1 /* 2 * linux/mm/swapfile.c 3 * 4 * Copyright (C) 1991, 1992, 1993, 1994 Linus Torvalds 5 * Swap reorganised 29.12.95, Stephen Tweedie 6 */ 7 8 #include <linux/mm.h> 9 #include <linux/hugetlb.h> 10 #include <linux/mman.h> 11 #include <linux/slab.h> 12 #include <linux/kernel_stat.h> 13 #include <linux/swap.h> 14 #include <linux/vmalloc.h> 15 #include <linux/pagemap.h> 16 #include <linux/namei.h> 17 #include <linux/shm.h> 18 #include <linux/blkdev.h> 19 #include <linux/random.h> 20 #include <linux/writeback.h> 21 #include <linux/proc_fs.h> 22 #include <linux/seq_file.h> 23 #include <linux/init.h> 24 #include <linux/module.h> 25 #include <linux/ksm.h> 26 #include <linux/rmap.h> 27 #include <linux/security.h> 28 #include <linux/backing-dev.h> 29 #include <linux/mutex.h> 30 #include <linux/capability.h> 31 #include <linux/syscalls.h> 32 #include <linux/memcontrol.h> 33 #include <linux/poll.h> 34 35 #include <asm/pgtable.h> 36 #include <asm/tlbflush.h> 37 #include <linux/swapops.h> 38 #include <linux/page_cgroup.h> 39 40 static bool swap_count_continued(struct swap_info_struct *, pgoff_t, 41 unsigned char); 42 static void free_swap_count_continuations(struct swap_info_struct *); 43 static sector_t map_swap_entry(swp_entry_t, struct block_device**); 44 45 static DEFINE_SPINLOCK(swap_lock); 46 static unsigned int nr_swapfiles; 47 long nr_swap_pages; 48 long total_swap_pages; 49 static int least_priority; 50 51 static const char Bad_file[] = "Bad swap file entry "; 52 static const char Unused_file[] = "Unused swap file entry "; 53 static const char Bad_offset[] = "Bad swap offset entry "; 54 static const char Unused_offset[] = "Unused swap offset entry "; 55 56 static struct swap_list_t swap_list = {-1, -1}; 57 58 static struct swap_info_struct *swap_info[MAX_SWAPFILES]; 59 60 static DEFINE_MUTEX(swapon_mutex); 61 62 static DECLARE_WAIT_QUEUE_HEAD(proc_poll_wait); 63 /* Activity counter to indicate that a swapon or swapoff has occurred */ 64 static atomic_t proc_poll_event = ATOMIC_INIT(0); 65 66 static inline unsigned char swap_count(unsigned char ent) 67 { 68 return ent & ~SWAP_HAS_CACHE; /* may include SWAP_HAS_CONT flag */ 69 } 70 71 /* returns 1 if swap entry is freed */ 72 static int 73 __try_to_reclaim_swap(struct swap_info_struct *si, unsigned long offset) 74 { 75 swp_entry_t entry = swp_entry(si->type, offset); 76 struct page *page; 77 int ret = 0; 78 79 page = find_get_page(&swapper_space, entry.val); 80 if (!page) 81 return 0; 82 /* 83 * This function is called from scan_swap_map() and it's called 84 * by vmscan.c at reclaiming pages. So, we hold a lock on a page, here. 85 * We have to use trylock for avoiding deadlock. This is a special 86 * case and you should use try_to_free_swap() with explicit lock_page() 87 * in usual operations. 88 */ 89 if (trylock_page(page)) { 90 ret = try_to_free_swap(page); 91 unlock_page(page); 92 } 93 page_cache_release(page); 94 return ret; 95 } 96 97 /* 98 * We need this because the bdev->unplug_fn can sleep and we cannot 99 * hold swap_lock while calling the unplug_fn. And swap_lock 100 * cannot be turned into a mutex. 101 */ 102 static DECLARE_RWSEM(swap_unplug_sem); 103 104 void swap_unplug_io_fn(struct backing_dev_info *unused_bdi, struct page *page) 105 { 106 swp_entry_t entry; 107 108 down_read(&swap_unplug_sem); 109 entry.val = page_private(page); 110 if (PageSwapCache(page)) { 111 struct block_device *bdev = swap_info[swp_type(entry)]->bdev; 112 struct backing_dev_info *bdi; 113 114 /* 115 * If the page is removed from swapcache from under us (with a 116 * racy try_to_unuse/swapoff) we need an additional reference 117 * count to avoid reading garbage from page_private(page) above. 118 * If the WARN_ON triggers during a swapoff it maybe the race 119 * condition and it's harmless. However if it triggers without 120 * swapoff it signals a problem. 121 */ 122 WARN_ON(page_count(page) <= 1); 123 124 bdi = bdev->bd_inode->i_mapping->backing_dev_info; 125 blk_run_backing_dev(bdi, page); 126 } 127 up_read(&swap_unplug_sem); 128 } 129 130 /* 131 * swapon tell device that all the old swap contents can be discarded, 132 * to allow the swap device to optimize its wear-levelling. 133 */ 134 static int discard_swap(struct swap_info_struct *si) 135 { 136 struct swap_extent *se; 137 sector_t start_block; 138 sector_t nr_blocks; 139 int err = 0; 140 141 /* Do not discard the swap header page! */ 142 se = &si->first_swap_extent; 143 start_block = (se->start_block + 1) << (PAGE_SHIFT - 9); 144 nr_blocks = ((sector_t)se->nr_pages - 1) << (PAGE_SHIFT - 9); 145 if (nr_blocks) { 146 err = blkdev_issue_discard(si->bdev, start_block, 147 nr_blocks, GFP_KERNEL, 0); 148 if (err) 149 return err; 150 cond_resched(); 151 } 152 153 list_for_each_entry(se, &si->first_swap_extent.list, list) { 154 start_block = se->start_block << (PAGE_SHIFT - 9); 155 nr_blocks = (sector_t)se->nr_pages << (PAGE_SHIFT - 9); 156 157 err = blkdev_issue_discard(si->bdev, start_block, 158 nr_blocks, GFP_KERNEL, 0); 159 if (err) 160 break; 161 162 cond_resched(); 163 } 164 return err; /* That will often be -EOPNOTSUPP */ 165 } 166 167 /* 168 * swap allocation tell device that a cluster of swap can now be discarded, 169 * to allow the swap device to optimize its wear-levelling. 