latency_ration = LATENCY_LIMIT;
808 	int n_ret = 0;
809 	bool scanned_many = false;
810 
811 	/*
812 	 * We try to cluster swap pages by allocating them sequentially
813 	 * in swap.  Once we've allocated SWAPFILE_CLUSTER pages this
814 	 * way, however, we resort to first-free allocation, starting
815 	 * a new cluster.  This prevents us from scattering swap pages
816 	 * all over the entire swap partition, so that we reduce
817 	 * overall disk seek times between swap pages.  -- sct
818 	 * But we do now try to find an empty cluster.  -Andrea
819 	 * And we let swap pages go all over an SSD partition.  Hugh
820 	 */
821 
822 	si->flags += SWP_SCANNING;
823 	/*
824 	 * Use percpu scan base for SSD to reduce lock contention on
825 	 * cluster and swap cache.  For HDD, sequential access is more
826 	 * important.
827 	 */
828 	if (si->flags & SWP_SOLIDSTATE)
829 		scan_base = this_cpu_read(*si->cluster_next_cpu);
830 	else
831 		scan_base = si->cluster_next;
832 	offset = scan_base;
833 
834 	/* SSD algorithm */
835 	if (si->cluster_info) {
836 		if (!scan_swap_map_try_ssd_cluster(si, &offset, &scan_base))
837 			goto scan;
838 	} else if (unlikely(!si->cluster_nr--)) {
839 		if (si->pages - si->inuse_pages < SWAPFILE_CLUSTER) {
840 			si->cluster_nr = SWAPFILE_CLUSTER - 1;
841 			goto checks;
842 		}
843 
844 		spin_unlock(&si->lock);
845 
846 		/*
847 		 * If seek is expensive, start searching for new cluster from
848 		 * start of partition, to minimize the span of allocated swap.
849 		 * If seek is cheap, that is the SWP_SOLIDSTATE si->cluster_info
850 		 * case, just handled by scan_swap_map_try_ssd_cluster() above.
851 		 */
852 		scan_base = offset = si->lowest_bit;
853 		last_in_cluster = offset + SWAPFILE_CLUSTER - 1;
854 
855 		/* Locate the first empty (unaligned) cluster */
856 		for (; last_in_cluster <= si->highest_bit; offset++) {
857 			if (si->swap_map[offset])
858 				last_in_cluster = offset + SWAPFILE_CLUSTER;
859 			else if (offset == last_in_cluster) {
860 				spin_lock(&si->lock);
861 				offset -= SWAPFILE_CLUSTER - 1;
862 				si->cluster_next = offset;
863 				si->cluster_nr = SWAPFILE_CLUSTER - 1;
864 				goto checks;
865 			}
866 			if (unlikely(--latency_ration < 0)) {
867 				cond_resched();
868 				latency_ration = LATENCY_LIMIT;
869 			}
870 		}
871 
872 		offset = scan_base;
873 		spin_lock(&si->lock);
874 		si->cluster_nr = SWAPFILE_CLUSTER - 1;
875 	}
876 
877 checks:
878 	if (si->cluster_info) {
879 		while (scan_swap_map_ssd_cluster_conflict(si, offset)) {
880 		/* take a break if we already got some slots */
881 			if (n_ret)
882 				goto done;
883 			if (!scan_swap_map_try_ssd_cluster(si, &offset,
884 							&scan_base))
885 				goto scan;
886 		}
887 	}
888 	if (!(si->flags & SWP_WRITEOK))
889 		goto no_page;
890 	if (!si->highest_bit)
891 		goto no_page;
892 	if (offset > si->highest_bit)
893 		scan_base = offset = si->lowest_bit;
894 
895 	ci = lock_cluster(si, offset);
896 	/* reuse swap entry of cache-only swap if not busy. */
897 	if (vm_swap_full() && si->swap_map[offset] == SWAP_HAS_CACHE) {
898 		int swap_was_freed;
899 		unlock_cluster(ci);
900 		spin_unlock(&si->lock);
901 		swap_was_freed = __try_to_reclaim_swap(si, offset, TTRS_ANYWAY);
902 		spin_lock(&si->lock);
903 		/* entry was freed successfully, try to use this again */
904 		if (swap_was_freed)
905 			goto checks;
906 		goto scan; /* check next one */
907 	}
908 
909 	if (si->swap_map[offset]) {
910 		unlock_cluster(ci);
911 		if (!n_ret)
912 			goto scan;
913 		else
914 			goto done;
915 	}
916 	WRITE_ONCE(si->swap_map[offset], usage);
917 	inc_cluster_info_page(si, si->cluster_info, offset);
918 	unlock_cluster(ci);
919 
920 	swap_range_alloc(si, offset, 1);
921 	slots[n_ret++] = swp_entry(si->type, offset);
922 
923 	/* got enough slots or reach max slots? */
924 	if ((n_ret == nr) || (offset >= si->highest_bit))
925 		goto done;
926 
927 	/* search for next available slot */
928 
929 	/* time to take a break? */
930 	if (unlikely(--latency_ration < 0)) {
931 		if (n_ret)
932 			goto done;
933 		spin_unlock(&si->lock);
934 		cond_resched();
935 		spin_lock(&si->lock);
936 		latency_ration = LATENCY_LIMIT;
937 	}
938 
939 	/* try to get more slots in cluster */
940 	if (si->cluster_info) {
941 		if (scan_swap_map_try_ssd_cluster(si, &offset, &scan_base))
942 			goto checks;
943 	} else if (si->cluster_nr && !si->swap_map[++offset]) {
944 		/* non-ssd case, still more slots in cluster? */
945 		--si->cluster_nr;
946 		goto checks;
947 	}
948 
949 	/*
950 	 * Even if there's no free clusters available (fragmented),
951 	 * try to scan a little more quickly with lock held unless we
952 	 * have scanned too many slots already.
953 	 */
954 	if (!scanned_many) {
955 		unsigned long scan_limit;
956 
957 		if (offset < scan_base)
958 			scan_limit = scan_base;
959 		else
960 			scan_limit = si->highest_bit;
961 		for (; offset <= scan_limit && --latency_ration > 0;
962 		     offset++) {
963 			if (!si->swap_map[offset])
964 				goto checks;
965 		}
966 	}
967 
968 done:
969 	set_cluster_next(si, offset + 1);
970 	si->flags -= SWP_SCANNING;
971 	return n_ret;
972 
973 scan:
974 	spin_unlock(&si->lock);
975 	while (++offset <= READ_ONCE(si->highest_bit)) {
976 		if (unlikely(--latency_ration < 0)) {
977 			cond_resched();
978 			latency_ration = LATENCY_LIMIT;
979 			scanned_many = true;
980 		}
981 		if (swap_offset_available_and_locked(si, offset))
982 			goto checks;
983 	}
984 	offset = si->lowest_bit;
985 	while (offset < scan_base) {
986 		if (unlikely(--latency_ration < 0)) {
987 			cond_resched();
988 			latency_ration = LATENCY_LIMIT;
989 			scanned_many = true;
990 		}
991 		if (swap_offset_available_and_locked(si, offset))
992 			goto checks;
993 		offset++;
994 	}
995 	spin_lock(&si->lock);
996 
997 no_page:
998 	si->flags -= SWP_SCANNING;
999 	return n_ret;
1000 }
1001 
1002 static int swap_alloc_cluster(struct swap_info_struct *si, swp_entry_t *slot)
1003 {
1004 	unsigned long idx;
1005 	struct swap_cluster_info *ci;
1006 	unsigned long offset;
1007 
1008 	/*
1009 	 * Should not even be attempting cluster allocations when huge
1010 	 * page swap is disabled.  Warn and fail the allocation.
1011 	 */
1012 	if (!IS_ENABLED(CONFIG_THP_SWAP)) {
1013 		VM_WARN_ON_ONCE(1);
1014 		return 0;
1015 	}
1016 
1017 	if (cluster_list_empty(&si->free_clusters))
1018 		return 0;
1019 
1020 	idx = cluster_list_first(&si->free_clusters);
1021 	offset = idx * SWAPFILE_CLUSTER;
1022 	ci = lock_cluster(si, offset);
1023 	alloc_cluster(si, idx);
1024 	cluster_set_count_flag(ci, SWAPFILE_CLUSTER, CLUSTER_FLAG_HUGE);
1025 
1026 	memset(si->swap_map + offset, SWAP_HAS_CACHE, SWAPFILE_CLUSTER);
1027 	unlock_cluster(ci);
1028 	swap_range_alloc(si, offset, SWAPFILE_CLUSTER);
1029 	*slot = swp_entry(si->type, offset);
1030 
1031 	return 1;
1032 }
1033 
1034 static void swap_free_cluster(struct swap_info_struct *si, unsigned long idx)
1035 {
1036 	unsigned long offset = idx * SWAPFILE_CLUSTER;
1037 	struct swap_cluster_info *ci;
1038 
1039 	ci = lock_cluster(si, offset);
1040 	memset(si->swap_map + offset, 0, SWAPFILE_CLUSTER);
1041 	cluster_set_count_flag(ci, 0, 0);
1042 	free_cluster(si, idx);
1043 	unlock_cluster(ci);
1044 	swap_range_free(si, offset, SWAPFILE_CLUSTER);
1045 }
1046 
1047 int get_swap_pages(int n_goal, swp_entry_t swp_entries[], int entry_size)
1048 {
1049 	unsigned long size = swap_entry_size(entry_size);
1050 	struct swap_info_struct *si, *next;
1051 	long avail_pgs;
1052 	int n_ret = 0;
1053 	int node;
1054 
1055 	/* Only single cluster request supported */
1056 	WARN_ON_ONCE(n_goal > 1 && size == SWAPFILE_CLUSTER);
1057 
1058 	spin_lock(&swap_avail_lock);
1059 
1060 	avail_pgs = atomic_long_read(&nr_swap_pages) / size;
1061 	if (avail_pgs <= 0) {
1062 		spin_unlock(&swap_avail_lock);
1063 		goto noswap;
1064 	}
1065 
1066 	n_goal = min3((long)n_goal, (long)SWAP_BATCH, avail_pgs);
1067 
1068 	atomic_long_sub(n_goal * size, &nr_swap_pages);
1069 
1070 start_over:
1071 	node = numa_node_id();
1072 	plist_for_each_entry_safe(si, next, &swap_avail_heads[node], avail_lists[node]) {
1073 		/* requeue si to after same-priority siblings */
1074 		plist_requeue(&si->avail_lists[node], &swap_avail_heads[node]);
1075 		spin_unlock(&swap_avail_lock);
1076 		spin_lock(&si->lock);
1077 		if (!si->highest_bit || !(si->flags & SWP_WRITEOK)) {
1078 			spin_lock(&swap_avail_lock);
1079 			if (plist_node_empty(&si->avail_lists[node])) {
1080 				spin_unlock(&si->lock);
1081 				goto nextsi;
1082 			}
1083 			WARN(!si->highest_bit,
1084 			     "swap_info %d in list but !highest_bit\n",
1085 			     si->type);
1086 			WARN(!(si->flags & SWP_WRITEOK),
1087 			     "swap_info %d in list but !SWP_WRITEOK\n",
1088 			     si->type);
1089 			__del_from_avail_list(si);
1090 			spin_unlock(&si->lock);
1091 			goto nextsi;
1092 		}
1093 		if (size == SWAPFILE_CLUSTER) {
1094 			if (si->flags & SWP_BLKDEV)
1095 				n_ret = swap_alloc_cluster(si, swp_entries);
1096 		} else
1097 			n_ret = scan_swap_map_slots(si, SWAP_HAS_CACHE,
1098 						    n_goal, swp_entries);
1099 		spin_unlock(&si->lock);
1100 		if (n_ret || size == SWAPFILE_CLUSTER)
1101 			goto check_out;
1102 		cond_resched();
1103 
1104 		spin_lock(&swap_avail_lock);
1105 nextsi:
1106 		/*
1107 		 * if we got here, it's likely that si was almost full before,
1108 		 * and since scan_swap_map_slots() can drop the si->lock,
1109 		 * multiple callers probably all tried to get a page from the
1110 		 * same si and it filled up before we could get one; or, the si
1111 		 * filled up between us dropping swap_avail_lock and taking
1112 		 * si->lock. Since we dropped the swap_avail_lock, the
1113 		 * swap_avail_head list may have been modified; so if next is
1114 		 * still in the swap_avail_head list then try it, otherwise
1115 		 * start over if we have not gotten any slots.
1116 		 */
1117 		if (plist_node_empty(&next->avail_lists[node]))
1118 			goto start_over;
1119 	}
1120 
1121 	spin_unlock(&swap_avail_lock);
1122 
1123 check_out:
1124 	if (n_ret < n_goal)
1125 		atomic_long_add((long)(n_goal - n_ret) * size,
1126 				&nr_swap_pages);
1127 noswap:
1128 	return n_ret;
1129 }
1130 
1131 static struct swap_info_struct *_swap_info_get(swp_entry_t entry)
1132 {
1133 	struct swap_info_struct *p;
1134 	unsigned long offset;
1135 
1136 	if (!entry.val)
1137 		goto out;
1138 	p = swp_swap_info(entry);
1139 	if (!p)
1140 		goto bad_nofile;
1141 	if (data_race(!(p->flags & SWP_USED)))
1142 		goto bad_device;
1143 	offset = swp_offset(entry);
1144 	if (offset >= p->max)
1145 		goto bad_offset;
1146 	if (data_race(!p->swap_map[swp_offset(entry)]))
1147 		goto bad_free;
1148 	return p;
1149 
1150 bad_free:
1151 	pr_err("%s: %s%08lx\n", __func__, Unused_offset, entry.val);
1152 	goto out;
1153 bad_offset:
1154 	pr_err("%s: %s%08lx\n", __func__, Bad_offset, entry.val);
1155 	goto out;
1156 bad_device:
1157 	pr_err("%s: %s%08lx\n", __func__, Unused_file, entry.val);
1158 	goto out;
1159 bad_nofile:
1160 	pr_err("%s: %s%08lx\n", __func__, Bad_file, entry.val);
1161 out:
1162 	return NULL;
1163 }
1164 
1165 static struct swap_info_struct *swap_info_get_cont(swp_entry_t entry,
1166 					struct swap_info_struct *q)
1167 {
1168 	struct swap_info_struct *p;
1169 
1170 	p = _swap_info_get(entry);
1171 
1172 	if (p != q) {
1173 		if (q != NULL)
1174 			spin_unlock(&q->lock);
1175 		if (p != NULL)
1176 			spin_lock(&p->lock);
1177 	}
1178 	return p;
1179 }
1180 
1181 static unsigned char __swap_entry_free_locked(struct swap_info_struct *p,
1182 					      unsigned long offset,
1183 					      unsigned char usage)
1184 {
1185 	unsigned char count;
1186 	unsigned char has_cache;
1187 
1188 	count = p->swap_map[offset];
1189 
1190 	has_cache = count & SWAP_HAS_CACHE;
1191 	count &= ~SWAP_HAS_CACHE;
1192 
1193 	if (usage == SWAP_HAS_CACHE) {
1194 		VM_BUG_ON(!has_cache);
1195 		has_cache = 0;
1196 	} else if (count == SWAP_MAP_SHMEM) {
1197 		/*
1198 		 * Or we could insist on shmem.c using a special
1199 		 * swap_shmem_free() and free_shmem_swap_and_cache()...
