xref: /openbmc/linux/mm/swapfile.c (revision c4ee0af3)
1 /*
2  *  linux/mm/swapfile.c
3  *
4  *  Copyright (C) 1991, 1992, 1993, 1994  Linus Torvalds
5  *  Swap reorganised 29.12.95, Stephen Tweedie
6  */
7 
8 #include <linux/mm.h>
9 #include <linux/hugetlb.h>
10 #include <linux/mman.h>
11 #include <linux/slab.h>
12 #include <linux/kernel_stat.h>
13 #include <linux/swap.h>
14 #include <linux/vmalloc.h>
15 #include <linux/pagemap.h>
16 #include <linux/namei.h>
17 #include <linux/shmem_fs.h>
18 #include <linux/blkdev.h>
19 #include <linux/random.h>
20 #include <linux/writeback.h>
21 #include <linux/proc_fs.h>
22 #include <linux/seq_file.h>
23 #include <linux/init.h>
24 #include <linux/ksm.h>
25 #include <linux/rmap.h>
26 #include <linux/security.h>
27 #include <linux/backing-dev.h>
28 #include <linux/mutex.h>
29 #include <linux/capability.h>
30 #include <linux/syscalls.h>
31 #include <linux/memcontrol.h>
32 #include <linux/poll.h>
33 #include <linux/oom.h>
34 #include <linux/frontswap.h>
35 #include <linux/swapfile.h>
36 #include <linux/export.h>
37 
38 #include <asm/pgtable.h>
39 #include <asm/tlbflush.h>
40 #include <linux/swapops.h>
41 #include <linux/page_cgroup.h>
42 
43 static bool swap_count_continued(struct swap_info_struct *, pgoff_t,
44 				 unsigned char);
45 static void free_swap_count_continuations(struct swap_info_struct *);
46 static sector_t map_swap_entry(swp_entry_t, struct block_device**);
47 
48 DEFINE_SPINLOCK(swap_lock);
49 static unsigned int nr_swapfiles;
50 atomic_long_t nr_swap_pages;
51 /* protected with swap_lock. reading in vm_swap_full() doesn't need lock */
52 long total_swap_pages;
53 static int least_priority;
54 static atomic_t highest_priority_index = ATOMIC_INIT(-1);
55 
56 static const char Bad_file[] = "Bad swap file entry ";
57 static const char Unused_file[] = "Unused swap file entry ";
58 static const char Bad_offset[] = "Bad swap offset entry ";
59 static const char Unused_offset[] = "Unused swap offset entry ";
60 
61 struct swap_list_t swap_list = {-1, -1};
62 
63 struct swap_info_struct *swap_info[MAX_SWAPFILES];
64 
65 static DEFINE_MUTEX(swapon_mutex);
66 
67 static DECLARE_WAIT_QUEUE_HEAD(proc_poll_wait);
68 /* Activity counter to indicate that a swapon or swapoff has occurred */
69 static atomic_t proc_poll_event = ATOMIC_INIT(0);
70 
71 static inline unsigned char swap_count(unsigned char ent)
72 {
73 	return ent & ~SWAP_HAS_CACHE;	/* may include SWAP_HAS_CONT flag */
74 }
75 
76 /* returns 1 if swap entry is freed */
77 static int
78 __try_to_reclaim_swap(struct swap_info_struct *si, unsigned long offset)
79 {
80 	swp_entry_t entry = swp_entry(si->type, offset);
81 	struct page *page;
82 	int ret = 0;
83 
84 	page = find_get_page(swap_address_space(entry), entry.val);
85 	if (!page)
86 		return 0;
87 	/*
88 	 * This function is called from scan_swap_map() and it's called
89 	 * by vmscan.c at reclaiming pages. So, we hold a lock on a page, here.
90 	 * We have to use trylock for avoiding deadlock. This is a special
91 	 * case and you should use try_to_free_swap() with explicit lock_page()
92 	 * in usual operations.
93 	 */
94 	if (trylock_page(page)) {
95 		ret = try_to_free_swap(page);
96 		unlock_page(page);
97 	}
98 	page_cache_release(page);
99 	return ret;
100 }
101 
102 /*
103  * swapon tell device that all the old swap contents can be discarded,
104  * to allow the swap device to optimize its wear-levelling.
105  */
106 static int discard_swap(struct swap_info_struct *si)
107 {
108 	struct swap_extent *se;
109 	sector_t start_block;
110 	sector_t nr_blocks;
111 	int err = 0;
112 
113 	/* Do not discard the swap header page! */
114 	se = &si->first_swap_extent;
115 	start_block = (se->start_block + 1) << (PAGE_SHIFT - 9);
116 	nr_blocks = ((sector_t)se->nr_pages - 1) << (PAGE_SHIFT - 9);
117 	if (nr_blocks) {
118 		err = blkdev_issue_discard(si->bdev, start_block,
119 				nr_blocks, GFP_KERNEL, 0);
120 		if (err)
121 			return err;
122 		cond_resched();
123 	}
124 
125 	list_for_each_entry(se, &si->first_swap_extent.list, list) {
126 		start_block = se->start_block << (PAGE_SHIFT - 9);
127 		nr_blocks = (sector_t)se->nr_pages << (PAGE_SHIFT - 9);
128 
129 		err = blkdev_issue_discard(si->bdev, start_block,
130 				nr_blocks, GFP_KERNEL, 0);
131 		if (err)
132 			break;
133 
134 		cond_resched();
135 	}
136 	return err;		/* That will often be -EOPNOTSUPP */
137 }
138 
139 /*
140  * swap allocation tell device that a cluster of swap can now be discarded,
141  * to allow the swap device to optimize its wear-levelling.
142  */
143 static void discard_swap_cluster(struct swap_info_struct *si,
144 				 pgoff_t start_page, pgoff_t nr_pages)
145 {
146 	struct swap_extent *se = si->curr_swap_extent;
147 	int found_extent = 0;
148 
149 	while (nr_pages) {
150 		struct list_head *lh;
151 
152 		if (se->start_page <= start_page &&
153 		    start_page < se->start_page + se->nr_pages) {
154 			pgoff_t offset = start_page - se->start_page;
155 			sector_t start_block = se->start_block + offset;
156 			sector_t nr_blocks = se->nr_pages - offset;
157 
158 			if (nr_blocks > nr_pages)
159 				nr_blocks = nr_pages;
160 			start_page += nr_blocks;
161 			nr_pages -= nr_blocks;
162 
163 			if (!found_extent++)
164 				si->curr_swap_extent = se;
165 
166 			start_block <<= PAGE_SHIFT - 9;
167 			nr_blocks <<= PAGE_SHIFT - 9;
168 			if (blkdev_issue_discard(si->bdev, start_block,
169 				    nr_blocks, GFP_NOIO, 0))
170 				break;
171 		}
172 
173 		lh = se->list.next;
174 		se = list_entry(lh, struct swap_extent, list);
175 	}
176 }
177 
178 #define SWAPFILE_CLUSTER	256
179 #define LATENCY_LIMIT		256
180 
181 static inline void cluster_set_flag(struct swap_cluster_info *info,
182 	unsigned int flag)
183 {
184 	info->flags = flag;
185 }
186 
187 static inline unsigned int cluster_count(struct swap_cluster_info *info)
188 {
189 	return info->data;
190 }
191 
192 static inline void cluster_set_count(struct swap_cluster_info *info,
193 				     unsigned int c)
194 {
195 	info->data = c;
196 }
197 
198 static inline void cluster_set_count_flag(struct swap_cluster_info *info,
199 					 unsigned int c, unsigned int f)
200 {
201 	info->flags = f;
202 	info->data = c;
203 }
204 
205 static inline unsigned int cluster_next(struct swap_cluster_info *info)
206 {
207 	return info->data;
208 }
209 
210 static inline void cluster_set_next(struct swap_cluster_info *info,
211 				    unsigned int n)
212 {
213 	info->data = n;
214 }
215 
216 static inline void cluster_set_next_flag(struct swap_cluster_info *info,
217 					 unsigned int n, unsigned int f)
218 {
219 	info->flags = f;
220 	info->data = n;
221 }
222 
223 static inline bool cluster_is_free(struct swap_cluster_info *info)
224 {
225 	return info->flags & CLUSTER_FLAG_FREE;
226 }
227 
228 static inline bool cluster_is_null(struct swap_cluster_info *info)
229 {
230 	return info->flags & CLUSTER_FLAG_NEXT_NULL;
231 }
232 
233 static inline void cluster_set_null(struct swap_cluster_info *info)
234 {
235 	info->flags = CLUSTER_FLAG_NEXT_NULL;
236 	info->data = 0;
237 }
238 
239 /* Add a cluster to discard list and schedule it to do discard */
240 static void swap_cluster_schedule_discard(struct swap_info_struct *si,
241 		unsigned int idx)
242 {
243 	/*
244 	 * If scan_swap_map() can't find a free cluster, it will check
245 	 * si->swap_map directly. To make sure the discarding cluster isn't
246 	 * taken by scan_swap_map(), mark the swap entries bad (occupied). It
247 	 * will be cleared after discard
248 	 */
249 	memset(si->swap_map + idx * SWAPFILE_CLUSTER,
250 			SWAP_MAP_BAD, SWAPFILE_CLUSTER);
251 
252 	if (cluster_is_null(&si->discard_cluster_head)) {
253 		cluster_set_next_flag(&si->discard_cluster_head,
254 						idx, 0);
255 		cluster_set_next_flag(&si->discard_cluster_tail,
256 						idx, 0);
257 	} else {
258 		unsigned int tail = cluster_next(&si->discard_cluster_tail);
259 		cluster_set_next(&si->cluster_info[tail], idx);
260 		cluster_set_next_flag(&si->discard_cluster_tail,
261 						idx, 0);
262 	}
263 
264 	schedule_work(&si->discard_work);
265 }
266 
267 /*
268  * Doing discard actually. After a cluster discard is finished, the cluster
269  * will be added to free cluster list. caller should hold si->lock.
270 */
271 static void swap_do_scheduled_discard(struct swap_info_struct *si)
272 {
273 	struct swap_cluster_info *info;
274 	unsigned int idx;
275 
276 	info = si->cluster_info;
277 
278 	while (!cluster_is_null(&si->discard_cluster_head)) {
279 		idx = cluster_next(&si->discard_cluster_head);
280 
281 		cluster_set_next_flag(&si->discard_cluster_head,
282 						cluster_next(&info[idx]), 0);
283 		if (cluster_next(&si->discard_cluster_tail) == idx) {
284 			cluster_set_null(&si->discard_cluster_head);
285 			cluster_set_null(&si->discard_cluster_tail);
286 		}
287 		spin_unlock(&si->lock);
288 
289 		discard_swap_cluster(si, idx * SWAPFILE_CLUSTER,
290 				SWAPFILE_CLUSTER);
291 
292 		spin_lock(&si->lock);
293 		cluster_set_flag(&info[idx], CLUSTER_FLAG_FREE);
294 		if (cluster_is_null(&si->free_cluster_head)) {
295 			cluster_set_next_flag(&si->free_cluster_head,
296 						idx, 0);
297 			cluster_set_next_flag(&si->free_cluster_tail,
298 						idx, 0);
299 		} else {
300 			unsigned int tail;
301 
302 			tail = cluster_next(&si->free_cluster_tail);
303 			cluster_set_next(&info[tail], idx);
304 			cluster_set_next_flag(&si->free_cluster_tail,
305 						idx, 0);
306 		}
307 		memset(si->swap_map + idx * SWAPFILE_CLUSTER,
308 				0, SWAPFILE_CLUSTER);
309 	}
310 }
311 
312 static void swap_discard_work(struct work_struct *work)
313 {
314 	struct swap_info_struct *si;
315 
316 	si = container_of(work, struct swap_info_struct, discard_work);
317 
318 	spin_lock(&si->lock);
319 	swap_do_scheduled_discard(si);
320 	spin_unlock(&si->lock);
321 }
322 
323 /*
324  * The cluster corresponding to page_nr will be used. The cluster will be
325  * removed from free cluster list and its usage counter will be increased.
326  */
327 static void inc_cluster_info_page(struct swap_info_struct *p,
328 	struct swap_cluster_info *cluster_info, unsigned long page_nr)
329 {
330 	unsigned long idx = page_nr / SWAPFILE_CLUSTER;
331 
332 	if (!cluster_info)
333 		return;
334 	if (cluster_is_free(&cluster_info[idx])) {
335 		VM_BUG_ON(cluster_next(&p->free_cluster_head) != idx);
336 		cluster_set_next_flag(&p->free_cluster_head,
337 			cluster_next(&cluster_info[idx]), 0);
338 		if (cluster_next(&p->free_cluster_tail) == idx) {
339 			cluster_set_null(&p->free_cluster_tail);
340 			cluster_set_null(&p->free_cluster_head);
341 		}
342 		cluster_set_count_flag(&cluster_info[idx], 0, 0);
343 	}
344 
345 	VM_BUG_ON(cluster_count(&cluster_info[idx]) >= SWAPFILE_CLUSTER);
346 	cluster_set_count(&cluster_info[idx],
347 		cluster_count(&cluster_info[idx]) + 1);
348 }
349 
350 /*
351  * The cluster corresponding to page_nr decreases one usage. If the usage
352  * counter becomes 0, which means no page in the cluster is in using, we can
353  * optionally discard the cluster and add it to free cluster list.
354  */
355 static void dec_cluster_info_page(struct swap_info_struct *p,
356 	struct swap_cluster_info *cluster_info, unsigned long page_nr)
357 {
358 	unsigned long idx = page_nr / SWAPFILE_CLUSTER;
359 
360 	if (!cluster_info)
361 		return;
362 
363 	VM_BUG_ON(cluster_count(&cluster_info[idx]) == 0);
364 	cluster_set_count(&cluster_info[idx],
365 		cluster_count(&cluster_info[idx]) - 1);
366 
367 	if (cluster_count(&cluster_info[idx]) == 0) {
368 		/*
369 		 * If the swap is discardable, prepare discard the cluster
370 		 * instead of free it immediately. The cluster will be freed
371 		 * after discard.