170 */ 171 static void discard_swap_cluster(struct swap_info_struct *si, 172 pgoff_t start_page, pgoff_t nr_pages) 173 { 174 struct swap_extent *se = si->curr_swap_extent; 175 int found_extent = 0; 176 177 while (nr_pages) { 178 struct list_head *lh; 179 180 if (se->start_page <= start_page && 181 start_page < se->start_page + se->nr_pages) { 182 pgoff_t offset = start_page - se->start_page; 183 sector_t start_block = se->start_block + offset; 184 sector_t nr_blocks = se->nr_pages - offset; 185 186 if (nr_blocks > nr_pages) 187 nr_blocks = nr_pages; 188 start_page += nr_blocks; 189 nr_pages -= nr_blocks; 190 191 if (!found_extent++) 192 si->curr_swap_extent = se; 193 194 start_block <<= PAGE_SHIFT - 9; 195 nr_blocks <<= PAGE_SHIFT - 9; 196 if (blkdev_issue_discard(si->bdev, start_block, 197 nr_blocks, GFP_NOIO, 0)) 198 break; 199 } 200 201 lh = se->list.next; 202 se = list_entry(lh, struct swap_extent, list); 203 } 204 } 205 206 static int wait_for_discard(void *word) 207 { 208 schedule(); 209 return 0; 210 } 211 212 #define SWAPFILE_CLUSTER 256 213 #define LATENCY_LIMIT 256 214 215 static inline unsigned long scan_swap_map(struct swap_info_struct *si, 216 unsigned char usage) 217 { 218 unsigned long offset; 219 unsigned long scan_base; 220 unsigned long last_in_cluster = 0; 221 int latency_ration = LATENCY_LIMIT; 222 int found_free_cluster = 0; 223 224 /* 225 * We try to cluster swap pages by allocating them sequentially 226 * in swap. Once we've allocated SWAPFILE_CLUSTER pages this 227 * way, however, we resort to first-free allocation, starting 228 * a new cluster. This prevents us from scattering swap pages 229 * all over the entire swap partition, so that we reduce 230 * overall disk seek times between swap pages. -- sct 231 * But we do now try to find an empty cluster. -Andrea 232 * And we let swap pages go all over an SSD partition. Hugh 233 */ 234 235 si->flags += SWP_SCANNING; 236 scan_base = offset = si->cluster_next; 237 238 if (unlikely(!si->cluster_nr--)) { 239 if (si->pages - si->inuse_pages < SWAPFILE_CLUSTER) { 240 si->cluster_nr = SWAPFILE_CLUSTER - 1; 241 goto checks; 242 } 243 if (si->flags & SWP_DISCARDABLE) { 244 /* 245 * Start range check on racing allocations, in case 246 * they overlap the cluster we eventually decide on 247 * (we scan without swap_lock to allow preemption). 248 * It's hardly conceivable that cluster_nr could be 249 * wrapped during our scan, but don't depend on it. 250 */ 251 if (si->lowest_alloc) 252 goto checks; 253 si->lowest_alloc = si->max; 254 si->highest_alloc = 0; 255 } 256 spin_unlock(&swap_lock); 257 258 /* 259 * If seek is expensive, start searching for new cluster from 260 * start of partition, to minimize the span of allocated swap. 261 * But if seek is cheap, search from our current position, so 262 * that swap is allocated from all over the partition: if the 263 * Flash Translation Layer only remaps within limited zones, 264 * we don't want to wear out the first zone too quickly. 265 */ 266 if (!(si->flags & SWP_SOLIDSTATE)) 267 scan_base = offset = si->lowest_bit; 268 last_in_cluster = offset + SWAPFILE_CLUSTER - 1; 269 270 /* Locate the first empty (unaligned) cluster */ 271 for (; last_in_cluster <= si->highest_bit; offset++) { 272 if (si->swap_map[offset]) 273 last_in_cluster = offset + SWAPFILE_CLUSTER; 274 else if (offset == last_in_cluster) { 275 spin_lock(&swap_lock); 276 offset -= SWAPFILE_CLUSTER - 1; 277 si->cluster_next = offset; 278 si->cluster_nr = SWAPFILE_CLUSTER - 1; 279 found_free_cluster = 1; 280 goto checks; 281 } 282 if (unlikely(--latency_ration < 0)) { 283 cond_resched(); 284 latency_ration = LATENCY_LIMIT; 285 } 286 } 287 288 offset = si->lowest_bit; 289 last_in_cluster = offset + SWAPFILE_CLUSTER - 1; 290 291 /* Locate the first empty (unaligned) cluster */ 292 for (; last_in_cluster < scan_base; offset++) { 293 if (si->swap_map[offset]) 294 last_in_cluster = offset + SWAPFILE_CLUSTER; 295 else if (offset == last_in_cluster) { 296 spin_lock(&swap_lock); 297 offset -= SWAPFILE_CLUSTER - 1; 298 si->cluster_next = offset; 299 si->cluster_nr = SWAPFILE_CLUSTER - 1; 300 found_free_cluster = 1; 301 goto checks; 302 } 303 if (unlikely(--latency_ration < 0)) { 304 cond_resched(); 305 latency_ration = LATENCY_LIMIT; 306 } 307 } 308 309 offset = scan_base; 310 spin_lock(&swap_lock); 311 si->cluster_nr = SWAPFILE_CLUSTER - 1; 312 si->lowest_alloc = 0; 313 } 314 315 checks: 316 if (!(si->flags & SWP_WRITEOK)) 317 goto no_page; 318 if (!si->highest_bit) 319 goto no_page; 320 if (offset > si->highest_bit) 321 scan_base = offset = si->lowest_bit; 322 323 /* reuse swap entry of cache-only swap if not busy. */ 324 if (vm_swap_full() && si->swap_map[offset] == SWAP_HAS_CACHE) { 325 int swap_was_freed; 326 spin_unlock(&swap_lock); 327 swap_was_freed = __try_to_reclaim_swap(si, offset); 328 spin_lock(&swap_lock); 329 /* entry was freed successfully, try to use this again */ 330 if (swap_was_freed) 331 goto checks; 332 goto scan; /* check next one */ 333 } 334 335 if (si->swap_map[offset]) 336 goto scan; 337 338 if (offset == si->lowest_bit) 339 si->lowest_bit++; 340 if (offset == si->highest_bit) 341 si->highest_bit--; 342 si->inuse_pages++; 343 if (si->inuse_pages == si->pages) { 344 si->lowest_bit = si->max; 345 si->highest_bit = 0; 346 } 347 si->swap_map[offset] = usage; 348 si->cluster_next = offset + 1; 349 si->flags -= SWP_SCANNING; 350 351 if (si->lowest_alloc) { 352 /* 353 * Only set when SWP_DISCARDABLE, and there's a scan 354 * for a free cluster in progress or just completed. 355 */ 356 if (found_free_cluster) { 357 /* 358 * To optimize wear-levelling, discard the 359 * old data of the cluster, taking care not to 360 * discard any of its pages that have already 361 * been allocated by racing tasks (offset has 362 * already stepped over any at the beginning). 363 */ 364 if (offset < si->highest_alloc && 365 si->lowest_alloc <= last_in_cluster) 366 last_in_cluster = si->lowest_alloc - 1; 367 si->flags |= SWP_DISCARDING; 368 spin_unlock(&swap_lock); 369 370 if (offset < last_in_cluster) 371 discard_swap_cluster(si, offset, 372 last_in_cluster - offset + 1); 373 374 spin_lock(&swap_lock); 375 si->lowest_alloc = 0; 376 si->flags &= ~SWP_DISCARDING; 377 378 smp_mb(); /* wake_up_bit advises this */ 379 wake_up_bit(&si->flags, ilog2(SWP_DISCARDING)); 380 381 } else if (si->flags & SWP_DISCARDING) { 382 /* 383 * Delay using pages allocated by racing tasks 384 * until the whole discard has been issued. We 385 * could defer that delay until swap_writepage, 386 * but it's easier to keep this self-contained. 