1200 		 */
1201 		count = 0;
1202 	} else if ((count & ~COUNT_CONTINUED) <= SWAP_MAP_MAX) {
1203 		if (count == COUNT_CONTINUED) {
1204 			if (swap_count_continued(p, offset, count))
1205 				count = SWAP_MAP_MAX | COUNT_CONTINUED;
1206 			else
1207 				count = SWAP_MAP_MAX;
1208 		} else
1209 			count--;
1210 	}
1211 
1212 	usage = count | has_cache;
1213 	if (usage)
1214 		WRITE_ONCE(p->swap_map[offset], usage);
1215 	else
1216 		WRITE_ONCE(p->swap_map[offset], SWAP_HAS_CACHE);
1217 
1218 	return usage;
1219 }
1220 
1221 /*
1222  * When we get a swap entry, if there aren't some other ways to
1223  * prevent swapoff, such as the folio in swap cache is locked, page
1224  * table lock is held, etc., the swap entry may become invalid because
1225  * of swapoff.  Then, we need to enclose all swap related functions
1226  * with get_swap_device() and put_swap_device(), unless the swap
1227  * functions call get/put_swap_device() by themselves.
1228  *
1229  * Note that when only holding the PTL, swapoff might succeed immediately
1230  * after freeing a swap entry. Therefore, immediately after
1231  * __swap_entry_free(), the swap info might become stale and should not
1232  * be touched without a prior get_swap_device().
1233  *
1234  * Check whether swap entry is valid in the swap device.  If so,
1235  * return pointer to swap_info_struct, and keep the swap entry valid
1236  * via preventing the swap device from being swapoff, until
1237  * put_swap_device() is called.  Otherwise return NULL.
1238  *
1239  * Notice that swapoff or swapoff+swapon can still happen before the
1240  * percpu_ref_tryget_live() in get_swap_device() or after the
1241  * percpu_ref_put() in put_swap_device() if there isn't any other way
1242  * to prevent swapoff.  The caller must be prepared for that.  For
1243  * example, the following situation is possible.
1244  *
1245  *   CPU1				CPU2
1246  *   do_swap_page()
1247  *     ...				swapoff+swapon
1248  *     __read_swap_cache_async()
1249  *       swapcache_prepare()
1250  *         __swap_duplicate()
1251  *           // check swap_map
1252  *     // verify PTE not changed
1253  *
1254  * In __swap_duplicate(), the swap_map need to be checked before
1255  * changing partly because the specified swap entry may be for another
1256  * swap device which has been swapoff.  And in do_swap_page(), after
1257  * the page is read from the swap device, the PTE is verified not
1258  * changed with the page table locked to check whether the swap device
1259  * has been swapoff or swapoff+swapon.
1260  */
1261 struct swap_info_struct *get_swap_device(swp_entry_t entry)
1262 {
1263 	struct swap_info_struct *si;
1264 	unsigned long offset;
1265 
1266 	if (!entry.val)
1267 		goto out;
1268 	si = swp_swap_info(entry);
1269 	if (!si)
1270 		goto bad_nofile;
1271 	if (!percpu_ref_tryget_live(&si->users))
1272 		goto out;
1273 	/*
1274 	 * Guarantee the si->users are checked before accessing other
1275 	 * fields of swap_info_struct.
1276 	 *
1277 	 * Paired with the spin_unlock() after setup_swap_info() in
1278 	 * enable_swap_info().
1279 	 */
1280 	smp_rmb();
1281 	offset = swp_offset(entry);
1282 	if (offset >= si->max)
1283 		goto put_out;
1284 
1285 	return si;
1286 bad_nofile:
1287 	pr_err("%s: %s%08lx\n", __func__, Bad_file, entry.val);
1288 out:
1289 	return NULL;
1290 put_out:
1291 	pr_err("%s: %s%08lx\n", __func__, Bad_offset, entry.val);
1292 	percpu_ref_put(&si->users);
1293 	return NULL;
1294 }
1295 
1296 static unsigned char __swap_entry_free(struct swap_info_struct *p,
1297 				       swp_entry_t entry)
1298 {
1299 	struct swap_cluster_info *ci;
1300 	unsigned long offset = swp_offset(entry);
1301 	unsigned char usage;
1302 
1303 	ci = lock_cluster_or_swap_info(p, offset);
1304 	usage = __swap_entry_free_locked(p, offset, 1);
1305 	unlock_cluster_or_swap_info(p, ci);
1306 	if (!usage)
1307 		free_swap_slot(entry);
1308 
1309 	return usage;
1310 }
1311 
1312 static void swap_entry_free(struct swap_info_struct *p, swp_entry_t entry)
1313 {
1314 	struct swap_cluster_info *ci;
1315 	unsigned long offset = swp_offset(entry);
1316 	unsigned char count;
1317 
1318 	ci = lock_cluster(p, offset);
1319 	count = p->swap_map[offset];
1320 	VM_BUG_ON(count != SWAP_HAS_CACHE);
1321 	p->swap_map[offset] = 0;
1322 	dec_cluster_info_page(p, p->cluster_info, offset);
1323 	unlock_cluster(ci);
1324 
1325 	mem_cgroup_uncharge_swap(entry, 1);
1326 	swap_range_free(p, offset, 1);
1327 }
1328 
1329 /*
1330  * Caller has made sure that the swap device corresponding to entry
1331  * is still around or has not been recycled.
1332  */
1333 void swap_free(swp_entry_t entry)
1334 {
1335 	struct swap_info_struct *p;
1336 
1337 	p = _swap_info_get(entry);
1338 	if (p)
1339 		__swap_entry_free(p, entry);
1340 }
1341 
1342 /*
1343  * Called after dropping swapcache to decrease refcnt to swap entries.
1344  */
1345 void put_swap_folio(struct folio *folio, swp_entry_t entry)
1346 {
1347 	unsigned long offset = swp_offset(entry);
1348 	unsigned long idx = offset / SWAPFILE_CLUSTER;
1349 	struct swap_cluster_info *ci;
1350 	struct swap_info_struct *si;
1351 	unsigned char *map;
1352 	unsigned int i, free_entries = 0;
1353 	unsigned char val;
1354 	int size = swap_entry_size(folio_nr_pages(folio));
1355 
1356 	si = _swap_info_get(entry);
1357 	if (!si)
1358 		return;
1359 
1360 	ci = lock_cluster_or_swap_info(si, offset);
1361 	if (size == SWAPFILE_CLUSTER) {
1362 		VM_BUG_ON(!cluster_is_huge(ci));
1363 		map = si->swap_map + offset;
1364 		for (i = 0; i < SWAPFILE_CLUSTER; i++) {
1365 			val = map[i];
1366 			VM_BUG_ON(!(val & SWAP_HAS_CACHE));
1367 			if (val == SWAP_HAS_CACHE)
1368 				free_entries++;
1369 		}
1370 		cluster_clear_huge(ci);
1371 		if (free_entries == SWAPFILE_CLUSTER) {
1372 			unlock_cluster_or_swap_info(si, ci);
1373 			spin_lock(&si->lock);
1374 			mem_cgroup_uncharge_swap(entry, SWAPFILE_CLUSTER);
1375 			swap_free_cluster(si, idx);
1376 			spin_unlock(&si->lock);
1377 			return;
1378 		}
1379 	}
1380 	for (i = 0; i < size; i++, entry.val++) {
1381 		if (!__swap_entry_free_locked(si, offset + i, SWAP_HAS_CACHE)) {
1382 			unlock_cluster_or_swap_info(si, ci);
1383 			free_swap_slot(entry);
1384 			if (i == size - 1)
1385 				return;
1386 			lock_cluster_or_swap_info(si, offset);
1387 		}
1388 	}
1389 	unlock_cluster_or_swap_info(si, ci);
1390 }
1391 
1392 #ifdef CONFIG_THP_SWAP
1393 int split_swap_cluster(swp_entry_t entry)
1394 {
1395 	struct swap_info_struct *si;
1396 	struct swap_cluster_info *ci;
1397 	unsigned long offset = swp_offset(entry);
1398 
1399 	si = _swap_info_get(entry);
1400 	if (!si)
1401 		return -EBUSY;
1402 	ci = lock_cluster(si, offset);
1403 	cluster_clear_huge(ci);
1404 	unlock_cluster(ci);
1405 	return 0;
1406 }
1407 #endif
1408 
1409 static int swp_entry_cmp(const void *ent1, const void *ent2)
1410 {
1411 	const swp_entry_t *e1 = ent1, *e2 = ent2;
1412 
1413 	return (int)swp_type(*e1) - (int)swp_type(*e2);
1414 }
1415 
1416 void swapcache_free_entries(swp_entry_t *entries, int n)
1417 {
1418 	struct swap_info_struct *p, *prev;
1419 	int i;
1420 
1421 	if (n <= 0)
1422 		return;
1423 
1424 	prev = NULL;
1425 	p = NULL;
1426 
1427 	/*
1428 	 * Sort swap entries by swap device, so each lock is only taken once.
1429 	 * nr_swapfiles isn't absolutely correct, but the overhead of sort() is
1430 	 * so low that it isn't necessary to optimize further.
1431 	 */
1432 	if (nr_swapfiles > 1)
1433 		sort(entries, n, sizeof(entries[0]), swp_entry_cmp, NULL);
1434 	for (i = 0; i < n; ++i) {
1435 		p = swap_info_get_cont(entries[i], prev);
1436 		if (p)
1437 			swap_entry_free(p, entries[i]);
1438 		prev = p;
1439 	}
1440 	if (p)
1441 		spin_unlock(&p->lock);
1442 }
1443 
1444 int __swap_count(swp_entry_t entry)
1445 {
1446 	struct swap_info_struct *si = swp_swap_info(entry);
1447 	pgoff_t offset = swp_offset(entry);
1448 
1449 	return swap_count(si->swap_map[offset]);
1450 }
1451 
1452 /*
1453  * How many references to @entry are currently swapped out?
1454  * This does not give an exact answer when swap count is continued,
1455  * but does include the high COUNT_CONTINUED flag to allow for that.
1456  */
1457 int swap_swapcount(struct swap_info_struct *si, swp_entry_t entry)
1458 {
1459 	pgoff_t offset = swp_offset(entry);
1460 	struct swap_cluster_info *ci;
1461 	int count;
1462 
1463 	ci = lock_cluster_or_swap_info(si, offset);
1464 	count = swap_count(si->swap_map[offset]);
1465 	unlock_cluster_or_swap_info(si, ci);
1466 	return count;
1467 }
1468 
1469 /*
1470  * How many references to @entry are currently swapped out?
1471  * This considers COUNT_CONTINUED so it returns exact answer.
1472  */
1473 int swp_swapcount(swp_entry_t entry)
1474 {
1475 	int count, tmp_count, n;
1476 	struct swap_info_struct *p;
1477 	struct swap_cluster_info *ci;
1478 	struct page *page;
1479 	pgoff_t offset;
1480 	unsigned char *map;
1481 
1482 	p = _swap_info_get(entry);
1483 	if (!p)
1484 		return 0;
1485 
1486 	offset = swp_offset(entry);
1487 
1488 	ci = lock_cluster_or_swap_info(p, offset);
1489 
1490 	count = swap_count(p->swap_map[offset]);
1491 	if (!(count & COUNT_CONTINUED))
1492 		goto out;
1493 
1494 	count &= ~COUNT_CONTINUED;
1495 	n = SWAP_MAP_MAX + 1;
1496 
1497 	page = vmalloc_to_page(p->swap_map + offset);
1498 	offset &= ~PAGE_MASK;
1499 	VM_BUG_ON(page_private(page) != SWP_CONTINUED);
1500 
1501 	do {
1502 		page = list_next_entry(page, lru);
1503 		map = kmap_atomic(page);
1504 		tmp_count = map[offset];
1505 		kunmap_atomic(map);
1506 
1507 		count += (tmp_count & ~COUNT_CONTINUED) * n;
1508 		n *= (SWAP_CONT_MAX + 1);
1509 	} while (tmp_count & COUNT_CONTINUED);
1510 out:
1511 	unlock_cluster_or_swap_info(p, ci);
1512 	return count;
1513 }
1514 
1515 static bool swap_page_trans_huge_swapped(struct swap_info_struct *si,
1516 					 swp_entry_t entry)
1517 {
1518 	struct swap_cluster_info *ci;
1519 	unsigned char *map = si->swap_map;
1520 	unsigned long roffset = swp_offset(entry);
1521 	unsigned long offset = round_down(roffset, SWAPFILE_CLUSTER);
1522 	int i;
1523 	bool ret = false;
1524 
1525 	ci = lock_cluster_or_swap_info(si, offset);
1526 	if (!ci || !cluster_is_huge(ci)) {
1527 		if (swap_count(map[roffset]))
1528 			ret = true;
1529 		goto unlock_out;
1530 	}
1531 	for (i = 0; i < SWAPFILE_CLUSTER; i++) {
1532 		if (swap_count(map[offset + i])) {
1533 			ret = true;
1534 			break;
1535 		}
1536 	}
1537 unlock_out:
1538 	unlock_cluster_or_swap_info(si, ci);
1539 	return ret;
1540 }
1541 
1542 static bool folio_swapped(struct folio *folio)
1543 {
1544 	swp_entry_t entry = folio->swap;
1545 	struct swap_info_struct *si = _swap_info_get(entry);
1546 
1547 	if (!si)
1548 		return false;
1549 
1550 	if (!IS_ENABLED(CONFIG_THP_SWAP) || likely(!folio_test_large(folio)))
1551 		return swap_swapcount(si, entry) != 0;
1552 
1553 	return swap_page_trans_huge_swapped(si, entry);
1554 }
1555 
1556 /**
1557  * folio_free_swap() - Free the swap space used for this folio.