372 		 */
373 		if ((p->flags & (SWP_WRITEOK | SWP_PAGE_DISCARD)) ==
374 				 (SWP_WRITEOK | SWP_PAGE_DISCARD)) {
375 			swap_cluster_schedule_discard(p, idx);
376 			return;
377 		}
378 
379 		cluster_set_flag(&cluster_info[idx], CLUSTER_FLAG_FREE);
380 		if (cluster_is_null(&p->free_cluster_head)) {
381 			cluster_set_next_flag(&p->free_cluster_head, idx, 0);
382 			cluster_set_next_flag(&p->free_cluster_tail, idx, 0);
383 		} else {
384 			unsigned int tail = cluster_next(&p->free_cluster_tail);
385 			cluster_set_next(&cluster_info[tail], idx);
386 			cluster_set_next_flag(&p->free_cluster_tail, idx, 0);
387 		}
388 	}
389 }
390 
391 /*
392  * It's possible scan_swap_map() uses a free cluster in the middle of free
393  * cluster list. Avoiding such abuse to avoid list corruption.
394  */
395 static bool
396 scan_swap_map_ssd_cluster_conflict(struct swap_info_struct *si,
397 	unsigned long offset)
398 {
399 	struct percpu_cluster *percpu_cluster;
400 	bool conflict;
401 
402 	offset /= SWAPFILE_CLUSTER;
403 	conflict = !cluster_is_null(&si->free_cluster_head) &&
404 		offset != cluster_next(&si->free_cluster_head) &&
405 		cluster_is_free(&si->cluster_info[offset]);
406 
407 	if (!conflict)
408 		return false;
409 
410 	percpu_cluster = this_cpu_ptr(si->percpu_cluster);
411 	cluster_set_null(&percpu_cluster->index);
412 	return true;
413 }
414 
415 /*
416  * Try to get a swap entry from current cpu's swap entry pool (a cluster). This
417  * might involve allocating a new cluster for current CPU too.
418  */
419 static void scan_swap_map_try_ssd_cluster(struct swap_info_struct *si,
420 	unsigned long *offset, unsigned long *scan_base)
421 {
422 	struct percpu_cluster *cluster;
423 	bool found_free;
424 	unsigned long tmp;
425 
426 new_cluster:
427 	cluster = this_cpu_ptr(si->percpu_cluster);
428 	if (cluster_is_null(&cluster->index)) {
429 		if (!cluster_is_null(&si->free_cluster_head)) {
430 			cluster->index = si->free_cluster_head;
431 			cluster->next = cluster_next(&cluster->index) *
432 					SWAPFILE_CLUSTER;
433 		} else if (!cluster_is_null(&si->discard_cluster_head)) {
434 			/*
435 			 * we don't have free cluster but have some clusters in
436 			 * discarding, do discard now and reclaim them
437 			 */
438 			swap_do_scheduled_discard(si);
439 			*scan_base = *offset = si->cluster_next;
440 			goto new_cluster;
441 		} else
442 			return;
443 	}
444 
445 	found_free = false;
446 
447 	/*
448 	 * Other CPUs can use our cluster if they can't find a free cluster,
449 	 * check if there is still free entry in the cluster
450 	 */
451 	tmp = cluster->next;
452 	while (tmp < si->max && tmp < (cluster_next(&cluster->index) + 1) *
453 	       SWAPFILE_CLUSTER) {
454 		if (!si->swap_map[tmp]) {
455 			found_free = true;
456 			break;
457 		}
458 		tmp++;
459 	}
460 	if (!found_free) {
461 		cluster_set_null(&cluster->index);
462 		goto new_cluster;
463 	}
464 	cluster->next = tmp + 1;
465 	*offset = tmp;
466 	*scan_base = tmp;
467 }
468 
469 static unsigned long scan_swap_map(struct swap_info_struct *si,
470 				   unsigned char usage)
471 {
472 	unsigned long offset;
473 	unsigned long scan_base;
474 	unsigned long last_in_cluster = 0;
475 	int latency_ration = LATENCY_LIMIT;
476 
477 	/*
478 	 * We try to cluster swap pages by allocating them sequentially
479 	 * in swap.  Once we've allocated SWAPFILE_CLUSTER pages this
480 	 * way, however, we resort to first-free allocation, starting
481 	 * a new cluster.  This prevents us from scattering swap pages
482 	 * all over the entire swap partition, so that we reduce
483 	 * overall disk seek times between swap pages.  -- sct
484 	 * But we do now try to find an empty cluster.  -Andrea
485 	 * And we let swap pages go all over an SSD partition.  Hugh
486 	 */
487 
488 	si->flags += SWP_SCANNING;
489 	scan_base = offset = si->cluster_next;
490 
491 	/* SSD algorithm */
492 	if (si->cluster_info) {
493 		scan_swap_map_try_ssd_cluster(si, &offset, &scan_base);
494 		goto checks;
495 	}
496 
497 	if (unlikely(!si->cluster_nr--)) {
498 		if (si->pages - si->inuse_pages < SWAPFILE_CLUSTER) {
499 			si->cluster_nr = SWAPFILE_CLUSTER - 1;
500 			goto checks;
501 		}
502 
503 		spin_unlock(&si->lock);
504 
505 		/*
506 		 * If seek is expensive, start searching for new cluster from
507 		 * start of partition, to minimize the span of allocated swap.
508 		 * But if seek is cheap, search from our current position, so
509 		 * that swap is allocated from all over the partition: if the
510 		 * Flash Translation Layer only remaps within limited zones,
511 		 * we don't want to wear out the first zone too quickly.
512 		 */
513 		if (!(si->flags & SWP_SOLIDSTATE))
514 			scan_base = offset = si->lowest_bit;
515 		last_in_cluster = offset + SWAPFILE_CLUSTER - 1;
516 
517 		/* Locate the first empty (unaligned) cluster */
518 		for (; last_in_cluster <= si->highest_bit; offset++) {
519 			if (si->swap_map[offset])
520 				last_in_cluster = offset + SWAPFILE_CLUSTER;
521 			else if (offset == last_in_cluster) {
522 				spin_lock(&si->lock);
523 				offset -= SWAPFILE_CLUSTER - 1;
524 				si->cluster_next = offset;
525 				si->cluster_nr = SWAPFILE_CLUSTER - 1;
526 				goto checks;
527 			}
528 			if (unlikely(--latency_ration < 0)) {
529 				cond_resched();
530 				latency_ration = LATENCY_LIMIT;
531 			}
532 		}
533 
534 		offset = si->lowest_bit;
535 		last_in_cluster = offset + SWAPFILE_CLUSTER - 1;
536 
537 		/* Locate the first empty (unaligned) cluster */
538 		for (; last_in_cluster < scan_base; offset++) {
539 			if (si->swap_map[offset])
540 				last_in_cluster = offset + SWAPFILE_CLUSTER;
541 			else if (offset == last_in_cluster) {
542 				spin_lock(&si->lock);
543 				offset -= SWAPFILE_CLUSTER - 1;
544 				si->cluster_next = offset;
545 				si->cluster_nr = SWAPFILE_CLUSTER - 1;
546 				goto checks;
547 			}
548 			if (unlikely(--latency_ration < 0)) {
549 				cond_resched();
550 				latency_ration = LATENCY_LIMIT;
551 			}
552 		}
553 
554 		offset = scan_base;
555 		spin_lock(&si->lock);
556 		si->cluster_nr = SWAPFILE_CLUSTER - 1;
557 	}
558 
559 checks:
560 	if (si->cluster_info) {
561 		while (scan_swap_map_ssd_cluster_conflict(si, offset))
562 			scan_swap_map_try_ssd_cluster(si, &offset, &scan_base);
563 	}
564 	if (!(si->flags & SWP_WRITEOK))
565 		goto no_page;
566 	if (!si->highest_bit)
567 		goto no_page;
568 	if (offset > si->highest_bit)
569 		scan_base = offset = si->lowest_bit;
570 
571 	/* reuse swap entry of cache-only swap if not busy. */
572 	if (vm_swap_full() && si->swap_map[offset] == SWAP_HAS_CACHE) {
573 		int swap_was_freed;
574 		spin_unlock(&si->lock);
575 		swap_was_freed = __try_to_reclaim_swap(si, offset);
576 		spin_lock(&si->lock);
577 		/* entry was freed successfully, try to use this again */
578 		if (swap_was_freed)
579 			goto checks;
580 		goto scan; /* check next one */
581 	}
582 
583 	if (si->swap_map[offset])
584 		goto scan;
585 
586 	if (offset == si->lowest_bit)
587 		si->lowest_bit++;
588 	if (offset == si->highest_bit)
589 		si->highest_bit--;
590 	si->inuse_pages++;
591 	if (si->inuse_pages == si->pages) {
592 		si->lowest_bit = si->max;
593 		si->highest_bit = 0;
594 	}
595 	si->swap_map[offset] = usage;
596 	inc_cluster_info_page(si, si->cluster_info, offset);
597 	si->cluster_next = offset + 1;
598 	si->flags -= SWP_SCANNING;
599 
600 	return offset;
601 
602 scan:
603 	spin_unlock(&si->lock);
604 	while (++offset <= si->highest_bit) {
605 		if (!si->swap_map[offset]) {
606 			spin_lock(&si->lock);
607 			goto checks;
608 		}
609 		if (vm_swap_full() && si->swap_map[offset] == SWAP_HAS_CACHE) {
610 			spin_lock(&si->lock);
611 			goto checks;
612 		}
613 		if (unlikely(--latency_ration < 0)) {
614 			cond_resched();
615 			latency_ration = LATENCY_LIMIT;
616 		}
617 	}
618 	offset = si->lowest_bit;
619 	while (++offset < scan_base) {
620 		if (!si->swap_map[offset]) {
621 			spin_lock(&si->lock);
622 			goto checks;
623 		}
624 		if (vm_swap_full() && si->swap_map[offset] == SWAP_HAS_CACHE) {
625 			spin_lock(&si->lock);
626 			goto checks;
627 		}
628 		if (unlikely(--latency_ration < 0)) {
629 			cond_resched();
630 			latency_ration = LATENCY_LIMIT;
631 		}
632 	}
633 	spin_lock(&si->lock);
634 
635 no_page:
636 	si->flags -= SWP_SCANNING;
637 	return 0;
638 }
639 
640 swp_entry_t get_swap_page(void)
641 {
642 	struct swap_info_struct *si;
643 	pgoff_t offset;
644 	int type, next;
645 	int wrapped = 0;
646 	int hp_index;
647 
648 	spin_lock(&swap_lock);
649 	if (atomic_long_read(&nr_swap_pages) <= 0)
650 		goto noswap;
651 	atomic_long_dec(&nr_swap_pages);
652 
653 	for (type = swap_list.next; type >= 0 && wrapped < 2; type = next) {
654 		hp_index = atomic_xchg(&highest_priority_index, -1);
655 		/*
656 		 * highest_priority_index records current highest priority swap
657 		 * type which just frees swap entries. If its priority is
658 		 * higher than that of swap_list.next swap type, we use it.  It
659 		 * isn't protected by swap_lock, so it can be an invalid value
660 		 * if the corresponding swap type is swapoff. We double check
661 		 * the flags here. It's even possible the swap type is swapoff
662 		 * and swapon again and its priority is changed. In such rare
663 		 * case, low prority swap type might be used, but eventually
664 		 * high priority swap will be used after several rounds of
665 		 * swap.
666 		 */
667 		if (hp_index != -1 && hp_index != type &&
668 		    swap_info[type]->prio < swap_info[hp_index]->prio &&
669 		    (swap_info[hp_index]->flags & SWP_WRITEOK)) {
670 			type = hp_index;
671 			swap_list.next = type;
672 		}
673 
674 		si = swap_info[type];
675 		next = si->next;
676 		if (next < 0 ||
677 		    (!wrapped && si->prio != swap_info[next]->prio)) {
678 			next = swap_list.head;
679 			wrapped++;
680 		}
681 
682 		spin_lock(&si->lock);
683 		if (!si->highest_bit) {
684 			spin_unlock(&si->lock);
685 			continue;
686 		}
687 		if (!(si->flags & SWP_WRITEOK)) {
688 			spin_unlock(&si->lock);
689 			continue;
690 		}
691 
692 		swap_list.next = next;
693 
694 		spin_unlock(&swap_lock);
695 		/* This is called for allocating swap entry for cache */
696 		offset = scan_swap_map(si, SWAP_HAS_CACHE);
697 		spin_unlock(&si->lock);
698 		if (offset)
699 			return swp_entry(type, offset);
700 		spin_lock(&swap_lock);
701 		next = swap_list.next;
702 	}
703 
704 	atomic_long_inc(&nr_swap_pages);
705 noswap:
706 	spin_unlock(&swap_lock);
707 	return (swp_entry_t) {0};
708 }
709 
710 /* The only caller of this function is now suspend routine */
711 swp_entry_t get_swap_page_of_type(int type)
712 {
713 	struct swap_info_struct *si;
714 	pgoff_t offset;
715 
716 	si = swap_info[type];
717 	spin_lock(&si->lock);
718 	if (si && (si->flags & SWP_WRITEOK)) {
719 		atomic_long_dec(&nr_swap_pages);
720 		/* This is called for allocating swap entry, not cache */
721 		offset = scan_swap_map(si, 1);
722 		if (offset) {
723 			spin_unlock(&si->lock);
724 			return swp_entry(type, offset);
725 		}
726 		atomic_long_inc(&nr_swap_pages);
727 	}
728 	spin_unlock(&si->lock);
729 	return (swp_entry_t) {0};
730 }
731 
732 static struct swap_info_struct *swap_info_get(swp_entry_t entry)
733 {
734 	struct swap_info_struct *p;
735 	unsigned long offset, type;
736 
737 	if (!entry.val)
738 		goto out;
739 	type = swp_type(entry);
740 	if (type >= nr_swapfiles)
741 		goto bad_nofile;
742 	p = swap_info[type];
743 	if (!(p->flags & SWP_USED))
744 		goto bad_device;
745 	offset = swp_offset(entry);
746 	if (offset >= p->max)
747 		goto bad_offset;
748 	if (!p->swap_map[offset])
749 		goto bad_free;
750 	spin_lock(&p->lock);
751 	return p;
752 
753 bad_free:
754 	pr_err("swap_free: %s%08lx\n", Unused_offset, entry.val);
755 	goto out;
756 bad_offset:
757 	pr_err("swap_free: %s%08lx\n", Bad_offset, entry.val);
758 	goto out;
759 bad_device:
760 	pr_err("swap_free: %s%08lx\n", Unused_file, entry.val);
761 	goto out;
762 bad_nofile:
763 	pr_err("swap_free: %s%08lx\n", Bad_file, entry.val);
764 out:
765 	return NULL;
766 }
767 
768 /*
769  * This swap type frees swap entry, check if it is the highest priority swap
770  * type which just frees swap entry. get_swap_page() uses
771  * highest_priority_index to search highest priority swap type. The
772  * swap_info_struct.lock can't protect us if there are multiple swap types
773  * active, so we use atomic_cmpxchg.