387 */ 388 spin_unlock(&swap_lock); 389 wait_on_bit(&si->flags, ilog2(SWP_DISCARDING), 390 wait_for_discard, TASK_UNINTERRUPTIBLE); 391 spin_lock(&swap_lock); 392 } else { 393 /* 394 * Note pages allocated by racing tasks while 395 * scan for a free cluster is in progress, so 396 * that its final discard can exclude them. 397 */ 398 if (offset < si->lowest_alloc) 399 si->lowest_alloc = offset; 400 if (offset > si->highest_alloc) 401 si->highest_alloc = offset; 402 } 403 } 404 return offset; 405 406 scan: 407 spin_unlock(&swap_lock); 408 while (++offset <= si->highest_bit) { 409 if (!si->swap_map[offset]) { 410 spin_lock(&swap_lock); 411 goto checks; 412 } 413 if (vm_swap_full() && si->swap_map[offset] == SWAP_HAS_CACHE) { 414 spin_lock(&swap_lock); 415 goto checks; 416 } 417 if (unlikely(--latency_ration < 0)) { 418 cond_resched(); 419 latency_ration = LATENCY_LIMIT; 420 } 421 } 422 offset = si->lowest_bit; 423 while (++offset < scan_base) { 424 if (!si->swap_map[offset]) { 425 spin_lock(&swap_lock); 426 goto checks; 427 } 428 if (vm_swap_full() && si->swap_map[offset] == SWAP_HAS_CACHE) { 429 spin_lock(&swap_lock); 430 goto checks; 431 } 432 if (unlikely(--latency_ration < 0)) { 433 cond_resched(); 434 latency_ration = LATENCY_LIMIT; 435 } 436 } 437 spin_lock(&swap_lock); 438 439 no_page: 440 si->flags -= SWP_SCANNING; 441 return 0; 442 } 443 444 swp_entry_t get_swap_page(void) 445 { 446 struct swap_info_struct *si; 447 pgoff_t offset; 448 int type, next; 449 int wrapped = 0; 450 451 spin_lock(&swap_lock); 452 if (nr_swap_pages <= 0) 453 goto noswap; 454 nr_swap_pages--; 455 456 for (type = swap_list.next; type >= 0 && wrapped < 2; type = next) { 457 si = swap_info[type]; 458 next = si->next; 459 if (next < 0 || 460 (!wrapped && si->prio != swap_info[next]->prio)) { 461 next = swap_list.head; 462 wrapped++; 463 } 464 465 if (!si->highest_bit) 466 continue; 467 if (!(si->flags & SWP_WRITEOK)) 468 continue; 469 470 swap_list.next = next; 471 /* This is called for allocating swap entry for cache */ 472 offset = scan_swap_map(si, SWAP_HAS_CACHE); 473 if (offset) { 474 spin_unlock(&swap_lock); 475 return swp_entry(type, offset); 476 } 477 next = swap_list.next; 478 } 479 480 nr_swap_pages++; 481 noswap: 482 spin_unlock(&swap_lock); 483 return (swp_entry_t) {0}; 484 } 485 486 /* The only caller of this function is now susupend routine */ 487 swp_entry_t get_swap_page_of_type(int type) 488 { 489 struct swap_info_struct *si; 490 pgoff_t offset; 491 492 spin_lock(&swap_lock); 493 si = swap_info[type]; 494 if (si && (si->flags & SWP_WRITEOK)) { 495 nr_swap_pages--; 496 /* This is called for allocating swap entry, not cache */ 497 offset = scan_swap_map(si, 1); 498 if (offset) { 499 spin_unlock(&swap_lock); 500 return swp_entry(type, offset); 501 } 502 nr_swap_pages++; 503 } 504 spin_unlock(&swap_lock); 505 return (swp_entry_t) {0}; 506 } 507 508 static struct swap_info_struct *swap_info_get(swp_entry_t entry) 509 { 510 struct swap_info_struct *p; 511 unsigned long offset, type; 512 513 if (!entry.val) 514 goto out; 515 type = swp_type(entry); 516 if (type >= nr_swapfiles) 517 goto bad_nofile; 518 p = swap_info[type]; 519 if (!(p->flags & SWP_USED)) 520 goto bad_device; 521 offset = swp_offset(entry); 522 if (offset >= p->max) 523 goto bad_offset; 524 if (!p->swap_map[offset]) 525 goto bad_free; 526 spin_lock(&swap_lock); 527 return p; 528 529 bad_free: 530 printk(KERN_ERR "swap_free: %s%08lx\n", Unused_offset, entry.val); 531 goto out; 532 bad_offset: 533 printk(KERN_ERR "swap_free: %s%08lx\n", Bad_offset, entry.val); 534 goto out; 535 bad_device: 536 printk(KERN_ERR "swap_free: %s%08lx\n", Unused_file, entry.val); 537 goto out; 538 bad_nofile: 539 printk(KERN_ERR "swap_free: %s%08lx\n", Bad_file, entry.val); 540 out: 541 return NULL; 542 } 543 544 static unsigned char swap_entry_free(struct swap_info_struct *p, 545 swp_entry_t entry, unsigned char usage) 546 { 547 unsigned long offset = swp_offset(entry); 548 unsigned char count; 549 unsigned char has_cache; 550 551 count = p->swap_map[offset]; 552 has_cache = count & SWAP_HAS_CACHE; 553 count &= ~SWAP_HAS_CACHE; 554 555 if (usage == SWAP_HAS_CACHE) { 556 VM_BUG_ON(!has_cache); 557 has_cache = 0; 558 } else if (count == SWAP_MAP_SHMEM) { 559 /* 560 * Or we could insist on shmem.c using a special 561 * swap_shmem_free() and free_shmem_swap_and_cache()... 562 */ 563 count = 0; 564 } else if ((count & ~COUNT_CONTINUED) <= SWAP_MAP_MAX) { 565 if (count == COUNT_CONTINUED) { 566 if (swap_count_continued(p, offset, count)) 567 count = SWAP_MAP_MAX | COUNT_CONTINUED; 568 else 569 count = SWAP_MAP_MAX; 570 } else 571 count--; 572 } 573 574 if (!count) 575 mem_cgroup_uncharge_swap(entry); 576 577 usage = count | has_cache; 578 p->swap_map[offset] = usage; 579 580 /* free if no reference */ 581 if (!usage) { 582 struct gendisk *disk = p->bdev->bd_disk; 583 if (offset < p->lowest_bit) 584 p->lowest_bit = offset; 585 if (offset > p->highest_bit) 586 p->highest_bit = offset; 587 if (swap_list.next >= 0 && 588 p->prio > swap_info[swap_list.next]->prio) 589 swap_list.next = p->type; 590 nr_swap_pages++; 591 p->inuse_pages--; 592 if ((p->flags & SWP_BLKDEV) && 593 disk->fops->swap_slot_free_notify) 594 disk->fops->swap_slot_free_notify(p->bdev, offset); 595 } 596 597 return usage; 598 } 599 600 /* 601 * Caller has made sure that the swapdevice corresponding to entry 602 * is still around or has not been recycled. 603 */ 604 void swap_free(swp_entry_t entry) 605 { 606 struct swap_info_struct *p; 607 608 p = swap_info_get(entry); 609 if (p) { 610 swap_entry_free(p, entry, 1); 611 spin_unlock(&swap_lock); 612 } 613 } 614 615 /* 616 * Called after dropping swapcache to decrease refcnt to swap entries. 617 */ 618 void swapcache_free(swp_entry_t entry, struct page *page) 619 { 620 struct swap_info_struct *p; 621 unsigned char count; 622 623 p = swap_info_get(entry); 624 if (p) { 625 count = swap_entry_free(p, entry, SWAP_HAS_CACHE); 626 if (page) 627 mem_cgroup_uncharge_swapcache(page, entry, count != 0); 628 spin_unlock(&swap_lock); 629 } 630 } 631 632 /* 633 * How many references to page are currently swapped out? 634 * This does not give an exact answer when swap count is continued, 635 * but does include the high COUNT_CONTINUED flag to allow for that. 636 */ 637 static inline int page_swapcount(struct page *page) 638 { 639 int count = 0; 640 struct swap_info_struct *p; 641 swp_entry_t entry; 642 643 entry.val = page_private(page); 644 p = swap_info_get(entry); 645 if (p) { 646 count = swap_count(p->swap_map[swp_offset(entry)]); 647 spin_unlock(&swap_lock); 648 } 649 return count; 650 } 651 652 /* 653 * We can write to an anon page without COW if there are no other references 654 * to it. And as a side-effect, free up its swap: because the old content 655 * on disk will never be read, and seeking back there to write new content 656 * later would only waste time away from clustering. 