1558  * @folio: The folio to remove.
1559  *
1560  * If swap is getting full, or if there are no more mappings of this folio,
1561  * then call folio_free_swap to free its swap space.
1562  *
1563  * Return: true if we were able to release the swap space.
1564  */
1565 bool folio_free_swap(struct folio *folio)
1566 {
1567 	VM_BUG_ON_FOLIO(!folio_test_locked(folio), folio);
1568 
1569 	if (!folio_test_swapcache(folio))
1570 		return false;
1571 	if (folio_test_writeback(folio))
1572 		return false;
1573 	if (folio_swapped(folio))
1574 		return false;
1575 
1576 	/*
1577 	 * Once hibernation has begun to create its image of memory,
1578 	 * there's a danger that one of the calls to folio_free_swap()
1579 	 * - most probably a call from __try_to_reclaim_swap() while
1580 	 * hibernation is allocating its own swap pages for the image,
1581 	 * but conceivably even a call from memory reclaim - will free
1582 	 * the swap from a folio which has already been recorded in the
1583 	 * image as a clean swapcache folio, and then reuse its swap for
1584 	 * another page of the image.  On waking from hibernation, the
1585 	 * original folio might be freed under memory pressure, then
1586 	 * later read back in from swap, now with the wrong data.
1587 	 *
1588 	 * Hibernation suspends storage while it is writing the image
1589 	 * to disk so check that here.
1590 	 */
1591 	if (pm_suspended_storage())
1592 		return false;
1593 
1594 	delete_from_swap_cache(folio);
1595 	folio_set_dirty(folio);
1596 	return true;
1597 }
1598 
1599 /*
1600  * Free the swap entry like above, but also try to
1601  * free the page cache entry if it is the last user.
1602  */
1603 int free_swap_and_cache(swp_entry_t entry)
1604 {
1605 	struct swap_info_struct *p;
1606 	unsigned char count;
1607 
1608 	if (non_swap_entry(entry))
1609 		return 1;
1610 
1611 	p = get_swap_device(entry);
1612 	if (p) {
1613 		if (WARN_ON(data_race(!p->swap_map[swp_offset(entry)]))) {
1614 			put_swap_device(p);
1615 			return 0;
1616 		}
1617 
1618 		count = __swap_entry_free(p, entry);
1619 		if (count == SWAP_HAS_CACHE &&
1620 		    !swap_page_trans_huge_swapped(p, entry))
1621 			__try_to_reclaim_swap(p, swp_offset(entry),
1622 					      TTRS_UNMAPPED | TTRS_FULL);
1623 		put_swap_device(p);
1624 	}
1625 	return p != NULL;
1626 }
1627 
1628 #ifdef CONFIG_HIBERNATION
1629 
1630 swp_entry_t get_swap_page_of_type(int type)
1631 {
1632 	struct swap_info_struct *si = swap_type_to_swap_info(type);
1633 	swp_entry_t entry = {0};
1634 
1635 	if (!si)
1636 		goto fail;
1637 
1638 	/* This is called for allocating swap entry, not cache */
1639 	spin_lock(&si->lock);
1640 	if ((si->flags & SWP_WRITEOK) && scan_swap_map_slots(si, 1, 1, &entry))
1641 		atomic_long_dec(&nr_swap_pages);
1642 	spin_unlock(&si->lock);
1643 fail:
1644 	return entry;
1645 }
1646 
1647 /*
1648  * Find the swap type that corresponds to given device (if any).
1649  *
1650  * @offset - number of the PAGE_SIZE-sized block of the device, starting
1651  * from 0, in which the swap header is expected to be located.
1652  *
1653  * This is needed for the suspend to disk (aka swsusp).
1654  */
1655 int swap_type_of(dev_t device, sector_t offset)
1656 {
1657 	int type;
1658 
1659 	if (!device)
1660 		return -1;
1661 
1662 	spin_lock(&swap_lock);
1663 	for (type = 0; type < nr_swapfiles; type++) {
1664 		struct swap_info_struct *sis = swap_info[type];
1665 
1666 		if (!(sis->flags & SWP_WRITEOK))
1667 			continue;
1668 
1669 		if (device == sis->bdev->bd_dev) {
1670 			struct swap_extent *se = first_se(sis);
1671 
1672 			if (se->start_block == offset) {
1673 				spin_unlock(&swap_lock);
1674 				return type;
1675 			}
1676 		}
1677 	}
1678 	spin_unlock(&swap_lock);
1679 	return -ENODEV;
1680 }
1681 
1682 int find_first_swap(dev_t *device)
1683 {
1684 	int type;
1685 
1686 	spin_lock(&swap_lock);
1687 	for (type = 0; type < nr_swapfiles; type++) {
1688 		struct swap_info_struct *sis = swap_info[type];
1689 
1690 		if (!(sis->flags & SWP_WRITEOK))
1691 			continue;
1692 		*device = sis->bdev->bd_dev;
1693 		spin_unlock(&swap_lock);
1694 		return type;
1695 	}
1696 	spin_unlock(&swap_lock);
1697 	return -ENODEV;
1698 }
1699 
1700 /*
1701  * Get the (PAGE_SIZE) block corresponding to given offset on the swapdev
1702  * corresponding to given index in swap_info (swap type).
1703  */
1704 sector_t swapdev_block(int type, pgoff_t offset)
1705 {
1706 	struct swap_info_struct *si = swap_type_to_swap_info(type);
1707 	struct swap_extent *se;
1708 
1709 	if (!si || !(si->flags & SWP_WRITEOK))
1710 		return 0;
1711 	se = offset_to_swap_extent(si, offset);
1712 	return se->start_block + (offset - se->start_page);
1713 }
1714 
1715 /*
1716  * Return either the total number of swap pages of given type, or the number
1717  * of free pages of that type (depending on @free)
1718  *
1719  * This is needed for software suspend
1720  */
1721 unsigned int count_swap_pages(int type, int free)
1722 {
1723 	unsigned int n = 0;
1724 
1725 	spin_lock(&swap_lock);
1726 	if ((unsigned int)type < nr_swapfiles) {
1727 		struct swap_info_struct *sis = swap_info[type];
1728 
1729 		spin_lock(&sis->lock);
1730 		if (sis->flags & SWP_WRITEOK) {
1731 			n = sis->pages;
1732 			if (free)
1733 				n -= sis->inuse_pages;
1734 		}
1735 		spin_unlock(&sis->lock);
1736 	}
1737 	spin_unlock(&swap_lock);
1738 	return n;
1739 }
1740 #endif /* CONFIG_HIBERNATION */
1741 
1742 static inline int pte_same_as_swp(pte_t pte, pte_t swp_pte)
1743 {
1744 	return pte_same(pte_swp_clear_flags(pte), swp_pte);
1745 }
1746 
1747 /*
1748  * No need to decide whether this PTE shares the swap entry with others,
1749  * just let do_wp_page work it out if a write is requested later - to
1750  * force COW, vm_page_prot omits write permission from any private vma.
1751  */
1752 static int unuse_pte(struct vm_area_struct *vma, pmd_t *pmd,
1753 		unsigned long addr, swp_entry_t entry, struct folio *folio)
1754 {
1755 	struct page *page = folio_file_page(folio, swp_offset(entry));
1756 	struct page *swapcache;
1757 	spinlock_t *ptl;
1758 	pte_t *pte, new_pte, old_pte;
1759 	bool hwpoisoned = PageHWPoison(page);
1760 	int ret = 1;
1761 
1762 	swapcache = page;
1763 	page = ksm_might_need_to_copy(page, vma, addr);
1764 	if (unlikely(!page))
1765 		return -ENOMEM;
1766 	else if (unlikely(PTR_ERR(page) == -EHWPOISON))
1767 		hwpoisoned = true;
1768 
1769 	pte = pte_offset_map_lock(vma->vm_mm, pmd, addr, &ptl);
1770 	if (unlikely(!pte || !pte_same_as_swp(ptep_get(pte),
1771 						swp_entry_to_pte(entry)))) {
1772 		ret = 0;
1773 		goto out;
1774 	}
1775 
1776 	old_pte = ptep_get(pte);
1777 
1778 	if (unlikely(hwpoisoned || !PageUptodate(page))) {
1779 		swp_entry_t swp_entry;
1780 
1781 		dec_mm_counter(vma->vm_mm, MM_SWAPENTS);
1782 		if (hwpoisoned) {
1783 			swp_entry = make_hwpoison_entry(swapcache);
1784 			page = swapcache;
1785 		} else {
1786 			swp_entry = make_poisoned_swp_entry();
1787 		}
1788 		new_pte = swp_entry_to_pte(swp_entry);
1789 		ret = 0;
1790 		goto setpte;
1791 	}
1792 
1793 	/*
1794 	 * Some architectures may have to restore extra metadata to the page
1795 	 * when reading from swap. This metadata may be indexed by swap entry
1796 	 * so this must be called before swap_free().
1797 	 */
1798 	arch_swap_restore(entry, page_folio(page));
1799 
1800 	/* See do_swap_page() */
1801 	BUG_ON(!PageAnon(page) && PageMappedToDisk(page));
1802 	BUG_ON(PageAnon(page) && PageAnonExclusive(page));
1803 
1804 	dec_mm_counter(vma->vm_mm, MM_SWAPENTS);
1805 	inc_mm_counter(vma->vm_mm, MM_ANONPAGES);
1806 	get_page(page);
1807 	if (page == swapcache) {
1808 		rmap_t rmap_flags = RMAP_NONE;
1809 
1810 		/*
1811 		 * See do_swap_page(): PageWriteback() would be problematic.
1812 		 * However, we do a wait_on_page_writeback() just before this
1813 		 * call and have the page locked.