774  */
775 static void set_highest_priority_index(int type)
776 {
777 	int old_hp_index, new_hp_index;
778 
779 	do {
780 		old_hp_index = atomic_read(&highest_priority_index);
781 		if (old_hp_index != -1 &&
782 			swap_info[old_hp_index]->prio >= swap_info[type]->prio)
783 			break;
784 		new_hp_index = type;
785 	} while (atomic_cmpxchg(&highest_priority_index,
786 		old_hp_index, new_hp_index) != old_hp_index);
787 }
788 
789 static unsigned char swap_entry_free(struct swap_info_struct *p,
790 				     swp_entry_t entry, unsigned char usage)
791 {
792 	unsigned long offset = swp_offset(entry);
793 	unsigned char count;
794 	unsigned char has_cache;
795 
796 	count = p->swap_map[offset];
797 	has_cache = count & SWAP_HAS_CACHE;
798 	count &= ~SWAP_HAS_CACHE;
799 
800 	if (usage == SWAP_HAS_CACHE) {
801 		VM_BUG_ON(!has_cache);
802 		has_cache = 0;
803 	} else if (count == SWAP_MAP_SHMEM) {
804 		/*
805 		 * Or we could insist on shmem.c using a special
806 		 * swap_shmem_free() and free_shmem_swap_and_cache()...
807 		 */
808 		count = 0;
809 	} else if ((count & ~COUNT_CONTINUED) <= SWAP_MAP_MAX) {
810 		if (count == COUNT_CONTINUED) {
811 			if (swap_count_continued(p, offset, count))
812 				count = SWAP_MAP_MAX | COUNT_CONTINUED;
813 			else
814 				count = SWAP_MAP_MAX;
815 		} else
816 			count--;
817 	}
818 
819 	if (!count)
820 		mem_cgroup_uncharge_swap(entry);
821 
822 	usage = count | has_cache;
823 	p->swap_map[offset] = usage;
824 
825 	/* free if no reference */
826 	if (!usage) {
827 		dec_cluster_info_page(p, p->cluster_info, offset);
828 		if (offset < p->lowest_bit)
829 			p->lowest_bit = offset;
830 		if (offset > p->highest_bit)
831 			p->highest_bit = offset;
832 		set_highest_priority_index(p->type);
833 		atomic_long_inc(&nr_swap_pages);
834 		p->inuse_pages--;
835 		frontswap_invalidate_page(p->type, offset);
836 		if (p->flags & SWP_BLKDEV) {
837 			struct gendisk *disk = p->bdev->bd_disk;
838 			if (disk->fops->swap_slot_free_notify)
839 				disk->fops->swap_slot_free_notify(p->bdev,
840 								  offset);
841 		}
842 	}
843 
844 	return usage;
845 }
846 
847 /*
848  * Caller has made sure that the swap device corresponding to entry
849  * is still around or has not been recycled.
850  */
851 void swap_free(swp_entry_t entry)
852 {
853 	struct swap_info_struct *p;
854 
855 	p = swap_info_get(entry);
856 	if (p) {
857 		swap_entry_free(p, entry, 1);
858 		spin_unlock(&p->lock);
859 	}
860 }
861 
862 /*
863  * Called after dropping swapcache to decrease refcnt to swap entries.
864  */
865 void swapcache_free(swp_entry_t entry, struct page *page)
866 {
867 	struct swap_info_struct *p;
868 	unsigned char count;
869 
870 	p = swap_info_get(entry);
871 	if (p) {
872 		count = swap_entry_free(p, entry, SWAP_HAS_CACHE);
873 		if (page)
874 			mem_cgroup_uncharge_swapcache(page, entry, count != 0);
875 		spin_unlock(&p->lock);
876 	}
877 }
878 
879 /*
880  * How many references to page are currently swapped out?
881  * This does not give an exact answer when swap count is continued,
882  * but does include the high COUNT_CONTINUED flag to allow for that.
883  */
884 int page_swapcount(struct page *page)
885 {
886 	int count = 0;
887 	struct swap_info_struct *p;
888 	swp_entry_t entry;
889 
890 	entry.val = page_private(page);
891 	p = swap_info_get(entry);
892 	if (p) {
893 		count = swap_count(p->swap_map[swp_offset(entry)]);
894 		spin_unlock(&p->lock);
895 	}
896 	return count;
897 }
898 
899 /*
900  * We can write to an anon page without COW if there are no other references
901  * to it.  And as a side-effect, free up its swap: because the old content
902  * on disk will never be read, and seeking back there to write new content
903  * later would only waste time away from clustering.
904  */
905 int reuse_swap_page(struct page *page)
906 {
907 	int count;
908 
909 	VM_BUG_ON(!PageLocked(page));
910 	if (unlikely(PageKsm(page)))
911 		return 0;
912 	count = page_mapcount(page);
913 	if (count <= 1 && PageSwapCache(page)) {
914 		count += page_swapcount(page);
915 		if (count == 1 && !PageWriteback(page)) {
916 			delete_from_swap_cache(page);
917 			SetPageDirty(page);
918 		}
919 	}
920 	return count <= 1;
921 }
922 
923 /*
924  * If swap is getting full, or if there are no more mappings of this page,
925  * then try_to_free_swap is called to free its swap space.
926  */
927 int try_to_free_swap(struct page *page)
928 {
929 	VM_BUG_ON(!PageLocked(page));
930 
931 	if (!PageSwapCache(page))
932 		return 0;
933 	if (PageWriteback(page))
934 		return 0;
935 	if (page_swapcount(page))
936 		return 0;
937 
938 	/*
939 	 * Once hibernation has begun to create its image of memory,
940 	 * there's a danger that one of the calls to try_to_free_swap()
941 	 * - most probably a call from __try_to_reclaim_swap() while
942 	 * hibernation is allocating its own swap pages for the image,
943 	 * but conceivably even a call from memory reclaim - will free
944 	 * the swap from a page which has already been recorded in the
945 	 * image as a clean swapcache page, and then reuse its swap for
946 	 * another page of the image.  On waking from hibernation, the
947 	 * original page might be freed under memory pressure, then
948 	 * later read back in from swap, now with the wrong data.
949 	 *
950 	 * Hibernation suspends storage while it is writing the image
951 	 * to disk so check that here.
952 	 */
953 	if (pm_suspended_storage())
954 		return 0;
955 
956 	delete_from_swap_cache(page);
957 	SetPageDirty(page);
958 	return 1;
959 }
960 
961 /*
962  * Free the swap entry like above, but also try to
963  * free the page cache entry if it is the last user.
964  */
965 int free_swap_and_cache(swp_entry_t entry)
966 {
967 	struct swap_info_struct *p;
968 	struct page *page = NULL;
969 
970 	if (non_swap_entry(entry))
971 		return 1;
972 
973 	p = swap_info_get(entry);
974 	if (p) {
975 		if (swap_entry_free(p, entry, 1) == SWAP_HAS_CACHE) {
976 			page = find_get_page(swap_address_space(entry),
977 						entry.val);
978 			if (page && !trylock_page(page)) {
979 				page_cache_release(page);
980 				page = NULL;
981 			}
982 		}
983 		spin_unlock(&p->lock);
984 	}
985 	if (page) {
986 		/*
987 		 * Not mapped elsewhere, or swap space full? Free it!
988 		 * Also recheck PageSwapCache now page is locked (above).
989 		 */
990 		if (PageSwapCache(page) && !PageWriteback(page) &&
991 				(!page_mapped(page) || vm_swap_full())) {
992 			delete_from_swap_cache(page);
993 			SetPageDirty(page);
994 		}
995 		unlock_page(page);
996 		page_cache_release(page);
997 	}
998 	return p != NULL;
999 }
1000 
1001 #ifdef CONFIG_HIBERNATION
1002 /*
1003  * Find the swap type that corresponds to given device (if any).
1004  *
1005  * @offset - number of the PAGE_SIZE-sized block of the device, starting
1006  * from 0, in which the swap header is expected to be located.
1007  *
1008  * This is needed for the suspend to disk (aka swsusp).
1009  */
1010 int swap_type_of(dev_t device, sector_t offset, struct block_device **bdev_p)
1011 {
1012 	struct block_device *bdev = NULL;
1013 	int type;
1014 
1015 	if (device)
1016 		bdev = bdget(device);
1017 
1018 	spin_lock(&swap_lock);
1019 	for (type = 0; type < nr_swapfiles; type++) {
1020 		struct swap_info_struct *sis = swap_info[type];
1021 
1022 		if (!(sis->flags & SWP_WRITEOK))
1023 			continue;
1024 
1025 		if (!bdev) {
1026 			if (bdev_p)
1027 				*bdev_p = bdgrab(sis->bdev);
1028 
1029 			spin_unlock(&swap_lock);
1030 			return type;
1031 		}
1032 		if (bdev == sis->bdev) {
1033 			struct swap_extent *se = &sis->first_swap_extent;
1034 
1035 			if (se->start_block == offset) {
1036 				if (bdev_p)
1037 					*bdev_p = bdgrab(sis->bdev);
1038 
1039 				spin_unlock(&swap_lock);
1040 				bdput(bdev);
1041 				return type;
1042 			}
1043 		}
1044 	}
1045 	spin_unlock(&swap_lock);
1046 	if (bdev)
1047 		bdput(bdev);
1048 
1049 	return -ENODEV;
1050 }
1051 
1052 /*
1053  * Get the (PAGE_SIZE) block corresponding to given offset on the swapdev
1054  * corresponding to given index in swap_info (swap type).
1055  */
1056 sector_t swapdev_block(int type, pgoff_t offset)
1057 {
1058 	struct block_device *bdev;
1059 
1060 	if ((unsigned int)type >= nr_swapfiles)
1061 		return 0;
1062 	if (!(swap_info[type]->flags & SWP_WRITEOK))
1063 		return 0;
1064 	return map_swap_entry(swp_entry(type, offset), &bdev);
1065 }
1066 
1067 /*
1068  * Return either the total number of swap pages of given type, or the number
1069  * of free pages of that type (depending on @free)
1070  *
1071  * This is needed for software suspend
1072  */
1073 unsigned int count_swap_pages(int type, int free)
1074 {
1075 	unsigned int n = 0;
1076 
1077 	spin_lock(&swap_lock);
1078 	if ((unsigned int)type < nr_swapfiles) {
1079 		struct swap_info_struct *sis = swap_info[type];
1080 
1081 		spin_lock(&sis->lock);
1082 		if (sis->flags & SWP_WRITEOK) {
1083 			n = sis->pages;
1084 			if (free)
1085 				n -= sis->inuse_pages;
1086 		}
1087 		spin_unlock(&sis->lock);
1088 	}
1089 	spin_unlock(&swap_lock);
1090 	return n;
1091 }
1092 #endif /* CONFIG_HIBERNATION */
1093 
1094 static inline int maybe_same_pte(pte_t pte, pte_t swp_pte)
1095 {
1096 #ifdef CONFIG_MEM_SOFT_DIRTY
1097 	/*
1098 	 * When pte keeps soft dirty bit the pte generated
1099 	 * from swap entry does not has it, still it's same
1100 	 * pte from logical point of view.
1101 	 */
1102 	pte_t swp_pte_dirty = pte_swp_mksoft_dirty(swp_pte);
1103 	return pte_same(pte, swp_pte) || pte_same(pte, swp_pte_dirty);
1104 #else
1105 	return pte_same(pte, swp_pte);
1106 #endif
1107 }
1108 
1109 /*
1110  * No need to decide whether this PTE shares the swap entry with others,
1111  * just let do_wp_page work it out if a write is requested later - to
1112  * force COW, vm_page_prot omits write permission from any private vma.
1113  */
1114 static int unuse_pte(struct vm_area_struct *vma, pmd_t *pmd,
1115 		unsigned long addr, swp_entry_t entry, struct page *page)
1116 {
1117 	struct page *swapcache;
1118 	struct mem_cgroup *memcg;
1119 	spinlock_t *ptl;
1120 	pte_t *pte;
1121 	int ret = 1;
1122 
1123 	swapcache = page;
1124 	page = ksm_might_need_to_copy(page, vma, addr);
1125 	if (unlikely(!page))
1126 		return -ENOMEM;
1127 
1128 	if (mem_cgroup_try_charge_swapin(vma->vm_mm, page,
1129 					 GFP_KERNEL, &memcg)) {
1130 		ret = -ENOMEM;
1131 		goto out_nolock;
1132 	}
1133 
1134 	pte = pte_offset_map_lock(vma->vm_mm, pmd, addr, &ptl);
1135 	if (unlikely(!maybe_same_pte(*pte, swp_entry_to_pte(entry)))) {
1136 		mem_cgroup_cancel_charge_swapin(memcg);
1137 		ret = 0;
1138 		goto out;
1139 	}
1140 
1141 	dec_mm_counter(vma->vm_mm, MM_SWAPENTS);
1142 	inc_mm_counter(vma->vm_mm, MM_ANONPAGES);
1143 	get_page(page);
1144 	set_pte_at(vma->vm_mm, addr, pte,
1145 		   pte_mkold(mk_pte(page, vma->vm_page_prot)));
1146 	if (page == swapcache)
1147 		page_add_anon_rmap(page, vma, addr);
1148 	else /* ksm created a completely new copy */
1149 		page_add_new_anon_rmap(page, vma, addr);
1150 	mem_cgroup_commit_charge_swapin(page, memcg);
1151 	swap_free(entry);
1152 	/*
1153 	 * Move the page to the active list so it is not
1154 	 * immediately swapped out again after swapon.