657 */ 658 int reuse_swap_page(struct page *page) 659 { 660 int count; 661 662 VM_BUG_ON(!PageLocked(page)); 663 if (unlikely(PageKsm(page))) 664 return 0; 665 count = page_mapcount(page); 666 if (count <= 1 && PageSwapCache(page)) { 667 count += page_swapcount(page); 668 if (count == 1 && !PageWriteback(page)) { 669 delete_from_swap_cache(page); 670 SetPageDirty(page); 671 } 672 } 673 return count <= 1; 674 } 675 676 /* 677 * If swap is getting full, or if there are no more mappings of this page, 678 * then try_to_free_swap is called to free its swap space. 679 */ 680 int try_to_free_swap(struct page *page) 681 { 682 VM_BUG_ON(!PageLocked(page)); 683 684 if (!PageSwapCache(page)) 685 return 0; 686 if (PageWriteback(page)) 687 return 0; 688 if (page_swapcount(page)) 689 return 0; 690 691 /* 692 * Once hibernation has begun to create its image of memory, 693 * there's a danger that one of the calls to try_to_free_swap() 694 * - most probably a call from __try_to_reclaim_swap() while 695 * hibernation is allocating its own swap pages for the image, 696 * but conceivably even a call from memory reclaim - will free 697 * the swap from a page which has already been recorded in the 698 * image as a clean swapcache page, and then reuse its swap for 699 * another page of the image. On waking from hibernation, the 700 * original page might be freed under memory pressure, then 701 * later read back in from swap, now with the wrong data. 702 * 703 * Hibernation clears bits from gfp_allowed_mask to prevent 704 * memory reclaim from writing to disk, so check that here. 705 */ 706 if (!(gfp_allowed_mask & __GFP_IO)) 707 return 0; 708 709 delete_from_swap_cache(page); 710 SetPageDirty(page); 711 return 1; 712 } 713 714 /* 715 * Free the swap entry like above, but also try to 716 * free the page cache entry if it is the last user. 717 */ 718 int free_swap_and_cache(swp_entry_t entry) 719 { 720 struct swap_info_struct *p; 721 struct page *page = NULL; 722 723 if (non_swap_entry(entry)) 724 return 1; 725 726 p = swap_info_get(entry); 727 if (p) { 728 if (swap_entry_free(p, entry, 1) == SWAP_HAS_CACHE) { 729 page = find_get_page(&swapper_space, entry.val); 730 if (page && !trylock_page(page)) { 731 page_cache_release(page); 732 page = NULL; 733 } 734 } 735 spin_unlock(&swap_lock); 736 } 737 if (page) { 738 /* 739 * Not mapped elsewhere, or swap space full? Free it! 740 * Also recheck PageSwapCache now page is locked (above). 741 */ 742 if (PageSwapCache(page) && !PageWriteback(page) && 743 (!page_mapped(page) || vm_swap_full())) { 744 delete_from_swap_cache(page); 745 SetPageDirty(page); 746 } 747 unlock_page(page); 748 page_cache_release(page); 749 } 750 return p != NULL; 751 } 752 753 #ifdef CONFIG_CGROUP_MEM_RES_CTLR 754 /** 755 * mem_cgroup_count_swap_user - count the user of a swap entry 756 * @ent: the swap entry to be checked 757 * @pagep: the pointer for the swap cache page of the entry to be stored 758 * 759 * Returns the number of the user of the swap entry. The number is valid only 760 * for swaps of anonymous pages. 761 * If the entry is found on swap cache, the page is stored to pagep with 762 * refcount of it being incremented. 763 */ 764 int mem_cgroup_count_swap_user(swp_entry_t ent, struct page **pagep) 765 { 766 struct page *page; 767 struct swap_info_struct *p; 768 int count = 0; 769 770 page = find_get_page(&swapper_space, ent.val); 771 if (page) 772 count += page_mapcount(page); 773 p = swap_info_get(ent); 774 if (p) { 775 count += swap_count(p->swap_map[swp_offset(ent)]); 776 spin_unlock(&swap_lock); 777 } 778 779 *pagep = page; 780 return count; 781 } 782 #endif 783 784 #ifdef CONFIG_HIBERNATION 785 /* 786 * Find the swap type that corresponds to given device (if any). 787 * 788 * @offset - number of the PAGE_SIZE-sized block of the device, starting 789 * from 0, in which the swap header is expected to be located. 790 * 791 * This is needed for the suspend to disk (aka swsusp). 792 */ 793 int swap_type_of(dev_t device, sector_t offset, struct block_device **bdev_p) 794 { 795 struct block_device *bdev = NULL; 796 int type; 797 798 if (device) 799 bdev = bdget(device); 800 801 spin_lock(&swap_lock); 802 for (type = 0; type < nr_swapfiles; type++) { 803 struct swap_info_struct *sis = swap_info[type]; 804 805 if (!(sis->flags & SWP_WRITEOK)) 806 continue; 807 808 if (!bdev) { 809 if (bdev_p) 810 *bdev_p = bdgrab(sis->bdev); 811 812 spin_unlock(&swap_lock); 813 return type; 814 } 815 if (bdev == sis->bdev) { 816 struct swap_extent *se = &sis->first_swap_extent; 817 818 if (se->start_block == offset) { 819 if (bdev_p) 820 *bdev_p = bdgrab(sis->bdev); 821 822 spin_unlock(&swap_lock); 823 bdput(bdev); 824 return type; 825 } 826 } 827 } 828 spin_unlock(&swap_lock); 829 if (bdev) 830 bdput(bdev); 831 832 return -ENODEV; 833 } 834 835 /* 836 * Get the (PAGE_SIZE) block corresponding to given offset on the swapdev 837 * corresponding to given index in swap_info (swap type). 838 */ 839 sector_t swapdev_block(int type, pgoff_t offset) 840 { 841 struct block_device *bdev; 842 843 if ((unsigned int)type >= nr_swapfiles) 844 return 0; 845 if (!