1814 		 */
1815 		VM_BUG_ON_PAGE(PageWriteback(page), page);
1816 		if (pte_swp_exclusive(old_pte))
1817 			rmap_flags |= RMAP_EXCLUSIVE;
1818 
1819 		page_add_anon_rmap(page, vma, addr, rmap_flags);
1820 	} else { /* ksm created a completely new copy */
1821 		page_add_new_anon_rmap(page, vma, addr);
1822 		lru_cache_add_inactive_or_unevictable(page, vma);
1823 	}
1824 	new_pte = pte_mkold(mk_pte(page, vma->vm_page_prot));
1825 	if (pte_swp_soft_dirty(old_pte))
1826 		new_pte = pte_mksoft_dirty(new_pte);
1827 	if (pte_swp_uffd_wp(old_pte))
1828 		new_pte = pte_mkuffd_wp(new_pte);
1829 setpte:
1830 	set_pte_at(vma->vm_mm, addr, pte, new_pte);
1831 	swap_free(entry);
1832 out:
1833 	if (pte)
1834 		pte_unmap_unlock(pte, ptl);
1835 	if (page != swapcache) {
1836 		unlock_page(page);
1837 		put_page(page);
1838 	}
1839 	return ret;
1840 }
1841 
1842 static int unuse_pte_range(struct vm_area_struct *vma, pmd_t *pmd,
1843 			unsigned long addr, unsigned long end,
1844 			unsigned int type)
1845 {
1846 	pte_t *pte = NULL;
1847 	struct swap_info_struct *si;
1848 
1849 	si = swap_info[type];
1850 	do {
1851 		struct folio *folio;
1852 		unsigned long offset;
1853 		unsigned char swp_count;
1854 		swp_entry_t entry;
1855 		int ret;
1856 		pte_t ptent;
1857 
1858 		if (!pte++) {
1859 			pte = pte_offset_map(pmd, addr);
1860 			if (!pte)
1861 				break;
1862 		}
1863 
1864 		ptent = ptep_get_lockless(pte);
1865 
1866 		if (!is_swap_pte(ptent))
1867 			continue;
1868 
1869 		entry = pte_to_swp_entry(ptent);
1870 		if (swp_type(entry) != type)
1871 			continue;
1872 
1873 		offset = swp_offset(entry);
1874 		pte_unmap(pte);
1875 		pte = NULL;
1876 
1877 		folio = swap_cache_get_folio(entry, vma, addr);
1878 		if (!folio) {
1879 			struct page *page;
1880 			struct vm_fault vmf = {
1881 				.vma = vma,
1882 				.address = addr,
1883 				.real_address = addr,
1884 				.pmd = pmd,
1885 			};
1886 
1887 			page = swapin_readahead(entry, GFP_HIGHUSER_MOVABLE,
1888 						&vmf);
1889 			if (page)
1890 				folio = page_folio(page);
1891 		}
1892 		if (!folio) {
1893 			swp_count = READ_ONCE(si->swap_map[offset]);
1894 			if (swp_count == 0 || swp_count == SWAP_MAP_BAD)
1895 				continue;
1896 			return -ENOMEM;
1897 		}
1898 
1899 		folio_lock(folio);
1900 		folio_wait_writeback(folio);
1901 		ret = unuse_pte(vma, pmd, addr, entry, folio);
1902 		if (ret < 0) {
1903 			folio_unlock(folio);
1904 			folio_put(folio);
1905 			return ret;
1906 		}
1907 
1908 		folio_free_swap(folio);
1909 		folio_unlock(folio);
1910 		folio_put(folio);
1911 	} while (addr += PAGE_SIZE, addr != end);
1912 
1913 	if (pte)
1914 		pte_unmap(pte);
1915 	return 0;
1916 }
1917 
1918 static inline int unuse_pmd_range(struct vm_area_struct *vma, pud_t *pud,
1919 				unsigned long addr, unsigned long end,
1920 				unsigned int type)
1921 {
1922 	pmd_t *pmd;
1923 	unsigned long next;
1924 	int ret;
1925 
1926 	pmd = pmd_offset(pud, addr);
1927 	do {
1928 		cond_resched();
1929 		next = pmd_addr_end(addr, end);
1930 		ret = unuse_pte_range(vma, pmd, addr, next, type);
1931 		if (ret)
1932 			return ret;
1933 	} while (pmd++, addr = next, addr != end);
1934 	return 0;
1935 }
1936 
1937 static inline int unuse_pud_range(struct vm_area_struct *vma, p4d_t *p4d,
1938 				unsigned long addr, unsigned long end,
1939 				unsigned int type)
1940 {
1941 	pud_t *pud;
1942 	unsigned long next;
1943 	int ret;
1944 
1945 	pud = pud_offset(p4d, addr);
1946 	do {
1947 		next = pud_addr_end(addr, end);
1948 		if (pud_none_or_clear_bad(pud))
1949 			continue;
1950 		ret = unuse_pmd_range(vma, pud, addr, next, type);
1951 		if (ret)
1952 			return ret;
1953 	} while (pud++, addr = next, addr != end);
1954 	return 0;
1955 }
1956 
1957 static inline int unuse_p4d_range(struct vm_area_struct *vma, pgd_t *pgd,
1958 				unsigned long addr, unsigned long end,
1959 				unsigned int type)
1960 {
1961 	p4d_t *p4d;
1962 	unsigned long next;
1963 	int ret;
1964 
1965 	p4d = p4d_offset(pgd, addr);
1966 	do {
1967 		next = p4d_addr_end(addr, end);
1968 		if (p4d_none_or_clear_bad(p4d))
1969 			continue;
1970 		ret = unuse_pud_range(vma, p4d, addr, next, type);
1971 		if (ret)
1972 			return ret;
1973 	} while (p4d++, addr = next, addr != end);
1974 	return 0;
1975 }
1976 
1977 static int unuse_vma(struct vm_area_struct *vma, unsigned int type)
1978 {
1979 	pgd_t *pgd;
1980 	unsigned long addr, end, next;
1981 	int ret;
1982 
1983 	addr = vma->vm_start;
1984 	end = vma->vm_end;
1985 
1986 	pgd = pgd_offset(vma->vm_mm, addr);
1987 	do {
1988 		next = pgd_addr_end(addr, end);
1989 		if (pgd_none_or_clear_bad(pgd))
1990 			continue;
1991 		ret = unuse_p4d_range(vma, pgd, addr, next, type);
1992 		if (ret)
1993 			return ret;
1994 	} while (pgd++, addr = next, addr != end);
1995 	return 0;
1996 }
1997 
1998 static int unuse_mm(struct mm_struct *mm, unsigned int type)
1999 {
2000 	struct vm_area_struct *vma;
2001 	int ret = 0;
2002 	VMA_ITERATOR(vmi, mm, 0);
2003 
2004 	mmap_read_lock(mm);
2005 	for_each_vma(vmi, vma) {
2006 		if (vma->anon_vma && !is_vm_hugetlb_page(vma)) {
2007 			ret = unuse_vma(vma, type);
2008 			if (ret)
2009 				break;
2010 		}
2011 
2012 		cond_resched();
2013 	}
2014 	mmap_read_unlock(mm);
2015 	return ret;
2016 }
2017 
2018 /*
2019  * Scan swap_map from current position to next entry still in use.
2020  * Return 0 if there are no inuse entries after prev till end of
2021  * the map.
2022  */
2023 static unsigned int find_next_to_unuse(struct swap_info_struct *si,
2024 					unsigned int prev)
2025 {
2026 	unsigned int i;
2027 	unsigned char count;
2028 
2029 	/*
2030 	 * No need for swap_lock here: we're just looking
2031 	 * for whether an entry is in use, not modifying it; false
2032 	 * hits are okay, and sys_swapoff() has already prevented new
2033 	 * allocations from this area (while holding swap_lock).
2034 	 */
2035 	for (i = prev + 1; i < si->max; i++) {
2036 		count = READ_ONCE(si->swap_map[i]);
2037 		if (count && swap_count(count) != SWAP_MAP_BAD)
2038 			break;
2039 		if ((i % LATENCY_LIMIT) == 0)
2040 			cond_resched();
2041 	}
2042 
2043 	if (i == si->max)
2044 		i = 0;
2045 
2046 	return i;
2047 }
2048 
2049 static int try_to_unuse(unsigned int type)
2050 {
2051 	struct mm_struct *prev_mm;
2052 	struct mm_struct *mm;
2053 	struct list_head *p;
2054 	int retval = 0;
2055 	struct swap_info_struct *si = swap_info[type];
2056 	struct folio *folio;
2057 	swp_entry_t entry;
2058 	unsigned int i;
2059 
2060 	if (!READ_ONCE(si->inuse_pages))
2061 		return 0;
2062 
2063 retry:
2064 	retval = shmem_unuse(type);
2065 	if (retval)
2066 		return retval;
2067 
2068 	prev_mm = &init_mm;
2069 	mmget(prev_mm);
2070 
2071 	spin_lock(&mmlist_lock);
2072 	p = &init_mm.mmlist;
2073 	while (READ_ONCE(si->inuse_pages) &&
2074 	       !signal_pending(current) &&
2075 	       (p = p->next) != &init_mm.mmlist) {
2076 
2077 		mm = list_entry(p, struct mm_struct, mmlist);
2078 		if (!mmget_not_zero(mm))
2079 			continue;
2080 		spin_unlock(&mmlist_lock);
2081 		mmput(prev_mm);
2082 		prev_mm = mm;
2083 		retval = unuse_mm(mm, type);
2084 		if (retval) {
2085 			mmput(prev_mm);
2086 			return retval;
2087 		}
2088 
2089 		/*
2090 		 * Make sure that we aren't completely killing
2091 		 * interactive performance.
2092 		 */
2093 		cond_resched();
2094 		spin_lock(&mmlist_lock);
2095 	}
2096 	spin_unlock(&mmlist_lock);
2097 
2098 	mmput(prev_mm);
2099 
2100 	i = 0;
2101 	while (READ_ONCE(si->inuse_pages) &&
2102 	       !signal_pending(current) &&
2103 	       (i = find_next_to_unuse(si, i)) != 0) {
2104 
2105 		entry = swp_entry(type, i);
2106 		folio = filemap_get_folio(swap_address_space(entry), i);
2107 		if (IS_ERR(folio))
2108 			continue;
2109 
2110 		/*
2111 		 * It is conceivable that a racing task removed this folio from
2112 		 * swap cache just before we acquired the page lock. The folio
2113 		 * might even be back in swap cache on another swap area. But
2114 		 * that is okay, folio_free_swap() only removes stale folios.
2115 		 */
2116 		folio_lock(folio);
2117 		folio_wait_writeback(folio);
2118 		folio_free_swap(folio);
2119 		folio_unlock(folio);
2120 		folio_put(folio);
2121 	}
2122 
2123 	/*
2124 	 * Lets check again to see if there are still swap entries in the map.
2125 	 * If yes, we would need to do retry the unuse logic again.
2126 	 * Under global memory pressure, swap entries can be reinserted back
2127 	 * into process space after the mmlist loop above passes over them.
2128 	 *
2129 	 * Limit the number of retries? No: when mmget_not_zero()
2130 	 * above fails, that mm is likely to be freeing swap from
2131 	 * exit_mmap(), which proceeds at its own independent pace;
2132 	 * and even shmem_writepage() could have been preempted after
2133 	 * folio_alloc_swap(), temporarily hiding that swap.  It's easy
2134 	 * and robust (though cpu-intensive) just to keep retrying.
2135 	 */
2136 	if (READ_ONCE(si->inuse_pages)) {
2137 		if (!signal_pending(current))
2138 			goto retry;
2139 		return -EINTR;
2140 	}
2141 
2142 	return 0;
2143 }
2144 
2145 /*
2146  * After a successful try_to_unuse, if no swap is now in use, we know
2147  * we can empty the mmlist.  swap_lock must be held on entry and exit.
2148  * Note that mmlist_lock nests inside swap_lock, and an mm must be
2149  * added to the mmlist just after page_duplicate - before would be racy.
2150  */
2151 static void drain_mmlist(void)
2152 {
2153 	struct list_head *p, *next;
2154 	unsigned int type;
2155 
2156 	for (type = 0; type < nr_swapfiles; type++)
2157 		if (swap_info[type]->inuse_pages)
2158 			return;
2159 	spin_lock(&mmlist_lock);
2160 	list_for_each_safe(p, next, &init_mm.mmlist)
2161 		list_del_init(p);
2162 	spin_unlock(&mmlist_lock);
2163 }
2164 
2165 /*
2166  * Free all of a swapdev's extent information
2167  */
2168 static void destroy_swap_extents(struct swap_info_struct *sis)
2169 {
2170 	while (!RB_EMPTY_ROOT(&sis->swap_extent_root)) {
2171 		struct rb_node *rb = sis->swap_extent_root.rb_node;
2172 		struct swap_extent *se = rb_entry(rb, struct swap_extent, rb_node);
2173 
2174 		rb_erase(rb, &sis->swap_extent_root);
2175 		kfree(se);
2176 	}
2177 
2178 	if (sis->flags & SWP_ACTIVATED) {
2179 		struct file *swap_file = sis->swap_file;
2180 		struct address_space *mapping = swap_file->f_mapping;
2181 
2182 		sis->flags &= ~SWP_ACTIVATED;
2183 		if (mapping->a_ops->swap_deactivate)
2184 			mapping->a_ops->swap_deactivate(swap_file);
2185 	}
2186 }
2187 
2188 /*
2189  * Add a block range (and the corresponding page range) into this swapdev's
2190  * extent tree.
2191  *
2192  * This function rather assumes that it is called in ascending page order.
2193  */
2194 int
2195 add_swap_extent(struct swap_info_struct *sis, unsigned long start_page,
2196 		unsigned long nr_pages, sector_t start_block)
2197 {
2198 	struct rb_node **link = &sis->swap_extent_root.rb_node, *parent = NULL;
2199 	struct swap_extent *se;
2200 	struct swap_extent *new_se;
2201 
2202 	/*
2203 	 * place the new node at the right most since the
2204 	 * function is called in ascending page order.
2205 	 */
2206 	while (*link) {
2207 		parent = *link;
2208 		link = &parent->rb_right;
2209 	}
2210 
2211 	if (parent) {
2212 		se = rb_entry(parent, struct swap_extent, rb_node);
2213 		BUG_ON(se->start_page + se->nr_pages != start_page);
2214 		if (se->start_block + se->nr_pages == start_block) {
2215 			/* Merge it */
2216 			se->nr_pages += nr_pages;
2217 			return 0;
2218 		}
2219 	}
2220 
2221 	/* No merge, insert a new extent. */
2222 	new_se = kmalloc(sizeof(*se), GFP_KERNEL);
2223 	if (new_se == NULL)
2224 		return -ENOMEM;
2225 	new_se->start_page = start_page;
2226 	new_se->nr_pages = nr_pages;
2227 	new_se->start_block = start_block;
2228 
2229 	rb_link_node(&new_se->rb_node, parent, link);
2230 	rb_insert_color(&new_se->rb_node, &sis->swap_extent_root);
2231 	return 1;
2232 }
2233 EXPORT_SYMBOL_GPL(add_swap_extent);
2234 
2235 /*
2236  * A `swap extent' is a simple thing which maps a contiguous range of pages
2237  * onto a contiguous range of disk blocks.  A rbtree of swap extents is
2238  * built at swapon time and is then used at swap_writepage/swap_readpage
2239  * time for locating where on disk a page belongs.
2240  *
2241  * If the swapfile is an S_ISBLK block device, a single extent is installed.
2242  * This is done so that the main operating code can treat S_ISBLK and S_ISREG
2243  * swap files identically.
2244  *
2245  * Whether the swapdev is an S_ISREG file or an S_ISBLK blockdev, the swap
2246  * extent rbtree operates in PAGE_SIZE disk blocks.  Both S_ISREG and S_ISBLK
2247  * swapfiles are handled *identically* after swapon time.
2248  *
2249  * For S_ISREG swapfiles, setup_swap_extents() will walk all the file's blocks
2250  * and will parse them into a rbtree, in PAGE_SIZE chunks.  If some stray
2251  * blocks are found which do not fall within the PAGE_SIZE alignment
2252  * requirements, they are simply tossed out - we will never use those blocks
2253  * for swapping.
2254  *
2255  * For all swap devices we set S_SWAPFILE across the life of the swapon.  This
2256  * prevents users from writing to the swap device, which will corrupt memory.
2257  *
2258  * The amount of disk space which a single swap extent represents varies.
2259  * Typically it is in the 1-4 megabyte range.  So we can have hundreds of
2260  * extents in the rbtree. - akpm.