1155 	 */
1156 	activate_page(page);
1157 out:
1158 	pte_unmap_unlock(pte, ptl);
1159 out_nolock:
1160 	if (page != swapcache) {
1161 		unlock_page(page);
1162 		put_page(page);
1163 	}
1164 	return ret;
1165 }
1166 
1167 static int unuse_pte_range(struct vm_area_struct *vma, pmd_t *pmd,
1168 				unsigned long addr, unsigned long end,
1169 				swp_entry_t entry, struct page *page)
1170 {
1171 	pte_t swp_pte = swp_entry_to_pte(entry);
1172 	pte_t *pte;
1173 	int ret = 0;
1174 
1175 	/*
1176 	 * We don't actually need pte lock while scanning for swp_pte: since
1177 	 * we hold page lock and mmap_sem, swp_pte cannot be inserted into the
1178 	 * page table while we're scanning; though it could get zapped, and on
1179 	 * some architectures (e.g. x86_32 with PAE) we might catch a glimpse
1180 	 * of unmatched parts which look like swp_pte, so unuse_pte must
1181 	 * recheck under pte lock.  Scanning without pte lock lets it be
1182 	 * preemptable whenever CONFIG_PREEMPT but not CONFIG_HIGHPTE.
1183 	 */
1184 	pte = pte_offset_map(pmd, addr);
1185 	do {
1186 		/*
1187 		 * swapoff spends a _lot_ of time in this loop!
1188 		 * Test inline before going to call unuse_pte.
1189 		 */
1190 		if (unlikely(maybe_same_pte(*pte, swp_pte))) {
1191 			pte_unmap(pte);
1192 			ret = unuse_pte(vma, pmd, addr, entry, page);
1193 			if (ret)
1194 				goto out;
1195 			pte = pte_offset_map(pmd, addr);
1196 		}
1197 	} while (pte++, addr += PAGE_SIZE, addr != end);
1198 	pte_unmap(pte - 1);
1199 out:
1200 	return ret;
1201 }
1202 
1203 static inline int unuse_pmd_range(struct vm_area_struct *vma, pud_t *pud,
1204 				unsigned long addr, unsigned long end,
1205 				swp_entry_t entry, struct page *page)
1206 {
1207 	pmd_t *pmd;
1208 	unsigned long next;
1209 	int ret;
1210 
1211 	pmd = pmd_offset(pud, addr);
1212 	do {
1213 		next = pmd_addr_end(addr, end);
1214 		if (pmd_none_or_trans_huge_or_clear_bad(pmd))
1215 			continue;
1216 		ret = unuse_pte_range(vma, pmd, addr, next, entry, page);
1217 		if (ret)
1218 			return ret;
1219 	} while (pmd++, addr = next, addr != end);
1220 	return 0;
1221 }
1222 
1223 static inline int unuse_pud_range(struct vm_area_struct *vma, pgd_t *pgd,
1224 				unsigned long addr, unsigned long end,
1225 				swp_entry_t entry, struct page *page)
1226 {
1227 	pud_t *pud;
1228 	unsigned long next;
1229 	int ret;
1230 
1231 	pud = pud_offset(pgd, addr);
1232 	do {
1233 		next = pud_addr_end(addr, end);
1234 		if (pud_none_or_clear_bad(pud))
1235 			continue;
1236 		ret = unuse_pmd_range(vma, pud, addr, next, entry, page);
1237 		if (ret)
1238 			return ret;
1239 	} while (pud++, addr = next, addr != end);
1240 	return 0;
1241 }
1242 
1243 static int unuse_vma(struct vm_area_struct *vma,
1244 				swp_entry_t entry, struct page *page)
1245 {
1246 	pgd_t *pgd;
1247 	unsigned long addr, end, next;
1248 	int ret;
1249 
1250 	if (page_anon_vma(page)) {
1251 		addr = page_address_in_vma(page, vma);
1252 		if (addr == -EFAULT)
1253 			return 0;
1254 		else
1255 			end = addr + PAGE_SIZE;
1256 	} else {
1257 		addr = vma->vm_start;
1258 		end = vma->vm_end;
1259 	}
1260 
1261 	pgd = pgd_offset(vma->vm_mm, addr);
1262 	do {
1263 		next = pgd_addr_end(addr, end);
1264 		if (pgd_none_or_clear_bad(pgd))
1265 			continue;
1266 		ret = unuse_pud_range(vma, pgd, addr, next, entry, page);
1267 		if (ret)
1268 			return ret;
1269 	} while (pgd++, addr = next, addr != end);
1270 	return 0;
1271 }
1272 
1273 static int unuse_mm(struct mm_struct *mm,
1274 				swp_entry_t entry, struct page *page)
1275 {
1276 	struct vm_area_struct *vma;
1277 	int ret = 0;
1278 
1279 	if (!down_read_trylock(&mm->mmap_sem)) {
1280 		/*
1281 		 * Activate page so shrink_inactive_list is unlikely to unmap
1282 		 * its ptes while lock is dropped, so swapoff can make progress.
1283 		 */
1284 		activate_page(page);
1285 		unlock_page(page);
1286 		down_read(&mm->mmap_sem);
1287 		lock_page(page);
1288 	}
1289 	for (vma = mm->mmap; vma; vma = vma->vm_next) {
1290 		if (vma->anon_vma && (ret = unuse_vma(vma, entry, page)))
1291 			break;
1292 	}
1293 	up_read(&mm->mmap_sem);
1294 	return (ret < 0)? ret: 0;
1295 }
1296 
1297 /*
1298  * Scan swap_map (or frontswap_map if frontswap parameter is true)
1299  * from current position to next entry still in use.
1300  * Recycle to start on reaching the end, returning 0 when empty.
1301  */
1302 static unsigned int find_next_to_unuse(struct swap_info_struct *si,
1303 					unsigned int prev, bool frontswap)
1304 {
1305 	unsigned int max = si->max;
1306 	unsigned int i = prev;
1307 	unsigned char count;
1308 
1309 	/*
1310 	 * No need for swap_lock here: we're just looking
1311 	 * for whether an entry is in use, not modifying it; false
1312 	 * hits are okay, and sys_swapoff() has already prevented new
1313 	 * allocations from this area (while holding swap_lock).
1314 	 */
1315 	for (;;) {
1316 		if (++i >= max) {
1317 			if (!prev) {
1318 				i = 0;
1319 				break;
1320 			}
1321 			/*
1322 			 * No entries in use at top of swap_map,
1323 			 * loop back to start and recheck there.
1324 			 */
1325 			max = prev + 1;
1326 			prev = 0;
1327 			i = 1;
1328 		}
1329 		if (frontswap) {
1330 			if (frontswap_test(si, i))
1331 				break;
1332 			else
1333 				continue;
1334 		}
1335 		count = ACCESS_ONCE(si->swap_map[i]);
1336 		if (count && swap_count(count) != SWAP_MAP_BAD)
1337 			break;
1338 	}
1339 	return i;
1340 }
1341 
1342 /*
1343  * We completely avoid races by reading each swap page in advance,
1344  * and then search for the process using it.  All the necessary
1345  * page table adjustments can then be made atomically.
1346  *
1347  * if the boolean frontswap is true, only unuse pages_to_unuse pages;
1348  * pages_to_unuse==0 means all pages; ignored if frontswap is false
1349  */
1350 int try_to_unuse(unsigned int type, bool frontswap,
1351 		 unsigned long pages_to_unuse)
1352 {
1353 	struct swap_info_struct *si = swap_info[type];
1354 	struct mm_struct *start_mm;
1355 	volatile unsigned char *swap_map; /* swap_map is accessed without
1356 					   * locking. Mark it as volatile
1357 					   * to prevent compiler doing
1358 					   * something odd.
1359 					   */
1360 	unsigned char swcount;
1361 	struct page *page;
1362 	swp_entry_t entry;
1363 	unsigned int i = 0;
1364 	int retval = 0;
1365 
1366 	/*
1367 	 * When searching mms for an entry, a good strategy is to
1368 	 * start at the first mm we freed the previous entry from
1369 	 * (though actually we don't notice whether we or coincidence
1370 	 * freed the entry).  Initialize this start_mm with a hold.
1371 	 *
1372 	 * A simpler strategy would be to start at the last mm we
1373 	 * freed the previous entry from; but that would take less
1374 	 * advantage of mmlist ordering, which clusters forked mms
1375 	 * together, child after parent.  If we race with dup_mmap(), we
1376 	 * prefer to resolve parent before child, lest we miss entries
1377 	 * duplicated after we scanned child: using last mm would invert
1378 	 * that.
1379 	 */
1380 	start_mm = &init_mm;
1381 	atomic_inc(&init_mm.mm_users);
1382 
1383 	/*
1384 	 * Keep on scanning until all entries have gone.  Usually,
1385 	 * one pass through swap_map is enough, but not necessarily:
1386 	 * there are races when an instance of an entry might be missed.
1387 	 */
1388 	while ((i = find_next_to_unuse(si, i, frontswap)) != 0) {
1389 		if (signal_pending(current)) {
1390 			retval = -EINTR;
1391 			break;
1392 		}
1393 
1394 		/*
1395 		 * Get a page for the entry, using the existing swap
1396 		 * cache page if there is one.  Otherwise, get a clean
1397 		 * page and read the swap into it.
1398 		 */
1399 		swap_map = &si->swap_map[i];
1400 		entry = swp_entry(type, i);
1401 		page = read_swap_cache_async(entry,
1402 					GFP_HIGHUSER_MOVABLE, NULL, 0);
1403 		if (!page) {
1404 			/*
1405 			 * Either swap_duplicate() failed because entry
1406 			 * has been freed independently, and will not be
1407 			 * reused since sys_swapoff() already disabled
1408 			 * allocation from here, or alloc_page() failed.
1409 			 */
1410 			swcount = *swap_map;
1411 			/*
1412 			 * We don't hold lock here, so the swap entry could be
1413 			 * SWAP_MAP_BAD (when the cluster is discarding).
1414 			 * Instead of fail out, We can just skip the swap
1415 			 * entry because swapoff will wait for discarding
1416 			 * finish anyway.
1417 			 */
1418 			if (!swcount || swcount == SWAP_MAP_BAD)
1419 				continue;
1420 			retval = -ENOMEM;
1421 			break;
1422 		}
1423 
1424 		/*
1425 		 * Don't hold on to start_mm if it looks like exiting.
1426 		 */
1427 		if (atomic_read(&start_mm->mm_users) == 1) {
1428 			mmput(start_mm);
1429 			start_mm = &init_mm;
1430 			atomic_inc(&init_mm.mm_users);
1431 		}
1432 
1433 		/*
1434 		 * Wait for and lock page.  When do_swap_page races with
1435 		 * try_to_unuse, do_swap_page can handle the fault much
1436 		 * faster than try_to_unuse can locate the entry.  This
1437 		 * apparently redundant "wait_on_page_locked" lets try_to_unuse
1438 		 * defer to do_swap_page in such a case - in some tests,
1439 		 * do_swap_page and try_to_unuse repeatedly compete.
1440 		 */
1441 		wait_on_page_locked(page);
1442 		wait_on_page_writeback(page);
1443 		lock_page(page);
1444 		wait_on_page_writeback(page);
1445 
1446 		/*
1447 		 * Remove all references to entry.
1448 		 */
1449 		swcount = *swap_map;
1450 		if (swap_count(swcount) == SWAP_MAP_SHMEM) {
1451 			retval = shmem_unuse(entry, page);
1452 			/* page has already been unlocked and released */
1453 			if (retval < 0)
1454 				break;
1455 			continue;
1456 		}
1457 		if (swap_count(swcount) && start_mm != &init_mm)
1458 			retval = unuse_mm(start_mm, entry, page);
1459 
1460 		if (swap_count(*swap_map)) {
1461 			int set_start_mm = (*swap_map >= swcount);
1462 			struct list_head *p = &start_mm->mmlist;
1463 			struct mm_struct *new_start_mm = start_mm;
1464 			struct mm_struct *prev_mm = start_mm;
1465 			struct mm_struct *mm;
1466 
1467 			atomic_inc(&new_start_mm->mm_users);
1468 			atomic_inc(&prev_mm->mm_users);
1469 			spin_lock(&mmlist_lock);
1470 			while (swap_count(*swap_map) && !retval &&
1471 					(p = p->next) != &start_mm->mmlist) {
1472 				mm = list_entry(p, struct mm_struct, mmlist);
1473 				if (!atomic_inc_not_zero(&mm->mm_users))
1474 					continue;
1475 				spin_unlock(&mmlist_lock);
1476 				mmput(prev_mm);
1477 				prev_mm = mm;
1478 
1479 				cond_resched();
1480 
1481 				swcount = *swap_map;
1482 				if (!swap_count(swcount)) /* any usage ? */
1483 					;
1484 				else if (mm == &init_mm)
1485 					set_start_mm = 1;
1486 				else
1487 					retval = unuse_mm(mm, entry, page);
1488 
1489 				if (set_start_mm && *swap_map < swcount) {
1490 					mmput(new_start_mm);
1491 					atomic_inc(&mm->mm_users);
1492 					new_start_mm = mm;
1493 					set_start_mm = 0;
1494 				}
1495 				spin_lock(&mmlist_lock);
1496 			}
1497 			spin_unlock(&mmlist_lock);
1498 			mmput(prev_mm);
1499 			mmput(start_mm);
1500 			start_mm = new_start_mm;
1501 		}
1502 		if (retval) {
1503 			unlock_page(page);
1504 			page_cache_release(page);
1505 			break;
1506 		}
1507 
1508 		/*
1509 		 * If a reference remains (rare), we would like to leave
1510 		 * the page in the swap cache; but try_to_unmap could
1511 		 * then re-duplicate the entry once we drop page lock,
1512 		 * so we might loop indefinitely; also, that page could
1513 		 * not be swapped out to other storage meanwhile.  So:
1514 		 * delete from cache even if there's another reference,
1515 		 * after ensuring that the data has been saved to disk -
1516 		 * since if the reference remains (rarer), it will be
1517 		 * read from disk into another page.  Splitting into two
1518 		 * pages would be incorrect if swap supported "shared
1519 		 * private" pages, but they are handled by tmpfs files.