(swap_info[type]->flags & SWP_WRITEOK)) 846 return 0; 847 return map_swap_entry(swp_entry(type, offset), &bdev); 848 } 849 850 /* 851 * Return either the total number of swap pages of given type, or the number 852 * of free pages of that type (depending on @free) 853 * 854 * This is needed for software suspend 855 */ 856 unsigned int count_swap_pages(int type, int free) 857 { 858 unsigned int n = 0; 859 860 spin_lock(&swap_lock); 861 if ((unsigned int)type < nr_swapfiles) { 862 struct swap_info_struct *sis = swap_info[type]; 863 864 if (sis->flags & SWP_WRITEOK) { 865 n = sis->pages; 866 if (free) 867 n -= sis->inuse_pages; 868 } 869 } 870 spin_unlock(&swap_lock); 871 return n; 872 } 873 #endif /* CONFIG_HIBERNATION */ 874 875 /* 876 * No need to decide whether this PTE shares the swap entry with others, 877 * just let do_wp_page work it out if a write is requested later - to 878 * force COW, vm_page_prot omits write permission from any private vma. 879 */ 880 static int unuse_pte(struct vm_area_struct *vma, pmd_t *pmd, 881 unsigned long addr, swp_entry_t entry, struct page *page) 882 { 883 struct mem_cgroup *ptr = NULL; 884 spinlock_t *ptl; 885 pte_t *pte; 886 int ret = 1; 887 888 if (mem_cgroup_try_charge_swapin(vma->vm_mm, page, GFP_KERNEL, &ptr)) { 889 ret = -ENOMEM; 890 goto out_nolock; 891 } 892 893 pte = pte_offset_map_lock(vma->vm_mm, pmd, addr, &ptl); 894 if (unlikely(!pte_same(*pte, swp_entry_to_pte(entry)))) { 895 if (ret > 0) 896 mem_cgroup_cancel_charge_swapin(ptr); 897 ret = 0; 898 goto out; 899 } 900 901 dec_mm_counter(vma->vm_mm, MM_SWAPENTS); 902 inc_mm_counter(vma->vm_mm, MM_ANONPAGES); 903 get_page(page); 904 set_pte_at(vma->vm_mm, addr, pte, 905 pte_mkold(mk_pte(page, vma->vm_page_prot))); 906 page_add_anon_rmap(page, vma, addr); 907 mem_cgroup_commit_charge_swapin(page, ptr); 908 swap_free(entry); 909 /* 910 * Move the page to the active list so it is not 911 * immediately swapped out again after swapon. 912 */ 913 activate_page(page); 914 out: 915 pte_unmap_unlock(pte, ptl); 916 out_nolock: 917 return ret; 918 } 919 920 static int unuse_pte_range(struct vm_area_struct *vma, pmd_t *pmd, 921 unsigned long addr, unsigned long end, 922 swp_entry_t entry, struct page *page) 923 { 924 pte_t swp_pte = swp_entry_to_pte(entry); 925 pte_t *pte; 926 int ret = 0; 927 928 /* 929 * We don't actually need pte lock while scanning for swp_pte: since 930 * we hold page lock and mmap_sem, swp_pte cannot be inserted into the 931 * page table while we're scanning; though it could get zapped, and on 932 * some architectures (e.g. x86_32 with PAE) we might catch a glimpse 933 * of unmatched parts which look like swp_pte, so unuse_pte must 934 * recheck under pte lock. Scanning without pte lock lets it be 935 * preemptible whenever CONFIG_PREEMPT but not CONFIG_HIGHPTE. 936 */ 937 pte = pte_offset_map(pmd, addr); 938 do { 939 /* 940 * swapoff spends a _lot_ of time in this loop! 941 * Test inline before going to call unuse_pte. 942 */ 943 if (unlikely(pte_same(*pte, swp_pte))) { 944 pte_unmap(pte); 945 ret = unuse_pte(vma, pmd, addr, entry, page); 946 if (ret) 947 goto out; 948 pte = pte_offset_map(pmd, addr); 949 } 950 } while (pte++, addr += PAGE_SIZE, addr != end); 951 pte_unmap(pte - 1); 952 out: 953 return ret; 954 } 955 956 static inline int unuse_pmd_range(struct vm_area_struct *vma, pud_t *pud, 957 unsigned long addr, unsigned long end, 958 swp_entry_t entry, struct page *page) 959 { 960 pmd_t *pmd; 961 unsigned long next; 962 int ret; 963 964 pmd = pmd_offset(pud, addr); 965 do { 966 next = pmd_addr_end(addr, end); 967 if (pmd_none_or_clear_bad(pmd)) 968 continue; 969 ret = unuse_pte_range(vma, pmd, addr, next, entry, page); 970 if (ret) 971 return ret; 972 } while (pmd++, addr = next, addr != end); 973 return 0; 974 } 975 976 static inline int unuse_pud_range(struct vm_area_struct *vma, pgd_t *pgd, 977 unsigned long addr, unsigned long end, 978 swp_entry_t entry, struct page *page) 979 { 980 pud_t *pud; 981 unsigned long next; 982 int ret; 983 984 pud = pud_offset(pgd, addr); 985 do { 986 next = pud_addr_end(addr, end); 987 if (pud_none_or_clear_bad(pud)) 988 continue; 989 ret = unuse_pmd_range(vma, pud, addr, next, entry, page); 990 if (ret) 991 return ret; 992 } while (pud++, addr = next, addr != end); 993 return 0; 994 } 995 996 static int unuse_vma(struct vm_area_struct *vma, 997 swp_entry_t entry, struct page *page) 998 { 999 pgd_t *pgd; 1000 unsigned long addr, end, next; 1001 int ret; 1002 1003 if (page_anon_vma(page)) { 1004 addr = page_address_in_vma(page, vma); 1005 if (addr == -EFAULT) 1006 return 0; 1007 else 1008 end = addr + PAGE_SIZE; 1009 } else { 1010 addr = vma->vm_start; 1011 end = vma->vm_end; 1012 } 1013 1014 pgd = pgd_offset(vma->vm_mm, addr); 1015 do { 1016 next = pgd_addr_end(addr, end); 1017 if (pgd_none_or_clear_bad(pgd)) 1018 continue; 1019 ret = unuse_pud_range(vma, pgd, addr, next, entry, page); 1020 if (ret) 1021 return ret; 1022 } while (pgd++, addr = next, addr != end); 1023 return 0; 1024 } 1025 1026 static int unuse_mm(struct mm_struct *mm, 1027 swp_entry_t entry, struct page *page) 1028 { 1029 struct vm_area_struct *vma; 1030 int ret = 0; 1031 1032 if (!down_read_trylock(&mm->mmap_sem)) { 1033 /* 1034 * Activate page so shrink_inactive_list is unlikely to unmap 1035 * its ptes while lock is dropped, so swapoff can make progress. 1036 */ 1037 activate_page(page); 1038 unlock_page(page); 1039 down_read(&mm->mmap_sem); 1040 lock_page(page); 1041 } 1042 for (vma = mm->mmap; vma; vma = vma->vm_next) { 1043 if (vma->anon_vma && (ret = unuse_vma(vma, entry, page))) 1044 break; 1045 } 1046 up_read(&mm->mmap_sem); 1047 return (ret < 0)? ret: 0; 1048 } 1049 1050 /* 1051 * Scan swap_map from current position to next entry still in use. 1052 * Recycle to start on reaching the end, returning 0 when empty. 1053 */ 1054 static unsigned int find_next_to_unuse(struct swap_info_struct *si, 1055 unsigned int prev) 1056 { 1057 unsigned int max = si->max; 1058 unsigned int i = prev; 1059 unsigned char count; 1060 1061 /* 1062 * No need for swap_lock here: we're just looking 1063 * for whether an entry is in use, not modifying it; false 1064 * hits are okay, and sys_swapoff() has already prevented new 1065 * allocations from this area (while holding swap_lock). 1066 */ 1067 for (;;) { 1068 if (++i >= max) { 1069 if (!prev) { 1070 i = 0; 1071 break; 1072 } 1073 /* 1074 * No entries in use at top of swap_map, 1075 * loop back to start and recheck there. 