2261  */
2262 static int setup_swap_extents(struct swap_info_struct *sis, sector_t *span)
2263 {
2264 	struct file *swap_file = sis->swap_file;
2265 	struct address_space *mapping = swap_file->f_mapping;
2266 	struct inode *inode = mapping->host;
2267 	int ret;
2268 
2269 	if (S_ISBLK(inode->i_mode)) {
2270 		ret = add_swap_extent(sis, 0, sis->max, 0);
2271 		*span = sis->pages;
2272 		return ret;
2273 	}
2274 
2275 	if (mapping->a_ops->swap_activate) {
2276 		ret = mapping->a_ops->swap_activate(sis, swap_file, span);
2277 		if (ret < 0)
2278 			return ret;
2279 		sis->flags |= SWP_ACTIVATED;
2280 		if ((sis->flags & SWP_FS_OPS) &&
2281 		    sio_pool_init() != 0) {
2282 			destroy_swap_extents(sis);
2283 			return -ENOMEM;
2284 		}
2285 		return ret;
2286 	}
2287 
2288 	return generic_swapfile_activate(sis, swap_file, span);
2289 }
2290 
2291 static int swap_node(struct swap_info_struct *p)
2292 {
2293 	struct block_device *bdev;
2294 
2295 	if (p->bdev)
2296 		bdev = p->bdev;
2297 	else
2298 		bdev = p->swap_file->f_inode->i_sb->s_bdev;
2299 
2300 	return bdev ? bdev->bd_disk->node_id : NUMA_NO_NODE;
2301 }
2302 
2303 static void setup_swap_info(struct swap_info_struct *p, int prio,
2304 			    unsigned char *swap_map,
2305 			    struct swap_cluster_info *cluster_info)
2306 {
2307 	int i;
2308 
2309 	if (prio >= 0)
2310 		p->prio = prio;
2311 	else
2312 		p->prio = --least_priority;
2313 	/*
2314 	 * the plist prio is negated because plist ordering is
2315 	 * low-to-high, while swap ordering is high-to-low
2316 	 */
2317 	p->list.prio = -p->prio;
2318 	for_each_node(i) {
2319 		if (p->prio >= 0)
2320 			p->avail_lists[i].prio = -p->prio;
2321 		else {
2322 			if (swap_node(p) == i)
2323 				p->avail_lists[i].prio = 1;
2324 			else
2325 				p->avail_lists[i].prio = -p->prio;
2326 		}
2327 	}
2328 	p->swap_map = swap_map;
2329 	p->cluster_info = cluster_info;
2330 }
2331 
2332 static void _enable_swap_info(struct swap_info_struct *p)
2333 {
2334 	p->flags |= SWP_WRITEOK;
2335 	atomic_long_add(p->pages, &nr_swap_pages);
2336 	total_swap_pages += p->pages;
2337 
2338 	assert_spin_locked(&swap_lock);
2339 	/*
2340 	 * both lists are plists, and thus priority ordered.
2341 	 * swap_active_head needs to be priority ordered for swapoff(),
2342 	 * which on removal of any swap_info_struct with an auto-assigned
2343 	 * (i.e. negative) priority increments the auto-assigned priority
2344 	 * of any lower-priority swap_info_structs.
2345 	 * swap_avail_head needs to be priority ordered for folio_alloc_swap(),
2346 	 * which allocates swap pages from the highest available priority
2347 	 * swap_info_struct.
2348 	 */
2349 	plist_add(&p->list, &swap_active_head);
2350 
2351 	/* add to available list iff swap device is not full */
2352 	if (p->highest_bit)
2353 		add_to_avail_list(p);
2354 }
2355 
2356 static void enable_swap_info(struct swap_info_struct *p, int prio,
2357 				unsigned char *swap_map,
2358 				struct swap_cluster_info *cluster_info)
2359 {
2360 	zswap_swapon(p->type);
2361 
2362 	spin_lock(&swap_lock);
2363 	spin_lock(&p->lock);
2364 	setup_swap_info(p, prio, swap_map, cluster_info);
2365 	spin_unlock(&p->lock);
2366 	spin_unlock(&swap_lock);
2367 	/*
2368 	 * Finished initializing swap device, now it's safe to reference it.
2369 	 */
2370 	percpu_ref_resurrect(&p->users);
2371 	spin_lock(&swap_lock);
2372 	spin_lock(&p->lock);
2373 	_enable_swap_info(p);
2374 	spin_unlock(&p->lock);
2375 	spin_unlock(&swap_lock);
2376 }
2377 
2378 static void reinsert_swap_info(struct swap_info_struct *p)
2379 {
2380 	spin_lock(&swap_lock);
2381 	spin_lock(&p->lock);
2382 	setup_swap_info(p, p->prio, p->swap_map, p->cluster_info);
2383 	_enable_swap_info(p);
2384 	spin_unlock(&p->lock);
2385 	spin_unlock(&swap_lock);
2386 }
2387 
2388 bool has_usable_swap(void)
2389 {
2390 	bool ret = true;
2391 
2392 	spin_lock(&swap_lock);
2393 	if (plist_head_empty(&swap_active_head))
2394 		ret = false;
2395 	spin_unlock(&swap_lock);
2396 	return ret;
2397 }
2398 
2399 SYSCALL_DEFINE1(swapoff, const char __user *, specialfile)
2400 {
2401 	struct swap_info_struct *p = NULL;
2402 	unsigned char *swap_map;
2403 	struct swap_cluster_info *cluster_info;
2404 	struct file *swap_file, *victim;
2405 	struct address_space *mapping;
2406 	struct inode *inode;
2407 	struct filename *pathname;
2408 	int err, found = 0;
2409 	unsigned int old_block_size;
2410 
2411 	if (!capable(CAP_SYS_ADMIN))
2412 		return -EPERM;
2413 
2414 	BUG_ON(!current->mm);
2415 
2416 	pathname = getname(specialfile);
2417 	if (IS_ERR(pathname))
2418 		return PTR_ERR(pathname);
2419 
2420 	victim = file_open_name(pathname, O_RDWR|O_LARGEFILE, 0);
2421 	err = PTR_ERR(victim);
2422 	if (IS_ERR(victim))
2423 		goto out;
2424 
2425 	mapping = victim->f_mapping;
2426 	spin_lock(&swap_lock);
2427 	plist_for_each_entry(p, &swap_active_head, list) {
2428 		if (p->flags & SWP_WRITEOK) {
2429 			if (p->swap_file->f_mapping == mapping) {
2430 				found = 1;
2431 				break;
2432 			}
2433 		}
2434 	}
2435 	if (!found) {
2436 		err = -EINVAL;
2437 		spin_unlock(&swap_lock);
2438 		goto out_dput;
2439 	}
2440 	if (!security_vm_enough_memory_mm(current->mm, p->pages))
2441 		vm_unacct_memory(p->pages);
2442 	else {
2443 		err = -ENOMEM;
2444 		spin_unlock(&swap_lock);
2445 		goto out_dput;
2446 	}
2447 	spin_lock(&p->lock);
2448 	del_from_avail_list(p);
2449 	if (p->prio < 0) {
2450 		struct swap_info_struct *si = p;
2451 		int nid;
2452 
2453 		plist_for_each_entry_continue(si, &swap_active_head, list) {
2454 			si->prio++;
2455 			si->list.prio--;
2456 			for_each_node(nid) {
2457 				if (si->avail_lists[nid].prio != 1)
2458 					si->avail_lists[nid].prio--;
2459 			}
2460 		}
2461 		least_priority++;
2462 	}
2463 	plist_del(&p->list, &swap_active_head);
2464 	atomic_long_sub(p->pages, &nr_swap_pages);
2465 	total_swap_pages -= p->pages;
2466 	p->flags &= ~SWP_WRITEOK;
2467 	spin_unlock(&p->lock);
2468 	spin_unlock(&swap_lock);
2469 
2470 	disable_swap_slots_cache_lock();
2471 
2472 	set_current_oom_origin();
2473 	err = try_to_unuse(p->type);
2474 	clear_current_oom_origin();
2475 
2476 	if (err) {
2477 		/* re-insert swap space back into swap_list */
2478 		reinsert_swap_info(p);
2479 		reenable_swap_slots_cache_unlock();
2480 		goto out_dput;
2481 	}
2482 
2483 	reenable_swap_slots_cache_unlock();
2484 
2485 	/*
2486 	 * Wait for swap operations protected by get/put_swap_device()
2487 	 * to complete.
2488 	 *
2489 	 * We need synchronize_rcu() here to protect the accessing to
2490 	 * the swap cache data structure.
2491 	 */
2492 	percpu_ref_kill(&p->users);
2493 	synchronize_rcu();
2494 	wait_for_completion(&p->comp);
2495 
2496 	flush_work(&p->discard_work);
2497 
2498 	destroy_swap_extents(p);
2499 	if (p->flags & SWP_CONTINUED)
2500 		free_swap_count_continuations(p);
2501 
2502 	if (!p->bdev || !bdev_nonrot(p->bdev))
2503 		atomic_dec(&nr_rotate_swap);
2504 
2505 	mutex_lock(&swapon_mutex);
2506 	spin_lock(&swap_lock);
2507 	spin_lock(&p->lock);
2508 	drain_mmlist();
2509 
2510 	/* wait for anyone still in scan_swap_map_slots */
2511 	p->highest_bit = 0;		/* cuts scans short */
2512 	while (p->flags >= SWP_SCANNING) {
2513 		spin_unlock(&p->lock);
2514 		spin_unlock(&swap_lock);
2515 		schedule_timeout_uninterruptible(1);
2516 		spin_lock(&swap_lock);
2517 		spin_lock(&p->lock);
2518 	}
2519 
2520 	swap_file = p->swap_file;
2521 	old_block_size = p->old_block_size;
2522 	p->swap_file = NULL;
2523 	p->max = 0;
2524 	swap_map = p->swap_map;
2525 	p->swap_map = NULL;
2526 	cluster_info = p->cluster_info;
2527 	p->cluster_info = NULL;
2528 	spin_unlock(&p->lock);
2529 	spin_unlock(&swap_lock);
2530 	arch_swap_invalidate_area(p->type);
2531 	zswap_swapoff(p->type);
2532 	mutex_unlock(&swapon_mutex);
2533 	free_percpu(p->percpu_cluster);
2534 	p->percpu_cluster = NULL;
2535 	free_percpu(p->cluster_next_cpu);
2536 	p->cluster_next_cpu = NULL;
2537 	vfree(swap_map);
2538 	kvfree(cluster_info);
2539 	/* Destroy swap account information */
2540 	swap_cgroup_swapoff(p->type);
2541 	exit_swap_address_space(p->type);
2542 
2543 	inode = mapping->host;
2544 	if (S_ISBLK(inode->i_mode)) {
2545 		struct block_device *bdev = I_BDEV(inode);
2546 
2547 		set_blocksize(bdev, old_block_size);
2548 		blkdev_put(bdev, p);
2549 	}
2550 
2551 	inode_lock(inode);
2552 	inode->i_flags &= ~S_SWAPFILE;
2553 	inode_unlock(inode);
2554 	filp_close(swap_file, NULL);
2555 
2556 	/*
2557 	 * Clear the SWP_USED flag after all resources are freed so that swapon
2558 	 * can reuse this swap_info in alloc_swap_info() safely.  It is ok to
2559 	 * not hold p->lock after we cleared its SWP_WRITEOK.
2560 	 */
2561 	spin_lock(&swap_lock);
2562 	p->flags = 0;
2563 	spin_unlock(&swap_lock);
2564 
2565 	err = 0;
2566 	atomic_inc(&proc_poll_event);
2567 	wake_up_interruptible(&proc_poll_wait);
2568 
2569 out_dput:
2570 	filp_close(victim, NULL);
2571 out:
2572 	putname(pathname);
2573 	return err;
2574 }
2575 
2576 #ifdef CONFIG_PROC_FS
2577 static __poll_t swaps_poll(struct file *file, poll_table *wait)
2578 {
2579 	struct seq_file *seq = file->private_data;
2580 
2581 	poll_wait(file, &proc_poll_wait, wait);
2582 
2583 	if (seq->poll_event != atomic_read(&proc_poll_event)) {
2584 		seq->poll_event = atomic_read(&proc_poll_event);
2585 		return EPOLLIN | EPOLLRDNORM | EPOLLERR | EPOLLPRI;
2586 	}
2587 
2588 	return EPOLLIN | EPOLLRDNORM;
2589 }
2590 
2591 /* iterator */
2592 static void *swap_start(struct seq_file *swap, loff_t *pos)
2593 {
2594 	struct swap_info_struct *si;
2595 	int type;
2596 	loff_t l = *pos;
2597 
2598 	mutex_lock(&swapon_mutex);
2599 
2600 	if (!l)
2601 		return SEQ_START_TOKEN;
2602 
2603 	for (type = 0; (si = swap_type_to_swap_info(type)); type++) {
2604 		if (!(si->flags & SWP_USED) || !si->swap_map)
2605 			continue;
2606 		if (!--l)
2607 			return si;
2608 	}
2609 
2610 	return NULL;
2611 }
2612 
2613 static void *swap_next(struct seq_file *swap, void *v, loff_t *pos)
2614 {
2615 	struct swap_info_struct *si = v;
2616 	int type;
2617 
2618 	if (v == SEQ_START_TOKEN)
2619 		type = 0;
2620 	else
2621 		type = si->type + 1;
2622 
2623 	++(*pos);
2624 	for (; (si = swap_type_to_swap_info(type)); type++) {
2625 		if (!(si->flags & SWP_USED) || !si->swap_map)
2626 			continue;
2627 		return si;
2628 	}
2629 
2630 	return NULL;
2631 }
2632 
2633 static void swap_stop(struct seq_file *swap, void *v)
2634 {
2635 	mutex_unlock(&swapon_mutex);
2636 }
2637 
2638 static int swap_show(struct seq_file *swap, void *v)
2639 {
2640 	struct swap_info_struct *si = v;
2641 	struct file *file;
2642 	int len;
2643 	unsigned long bytes, inuse;
2644 
2645 	if (si == SEQ_START_TOKEN) {
2646 		seq_puts(swap, "Filename\t\t\t\tType\t\tSize\t\tUsed\t\tPriority\n");
2647 		return 0;
2648 	}
2649 
2650 	bytes = K(si->pages);
2651 	inuse = K(READ_ONCE(si->inuse_pages));
2652 
2653 	file = si->swap_file;
2654 	len = seq_file_path(swap, file, " \t\n\\");