1520 		 *
1521 		 * Given how unuse_vma() targets one particular offset
1522 		 * in an anon_vma, once the anon_vma has been determined,
1523 		 * this splitting happens to be just what is needed to
1524 		 * handle where KSM pages have been swapped out: re-reading
1525 		 * is unnecessarily slow, but we can fix that later on.
1526 		 */
1527 		if (swap_count(*swap_map) &&
1528 		     PageDirty(page) && PageSwapCache(page)) {
1529 			struct writeback_control wbc = {
1530 				.sync_mode = WB_SYNC_NONE,
1531 			};
1532 
1533 			swap_writepage(page, &wbc);
1534 			lock_page(page);
1535 			wait_on_page_writeback(page);
1536 		}
1537 
1538 		/*
1539 		 * It is conceivable that a racing task removed this page from
1540 		 * swap cache just before we acquired the page lock at the top,
1541 		 * or while we dropped it in unuse_mm().  The page might even
1542 		 * be back in swap cache on another swap area: that we must not
1543 		 * delete, since it may not have been written out to swap yet.
1544 		 */
1545 		if (PageSwapCache(page) &&
1546 		    likely(page_private(page) == entry.val))
1547 			delete_from_swap_cache(page);
1548 
1549 		/*
1550 		 * So we could skip searching mms once swap count went
1551 		 * to 1, we did not mark any present ptes as dirty: must
1552 		 * mark page dirty so shrink_page_list will preserve it.
1553 		 */
1554 		SetPageDirty(page);
1555 		unlock_page(page);
1556 		page_cache_release(page);
1557 
1558 		/*
1559 		 * Make sure that we aren't completely killing
1560 		 * interactive performance.
1561 		 */
1562 		cond_resched();
1563 		if (frontswap && pages_to_unuse > 0) {
1564 			if (!--pages_to_unuse)
1565 				break;
1566 		}
1567 	}
1568 
1569 	mmput(start_mm);
1570 	return retval;
1571 }
1572 
1573 /*
1574  * After a successful try_to_unuse, if no swap is now in use, we know
1575  * we can empty the mmlist.  swap_lock must be held on entry and exit.
1576  * Note that mmlist_lock nests inside swap_lock, and an mm must be
1577  * added to the mmlist just after page_duplicate - before would be racy.
1578  */
1579 static void drain_mmlist(void)
1580 {
1581 	struct list_head *p, *next;
1582 	unsigned int type;
1583 
1584 	for (type = 0; type < nr_swapfiles; type++)
1585 		if (swap_info[type]->inuse_pages)
1586 			return;
1587 	spin_lock(&mmlist_lock);
1588 	list_for_each_safe(p, next, &init_mm.mmlist)
1589 		list_del_init(p);
1590 	spin_unlock(&mmlist_lock);
1591 }
1592 
1593 /*
1594  * Use this swapdev's extent info to locate the (PAGE_SIZE) block which
1595  * corresponds to page offset for the specified swap entry.
1596  * Note that the type of this function is sector_t, but it returns page offset
1597  * into the bdev, not sector offset.
1598  */
1599 static sector_t map_swap_entry(swp_entry_t entry, struct block_device **bdev)
1600 {
1601 	struct swap_info_struct *sis;
1602 	struct swap_extent *start_se;
1603 	struct swap_extent *se;
1604 	pgoff_t offset;
1605 
1606 	sis = swap_info[swp_type(entry)];
1607 	*bdev = sis->bdev;
1608 
1609 	offset = swp_offset(entry);
1610 	start_se = sis->curr_swap_extent;
1611 	se = start_se;
1612 
1613 	for ( ; ; ) {
1614 		struct list_head *lh;
1615 
1616 		if (se->start_page <= offset &&
1617 				offset < (se->start_page + se->nr_pages)) {
1618 			return se->start_block + (offset - se->start_page);
1619 		}
1620 		lh = se->list.next;
1621 		se = list_entry(lh, struct swap_extent, list);
1622 		sis->curr_swap_extent = se;
1623 		BUG_ON(se == start_se);		/* It *must* be present */
1624 	}
1625 }
1626 
1627 /*
1628  * Returns the page offset into bdev for the specified page's swap entry.
1629  */
1630 sector_t map_swap_page(struct page *page, struct block_device **bdev)
1631 {
1632 	swp_entry_t entry;
1633 	entry.val = page_private(page);
1634 	return map_swap_entry(entry, bdev);
1635 }
1636 
1637 /*
1638  * Free all of a swapdev's extent information
1639  */
1640 static void destroy_swap_extents(struct swap_info_struct *sis)
1641 {
1642 	while (!list_empty(&sis->first_swap_extent.list)) {
1643 		struct swap_extent *se;
1644 
1645 		se = list_entry(sis->first_swap_extent.list.next,
1646 				struct swap_extent, list);
1647 		list_del(&se->list);
1648 		kfree(se);
1649 	}
1650 
1651 	if (sis->flags & SWP_FILE) {
1652 		struct file *swap_file = sis->swap_file;
1653 		struct address_space *mapping = swap_file->f_mapping;
1654 
1655 		sis->flags &= ~SWP_FILE;
1656 		mapping->a_ops->swap_deactivate(swap_file);
1657 	}
1658 }
1659 
1660 /*
1661  * Add a block range (and the corresponding page range) into this swapdev's
1662  * extent list.  The extent list is kept sorted in page order.
1663  *
1664  * This function rather assumes that it is called in ascending page order.
1665  */
1666 int
1667 add_swap_extent(struct swap_info_struct *sis, unsigned long start_page,
1668 		unsigned long nr_pages, sector_t start_block)
1669 {
1670 	struct swap_extent *se;
1671 	struct swap_extent *new_se;
1672 	struct list_head *lh;
1673 
1674 	if (start_page == 0) {
1675 		se = &sis->first_swap_extent;
1676 		sis->curr_swap_extent = se;
1677 		se->start_page = 0;
1678 		se->nr_pages = nr_pages;
1679 		se->start_block = start_block;
1680 		return 1;
1681 	} else {
1682 		lh = sis->first_swap_extent.list.prev;	/* Highest extent */
1683 		se = list_entry(lh, struct swap_extent, list);
1684 		BUG_ON(se->start_page + se->nr_pages != start_page);
1685 		if (se->start_block + se->nr_pages == start_block) {
1686 			/* Merge it */
1687 			se->nr_pages += nr_pages;
1688 			return 0;
1689 		}
1690 	}
1691 
1692 	/*
1693 	 * No merge.  Insert a new extent, preserving ordering.
1694 	 */
1695 	new_se = kmalloc(sizeof(*se), GFP_KERNEL);
1696 	if (new_se == NULL)
1697 		return -ENOMEM;
1698 	new_se->start_page = start_page;
1699 	new_se->nr_pages = nr_pages;
1700 	new_se->start_block = start_block;
1701 
1702 	list_add_tail(&new_se->list, &sis->first_swap_extent.list);
1703 	return 1;
1704 }
1705 
1706 /*
1707  * A `swap extent' is a simple thing which maps a contiguous range of pages
1708  * onto a contiguous range of disk blocks.  An ordered list of swap extents
1709  * is built at swapon time and is then used at swap_writepage/swap_readpage
1710  * time for locating where on disk a page belongs.
1711  *
1712  * If the swapfile is an S_ISBLK block device, a single extent is installed.
1713  * This is done so that the main operating code can treat S_ISBLK and S_ISREG
1714  * swap files identically.
1715  *
1716  * Whether the swapdev is an S_ISREG file or an S_ISBLK blockdev, the swap
1717  * extent list operates in PAGE_SIZE disk blocks.  Both S_ISREG and S_ISBLK
1718  * swapfiles are handled *identically* after swapon time.
1719  *
1720  * For S_ISREG swapfiles, setup_swap_extents() will walk all the file's blocks
1721  * and will parse them into an ordered extent list, in PAGE_SIZE chunks.  If
1722  * some stray blocks are found which do not fall within the PAGE_SIZE alignment
1723  * requirements, they are simply tossed out - we will never use those blocks
1724  * for swapping.
1725  *
1726  * For S_ISREG swapfiles we set S_SWAPFILE across the life of the swapon.  This
1727  * prevents root from shooting her foot off by ftruncating an in-use swapfile,
1728  * which will scribble on the fs.
1729  *
1730  * The amount of disk space which a single swap extent represents varies.
1731  * Typically it is in the 1-4 megabyte range.  So we can have hundreds of
1732  * extents in the list.  To avoid much list walking, we cache the previous
1733  * search location in `curr_swap_extent', and start new searches from there.
1734  * This is extremely effective.  The average number of iterations in
1735  * map_swap_page() has been measured at about 0.3 per page.  - akpm.
1736  */
1737 static int setup_swap_extents(struct swap_info_struct *sis, sector_t *span)
1738 {
1739 	struct file *swap_file = sis->swap_file;
1740 	struct address_space *mapping = swap_file->f_mapping;
1741 	struct inode *inode = mapping->host;
1742 	int ret;
1743 
1744 	if (S_ISBLK(inode->i_mode)) {
1745 		ret = add_swap_extent(sis, 0, sis->max, 0);
1746 		*span = sis->pages;
1747 		return ret;
1748 	}
1749 
1750 	if (mapping->a_ops->swap_activate) {
1751 		ret = mapping->a_ops->swap_activate(sis, swap_file, span);
1752 		if (!ret) {
1753 			sis->flags |= SWP_FILE;
1754 			ret = add_swap_extent(sis, 0, sis->max, 0);
1755 			*span = sis->pages;
1756 		}
1757 		return ret;
1758 	}
1759 
1760 	return generic_swapfile_activate(sis, swap_file, span);
1761 }
1762 
1763 static void _enable_swap_info(struct swap_info_struct *p, int prio,
1764 				unsigned char *swap_map,
1765 				struct swap_cluster_info *cluster_info)
1766 {
1767 	int i, prev;
1768 
1769 	if (prio >= 0)
1770 		p->prio = prio;
1771 	else
1772 		p->prio = --least_priority;
1773 	p->swap_map = swap_map;
1774 	p->cluster_info = cluster_info;
1775 	p->flags |= SWP_WRITEOK;
1776 	atomic_long_add(p->pages, &nr_swap_pages);
1777 	total_swap_pages += p->pages;
1778 
1779 	/* insert swap space into swap_list: */
1780 	prev = -1;
1781 	for (i = swap_list.head; i >= 0; i = swap_info[i]->next) {
1782 		if (p->prio >= swap_info[i]->prio)
1783 			break;
1784 		prev = i;
1785 	}
1786 	p->next = i;
1787 	if (prev < 0)
1788 		swap_list.head = swap_list.next = p->type;
1789 	else
1790 		swap_info[prev]->next = p->type;
1791 }
1792 
1793 static void enable_swap_info(struct swap_info_struct *p, int prio,
1794 				unsigned char *swap_map,
1795 				struct swap_cluster_info *cluster_info,
1796 				unsigned long *frontswap_map)
1797 {
1798 	frontswap_init(p->type, frontswap_map);
1799 	spin_lock(&swap_lock);
1800 	spin_lock(&p->lock);
1801 	 _enable_swap_info(p, prio, swap_map, cluster_info);
1802 	spin_unlock(&p->lock);
1803 	spin_unlock(&swap_lock);
1804 }
1805 
1806 static void reinsert_swap_info(struct swap_info_struct *p)
1807 {
1808 	spin_lock(&swap_lock);
1809 	spin_lock(&p->lock);
1810 	_enable_swap_info(p, p->prio, p->swap_map, p->cluster_info);
1811 	spin_unlock(&p->lock);
1812 	spin_unlock(&swap_lock);
1813 }
1814 
1815 SYSCALL_DEFINE1(swapoff, const char __user *, specialfile)
1816 {
1817 	struct swap_info_struct *p = NULL;
1818 	unsigned char *swap_map;
1819 	struct swap_cluster_info *cluster_info;
1820 	unsigned long *frontswap_map;
1821 	struct file *swap_file, *victim;
1822 	struct address_space *mapping;
1823 	struct inode *inode;
1824 	struct filename *pathname;
1825 	int i, type, prev;
1826 	int err;
1827 	unsigned int old_block_size;
1828 
1829 	if (!capable(CAP_SYS_ADMIN))
1830 		return -EPERM;
1831 
1832 	BUG_ON(!current->mm);
1833 
1834 	pathname = getname(specialfile);
1835 	if (IS_ERR(pathname))
1836 		return PTR_ERR(pathname);
1837 
1838 	victim = file_open_name(pathname, O_RDWR|O_LARGEFILE, 0);