1076 */ 1077 max = prev + 1; 1078 prev = 0; 1079 i = 1; 1080 } 1081 count = si->swap_map[i]; 1082 if (count && swap_count(count) != SWAP_MAP_BAD) 1083 break; 1084 } 1085 return i; 1086 } 1087 1088 /* 1089 * We completely avoid races by reading each swap page in advance, 1090 * and then search for the process using it. All the necessary 1091 * page table adjustments can then be made atomically. 1092 */ 1093 static int try_to_unuse(unsigned int type) 1094 { 1095 struct swap_info_struct *si = swap_info[type]; 1096 struct mm_struct *start_mm; 1097 unsigned char *swap_map; 1098 unsigned char swcount; 1099 struct page *page; 1100 swp_entry_t entry; 1101 unsigned int i = 0; 1102 int retval = 0; 1103 1104 /* 1105 * When searching mms for an entry, a good strategy is to 1106 * start at the first mm we freed the previous entry from 1107 * (though actually we don't notice whether we or coincidence 1108 * freed the entry). Initialize this start_mm with a hold. 1109 * 1110 * A simpler strategy would be to start at the last mm we 1111 * freed the previous entry from; but that would take less 1112 * advantage of mmlist ordering, which clusters forked mms 1113 * together, child after parent. If we race with dup_mmap(), we 1114 * prefer to resolve parent before child, lest we miss entries 1115 * duplicated after we scanned child: using last mm would invert 1116 * that. 1117 */ 1118 start_mm = &init_mm; 1119 atomic_inc(&init_mm.mm_users); 1120 1121 /* 1122 * Keep on scanning until all entries have gone. Usually, 1123 * one pass through swap_map is enough, but not necessarily: 1124 * there are races when an instance of an entry might be missed. 1125 */ 1126 while ((i = find_next_to_unuse(si, i)) != 0) { 1127 if (signal_pending(current)) { 1128 retval = -EINTR; 1129 break; 1130 } 1131 1132 /* 1133 * Get a page for the entry, using the existing swap 1134 * cache page if there is one. Otherwise, get a clean 1135 * page and read the swap into it. 1136 */ 1137 swap_map = &si->swap_map[i]; 1138 entry = swp_entry(type, i); 1139 page = read_swap_cache_async(entry, 1140 GFP_HIGHUSER_MOVABLE, NULL, 0); 1141 if (!page) { 1142 /* 1143 * Either swap_duplicate() failed because entry 1144 * has been freed independently, and will not be 1145 * reused since sys_swapoff() already disabled 1146 * allocation from here, or alloc_page() failed. 1147 */ 1148 if (!*swap_map) 1149 continue; 1150 retval = -ENOMEM; 1151 break; 1152 } 1153 1154 /* 1155 * Don't hold on to start_mm if it looks like exiting. 1156 */ 1157 if (atomic_read(&start_mm->mm_users) == 1) { 1158 mmput(start_mm); 1159 start_mm = &init_mm; 1160 atomic_inc(&init_mm.mm_users); 1161 } 1162 1163 /* 1164 * Wait for and lock page. When do_swap_page races with 1165 * try_to_unuse, do_swap_page can handle the fault much 1166 * faster than try_to_unuse can locate the entry. This 1167 * apparently redundant "wait_on_page_locked" lets try_to_unuse 1168 * defer to do_swap_page in such a case - in some tests, 1169 * do_swap_page and try_to_unuse repeatedly compete. 1170 */ 1171 wait_on_page_locked(page); 1172 wait_on_page_writeback(page); 1173 lock_page(page); 1174 wait_on_page_writeback(page); 1175 1176 /* 1177 * Remove all references to entry. 1178 */ 1179 swcount = *swap_map; 1180 if (swap_count(swcount) == SWAP_MAP_SHMEM) { 1181 retval = shmem_unuse(entry, page); 1182 /* page has already been unlocked and released */ 1183 if (retval < 0) 1184 break; 1185 continue; 1186 } 1187 if (swap_count(swcount) && start_mm != &init_mm) 1188 retval = unuse_mm(start_mm, entry, page); 1189 1190 if (swap_count(*swap_map)) { 1191 int set_start_mm = (*swap_map >= swcount); 1192 struct list_head *p = &start_mm->mmlist; 1193 struct mm_struct *new_start_mm = start_mm; 1194 struct mm_struct *prev_mm = start_mm; 1195 struct mm_struct *mm; 1196 1197 atomic_inc(&new_start_mm->mm_users); 1198 atomic_inc(&prev_mm->mm_users); 1199 spin_lock(&mmlist_lock); 1200 while (swap_count(*swap_map) && !retval && 1201 (p = p->next) != &start_mm->mmlist) { 1202 mm = list_entry(p, struct mm_struct, mmlist); 1203 if (!atomic_inc_not_zero(&mm->mm_users)) 1204 continue; 1205 spin_unlock(&mmlist_lock); 1206 mmput(prev_mm); 1207 prev_mm = mm; 1208 1209 cond_resched(); 1210 1211 swcount = *swap_map; 1212 if (!swap_count(swcount)) /* any usage ? */ 1213 ; 1214 else if (mm == &init_mm) 1215 set_start_mm = 1; 1216 else 1217 retval = unuse_mm(mm, entry, page); 1218 1219 if (set_start_mm && *swap_map < swcount) { 1220 mmput(new_start_mm); 1221 atomic_inc(&mm->mm_users); 1222 new_start_mm = mm; 1223 set_start_mm = 0; 1224 } 1225 spin_lock(&mmlist_lock); 1226 } 1227 spin_unlock(&mmlist_lock); 1228 mmput(prev_mm); 1229 mmput(start_mm); 1230 start_mm = new_start_mm; 1231 } 1232 if (retval) { 1233 unlock_page(page); 1234 page_cache_release(page); 1235 break; 1236 } 1237 1238 /* 1239 * If a reference remains (rare), we would like to leave 1240 * the page in the swap cache; but try_to_unmap could 1241 * then re-duplicate the entry once we drop page lock, 1242 * so we might loop indefinitely; also, that page could 1243 * not be swapped out to other storage meanwhile. So: 1244 * delete from cache even if there's another reference, 1245 * after ensuring that the data has been saved to disk - 1246 * since if the reference remains (rarer), it will be 1247 * read from disk into another page. Splitting into two 1248 * pages would be incorrect if swap supported "shared 1249 * private" pages, but they are handled by tmpfs files. 