2655 	seq_printf(swap, "%*s%s\t%lu\t%s%lu\t%s%d\n",
2656 			len < 40 ? 40 - len : 1, " ",
2657 			S_ISBLK(file_inode(file)->i_mode) ?
2658 				"partition" : "file\t",
2659 			bytes, bytes < 10000000 ? "\t" : "",
2660 			inuse, inuse < 10000000 ? "\t" : "",
2661 			si->prio);
2662 	return 0;
2663 }
2664 
2665 static const struct seq_operations swaps_op = {
2666 	.start =	swap_start,
2667 	.next =		swap_next,
2668 	.stop =		swap_stop,
2669 	.show =		swap_show
2670 };
2671 
2672 static int swaps_open(struct inode *inode, struct file *file)
2673 {
2674 	struct seq_file *seq;
2675 	int ret;
2676 
2677 	ret = seq_open(file, &swaps_op);
2678 	if (ret)
2679 		return ret;
2680 
2681 	seq = file->private_data;
2682 	seq->poll_event = atomic_read(&proc_poll_event);
2683 	return 0;
2684 }
2685 
2686 static const struct proc_ops swaps_proc_ops = {
2687 	.proc_flags	= PROC_ENTRY_PERMANENT,
2688 	.proc_open	= swaps_open,
2689 	.proc_read	= seq_read,
2690 	.proc_lseek	= seq_lseek,
2691 	.proc_release	= seq_release,
2692 	.proc_poll	= swaps_poll,
2693 };
2694 
2695 static int __init procswaps_init(void)
2696 {
2697 	proc_create("swaps", 0, NULL, &swaps_proc_ops);
2698 	return 0;
2699 }
2700 __initcall(procswaps_init);
2701 #endif /* CONFIG_PROC_FS */
2702 
2703 #ifdef MAX_SWAPFILES_CHECK
2704 static int __init max_swapfiles_check(void)
2705 {
2706 	MAX_SWAPFILES_CHECK();
2707 	return 0;
2708 }
2709 late_initcall(max_swapfiles_check);
2710 #endif
2711 
2712 static struct swap_info_struct *alloc_swap_info(void)
2713 {
2714 	struct swap_info_struct *p;
2715 	struct swap_info_struct *defer = NULL;
2716 	unsigned int type;
2717 	int i;
2718 
2719 	p = kvzalloc(struct_size(p, avail_lists, nr_node_ids), GFP_KERNEL);
2720 	if (!p)
2721 		return ERR_PTR(-ENOMEM);
2722 
2723 	if (percpu_ref_init(&p->users, swap_users_ref_free,
2724 			    PERCPU_REF_INIT_DEAD, GFP_KERNEL)) {
2725 		kvfree(p);
2726 		return ERR_PTR(-ENOMEM);
2727 	}
2728 
2729 	spin_lock(&swap_lock);
2730 	for (type = 0; type < nr_swapfiles; type++) {
2731 		if (!(swap_info[type]->flags & SWP_USED))
2732 			break;
2733 	}
2734 	if (type >= MAX_SWAPFILES) {
2735 		spin_unlock(&swap_lock);
2736 		percpu_ref_exit(&p->users);
2737 		kvfree(p);
2738 		return ERR_PTR(-EPERM);
2739 	}
2740 	if (type >= nr_swapfiles) {
2741 		p->type = type;
2742 		/*
2743 		 * Publish the swap_info_struct after initializing it.
2744 		 * Note that kvzalloc() above zeroes all its fields.
2745 		 */
2746 		smp_store_release(&swap_info[type], p); /* rcu_assign_pointer() */
2747 		nr_swapfiles++;
2748 	} else {
2749 		defer = p;
2750 		p = swap_info[type];
2751 		/*
2752 		 * Do not memset this entry: a racing procfs swap_next()
2753 		 * would be relying on p->type to remain valid.
2754 		 */
2755 	}
2756 	p->swap_extent_root = RB_ROOT;
2757 	plist_node_init(&p->list, 0);
2758 	for_each_node(i)
2759 		plist_node_init(&p->avail_lists[i], 0);
2760 	p->flags = SWP_USED;
2761 	spin_unlock(&swap_lock);
2762 	if (defer) {
2763 		percpu_ref_exit(&defer->users);
2764 		kvfree(defer);
2765 	}
2766 	spin_lock_init(&p->lock);
2767 	spin_lock_init(&p->cont_lock);
2768 	init_completion(&p->comp);
2769 
2770 	return p;
2771 }
2772 
2773 static int claim_swapfile(struct swap_info_struct *p, struct inode *inode)
2774 {
2775 	int error;
2776 
2777 	if (S_ISBLK(inode->i_mode)) {
2778 		p->bdev = blkdev_get_by_dev(inode->i_rdev,
2779 				BLK_OPEN_READ | BLK_OPEN_WRITE, p, NULL);
2780 		if (IS_ERR(p->bdev)) {
2781 			error = PTR_ERR(p->bdev);
2782 			p->bdev = NULL;
2783 			return error;
2784 		}
2785 		p->old_block_size = block_size(p->bdev);
2786 		error = set_blocksize(p->bdev, PAGE_SIZE);
2787 		if (error < 0)
2788 			return error;
2789 		/*
2790 		 * Zoned block devices contain zones that have a sequential
2791 		 * write only restriction.  Hence zoned block devices are not
2792 		 * suitable for swapping.  Disallow them here.
2793 		 */
2794 		if (bdev_is_zoned(p->bdev))
2795 			return -EINVAL;
2796 		p->flags |= SWP_BLKDEV;
2797 	} else if (S_ISREG(inode->i_mode)) {
2798 		p->bdev = inode->i_sb->s_bdev;
2799 	}
2800 
2801 	return 0;
2802 }
2803 
2804 
2805 /*
2806  * Find out how many pages are allowed for a single swap device. There
2807  * are two limiting factors:
2808  * 1) the number of bits for the swap offset in the swp_entry_t type, and
2809  * 2) the number of bits in the swap pte, as defined by the different
2810  * architectures.
2811  *
2812  * In order to find the largest possible bit mask, a swap entry with
2813  * swap type 0 and swap offset ~0UL is created, encoded to a swap pte,
2814  * decoded to a swp_entry_t again, and finally the swap offset is
2815  * extracted.
2816  *
2817  * This will mask all the bits from the initial ~0UL mask that can't
2818  * be encoded in either the swp_entry_t or the architecture definition
2819  * of a swap pte.
2820  */
2821 unsigned long generic_max_swapfile_size(void)
2822 {
2823 	return swp_offset(pte_to_swp_entry(
2824 			swp_entry_to_pte(swp_entry(0, ~0UL)))) + 1;
2825 }
2826 
2827 /* Can be overridden by an architecture for additional checks. */
2828 __weak unsigned long arch_max_swapfile_size(void)
2829 {
2830 	return generic_max_swapfile_size();
2831 }
2832 
2833 static unsigned long read_swap_header(struct swap_info_struct *p,
2834 					union swap_header *swap_header,
2835 					struct inode *inode)
2836 {
2837 	int i;
2838 	unsigned long maxpages;
2839 	unsigned long swapfilepages;
2840 	unsigned long last_page;
2841 
2842 	if (memcmp("SWAPSPACE2", swap_header->magic.magic, 10)) {
2843 		pr_err("Unable to find swap-space signature\n");
2844 		return 0;
2845 	}
2846 
2847 	/* swap partition endianness hack... */
2848 	if (swab32(swap_header->info.version) == 1) {
2849 		swab32s(&swap_header->info.version);
2850 		swab32s(&swap_header->info.last_page);
2851 		swab32s(&swap_header->info.nr_badpages);
2852 		if (swap_header->info.nr_badpages > MAX_SWAP_BADPAGES)
2853 			return 0;
2854 		for (i = 0; i < swap_header->info.nr_badpages; i++)
2855 			swab32s(&swap_header->info.badpages[i]);
2856 	}
2857 	/* Check the swap header's sub-version */
2858 	if (swap_header->info.version != 1) {
2859 		pr_warn("Unable to handle swap header version %d\n",
2860 			swap_header->info.version);
2861 		return 0;
2862 	}
2863 
2864 	p->lowest_bit  = 1;
2865 	p->cluster_next = 1;
2866 	p->cluster_nr = 0;
2867 
2868 	maxpages = swapfile_maximum_size;
2869 	last_page = swap_header->info.last_page;
2870 	if (!last_page) {
2871 		pr_warn("Empty swap-file\n");
2872 		return 0;
2873 	}
2874 	if (last_page > maxpages) {
2875 		pr_warn("Truncating oversized swap area, only using %luk out of %luk\n",
2876 			K(maxpages), K(last_page));
2877 	}
2878 	if (maxpages > last_page) {
2879 		maxpages = last_page + 1;
2880 		/* p->max is an unsigned int: don't overflow it */
2881 		if ((unsigned int)maxpages == 0)
2882 			maxpages = UINT_MAX;
2883 	}
2884 	p->highest_bit = maxpages - 1;
2885 
2886 	if (!maxpages)
2887 		return 0;
2888 	swapfilepages = i_size_read(inode) >> PAGE_SHIFT;
2889 	if (swapfilepages && maxpages > swapfilepages) {
2890 		pr_warn("Swap area shorter than signature indicates\n");
2891 		return 0;
2892 	}
2893 	if (swap_header->info.nr_badpages && S_ISREG(inode->i_mode))
2894 		return 0;
2895 	if (swap_header->info.nr_badpages > MAX_SWAP_BADPAGES)
2896 		return 0;
2897 
2898 	return maxpages;
2899 }
2900 
2901 #define SWAP_CLUSTER_INFO_COLS						\
2902 	DIV_ROUND_UP(L1_CACHE_BYTES, sizeof(struct swap_cluster_info))
2903 #define SWAP_CLUSTER_SPACE_COLS						\
2904 	DIV_ROUND_UP(SWAP_ADDRESS_SPACE_PAGES, SWAPFILE_CLUSTER)
2905 #define SWAP_CLUSTER_COLS						\
2906 	max_t(unsigned int, SWAP_CLUSTER_INFO_COLS, SWAP_CLUSTER_SPACE_COLS)
2907 
2908 static int setup_swap_map_and_extents(struct swap_info_struct *p,
2909 					union swap_header *swap_header,
2910 					unsigned char *swap_map,
2911 					struct swap_cluster_info *cluster_info,
2912 					unsigned long maxpages,
2913 					sector_t *span)
2914 {
2915 	unsigned int j, k;
2916 	unsigned int nr_good_pages;
2917 	int nr_extents;
2918 	unsigned long nr_clusters = DIV_ROUND_UP(maxpages, SWAPFILE_CLUSTER);
2919 	unsigned long col = p->cluster_next / SWAPFILE_CLUSTER % SWAP_CLUSTER_COLS;
2920 	unsigned long i, idx;
2921 
2922 	nr_good_pages = maxpages - 1;	/* omit header page */
2923 
2924 	cluster_list_init(&p->free_clusters);
2925 	cluster_list_init(&p->discard_clusters);
2926 
2927 	for (i = 0; i < swap_header->info.nr_badpages; i++) {
2928 		unsigned int page_nr = swap_header->info.badpages[i];
2929 		if (page_nr == 0 || page_nr > swap_header->info.last_page)
2930 			return -EINVAL;
2931 		if (page_nr < maxpages) {
2932 			swap_map[page_nr] = SWAP_MAP_BAD;
2933 			nr_good_pages--;
2934 			/*
2935 			 * Haven't marked the cluster free yet, no list
2936 			 * operation involved
2937 			 */
2938 			inc_cluster_info_page(p, cluster_info, page_nr);
2939 		}
2940 	}
2941 
2942 	/* Haven't marked the cluster free yet, no list operation involved */
2943 	for (i = maxpages; i < round_up(maxpages, SWAPFILE_CLUSTER); i++)
2944 		inc_cluster_info_page(p, cluster_info, i);
2945 
2946 	if (nr_good_pages) {
2947 		swap_map[0] = SWAP_MAP_BAD;
2948 		/*
2949 		 * Not mark the cluster free yet, no list
2950 		 * operation involved
2951 		 */
2952 		inc_cluster_info_page(p, cluster_info, 0);
2953 		p->max = maxpages;
2954 		p->pages = nr_good_pages;
2955 		nr_extents = setup_swap_extents(p, span);
2956 		if (nr_extents < 0)
2957 			return nr_extents;
2958 		nr_good_pages = p->pages;
2959 	}
2960 	if (!nr_good_pages) {
2961 		pr_warn("Empty swap-file\n");
2962 		return -EINVAL;
2963 	}
2964 
2965 	if (!cluster_info)
2966 		return nr_extents;
2967 
2968 
2969 	/*
2970 	 * Reduce false cache line sharing between cluster_info and
2971 	 * sharing same address space.