1839 	err = PTR_ERR(victim);
1840 	if (IS_ERR(victim))
1841 		goto out;
1842 
1843 	mapping = victim->f_mapping;
1844 	prev = -1;
1845 	spin_lock(&swap_lock);
1846 	for (type = swap_list.head; type >= 0; type = swap_info[type]->next) {
1847 		p = swap_info[type];
1848 		if (p->flags & SWP_WRITEOK) {
1849 			if (p->swap_file->f_mapping == mapping)
1850 				break;
1851 		}
1852 		prev = type;
1853 	}
1854 	if (type < 0) {
1855 		err = -EINVAL;
1856 		spin_unlock(&swap_lock);
1857 		goto out_dput;
1858 	}
1859 	if (!security_vm_enough_memory_mm(current->mm, p->pages))
1860 		vm_unacct_memory(p->pages);
1861 	else {
1862 		err = -ENOMEM;
1863 		spin_unlock(&swap_lock);
1864 		goto out_dput;
1865 	}
1866 	if (prev < 0)
1867 		swap_list.head = p->next;
1868 	else
1869 		swap_info[prev]->next = p->next;
1870 	if (type == swap_list.next) {
1871 		/* just pick something that's safe... */
1872 		swap_list.next = swap_list.head;
1873 	}
1874 	spin_lock(&p->lock);
1875 	if (p->prio < 0) {
1876 		for (i = p->next; i >= 0; i = swap_info[i]->next)
1877 			swap_info[i]->prio = p->prio--;
1878 		least_priority++;
1879 	}
1880 	atomic_long_sub(p->pages, &nr_swap_pages);
1881 	total_swap_pages -= p->pages;
1882 	p->flags &= ~SWP_WRITEOK;
1883 	spin_unlock(&p->lock);
1884 	spin_unlock(&swap_lock);
1885 
1886 	set_current_oom_origin();
1887 	err = try_to_unuse(type, false, 0); /* force all pages to be unused */
1888 	clear_current_oom_origin();
1889 
1890 	if (err) {
1891 		/* re-insert swap space back into swap_list */
1892 		reinsert_swap_info(p);
1893 		goto out_dput;
1894 	}
1895 
1896 	flush_work(&p->discard_work);
1897 
1898 	destroy_swap_extents(p);
1899 	if (p->flags & SWP_CONTINUED)
1900 		free_swap_count_continuations(p);
1901 
1902 	mutex_lock(&swapon_mutex);
1903 	spin_lock(&swap_lock);
1904 	spin_lock(&p->lock);
1905 	drain_mmlist();
1906 
1907 	/* wait for anyone still in scan_swap_map */
1908 	p->highest_bit = 0;		/* cuts scans short */
1909 	while (p->flags >= SWP_SCANNING) {
1910 		spin_unlock(&p->lock);
1911 		spin_unlock(&swap_lock);
1912 		schedule_timeout_uninterruptible(1);
1913 		spin_lock(&swap_lock);
1914 		spin_lock(&p->lock);
1915 	}
1916 
1917 	swap_file = p->swap_file;
1918 	old_block_size = p->old_block_size;
1919 	p->swap_file = NULL;
1920 	p->max = 0;
1921 	swap_map = p->swap_map;
1922 	p->swap_map = NULL;
1923 	cluster_info = p->cluster_info;
1924 	p->cluster_info = NULL;
1925 	p->flags = 0;
1926 	frontswap_map = frontswap_map_get(p);
1927 	spin_unlock(&p->lock);
1928 	spin_unlock(&swap_lock);
1929 	frontswap_invalidate_area(type);
1930 	frontswap_map_set(p, NULL);
1931 	mutex_unlock(&swapon_mutex);
1932 	free_percpu(p->percpu_cluster);
1933 	p->percpu_cluster = NULL;
1934 	vfree(swap_map);
1935 	vfree(cluster_info);
1936 	vfree(frontswap_map);
1937 	/* Destroy swap account information */
1938 	swap_cgroup_swapoff(type);
1939 
1940 	inode = mapping->host;
1941 	if (S_ISBLK(inode->i_mode)) {
1942 		struct block_device *bdev = I_BDEV(inode);
1943 		set_blocksize(bdev, old_block_size);
1944 		blkdev_put(bdev, FMODE_READ | FMODE_WRITE | FMODE_EXCL);
1945 	} else {
1946 		mutex_lock(&inode->i_mutex);
1947 		inode->i_flags &= ~S_SWAPFILE;
1948 		mutex_unlock(&inode->i_mutex);
1949 	}
1950 	filp_close(swap_file, NULL);
1951 	err = 0;
1952 	atomic_inc(&proc_poll_event);
1953 	wake_up_interruptible(&proc_poll_wait);
1954 
1955 out_dput:
1956 	filp_close(victim, NULL);
1957 out:
1958 	putname(pathname);
1959 	return err;
1960 }
1961 
1962 #ifdef CONFIG_PROC_FS
1963 static unsigned swaps_poll(struct file *file, poll_table *wait)
1964 {
1965 	struct seq_file *seq = file->private_data;
1966 
1967 	poll_wait(file, &proc_poll_wait, wait);
1968 
1969 	if (seq->poll_event != atomic_read(&proc_poll_event)) {
1970 		seq->poll_event = atomic_read(&proc_poll_event);
1971 		return POLLIN | POLLRDNORM | POLLERR | POLLPRI;
1972 	}
1973 
1974 	return POLLIN | POLLRDNORM;
1975 }
1976 
1977 /* iterator */
1978 static void *swap_start(struct seq_file *swap, loff_t *pos)
1979 {
1980 	struct swap_info_struct *si;
1981 	int type;
1982 	loff_t l = *pos;
1983 
1984 	mutex_lock(&swapon_mutex);
1985 
1986 	if (!l)
1987 		return SEQ_START_TOKEN;
1988 
1989 	for (type = 0; type < nr_swapfiles; type++) {
1990 		smp_rmb();	/* read nr_swapfiles before swap_info[type] */
1991 		si = swap_info[type];
1992 		if (!(si->flags & SWP_USED) || !si->swap_map)
1993 			continue;
1994 		if (!--l)
1995 			return si;
1996 	}
1997 
1998 	return NULL;
1999 }
2000 
2001 static void *swap_next(struct seq_file *swap, void *v, loff_t *pos)
2002 {
2003 	struct swap_info_struct *si = v;
2004 	int type;
2005 
2006 	if (v == SEQ_START_TOKEN)
2007 		type = 0;
2008 	else
2009 		type = si->type + 1;
2010 
2011 	for (; type < nr_swapfiles; type++) {
2012 		smp_rmb();	/* read nr_swapfiles before swap_info[type] */
2013 		si = swap_info[type];
2014 		if (!(si->flags & SWP_USED) || !si->swap_map)
2015 			continue;
2016 		++*pos;
2017 		return si;
2018 	}
2019 
2020 	return NULL;
2021 }
2022 
2023 static void swap_stop(struct seq_file *swap, void *v)
2024 {
2025 	mutex_unlock(&swapon_mutex);
2026 }
2027 
2028 static int swap_show(struct seq_file *swap, void *v)
2029 {
2030 	struct swap_info_struct *si = v;
2031 	struct file *file;
2032 	int len;
2033 
2034 	if (si == SEQ_START_TOKEN) {
2035 		seq_puts(swap,"Filename\t\t\t\tType\t\tSize\tUsed\tPriority\n");
2036 		return 0;
2037 	}
2038 
2039 	file = si->swap_file;
2040 	len = seq_path(swap, &file->f_path, " \t\n\\");
2041 	seq_printf(swap, "%*s%s\t%u\t%u\t%d\n",
2042 			len < 40 ? 40 - len : 1, " ",
2043 			S_ISBLK(file_inode(file)->i_mode) ?
2044 				"partition" : "file\t",
2045 			si->pages << (PAGE_SHIFT - 10),
2046 			si->inuse_pages << (PAGE_SHIFT - 10),
2047 			si->prio);
2048 	return 0;
2049 }
2050 
2051 static const struct seq_operations swaps_op = {
2052 	.start =	swap_start,
2053 	.next =		swap_next,
2054 	.stop =		swap_stop,
2055 	.show =		swap_show
2056 };
2057 
2058 static int swaps_open(struct inode *inode, struct file *file)
2059 {
2060 	struct seq_file *seq;
2061 	int ret;
2062 
2063 	ret = seq_open(file, &swaps_op);
2064 	if (ret)
2065 		return ret;
2066 
2067 	seq = file->private_data;
2068 	seq->poll_event = atomic_read(&proc_poll_event);
2069 	return 0;
2070 }
2071 
2072 static const struct file_operations proc_swaps_operations = {
2073 	.open		= swaps_open,
2074 	.read		= seq_read,
2075 	.llseek		= seq_lseek,
2076 	.release	= seq_release,
2077 	.poll		= swaps_poll,
2078 };
2079 
2080 static int __init procswaps_init(void)
2081 {
2082 	proc_create("swaps", 0, NULL, &proc_swaps_operations);
2083 	return 0;
2084 }
2085 __initcall(procswaps_init);
2086 #endif /* CONFIG_PROC_FS */
2087 
2088 #ifdef MAX_SWAPFILES_CHECK
2089 static int __init max_swapfiles_check(void)
2090 {
2091 	MAX_SWAPFILES_CHECK();
2092 	return 0;
2093 }
2094 late_initcall(max_swapfiles_check);
2095 #endif
2096 
2097 static struct swap_info_struct *alloc_swap_info(void)
2098 {
2099 	struct swap_info_struct *p;
2100 	unsigned int type;
2101 
2102 	p = kzalloc(sizeof(*p), GFP_KERNEL);
2103 	if (!p)
2104 		return ERR_PTR(-ENOMEM);
2105 
2106 	spin_lock(&swap_lock);
2107 	for (type = 0; type < nr_swapfiles; type++) {
2108 		if (!(swap_info[type]->flags & SWP_USED))
2109 			break;
2110 	}
2111 	if (type >= MAX_SWAPFILES) {
2112 		spin_unlock(&swap_lock);
2113 		kfree(p);
2114 		return ERR_PTR(-EPERM);
2115 	}
2116 	if (type >= nr_swapfiles) {
2117 		p->type = type;
2118 		swap_info[type] = p;
2119 		/*
2120 		 * Write swap_info[type] before nr_swapfiles, in case a
2121 		 * racing procfs swap_start() or swap_next() is reading them.
2122 		 * (We never shrink nr_swapfiles, we never free this entry.)
2123 		 */
2124 		smp_wmb();
2125 		nr_swapfiles++;
2126 	} else {
2127 		kfree(p);
2128 		p = swap_info[type];
2129 		/*
2130 		 * Do not memset this entry: a racing procfs swap_next()
2131 		 * would be relying on p->type to remain valid.
2132 		 */
2133 	}
2134 	INIT_LIST_HEAD(&p->first_swap_extent.list);
2135 	p->flags = SWP_USED;
2136 	p->next = -1;
2137 	spin_unlock(&swap_lock);
2138 	spin_lock_init(&p->lock);
2139 
2140 	return p;
2141 }
2142 
2143 static int claim_swapfile(struct swap_info_struct *p, struct inode *inode)
2144 {
2145 	int error;
2146 
2147 	if (S_ISBLK(inode->i_mode)) {
2148 		p->bdev = bdgrab(I_BDEV(inode));
2149 		error = blkdev_get(p->bdev,
2150 				   FMODE_READ | FMODE_WRITE | FMODE_EXCL,
2151 				   sys_swapon);
2152 		if (error < 0) {
2153 			p->bdev = NULL;
2154 			return -EINVAL;
2155 		}
2156 		p->old_block_size = block_size(p->bdev);
2157 		error = set_blocksize(p->bdev, PAGE_SIZE);
2158 		if (error < 0)
2159 			return error;
2160 		p->flags |= SWP_BLKDEV;
2161 	} else if (S_ISREG(inode->i_mode)) {
2162 		p->bdev = inode->i_sb->s_bdev;
2163 		mutex_lock(&inode->i_mutex);
2164 		if (IS_SWAPFILE(inode))
2165 			return -EBUSY;
2166 	} else
2167 		return -EINVAL;
2168 
2169 	return 0;
2170 }
2171 
2172 static unsigned long read_swap_header(struct swap_info_struct *p,
2173 					union swap_header *swap_header,
2174 					struct inode *inode)
2175 {
2176 	int i;
2177 	unsigned long maxpages;
2178 	unsigned long swapfilepages;
2179 	unsigned long last_page;
2180 
2181 	if (memcmp("SWAPSPACE2", swap_header->magic.magic, 10)) {
2182 		pr_err("Unable to find swap-space signature\n");
2183 		return 0;
2184 	}
2185 
2186 	/* swap partition endianess hack... */
2187 	if (swab32(swap_header->info.version) == 1) {
2188 		swab32s(&swap_header->info.version);
2189 		swab32s(&swap_header->info.last_page);
2190 		swab32s(&swap_header->info.nr_badpages);
2191 		for (i = 0; i < swap_header->info.nr_badpages; i++)
2192 			swab32s(&swap_header->info.badpages[i]);
2193 	}
2194 	/* Check the swap header's sub-version */
2195 	if (swap_header->info.version != 1) {
2196 		pr_warn("Unable to handle swap header version %d\n",
2197 			swap_header->info.version);
2198 		return 0;
2199 	}
2200 
2201 	p->lowest_bit  = 1;
2202 	p->cluster_next = 1;
2203 	p->cluster_nr = 0;
2204 
2205 	/*
2206 	 * Find out how many pages are allowed for a single swap
2207 	 * device. There are two limiting factors: 1) the number
2208 	 * of bits for the swap offset in the swp_entry_t type, and
2209 	 * 2) the number of bits in the swap pte as defined by the
2210 	 * different architectures. In order to find the
2211 	 * largest possible bit mask, a swap entry with swap type 0
2212 	 * and swap offset ~0UL is created, encoded to a swap pte,
2213 	 * decoded to a swp_entry_t again, and finally the swap
2214 	 * offset is extracted. This will mask all the bits from
2215 	 * the initial ~0UL mask that can't be encoded in either
2216 	 * the swp_entry_t or the architecture definition of a
2217 	 * swap pte.