1250 * 1251 * Given how unuse_vma() targets one particular offset 1252 * in an anon_vma, once the anon_vma has been determined, 1253 * this splitting happens to be just what is needed to 1254 * handle where KSM pages have been swapped out: re-reading 1255 * is unnecessarily slow, but we can fix that later on. 1256 */ 1257 if (swap_count(*swap_map) && 1258 PageDirty(page) && PageSwapCache(page)) { 1259 struct writeback_control wbc = { 1260 .sync_mode = WB_SYNC_NONE, 1261 }; 1262 1263 swap_writepage(page, &wbc); 1264 lock_page(page); 1265 wait_on_page_writeback(page); 1266 } 1267 1268 /* 1269 * It is conceivable that a racing task removed this page from 1270 * swap cache just before we acquired the page lock at the top, 1271 * or while we dropped it in unuse_mm(). The page might even 1272 * be back in swap cache on another swap area: that we must not 1273 * delete, since it may not have been written out to swap yet. 1274 */ 1275 if (PageSwapCache(page) && 1276 likely(page_private(page) == entry.val)) 1277 delete_from_swap_cache(page); 1278 1279 /* 1280 * So we could skip searching mms once swap count went 1281 * to 1, we did not mark any present ptes as dirty: must 1282 * mark page dirty so shrink_page_list will preserve it. 1283 */ 1284 SetPageDirty(page); 1285 unlock_page(page); 1286 page_cache_release(page); 1287 1288 /* 1289 * Make sure that we aren't completely killing 1290 * interactive performance. 1291 */ 1292 cond_resched(); 1293 } 1294 1295 mmput(start_mm); 1296 return retval; 1297 } 1298 1299 /* 1300 * After a successful try_to_unuse, if no swap is now in use, we know 1301 * we can empty the mmlist. swap_lock must be held on entry and exit. 1302 * Note that mmlist_lock nests inside swap_lock, and an mm must be 1303 * added to the mmlist just after page_duplicate - before would be racy. 1304 */ 1305 static void drain_mmlist(void) 1306 { 1307 struct list_head *p, *next; 1308 unsigned int type; 1309 1310 for (type = 0; type < nr_swapfiles; type++) 1311 if (swap_info[type]->inuse_pages) 1312 return; 1313 spin_lock(&mmlist_lock); 1314 list_for_each_safe(p, next, &init_mm.mmlist) 1315 list_del_init(p); 1316 spin_unlock(&mmlist_lock); 1317 } 1318 1319 /* 1320 * Use this swapdev's extent info to locate the (PAGE_SIZE) block which 1321 * corresponds to page offset for the specified swap entry. 1322 * Note that the type of this function is sector_t, but it returns page offset 1323 * into the bdev, not sector offset. 1324 */ 1325 static sector_t map_swap_entry(swp_entry_t entry, struct block_device **bdev) 1326 { 1327 struct swap_info_struct *sis; 1328 struct swap_extent *start_se; 1329 struct swap_extent *se; 1330 pgoff_t offset; 1331 1332 sis = swap_info[swp_type(entry)]; 1333 *bdev = sis->bdev; 1334 1335 offset = swp_offset(entry); 1336 start_se = sis->curr_swap_extent; 1337 se = start_se; 1338 1339 for ( ; ; ) { 1340 struct list_head *lh; 1341 1342 if (se->start_page <= offset && 1343 offset < (se->start_page + se->nr_pages)) { 1344 return se->start_block + (offset - se->start_page); 1345 } 1346 lh = se->list.next; 1347 se = list_entry(lh, struct swap_extent, list); 1348 sis->curr_swap_extent = se; 1349 BUG_ON(se == start_se); /* It *must* be present */ 1350 } 1351 } 1352 1353 /* 1354 * Returns the page offset into bdev for the specified page's swap entry. 1355 */ 1356 sector_t map_swap_page(struct page *page, struct block_device **bdev) 1357 { 1358 swp_entry_t entry; 1359 entry.val = page_private(page); 1360 return map_swap_entry(entry, bdev); 1361 } 1362 1363 /* 1364 * Free all of a swapdev's extent information 1365 */ 1366 static void destroy_swap_extents(struct swap_info_struct *sis) 1367 { 1368 while (!list_empty(&sis->first_swap_extent.list)) { 1369 struct swap_extent *se; 1370 1371 se = list_entry(sis->first_swap_extent.list.next, 1372 struct swap_extent, list); 1373 list_del(&se->list); 1374 kfree(se); 1375 } 1376 } 1377 1378 /* 1379 * Add a block range (and the corresponding page range) into this swapdev's 1380 * extent list. The extent list is kept sorted in page order. 1381 * 1382 * This function rather assumes that it is called in ascending page order. 1383 */ 1384 static int 1385 add_swap_extent(struct swap_info_struct *sis, unsigned long start_page, 1386 unsigned long nr_pages, sector_t start_block) 1387 { 1388 struct swap_extent *se; 1389 struct swap_extent *new_se; 1390 struct list_head *lh; 1391 1392 if (start_page == 0) { 1393 se = &sis->first_swap_extent; 1394 sis->curr_swap_extent = se; 1395 se->start_page = 0; 1396 se->nr_pages = nr_pages; 1397 se->start_block = start_block; 1398 return 1; 1399 } else { 1400 lh = sis->first_swap_extent.list.prev; /* Highest extent */ 1401 se = list_entry(lh, struct swap_extent, list); 1402 BUG_ON(se->start_page + se->nr_pages != start_page); 1403 if (se->start_block + se->nr_pages == start_block) { 1404 /* Merge it */ 1405 se->nr_pages += nr_pages; 1406 return 0; 1407 } 1408 } 1409 1410 /* 1411 * No merge. Insert a new extent, preserving ordering. 1412 */ 1413 new_se = kmalloc(sizeof(*se), GFP_KERNEL); 1414 if (new_se == NULL) 1415 return -ENOMEM; 1416 new_se->start_page = start_page; 1417 new_se->nr_pages = nr_pages; 1418 new_se->start_block = start_block; 1419 1420 list_add_tail(&new_se->list, &sis->first_swap_extent.list); 1421 return 1; 1422 } 1423 1424 /* 1425 * A `swap extent' is a simple thing which maps a contiguous range of pages 1426 * onto a contiguous range of disk blocks. An ordered list of swap extents 1427 * is built at swapon time and is then used at swap_writepage/swap_readpage 1428 * time for locating where on disk a page belongs. 1429 * 1430 * If the swapfile is an S_ISBLK block device, a single extent is installed. 1431 * This is done so that the main operating code can treat S_ISBLK and S_ISREG 1432 * swap files identically. 1433 * 1434 * Whether the swapdev is an S_ISREG file or an S_ISBLK blockdev, the swap 1435 * extent list operates in PAGE_SIZE disk blocks. Both S_ISREG and S_ISBLK 1436 * swapfiles are handled *identically* after swapon time. 1437 * 1438 * For S_ISREG swapfiles, setup_swap_extents() will walk all the file's blocks 1439 * and will parse them into an ordered extent list, in PAGE_SIZE chunks. If 1440 * some stray blocks are found which do not fall within the PAGE_SIZE alignment 1441 * requirements, they are simply tossed out - we will never use those blocks 1442 * for swapping. 1443 * 1444 * For S_ISREG swapfiles we set S_SWAPFILE across the life of the swapon. This 1445 * prevents root from shooting her foot off by ftruncating an in-use swapfile, 1446 * which will scribble on the fs. 1447 * 1448 * The amount of disk space which a single swap extent represents varies. 