2972 	 */
2973 	for (k = 0; k < SWAP_CLUSTER_COLS; k++) {
2974 		j = (k + col) % SWAP_CLUSTER_COLS;
2975 		for (i = 0; i < DIV_ROUND_UP(nr_clusters, SWAP_CLUSTER_COLS); i++) {
2976 			idx = i * SWAP_CLUSTER_COLS + j;
2977 			if (idx >= nr_clusters)
2978 				continue;
2979 			if (cluster_count(&cluster_info[idx]))
2980 				continue;
2981 			cluster_set_flag(&cluster_info[idx], CLUSTER_FLAG_FREE);
2982 			cluster_list_add_tail(&p->free_clusters, cluster_info,
2983 					      idx);
2984 		}
2985 	}
2986 	return nr_extents;
2987 }
2988 
2989 SYSCALL_DEFINE2(swapon, const char __user *, specialfile, int, swap_flags)
2990 {
2991 	struct swap_info_struct *p;
2992 	struct filename *name;
2993 	struct file *swap_file = NULL;
2994 	struct address_space *mapping;
2995 	struct dentry *dentry;
2996 	int prio;
2997 	int error;
2998 	union swap_header *swap_header;
2999 	int nr_extents;
3000 	sector_t span;
3001 	unsigned long maxpages;
3002 	unsigned char *swap_map = NULL;
3003 	struct swap_cluster_info *cluster_info = NULL;
3004 	struct page *page = NULL;
3005 	struct inode *inode = NULL;
3006 	bool inced_nr_rotate_swap = false;
3007 
3008 	if (swap_flags & ~SWAP_FLAGS_VALID)
3009 		return -EINVAL;
3010 
3011 	if (!capable(CAP_SYS_ADMIN))
3012 		return -EPERM;
3013 
3014 	if (!swap_avail_heads)
3015 		return -ENOMEM;
3016 
3017 	p = alloc_swap_info();
3018 	if (IS_ERR(p))
3019 		return PTR_ERR(p);
3020 
3021 	INIT_WORK(&p->discard_work, swap_discard_work);
3022 
3023 	name = getname(specialfile);
3024 	if (IS_ERR(name)) {
3025 		error = PTR_ERR(name);
3026 		name = NULL;
3027 		goto bad_swap;
3028 	}
3029 	swap_file = file_open_name(name, O_RDWR|O_LARGEFILE, 0);
3030 	if (IS_ERR(swap_file)) {
3031 		error = PTR_ERR(swap_file);
3032 		swap_file = NULL;
3033 		goto bad_swap;
3034 	}
3035 
3036 	p->swap_file = swap_file;
3037 	mapping = swap_file->f_mapping;
3038 	dentry = swap_file->f_path.dentry;
3039 	inode = mapping->host;
3040 
3041 	error = claim_swapfile(p, inode);
3042 	if (unlikely(error))
3043 		goto bad_swap;
3044 
3045 	inode_lock(inode);
3046 	if (d_unlinked(dentry) || cant_mount(dentry)) {
3047 		error = -ENOENT;
3048 		goto bad_swap_unlock_inode;
3049 	}
3050 	if (IS_SWAPFILE(inode)) {
3051 		error = -EBUSY;
3052 		goto bad_swap_unlock_inode;
3053 	}
3054 
3055 	/*
3056 	 * Read the swap header.
3057 	 */
3058 	if (!mapping->a_ops->read_folio) {
3059 		error = -EINVAL;
3060 		goto bad_swap_unlock_inode;
3061 	}
3062 	page = read_mapping_page(mapping, 0, swap_file);
3063 	if (IS_ERR(page)) {
3064 		error = PTR_ERR(page);
3065 		goto bad_swap_unlock_inode;
3066 	}
3067 	swap_header = kmap(page);
3068 
3069 	maxpages = read_swap_header(p, swap_header, inode);
3070 	if (unlikely(!maxpages)) {
3071 		error = -EINVAL;
3072 		goto bad_swap_unlock_inode;
3073 	}
3074 
3075 	/* OK, set up the swap map and apply the bad block list */
3076 	swap_map = vzalloc(maxpages);
3077 	if (!swap_map) {
3078 		error = -ENOMEM;
3079 		goto bad_swap_unlock_inode;
3080 	}
3081 
3082 	if (p->bdev && bdev_stable_writes(p->bdev))
3083 		p->flags |= SWP_STABLE_WRITES;
3084 
3085 	if (p->bdev && bdev_synchronous(p->bdev))
3086 		p->flags |= SWP_SYNCHRONOUS_IO;
3087 
3088 	if (p->bdev && bdev_nonrot(p->bdev)) {
3089 		int cpu;
3090 		unsigned long ci, nr_cluster;
3091 
3092 		p->flags |= SWP_SOLIDSTATE;
3093 		p->cluster_next_cpu = alloc_percpu(unsigned int);
3094 		if (!p->cluster_next_cpu) {
3095 			error = -ENOMEM;
3096 			goto bad_swap_unlock_inode;
3097 		}
3098 		/*
3099 		 * select a random position to start with to help wear leveling
3100 		 * SSD
3101 		 */
3102 		for_each_possible_cpu(cpu) {
3103 			per_cpu(*p->cluster_next_cpu, cpu) =
3104 				get_random_u32_inclusive(1, p->highest_bit);
3105 		}
3106 		nr_cluster = DIV_ROUND_UP(maxpages, SWAPFILE_CLUSTER);
3107 
3108 		cluster_info = kvcalloc(nr_cluster, sizeof(*cluster_info),
3109 					GFP_KERNEL);
3110 		if (!cluster_info) {
3111 			error = -ENOMEM;
3112 			goto bad_swap_unlock_inode;
3113 		}
3114 
3115 		for (ci = 0; ci < nr_cluster; ci++)
3116 			spin_lock_init(&((cluster_info + ci)->lock));
3117 
3118 		p->percpu_cluster = alloc_percpu(struct percpu_cluster);
3119 		if (!p->percpu_cluster) {
3120 			error = -ENOMEM;
3121 			goto bad_swap_unlock_inode;
3122 		}
3123 		for_each_possible_cpu(cpu) {
3124 			struct percpu_cluster *cluster;
3125 			cluster = per_cpu_ptr(p->percpu_cluster, cpu);
3126 			cluster_set_null(&cluster->index);
3127 		}
3128 	} else {
3129 		atomic_inc(&nr_rotate_swap);
3130 		inced_nr_rotate_swap = true;
3131 	}
3132 
3133 	error = swap_cgroup_swapon(p->type, maxpages);
3134 	if (error)
3135 		goto bad_swap_unlock_inode;
3136 
3137 	nr_extents = setup_swap_map_and_extents(p, swap_header, swap_map,
3138 		cluster_info, maxpages, &span);
3139 	if (unlikely(nr_extents < 0)) {
3140 		error = nr_extents;
3141 		goto bad_swap_unlock_inode;
3142 	}
3143 
3144 	if ((swap_flags & SWAP_FLAG_DISCARD) &&
3145 	    p->bdev && bdev_max_discard_sectors(p->bdev)) {
3146 		/*
3147 		 * When discard is enabled for swap with no particular
3148 		 * policy flagged, we set all swap discard flags here in
3149 		 * order to sustain backward compatibility with older
3150 		 * swapon(8) releases.
3151 		 */
3152 		p->flags |= (SWP_DISCARDABLE | SWP_AREA_DISCARD |
3153 			     SWP_PAGE_DISCARD);
3154 
3155 		/*
3156 		 * By flagging sys_swapon, a sysadmin can tell us to
3157 		 * either do single-time area discards only, or to just
3158 		 * perform discards for released swap page-clusters.
3159 		 * Now it's time to adjust the p->flags accordingly.
3160 		 */
3161 		if (swap_flags & SWAP_FLAG_DISCARD_ONCE)
3162 			p->flags &= ~SWP_PAGE_DISCARD;
3163 		else if (swap_flags & SWAP_FLAG_DISCARD_PAGES)
3164 			p->flags &= ~SWP_AREA_DISCARD;
3165 
3166 		/* issue a swapon-time discard if it's still required */
3167 		if (p->flags & SWP_AREA_DISCARD) {
3168 			int err = discard_swap(p);
3169 			if (unlikely(err))
3170 				pr_err("swapon: discard_swap(%p): %d\n",
3171 					p, err);
3172 		}
3173 	}
3174 
3175 	error = init_swap_address_space(p->type, maxpages);
3176 	if (error)
3177 		goto bad_swap_unlock_inode;
3178 
3179 	/*
3180 	 * Flush any pending IO and dirty mappings before we start using this
3181 	 * swap device.
3182 	 */
3183 	inode->i_flags |= S_SWAPFILE;
3184 	error = inode_drain_writes(inode);
3185 	if (error) {
3186 		inode->i_flags &= ~S_SWAPFILE;
3187 		goto free_swap_address_space;
3188 	}
3189 
3190 	mutex_lock(&swapon_mutex);
3191 	prio = -1;
3192 	if (swap_flags & SWAP_FLAG_PREFER)
3193 		prio =
3194 		  (swap_flags & SWAP_FLAG_PRIO_MASK) >> SWAP_FLAG_PRIO_SHIFT;
3195 	enable_swap_info(p, prio, swap_map, cluster_info);
3196 
3197 	pr_info("Adding %uk swap on %s.  Priority:%d extents:%d across:%lluk %s%s%s%s\n",
3198 		K(p->pages), name->name, p->prio, nr_extents,
3199 		K((unsigned long long)span),
3200 		(p->flags & SWP_SOLIDSTATE) ? "SS" : "",
3201 		(p->flags & SWP_DISCARDABLE) ? "D" : "",
3202 		(p->flags & SWP_AREA_DISCARD) ? "s" : "",
3203 		(p->flags & SWP_PAGE_DISCARD) ? "c" : "");
3204 
3205 	mutex_unlock(&swapon_mutex);
3206 	atomic_inc(&proc_poll_event);
3207 	wake_up_interruptible(&proc_poll_wait);
3208 
3209 	error = 0;
3210 	goto out;
3211 free_swap_address_space:
3212 	exit_swap_address_space(p->type);
3213 bad_swap_unlock_inode:
3214 	inode_unlock(inode);
3215 bad_swap:
3216 	free_percpu(p->percpu_cluster);
3217 	p->percpu_cluster = NULL;
3218 	free_percpu(p->cluster_next_cpu);
3219 	p->cluster_next_cpu = NULL;
3220 	if (inode && S_ISBLK(inode->i_mode) && p->bdev) {
3221 		set_blocksize(p->bdev, p->old_block_size);
3222 		blkdev_put(p->bdev, p);
3223 	}
3224 	inode = NULL;
3225 	destroy_swap_extents(p);
3226 	swap_cgroup_swapoff(p->type);
3227 	spin_lock(&swap_lock);
3228 	p->swap_file = NULL;
3229 	p->flags = 0;
3230 	spin_unlock(&swap_lock);
3231 	vfree(swap_map);
3232 	kvfree(cluster_info);
3233 	if (inced_nr_rotate_swap)
3234 		atomic_dec(&nr_rotate_swap);
3235 	if (swap_file)
3236 		filp_close(swap_file, NULL);
3237 out:
3238 	if (page && !IS_ERR(page)) {
3239 		kunmap(page);
3240 		put_page(page);
3241 	}
3242 	if (name)
3243 		putname(name);
3244 	if (inode)
3245 		inode_unlock(inode);
3246 	if (!error)
3247 		enable_swap_slots_cache();
3248 	return error;
3249 }
3250 
3251 void si_swapinfo(struct sysinfo *val)
3252 {
3253 	unsigned int type;
3254 	unsigned long nr_to_be_unused = 0;
3255 
3256 	spin_lock(&swap_lock);
3257 	for (type = 0; type < nr_swapfiles; type++) {
3258 		struct swap_info_struct *si = swap_info[type];
3259 
3260 		if ((si->flags & SWP_USED) && !(si->flags & SWP_WRITEOK))
3261 			nr_to_be_unused += READ_ONCE(si->inuse_pages);
3262 	}
3263 	val->freeswap = atomic_long_read(&nr_swap_pages) + nr_to_be_unused;
3264 	val->totalswap = total_swap_pages + nr_to_be_unused;
3265 	spin_unlock(&swap_lock);
3266 }
3267 
3268 /*
3269  * Verify that a swap entry is valid and increment its swap map count.
3270  *
3271  * Returns error code in following case.
3272  * - success -> 0
3273  * - swp_entry is invalid -> EINVAL
3274  * - swp_entry is migration entry -> EINVAL
3275  * - swap-cache reference is requested but there is already one. -> EEXIST
3276  * - swap-cache reference is requested but the entry is not used. -> ENOENT
3277  * - swap-mapped reference requested but needs continued swap count. -> ENOMEM
3278  */
3279 static int __swap_duplicate(swp_entry_t entry, unsigned char usage)
3280 {
3281 	struct swap_info_struct *p;
3282 	struct swap_cluster_info *ci;
3283 	unsigned long offset;
3284 	unsigned char count;
3285 	unsigned char has_cache;
3286 	int err;
3287 
3288 	p = swp_swap_info(entry);
3289 
3290 	offset = swp_offset(entry);
3291 	ci = lock_cluster_or_swap_info(p, offset);
3292 
3293 	count = p->swap_map[offset];
3294 
3295 	/*
3296 	 * swapin_readahead() doesn't check if a swap entry is valid, so the
3297 	 * swap entry could be SWAP_MAP_BAD. Check here with lock held.
3298 	 */
3299 	if (unlikely(swap_count(count) == SWAP_MAP_BAD)) {
3300 		err = -ENOENT;
3301 		goto unlock_out;
3302 	}
3303 
3304 	has_cache = count & SWAP_HAS_CACHE;
3305 	count &= ~SWAP_HAS_CACHE;
3306 	err = 0;
3307 
3308 	if (usage == SWAP_HAS_CACHE) {
3309 
3310 		/* set SWAP_HAS_CACHE if there is no cache and entry is used */
3311 		if (!has_cache && count)
3312 			has_cache = SWAP_HAS_CACHE;
3313 		else if (has_cache)		/* someone else added cache */
3314 			err = -EEXIST;
3315 		else				/* no users remaining */
3316 			err = -ENOENT;
3317 
3318 	} else if (count || has_cache) {
3319 
3320 		if ((count & ~COUNT_CONTINUED) < SWAP_MAP_MAX)
3321 			count += usage;
3322 		else if ((count & ~COUNT_CONTINUED) > SWAP_MAP_MAX)
3323 			err = -EINVAL;
3324 		else if (swap_count_continued(p, offset, count))
3325 			count = COUNT_CONTINUED;
3326 		else
3327 			err = -ENOMEM;
3328 	} else
3329 		err = -ENOENT;			/* unused swap entry */
3330 
3331 	WRITE_ONCE(p->swap_map[offset], count | has_cache);
3332 
3333 unlock_out:
3334 	unlock_cluster_or_swap_info(p, ci);
3335 	return err;
3336 }
3337 
3338 /*
3339  * Help swapoff by noting that swap entry belongs to shmem/tmpfs
3340  * (in which case its reference count is never incremented).