2218 	 */
2219 	maxpages = swp_offset(pte_to_swp_entry(
2220 			swp_entry_to_pte(swp_entry(0, ~0UL)))) + 1;
2221 	last_page = swap_header->info.last_page;
2222 	if (last_page > maxpages) {
2223 		pr_warn("Truncating oversized swap area, only using %luk out of %luk\n",
2224 			maxpages << (PAGE_SHIFT - 10),
2225 			last_page << (PAGE_SHIFT - 10));
2226 	}
2227 	if (maxpages > last_page) {
2228 		maxpages = last_page + 1;
2229 		/* p->max is an unsigned int: don't overflow it */
2230 		if ((unsigned int)maxpages == 0)
2231 			maxpages = UINT_MAX;
2232 	}
2233 	p->highest_bit = maxpages - 1;
2234 
2235 	if (!maxpages)
2236 		return 0;
2237 	swapfilepages = i_size_read(inode) >> PAGE_SHIFT;
2238 	if (swapfilepages && maxpages > swapfilepages) {
2239 		pr_warn("Swap area shorter than signature indicates\n");
2240 		return 0;
2241 	}
2242 	if (swap_header->info.nr_badpages && S_ISREG(inode->i_mode))
2243 		return 0;
2244 	if (swap_header->info.nr_badpages > MAX_SWAP_BADPAGES)
2245 		return 0;
2246 
2247 	return maxpages;
2248 }
2249 
2250 static int setup_swap_map_and_extents(struct swap_info_struct *p,
2251 					union swap_header *swap_header,
2252 					unsigned char *swap_map,
2253 					struct swap_cluster_info *cluster_info,
2254 					unsigned long maxpages,
2255 					sector_t *span)
2256 {
2257 	int i;
2258 	unsigned int nr_good_pages;
2259 	int nr_extents;
2260 	unsigned long nr_clusters = DIV_ROUND_UP(maxpages, SWAPFILE_CLUSTER);
2261 	unsigned long idx = p->cluster_next / SWAPFILE_CLUSTER;
2262 
2263 	nr_good_pages = maxpages - 1;	/* omit header page */
2264 
2265 	cluster_set_null(&p->free_cluster_head);
2266 	cluster_set_null(&p->free_cluster_tail);
2267 	cluster_set_null(&p->discard_cluster_head);
2268 	cluster_set_null(&p->discard_cluster_tail);
2269 
2270 	for (i = 0; i < swap_header->info.nr_badpages; i++) {
2271 		unsigned int page_nr = swap_header->info.badpages[i];
2272 		if (page_nr == 0 || page_nr > swap_header->info.last_page)
2273 			return -EINVAL;
2274 		if (page_nr < maxpages) {
2275 			swap_map[page_nr] = SWAP_MAP_BAD;
2276 			nr_good_pages--;
2277 			/*
2278 			 * Haven't marked the cluster free yet, no list
2279 			 * operation involved
2280 			 */
2281 			inc_cluster_info_page(p, cluster_info, page_nr);
2282 		}
2283 	}
2284 
2285 	/* Haven't marked the cluster free yet, no list operation involved */
2286 	for (i = maxpages; i < round_up(maxpages, SWAPFILE_CLUSTER); i++)
2287 		inc_cluster_info_page(p, cluster_info, i);
2288 
2289 	if (nr_good_pages) {
2290 		swap_map[0] = SWAP_MAP_BAD;
2291 		/*
2292 		 * Not mark the cluster free yet, no list
2293 		 * operation involved
2294 		 */
2295 		inc_cluster_info_page(p, cluster_info, 0);
2296 		p->max = maxpages;
2297 		p->pages = nr_good_pages;
2298 		nr_extents = setup_swap_extents(p, span);
2299 		if (nr_extents < 0)
2300 			return nr_extents;
2301 		nr_good_pages = p->pages;
2302 	}
2303 	if (!nr_good_pages) {
2304 		pr_warn("Empty swap-file\n");
2305 		return -EINVAL;
2306 	}
2307 
2308 	if (!cluster_info)
2309 		return nr_extents;
2310 
2311 	for (i = 0; i < nr_clusters; i++) {
2312 		if (!cluster_count(&cluster_info[idx])) {
2313 			cluster_set_flag(&cluster_info[idx], CLUSTER_FLAG_FREE);
2314 			if (cluster_is_null(&p->free_cluster_head)) {
2315 				cluster_set_next_flag(&p->free_cluster_head,
2316 								idx, 0);
2317 				cluster_set_next_flag(&p->free_cluster_tail,
2318 								idx, 0);
2319 			} else {
2320 				unsigned int tail;
2321 
2322 				tail = cluster_next(&p->free_cluster_tail);
2323 				cluster_set_next(&cluster_info[tail], idx);
2324 				cluster_set_next_flag(&p->free_cluster_tail,
2325 								idx, 0);
2326 			}
2327 		}
2328 		idx++;
2329 		if (idx == nr_clusters)
2330 			idx = 0;
2331 	}
2332 	return nr_extents;
2333 }
2334 
2335 /*
2336  * Helper to sys_swapon determining if a given swap
2337  * backing device queue supports DISCARD operations.
2338  */
2339 static bool swap_discardable(struct swap_info_struct *si)
2340 {
2341 	struct request_queue *q = bdev_get_queue(si->bdev);
2342 
2343 	if (!q || !blk_queue_discard(q))
2344 		return false;
2345 
2346 	return true;
2347 }
2348 
2349 SYSCALL_DEFINE2(swapon, const char __user *, specialfile, int, swap_flags)
2350 {
2351 	struct swap_info_struct *p;
2352 	struct filename *name;
2353 	struct file *swap_file = NULL;
2354 	struct address_space *mapping;
2355 	int i;
2356 	int prio;
2357 	int error;
2358 	union swap_header *swap_header;
2359 	int nr_extents;
2360 	sector_t span;
2361 	unsigned long maxpages;
2362 	unsigned char *swap_map = NULL;
2363 	struct swap_cluster_info *cluster_info = NULL;
2364 	unsigned long *frontswap_map = NULL;
2365 	struct page *page = NULL;
2366 	struct inode *inode = NULL;
2367 
2368 	if (swap_flags & ~SWAP_FLAGS_VALID)
2369 		return -EINVAL;
2370 
2371 	if (!capable(CAP_SYS_ADMIN))
2372 		return -EPERM;
2373 
2374 	p = alloc_swap_info();
2375 	if (IS_ERR(p))
2376 		return PTR_ERR(p);
2377 
2378 	INIT_WORK(&p->discard_work, swap_discard_work);
2379 
2380 	name = getname(specialfile);
2381 	if (IS_ERR(name)) {
2382 		error = PTR_ERR(name);
2383 		name = NULL;
2384 		goto bad_swap;
2385 	}
2386 	swap_file = file_open_name(name, O_RDWR|O_LARGEFILE, 0);
2387 	if (IS_ERR(swap_file)) {
2388 		error = PTR_ERR(swap_file);
2389 		swap_file = NULL;
2390 		goto bad_swap;
2391 	}
2392 
2393 	p->swap_file = swap_file;
2394 	mapping = swap_file->f_mapping;
2395 
2396 	for (i = 0; i < nr_swapfiles; i++) {
2397 		struct swap_info_struct *q = swap_info[i];
2398 
2399 		if (q == p || !q->swap_file)
2400 			continue;
2401 		if (mapping == q->swap_file->f_mapping) {
2402 			error = -EBUSY;
2403 			goto bad_swap;
2404 		}
2405 	}
2406 
2407 	inode = mapping->host;
2408 	/* If S_ISREG(inode->i_mode) will do mutex_lock(&inode->i_mutex); */
2409 	error = claim_swapfile(p, inode);
2410 	if (unlikely(error))
2411 		goto bad_swap;
2412 
2413 	/*
2414 	 * Read the swap header.
2415 	 */
2416 	if (!mapping->a_ops->readpage) {
2417 		error = -EINVAL;
2418 		goto bad_swap;
2419 	}
2420 	page = read_mapping_page(mapping, 0, swap_file);
2421 	if (IS_ERR(page)) {
2422 		error = PTR_ERR(page);
2423 		goto bad_swap;
2424 	}
2425 	swap_header = kmap(page);
2426 
2427 	maxpages = read_swap_header(p, swap_header, inode);
2428 	if (unlikely(!maxpages)) {
2429 		error = -EINVAL;
2430 		goto bad_swap;
2431 	}
2432 
2433 	/* OK, set up the swap map and apply the bad block list */
2434 	swap_map = vzalloc(maxpages);
2435 	if (!swap_map) {
2436 		error = -ENOMEM;
2437 		goto bad_swap;
2438 	}
2439 	if (p->bdev && blk_queue_nonrot(bdev_get_queue(p->bdev))) {
2440 		p->flags |= SWP_SOLIDSTATE;
2441 		/*
2442 		 * select a random position to start with to help wear leveling
2443 		 * SSD
2444 		 */
2445 		p->cluster_next = 1 + (prandom_u32() % p->highest_bit);
2446 
2447 		cluster_info = vzalloc(DIV_ROUND_UP(maxpages,
2448 			SWAPFILE_CLUSTER) * sizeof(*cluster_info));
2449 		if (!cluster_info) {
2450 			error = -ENOMEM;
2451 			goto bad_swap;
2452 		}
2453 		p->percpu_cluster = alloc_percpu(struct percpu_cluster);
2454 		if (!p->percpu_cluster) {
2455 			error = -ENOMEM;
2456 			goto bad_swap;
2457 		}
2458 		for_each_possible_cpu(i) {
2459 			struct percpu_cluster *cluster;
2460 			cluster = per_cpu_ptr(p->percpu_cluster, i);
2461 			cluster_set_null(&cluster->index);
2462 		}
2463 	}
2464 
2465 	error = swap_cgroup_swapon(p->type, maxpages);
2466 	if (error)
2467 		goto bad_swap;
2468 
2469 	nr_extents = setup_swap_map_and_extents(p, swap_header, swap_map,
2470 		cluster_info, maxpages, &span);
2471 	if (unlikely(nr_extents < 0)) {
2472 		error = nr_extents;
2473 		goto bad_swap;
2474 	}
2475 	/* frontswap enabled? set up bit-per-page map for frontswap */
2476 	if (frontswap_enabled)
2477 		frontswap_map = vzalloc(BITS_TO_LONGS(maxpages) * sizeof(long));
2478 
2479 	if (p->bdev &&(swap_flags & SWAP_FLAG_DISCARD) && swap_discardable(p)) {
2480 		/*
2481 		 * When discard is enabled for swap with no particular
2482 		 * policy flagged, we set all swap discard flags here in
2483 		 * order to sustain backward compatibility with older
2484 		 * swapon(8) releases.
2485 		 */
2486 		p->flags |= (SWP_DISCARDABLE | SWP_AREA_DISCARD |
2487 			     SWP_PAGE_DISCARD);
2488 
2489 		/*
2490 		 * By flagging sys_swapon, a sysadmin can tell us to
2491 		 * either do single-time area discards only, or to just
2492 		 * perform discards for released swap page-clusters.
2493 		 * Now it's time to adjust the p->flags accordingly.
2494 		 */
2495 		if (swap_flags & SWAP_FLAG_DISCARD_ONCE)
2496 			p->flags &= ~SWP_PAGE_DISCARD;
2497 		else if (swap_flags & SWAP_FLAG_DISCARD_PAGES)
2498 			p->flags &= ~SWP_AREA_DISCARD;
2499 
2500 		/* issue a swapon-time discard if it's still required */
2501 		if (p->flags & SWP_AREA_DISCARD) {
2502 			int err = discard_swap(p);
2503 			if (unlikely(err))
2504 				pr_err("swapon: discard_swap(%p): %d\n",
2505 					p, err);
2506 		}
2507 	}
2508 
2509 	mutex_lock(&swapon_mutex);
2510 	prio = -1;
2511 	if (swap_flags & SWAP_FLAG_PREFER)
2512 		prio =
2513 		  (swap_flags & SWAP_FLAG_PRIO_MASK) >> SWAP_FLAG_PRIO_SHIFT;
2514 	enable_swap_info(p, prio, swap_map, cluster_info, frontswap_map);
2515 
2516 	pr_info("Adding %uk swap on %s.  "
2517 			"Priority:%d extents:%d across:%lluk %s%s%s%s%s\n",
2518 		p->pages<<(PAGE_SHIFT-10), name->name, p->prio,
2519 		nr_extents, (unsigned long long)span<<(PAGE_SHIFT-10),
2520 		(p->flags & SWP_SOLIDSTATE) ? "SS" : "",
2521 		(p->flags & SWP_DISCARDABLE) ? "D" : "",
2522 		(p->flags & SWP_AREA_DISCARD) ? "s" : "",
2523 		(p->flags & SWP_PAGE_DISCARD) ? "c" : "",
2524 		(frontswap_map) ? "FS" : "");
2525 
2526 	mutex_unlock(&swapon_mutex);
2527 	atomic_inc(&proc_poll_event);
2528 	wake_up_interruptible(&proc_poll_wait);
2529 
2530 	if (S_ISREG(inode->i_mode))
2531 		inode->i_flags |= S_SWAPFILE;
2532 	error = 0;
2533 	goto out;
2534 bad_swap:
2535 	free_percpu(p->percpu_cluster);
2536 	p->percpu_cluster = NULL;
2537 	if (inode && S_ISBLK(inode->i_mode) && p->bdev) {
2538 		set_blocksize(p->bdev, p->old_block_size);
2539 		blkdev_put(p->bdev, FMODE_READ | FMODE_WRITE | FMODE_EXCL);
2540 	}
2541 	destroy_swap_extents(p);
2542 	swap_cgroup_swapoff(p->type);
2543 	spin_lock(&swap_lock);
2544 	p->swap_file = NULL;
2545 	p->flags = 0;
2546 	spin_unlock(&swap_lock);
2547 	vfree(swap_map);
2548 	vfree(cluster_info);
2549 	if (swap_file) {
2550 		if (inode && S_ISREG(inode->i_mode)) {
2551 			mutex_unlock(&inode->i_mutex);
2552 			inode = NULL;
2553 		}
2554 		filp_close(swap_file, NULL);
2555 	}
2556 out:
2557 	if (page && !IS_ERR(page)) {
2558 		kunmap(page);
2559 		page_cache_release(page);
2560 	}
2561 	if (name)
2562 		putname(name);
2563 	if (inode && S_ISREG(inode->i_mode))
2564 		mutex_unlock(&inode->i_mutex);
2565 	return error;
2566 }
2567 
2568 void si_swapinfo(struct sysinfo *val)
2569 {
2570 	unsigned int type;
2571 	unsigned long nr_to_be_unused = 0;
2572 
2573 	spin_lock(&swap_lock);
2574 	for (type = 0; type < nr_swapfiles; type++) {
2575 		struct swap_info_struct *si = swap_info[type];
2576 
2577 		if ((si->flags & SWP_USED) && !(si->flags & SWP_WRITEOK))
2578 			nr_to_be_unused += si->inuse_pages;
2579 	}
2580 	val->freeswap = atomic_long_read(&nr_swap_pages) + nr_to_be_unused;
2581 	val->totalswap = total_swap_pages + nr_to_be_unused;
2582 	spin_unlock(&swap_lock);
2583 }
2584 
2585 /*
2586  * Verify that a swap entry is valid and increment its swap map count.
2587  *
2588  * Returns error code in following case.