3341  */
3342 void swap_shmem_alloc(swp_entry_t entry)
3343 {
3344 	__swap_duplicate(entry, SWAP_MAP_SHMEM);
3345 }
3346 
3347 /*
3348  * Increase reference count of swap entry by 1.
3349  * Returns 0 for success, or -ENOMEM if a swap_count_continuation is required
3350  * but could not be atomically allocated.  Returns 0, just as if it succeeded,
3351  * if __swap_duplicate() fails for another reason (-EINVAL or -ENOENT), which
3352  * might occur if a page table entry has got corrupted.
3353  */
3354 int swap_duplicate(swp_entry_t entry)
3355 {
3356 	int err = 0;
3357 
3358 	while (!err && __swap_duplicate(entry, 1) == -ENOMEM)
3359 		err = add_swap_count_continuation(entry, GFP_ATOMIC);
3360 	return err;
3361 }
3362 
3363 /*
3364  * @entry: swap entry for which we allocate swap cache.
3365  *
3366  * Called when allocating swap cache for existing swap entry,
3367  * This can return error codes. Returns 0 at success.
3368  * -EEXIST means there is a swap cache.
3369  * Note: return code is different from swap_duplicate().
3370  */
3371 int swapcache_prepare(swp_entry_t entry)
3372 {
3373 	return __swap_duplicate(entry, SWAP_HAS_CACHE);
3374 }
3375 
3376 void swapcache_clear(struct swap_info_struct *si, swp_entry_t entry)
3377 {
3378 	struct swap_cluster_info *ci;
3379 	unsigned long offset = swp_offset(entry);
3380 	unsigned char usage;
3381 
3382 	ci = lock_cluster_or_swap_info(si, offset);
3383 	usage = __swap_entry_free_locked(si, offset, SWAP_HAS_CACHE);
3384 	unlock_cluster_or_swap_info(si, ci);
3385 	if (!usage)
3386 		free_swap_slot(entry);
3387 }
3388 
3389 struct swap_info_struct *swp_swap_info(swp_entry_t entry)
3390 {
3391 	return swap_type_to_swap_info(swp_type(entry));
3392 }
3393 
3394 struct swap_info_struct *page_swap_info(struct page *page)
3395 {
3396 	swp_entry_t entry = page_swap_entry(page);
3397 	return swp_swap_info(entry);
3398 }
3399 
3400 /*
3401  * out-of-line methods to avoid include hell.
3402  */
3403 struct address_space *swapcache_mapping(struct folio *folio)
3404 {
3405 	return page_swap_info(&folio->page)->swap_file->f_mapping;
3406 }
3407 EXPORT_SYMBOL_GPL(swapcache_mapping);
3408 
3409 pgoff_t __page_file_index(struct page *page)
3410 {
3411 	swp_entry_t swap = page_swap_entry(page);
3412 	return swp_offset(swap);
3413 }
3414 EXPORT_SYMBOL_GPL(__page_file_index);
3415 
3416 /*
3417  * add_swap_count_continuation - called when a swap count is duplicated
3418  * beyond SWAP_MAP_MAX, it allocates a new page and links that to the entry's
3419  * page of the original vmalloc'ed swap_map, to hold the continuation count
3420  * (for that entry and for its neighbouring PAGE_SIZE swap entries).  Called
3421  * again when count is duplicated beyond SWAP_MAP_MAX * SWAP_CONT_MAX, etc.
3422  *
3423  * These continuation pages are seldom referenced: the common paths all work
3424  * on the original swap_map, only referring to a continuation page when the
3425  * low "digit" of a count is incremented or decremented through SWAP_MAP_MAX.
3426  *
3427  * add_swap_count_continuation(, GFP_ATOMIC) can be called while holding
3428  * page table locks; if it fails, add_swap_count_continuation(, GFP_KERNEL)
3429  * can be called after dropping locks.
3430  */
3431 int add_swap_count_continuation(swp_entry_t entry, gfp_t gfp_mask)
3432 {
3433 	struct swap_info_struct *si;
3434 	struct swap_cluster_info *ci;
3435 	struct page *head;
3436 	struct page *page;
3437 	struct page *list_page;
3438 	pgoff_t offset;
3439 	unsigned char count;
3440 	int ret = 0;
3441 
3442 	/*
3443 	 * When debugging, it's easier to use __GFP_ZERO here; but it's better
3444 	 * for latency not to zero a page while GFP_ATOMIC and holding locks.
3445 	 */
3446 	page = alloc_page(gfp_mask | __GFP_HIGHMEM);
3447 
3448 	si = get_swap_device(entry);
3449 	if (!si) {
3450 		/*
3451 		 * An acceptable race has occurred since the failing
3452 		 * __swap_duplicate(): the swap device may be swapoff
3453 		 */
3454 		goto outer;
3455 	}
3456 	spin_lock(&si->lock);
3457 
3458 	offset = swp_offset(entry);
3459 
3460 	ci = lock_cluster(si, offset);
3461 
3462 	count = swap_count(si->swap_map[offset]);
3463 
3464 	if ((count & ~COUNT_CONTINUED) != SWAP_MAP_MAX) {
3465 		/*
3466 		 * The higher the swap count, the more likely it is that tasks
3467 		 * will race to add swap count continuation: we need to avoid
3468 		 * over-provisioning.
3469 		 */
3470 		goto out;
3471 	}
3472 
3473 	if (!page) {
3474 		ret = -ENOMEM;
3475 		goto out;
3476 	}
3477 
3478 	head = vmalloc_to_page(si->swap_map + offset);
3479 	offset &= ~PAGE_MASK;
3480 
3481 	spin_lock(&si->cont_lock);
3482 	/*
3483 	 * Page allocation does not initialize the page's lru field,
3484 	 * but it does always reset its private field.
3485 	 */
3486 	if (!page_private(head)) {
3487 		BUG_ON(count & COUNT_CONTINUED);
3488 		INIT_LIST_HEAD(&head->lru);
3489 		set_page_private(head, SWP_CONTINUED);
3490 		si->flags |= SWP_CONTINUED;
3491 	}
3492 
3493 	list_for_each_entry(list_page, &head->lru, lru) {
3494 		unsigned char *map;
3495 
3496 		/*
3497 		 * If the previous map said no continuation, but we've found
3498 		 * a continuation page, free our allocation and use this one.
3499 		 */
3500 		if (!(count & COUNT_CONTINUED))
3501 			goto out_unlock_cont;
3502 
3503 		map = kmap_atomic(list_page) + offset;
3504 		count = *map;
3505 		kunmap_atomic(map);
3506 
3507 		/*
3508 		 * If this continuation count now has some space in it,
3509 		 * free our allocation and use this one.
3510 		 */
3511 		if ((count & ~COUNT_CONTINUED) != SWAP_CONT_MAX)
3512 			goto out_unlock_cont;
3513 	}
3514 
3515 	list_add_tail(&page->lru, &head->lru);
3516 	page = NULL;			/* now it's attached, don't free it */
3517 out_unlock_cont:
3518 	spin_unlock(&si->cont_lock);
3519 out:
3520 	unlock_cluster(ci);
3521 	spin_unlock(&si->lock);
3522 	put_swap_device(si);
3523 outer:
3524 	if (page)
3525 		__free_page(page);
3526 	return ret;
3527 }
3528 
3529 /*
3530  * swap_count_continued - when the original swap_map count is incremented
3531  * from SWAP_MAP_MAX, check if there is already a continuation page to carry
3532  * into, carry if so, or else fail until a new continuation page is allocated;
3533  * when the original swap_map count is decremented from 0 with continuation,
3534  * borrow from the continuation and report whether it still holds more.
3535  * Called while __swap_duplicate() or swap_entry_free() holds swap or cluster
3536  * lock.
3537  */
3538 static bool swap_count_continued(struct swap_info_struct *si,
3539 				 pgoff_t offset, unsigned char count)
3540 {
3541 	struct page *head;
3542 	struct page *page;
3543 	unsigned char *map;
3544 	bool ret;
3545 
3546 	head = vmalloc_to_page(si->swap_map + offset);
3547 	if (page_private(head) != SWP_CONTINUED) {
3548 		BUG_ON(count & COUNT_CONTINUED);
3549 		return false;		/* need to add count continuation */
3550 	}
3551 
3552 	spin_lock(&si->cont_lock);
3553 	offset &= ~PAGE_MASK;
3554 	page = list_next_entry(head, lru);
3555 	map = kmap_atomic(page) + offset;
3556 
3557 	if (count == SWAP_MAP_MAX)	/* initial increment from swap_map */
3558 		goto init_map;		/* jump over SWAP_CONT_MAX checks */
3559 
3560 	if (count == (SWAP_MAP_MAX | COUNT_CONTINUED)) { /* incrementing */
3561 		/*
3562 		 * Think of how you add 1 to 999
3563 		 */
3564 		while (*map == (SWAP_CONT_MAX | COUNT_CONTINUED)) {
3565 			kunmap_atomic(map);
3566 			page = list_next_entry(page, lru);
3567 			BUG_ON(page == head);
3568 			map = kmap_atomic(page) + offset;
3569 		}
3570 		if (*map == SWAP_CONT_MAX) {
3571 			kunmap_atomic(map);
3572 			page = list_next_entry(page, lru);
3573 			if (page == head) {
3574 				ret = false;	/* add count continuation */
3575 				goto out;
3576 			}
3577 			map = kmap_atomic(page) + offset;
3578 init_map:		*map = 0;		/* we didn't zero the page */
3579 		}
3580 		*map += 1;
3581 		kunmap_atomic(map);
3582 		while ((page = list_prev_entry(page, lru)) != head) {
3583 			map = kmap_atomic(page) + offset;
3584 			*map = COUNT_CONTINUED;
3585 			kunmap_atomic(map);
3586 		}
3587 		ret = true;			/* incremented */
3588 
3589 	} else {				/* decrementing */
3590 		/*
3591 		 * Think of how you subtract 1 from 1000
3592 		 */
3593 		BUG_ON(count != COUNT_CONTINUED);
3594 		while (*map == COUNT_CONTINUED) {
3595 			kunmap_atomic(map);
3596 			page = list_next_entry(page, lru);
3597 			BUG_ON(page == head);
3598 			map = kmap_atomic(page) + offset;
3599 		}
3600 		BUG_ON(*map == 0);
3601 		*map -= 1;
3602 		if (*map == 0)
3603 			count = 0;
3604 		kunmap_atomic(map);
3605 		while ((page = list_prev_entry(page, lru)) != head) {
3606 			map = kmap_atomic(page) + offset;
3607 			*map = SWAP_CONT_MAX | count;
3608 			count = COUNT_CONTINUED;
3609 			kunmap_atomic(map);
3610 		}
3611 		ret = count == COUNT_CONTINUED;
3612 	}
3613 out:
3614 	spin_unlock(&si->cont_lock);
3615 	return ret;
3616 }
3617 
3618 /*
3619  * free_swap_count_continuations - swapoff free all the continuation pages
3620  * appended to the swap_map, after swap_map is quiesced, before vfree'ing it.
3621  */
3622 static void free_swap_count_continuations(struct swap_info_struct *si)
3623 {
3624 	pgoff_t offset;
3625 
3626 	for (offset = 0; offset < si->max; offset += PAGE_SIZE) {
3627 		struct page *head;
3628 		head = vmalloc_to_page(si->swap_map + offset);
3629 		if (page_private(head)) {
3630 			struct page *page, *next;
3631 
3632 			list_for_each_entry_safe(page, next, &head->lru, lru) {
3633 				list_del(&page->lru);
3634 				__free_page(page);
3635 			}
3636 		}
3637 	}
3638 }
3639 
3640 #if defined(CONFIG_MEMCG) && defined(CONFIG_BLK_CGROUP)
3641 void __folio_throttle_swaprate(struct folio *folio, gfp_t gfp)
3642 {
3643 	struct swap_info_struct *si, *next;
3644 	int nid = folio_nid(folio);
3645 
3646 	if (!(gfp & __GFP_IO))
3647 		return;
3648 
3649 	if (!blk_cgroup_congested())
3650 		return;
3651 
3652 	/*
3653 	 * We've already scheduled a throttle, avoid taking the global swap
3654 	 * lock.
3655 	 */
3656 	if (current->throttle_disk)
3657 		return;
3658 
3659 	spin_lock(&swap_avail_lock);
3660 	plist_for_each_entry_safe(si, next, &swap_avail_heads[nid],
3661 				  avail_lists[nid]) {
3662 		if (si->bdev) {
3663 			blkcg_schedule_throttle(si->bdev->bd_disk, true);
3664 			break;
3665 		}
3666 	}
3667 	spin_unlock(&swap_avail_lock);
3668 }
3669 #endif
3670 
3671 static int __init swapfile_init(void)
3672 {
3673 	int nid;
3674 
3675 	swap_avail_heads = kmalloc_array(nr_node_ids, sizeof(struct plist_head),
3676 					 GFP_KERNEL);
3677 	if (!swap_avail_heads) {
3678 		pr_emerg("Not enough memory for swap heads, swap is disabled\n");
3679 		return -ENOMEM;
3680 	}
3681 
3682 	for_each_node(nid)
3683 		plist_head_init(&swap_avail_heads[nid]);
3684 
3685 	swapfile_maximum_size = arch_max_swapfile_size();
3686 
3687 #ifdef CONFIG_MIGRATION
3688 	if (swapfile_maximum_size >= (1UL << SWP_MIG_TOTAL_BITS))
3689 		swap_migration_ad_supported = true;
3690 #endif	/* CONFIG_MIGRATION */
3691 
3692 	return 0;
3693 }
3694 subsys_initcall(swapfile_init);
3695