2589  * - success -> 0
2590  * - swp_entry is invalid -> EINVAL
2591  * - swp_entry is migration entry -> EINVAL
2592  * - swap-cache reference is requested but there is already one. -> EEXIST
2593  * - swap-cache reference is requested but the entry is not used. -> ENOENT
2594  * - swap-mapped reference requested but needs continued swap count. -> ENOMEM
2595  */
2596 static int __swap_duplicate(swp_entry_t entry, unsigned char usage)
2597 {
2598 	struct swap_info_struct *p;
2599 	unsigned long offset, type;
2600 	unsigned char count;
2601 	unsigned char has_cache;
2602 	int err = -EINVAL;
2603 
2604 	if (non_swap_entry(entry))
2605 		goto out;
2606 
2607 	type = swp_type(entry);
2608 	if (type >= nr_swapfiles)
2609 		goto bad_file;
2610 	p = swap_info[type];
2611 	offset = swp_offset(entry);
2612 
2613 	spin_lock(&p->lock);
2614 	if (unlikely(offset >= p->max))
2615 		goto unlock_out;
2616 
2617 	count = p->swap_map[offset];
2618 
2619 	/*
2620 	 * swapin_readahead() doesn't check if a swap entry is valid, so the
2621 	 * swap entry could be SWAP_MAP_BAD. Check here with lock held.
2622 	 */
2623 	if (unlikely(swap_count(count) == SWAP_MAP_BAD)) {
2624 		err = -ENOENT;
2625 		goto unlock_out;
2626 	}
2627 
2628 	has_cache = count & SWAP_HAS_CACHE;
2629 	count &= ~SWAP_HAS_CACHE;
2630 	err = 0;
2631 
2632 	if (usage == SWAP_HAS_CACHE) {
2633 
2634 		/* set SWAP_HAS_CACHE if there is no cache and entry is used */
2635 		if (!has_cache && count)
2636 			has_cache = SWAP_HAS_CACHE;
2637 		else if (has_cache)		/* someone else added cache */
2638 			err = -EEXIST;
2639 		else				/* no users remaining */
2640 			err = -ENOENT;
2641 
2642 	} else if (count || has_cache) {
2643 
2644 		if ((count & ~COUNT_CONTINUED) < SWAP_MAP_MAX)
2645 			count += usage;
2646 		else if ((count & ~COUNT_CONTINUED) > SWAP_MAP_MAX)
2647 			err = -EINVAL;
2648 		else if (swap_count_continued(p, offset, count))
2649 			count = COUNT_CONTINUED;
2650 		else
2651 			err = -ENOMEM;
2652 	} else
2653 		err = -ENOENT;			/* unused swap entry */
2654 
2655 	p->swap_map[offset] = count | has_cache;
2656 
2657 unlock_out:
2658 	spin_unlock(&p->lock);
2659 out:
2660 	return err;
2661 
2662 bad_file:
2663 	pr_err("swap_dup: %s%08lx\n", Bad_file, entry.val);
2664 	goto out;
2665 }
2666 
2667 /*
2668  * Help swapoff by noting that swap entry belongs to shmem/tmpfs
2669  * (in which case its reference count is never incremented).
2670  */
2671 void swap_shmem_alloc(swp_entry_t entry)
2672 {
2673 	__swap_duplicate(entry, SWAP_MAP_SHMEM);
2674 }
2675 
2676 /*
2677  * Increase reference count of swap entry by 1.
2678  * Returns 0 for success, or -ENOMEM if a swap_count_continuation is required
2679  * but could not be atomically allocated.  Returns 0, just as if it succeeded,
2680  * if __swap_duplicate() fails for another reason (-EINVAL or -ENOENT), which
2681  * might occur if a page table entry has got corrupted.
2682  */
2683 int swap_duplicate(swp_entry_t entry)
2684 {
2685 	int err = 0;
2686 
2687 	while (!err && __swap_duplicate(entry, 1) == -ENOMEM)
2688 		err = add_swap_count_continuation(entry, GFP_ATOMIC);
2689 	return err;
2690 }
2691 
2692 /*
2693  * @entry: swap entry for which we allocate swap cache.
2694  *
2695  * Called when allocating swap cache for existing swap entry,
2696  * This can return error codes. Returns 0 at success.
2697  * -EBUSY means there is a swap cache.
2698  * Note: return code is different from swap_duplicate().
2699  */
2700 int swapcache_prepare(swp_entry_t entry)
2701 {
2702 	return __swap_duplicate(entry, SWAP_HAS_CACHE);
2703 }
2704 
2705 struct swap_info_struct *page_swap_info(struct page *page)
2706 {
2707 	swp_entry_t swap = { .val = page_private(page) };
2708 	BUG_ON(!PageSwapCache(page));
2709 	return swap_info[swp_type(swap)];
2710 }
2711 
2712 /*
2713  * out-of-line __page_file_ methods to avoid include hell.
2714  */
2715 struct address_space *__page_file_mapping(struct page *page)
2716 {
2717 	VM_BUG_ON(!PageSwapCache(page));
2718 	return page_swap_info(page)->swap_file->f_mapping;
2719 }
2720 EXPORT_SYMBOL_GPL(__page_file_mapping);
2721 
2722 pgoff_t __page_file_index(struct page *page)
2723 {
2724 	swp_entry_t swap = { .val = page_private(page) };
2725 	VM_BUG_ON(!PageSwapCache(page));
2726 	return swp_offset(swap);
2727 }
2728 EXPORT_SYMBOL_GPL(__page_file_index);
2729 
2730 /*
2731  * add_swap_count_continuation - called when a swap count is duplicated
2732  * beyond SWAP_MAP_MAX, it allocates a new page and links that to the entry's
2733  * page of the original vmalloc'ed swap_map, to hold the continuation count
2734  * (for that entry and for its neighbouring PAGE_SIZE swap entries).  Called
2735  * again when count is duplicated beyond SWAP_MAP_MAX * SWAP_CONT_MAX, etc.
2736  *
2737  * These continuation pages are seldom referenced: the common paths all work
2738  * on the original swap_map, only referring to a continuation page when the
2739  * low "digit" of a count is incremented or decremented through SWAP_MAP_MAX.
2740  *
2741  * add_swap_count_continuation(, GFP_ATOMIC) can be called while holding
2742  * page table locks; if it fails, add_swap_count_continuation(, GFP_KERNEL)
2743  * can be called after dropping locks.
2744  */
2745 int add_swap_count_continuation(swp_entry_t entry, gfp_t gfp_mask)
2746 {
2747 	struct swap_info_struct *si;
2748 	struct page *head;
2749 	struct page *page;
2750 	struct page *list_page;
2751 	pgoff_t offset;
2752 	unsigned char count;
2753 
2754 	/*
2755 	 * When debugging, it's easier to use __GFP_ZERO here; but it's better
2756 	 * for latency not to zero a page while GFP_ATOMIC and holding locks.
2757 	 */
2758 	page = alloc_page(gfp_mask | __GFP_HIGHMEM);
2759 
2760 	si = swap_info_get(entry);
2761 	if (!si) {
2762 		/*
2763 		 * An acceptable race has occurred since the failing
2764 		 * __swap_duplicate(): the swap entry has been freed,
2765 		 * perhaps even the whole swap_map cleared for swapoff.
2766 		 */
2767 		goto outer;
2768 	}
2769 
2770 	offset = swp_offset(entry);
2771 	count = si->swap_map[offset] & ~SWAP_HAS_CACHE;
2772 
2773 	if ((count & ~COUNT_CONTINUED) != SWAP_MAP_MAX) {
2774 		/*
2775 		 * The higher the swap count, the more likely it is that tasks
2776 		 * will race to add swap count continuation: we need to avoid
2777 		 * over-provisioning.
2778 		 */
2779 		goto out;
2780 	}
2781 
2782 	if (!page) {
2783 		spin_unlock(&si->lock);
2784 		return -ENOMEM;
2785 	}
2786 
2787 	/*
2788 	 * We are fortunate that although vmalloc_to_page uses pte_offset_map,
2789 	 * no architecture is using highmem pages for kernel page tables: so it
2790 	 * will not corrupt the GFP_ATOMIC caller's atomic page table kmaps.
2791 	 */
2792 	head = vmalloc_to_page(si->swap_map + offset);
2793 	offset &= ~PAGE_MASK;
2794 
2795 	/*
2796 	 * Page allocation does not initialize the page's lru field,
2797 	 * but it does always reset its private field.
2798 	 */
2799 	if (!page_private(head)) {
2800 		BUG_ON(count & COUNT_CONTINUED);
2801 		INIT_LIST_HEAD(&head->lru);
2802 		set_page_private(head, SWP_CONTINUED);
2803 		si->flags |= SWP_CONTINUED;
2804 	}
2805 
2806 	list_for_each_entry(list_page, &head->lru, lru) {
2807 		unsigned char *map;
2808 
2809 		/*
2810 		 * If the previous map said no continuation, but we've found
2811 		 * a continuation page, free our allocation and use this one.
2812 		 */
2813 		if (!(count & COUNT_CONTINUED))
2814 			goto out;
2815 
2816 		map = kmap_atomic(list_page) + offset;
2817 		count = *map;
2818 		kunmap_atomic(map);
2819 
2820 		/*
2821 		 * If this continuation count now has some space in it,
2822 		 * free our allocation and use this one.
2823 		 */
2824 		if ((count & ~COUNT_CONTINUED) != SWAP_CONT_MAX)
2825 			goto out;
2826 	}
2827 
2828 	list_add_tail(&page->lru, &head->lru);
2829 	page = NULL;			/* now it's attached, don't free it */
2830 out:
2831 	spin_unlock(&si->lock);
2832 outer:
2833 	if (page)
2834 		__free_page(page);
2835 	return 0;
2836 }
2837 
2838 /*
2839  * swap_count_continued - when the original swap_map count is incremented
2840  * from SWAP_MAP_MAX, check if there is already a continuation page to carry
2841  * into, carry if so, or else fail until a new continuation page is allocated;
2842  * when the original swap_map count is decremented from 0 with continuation,
2843  * borrow from the continuation and report whether it still holds more.
2844  * Called while __swap_duplicate() or swap_entry_free() holds swap_lock.
2845  */
2846 static bool swap_count_continued(struct swap_info_struct *si,
2847 				 pgoff_t offset, unsigned char count)
2848 {
2849 	struct page *head;
2850 	struct page *page;
2851 	unsigned char *map;
2852 
2853 	head = vmalloc_to_page(si->swap_map + offset);
2854 	if (page_private(head) != SWP_CONTINUED) {
2855 		BUG_ON(count & COUNT_CONTINUED);
2856 		return false;		/* need to add count continuation */
2857 	}
2858 
2859 	offset &= ~PAGE_MASK;
2860 	page = list_entry(head->lru.next, struct page, lru);
2861 	map = kmap_atomic(page) + offset;
2862 
2863 	if (count == SWAP_MAP_MAX)	/* initial increment from swap_map */
2864 		goto init_map;		/* jump over SWAP_CONT_MAX checks */
2865 
2866 	if (count == (SWAP_MAP_MAX | COUNT_CONTINUED)) { /* incrementing */
2867 		/*
2868 		 * Think of how you add 1 to 999
2869 		 */
2870 		while (*map == (SWAP_CONT_MAX | COUNT_CONTINUED)) {
2871 			kunmap_atomic(map);
2872 			page = list_entry(page->lru.next, struct page, lru);
2873 			BUG_ON(page == head);
2874 			map = kmap_atomic(page) + offset;
2875 		}
2876 		if (*map == SWAP_CONT_MAX) {
2877 			kunmap_atomic(map);
2878 			page = list_entry(page->lru.next, struct page, lru);
2879 			if (page == head)
2880 				return false;	/* add count continuation */
2881 			map = kmap_atomic(page) + offset;
2882 init_map:		*map = 0;		/* we didn't zero the page */
2883 		}
2884 		*map += 1;
2885 		kunmap_atomic(map);
2886 		page = list_entry(page->lru.prev, struct page, lru);
2887 		while (page != head) {
2888 			map = kmap_atomic(page) + offset;
2889 			*map = COUNT_CONTINUED;
2890 			kunmap_atomic(map);
2891 			page = list_entry(page->lru.prev, struct page, lru);
2892 		}
2893 		return true;			/* incremented */
2894 
2895 	} else {				/* decrementing */
2896 		/*
2897 		 * Think of how you subtract 1 from 1000
2898 		 */
2899 		BUG_ON(count != COUNT_CONTINUED);
2900 		while (*map == COUNT_CONTINUED) {
2901 			kunmap_atomic(map);
2902 			page = list_entry(page->lru.next, struct page, lru);
2903 			BUG_ON(page == head);
2904 			map = kmap_atomic(page) + offset;
2905 		}
2906 		BUG_ON(*map == 0);
2907 		*map -= 1;
2908 		if (*map == 0)
2909 			count = 0;
2910 		kunmap_atomic(map);
2911 		page = list_entry(page->lru.prev, struct page, lru);
2912 		while (page != head) {
2913 			map = kmap_atomic(page) + offset;
2914 			*map = SWAP_CONT_MAX | count;
2915 			count = COUNT_CONTINUED;
2916 			kunmap_atomic(map);
2917 			page = list_entry(page->lru.prev, struct page, lru);
2918 		}
2919 		return count == COUNT_CONTINUED;
2920 	}
2921 }
2922 
2923 /*
2924  * free_swap_count_continuations - swapoff free all the continuation pages
2925  * appended to the swap_map, after swap_map is quiesced, before vfree'ing it.
2926  */
2927 static void free_swap_count_continuations(struct swap_info_struct *si)
2928 {
2929 	pgoff_t offset;
2930 
2931 	for (offset = 0; offset < si->max; offset += PAGE_SIZE) {
2932 		struct page *head;
2933 		head = vmalloc_to_page(si->swap_map + offset);
2934 		if (page_private(head)) {
2935 			struct list_head *this, *next;
2936 			list_for_each_safe(this, next, &head->lru) {
2937 				struct page *page;
2938 				page = list_entry(this, struct page, lru);
2939 				list_del(this);
2940 				__free_page(page);
2941 			}
2942 		}
2943 	}
2944 }
2945