1449 * Typically it is in the 1-4 megabyte range. So we can have hundreds of 1450 * extents in the list. To avoid much list walking, we cache the previous 1451 * search location in `curr_swap_extent', and start new searches from there. 1452 * This is extremely effective. The average number of iterations in 1453 * map_swap_page() has been measured at about 0.3 per page. - akpm. 1454 */ 1455 static int setup_swap_extents(struct swap_info_struct *sis, sector_t *span) 1456 { 1457 struct inode *inode; 1458 unsigned blocks_per_page; 1459 unsigned long page_no; 1460 unsigned blkbits; 1461 sector_t probe_block; 1462 sector_t last_block; 1463 sector_t lowest_block = -1; 1464 sector_t highest_block = 0; 1465 int nr_extents = 0; 1466 int ret; 1467 1468 inode = sis->swap_file->f_mapping->host; 1469 if (S_ISBLK(inode->i_mode)) { 1470 ret = add_swap_extent(sis, 0, sis->max, 0); 1471 *span = sis->pages; 1472 goto out; 1473 } 1474 1475 blkbits = inode->i_blkbits; 1476 blocks_per_page = PAGE_SIZE >> blkbits; 1477 1478 /* 1479 * Map all the blocks into the extent list. This code doesn't try 1480 * to be very smart. 1481 */ 1482 probe_block = 0; 1483 page_no = 0; 1484 last_block = i_size_read(inode) >> blkbits; 1485 while ((probe_block + blocks_per_page) <= last_block && 1486 page_no < sis->max) { 1487 unsigned block_in_page; 1488 sector_t first_block; 1489 1490 first_block = bmap(inode, probe_block); 1491 if (first_block == 0) 1492 goto bad_bmap; 1493 1494 /* 1495 * It must be PAGE_SIZE aligned on-disk 1496 */ 1497 if (first_block & (blocks_per_page - 1)) { 1498 probe_block++; 1499 goto reprobe; 1500 } 1501 1502 for (block_in_page = 1; block_in_page < blocks_per_page; 1503 block_in_page++) { 1504 sector_t block; 1505 1506 block = bmap(inode, probe_block + block_in_page); 1507 if (block == 0) 1508 goto bad_bmap; 1509 if (block != first_block + block_in_page) { 1510 /* Discontiguity */ 1511 probe_block++; 1512 goto reprobe; 1513 } 1514 } 1515 1516 first_block >>= (PAGE_SHIFT - blkbits); 1517 if (page_no) { /* exclude the header page */ 1518 if (first_block < lowest_block) 1519 lowest_block = first_block; 1520 if (first_block > highest_block) 1521 highest_block = first_block; 1522 } 1523 1524 /* 1525 * We found a PAGE_SIZE-length, PAGE_SIZE-aligned run of blocks 1526 */ 1527 ret = add_swap_extent(sis, page_no, 1, first_block); 1528 if (ret < 0) 1529 goto out; 1530 nr_extents += ret; 1531 page_no++; 1532 probe_block += blocks_per_page; 1533 reprobe: 1534 continue; 1535 } 1536 ret = nr_extents; 1537 *span = 1 + highest_block - lowest_block; 1538 if (page_no == 0) 1539 page_no = 1; /* force Empty message */ 1540 sis->max = page_no; 1541 sis->pages = page_no - 1; 1542 sis->highest_bit = page_no - 1; 1543 out: 1544 return ret; 1545 bad_bmap: 1546 printk(KERN_ERR "swapon: swapfile has holes\n"); 1547 ret = -EINVAL; 1548 goto out; 1549 } 1550 1551 SYSCALL_DEFINE1(swapoff, const char __user *, specialfile) 1552 { 1553 struct swap_info_struct *p = NULL; 1554 unsigned char *swap_map; 1555 struct file *swap_file, *victim; 1556 struct address_space *mapping; 1557 struct inode *inode; 1558 char *pathname; 1559 int i, type, prev; 1560 int err; 1561 1562 if (!capable(CAP_SYS_ADMIN)) 1563 return -EPERM; 1564 1565 pathname = getname(specialfile); 1566 err = PTR_ERR(pathname); 1567 if (IS_ERR(pathname)) 1568 goto out; 1569 1570 victim = filp_open(pathname, O_RDWR|O_LARGEFILE, 0); 1571 putname(pathname); 1572 err = PTR_ERR(victim); 1573 if (IS_ERR(victim)) 1574 goto out; 1575 1576 mapping = victim->f_mapping; 1577 prev = -1; 1578 spin_lock(&swap_lock); 1579 for (type = swap_list.head; type >= 0; type = swap_info[type]->next) { 1580 p = swap_info[type]; 1581 if (p->flags & SWP_WRITEOK) { 1582 if (p->swap_file->f_mapping == mapping) 1583 break; 1584 } 1585 prev = type; 1586 } 1587 if (type < 0) { 1588 err = -EINVAL; 1589 spin_unlock(&swap_lock); 1590 goto out_dput; 1591 } 1592 if (!security_vm_enough_memory(p->pages)) 1593 vm_unacct_memory(p->pages); 1594 else { 1595 err = -ENOMEM; 1596 spin_unlock(&swap_lock); 1597 goto out_dput; 1598 } 1599 if (prev < 0) 1600 swap_list.head = p->next; 1601 else 1602 swap_info[prev]->next = p->next; 1603 if (type == swap_list.next) { 1604 /* just pick something that's safe... */ 1605 swap_list.next = swap_list.head; 1606 } 1607 if (p->prio < 0) { 1608 for (i = p->next; i >= 0; i = swap_info[i]->next) 1609 swap_info[i]->prio = p->prio--; 1610 least_priority++; 1611 } 1612 nr_swap_pages -= p->pages; 1613 total_swap_pages -= p->pages; 1614 p->flags &= ~SWP_WRITEOK; 1615 spin_unlock(&swap_lock); 1616 1617 current->flags |= PF_OOM_ORIGIN; 1618 err = try_to_unuse(type); 1619 current->flags &= ~PF_OOM_ORIGIN; 1620 1621 if (err) { 1622 /* re-insert swap space back into swap_list */ 1623 spin_lock(&swap_lock); 1624 if (p->prio < 0) 1625 p->prio = --least_priority; 1626 prev = -1; 1627 for (i = swap_list.head; i >= 0; i = swap_info[i]->next) { 1628 if (p->prio >= swap_info[i]->prio) 1629 break; 1630 prev = i; 1631 } 1632 p->next = i; 1633 if (prev < 0) 1634 swap_list.head = swap_list.next = type; 1635 else 1636 swap_info[prev]->next = type; 1637 nr_swap_pages += p->pages; 1638 total_swap_pages += p->pages; 1639 p->flags |= SWP_WRITEOK; 1640 spin_unlock(&swap_lock); 1641 goto out_dput; 1642 } 1643 1644 /* wait for any unplug function to finish */ 1645 down_write(&swap_unplug_sem); 1646 up_write(&swap_unplug_sem); 1647 1648 destroy_swap_extents(p); 1649 if (p->flags & SWP_CONTINUED) 1650 free_swap_count_continuations(p); 1651 1652 mutex_lock(&swapon_mutex); 1653 spin_lock(&swap_lock); 1654 drain_mmlist(); 1655 1656 /* wait for anyone still in scan_swap_map */ 1657 p->highest_bit = 0; /* cuts scans short */ 1658 while (p->flags >= SWP_SCANNING) { 1659 spin_unlock(&swap_lock); 1660 schedule_timeout_uninterruptible(1); 1661 spin_lock(&swap_lock); 1662 } 1663 1664 swap_file = p->swap_file; 1665 p->swap_file = NULL; 1666 p->max = 0; 1667 swap_map = p->swap_map; 1668 p->swap_map = NULL; 1669 p->flags = 0; 1670 spin_unlock(&swap_lock); 1671 mutex_unlock(&swapon_mutex); 1672 vfree(swap_map); 1673 /* Destroy swap account informatin */ 1674 swap_cgroup_swapoff(type); 1675 1676 inode = mapping->host; 1677 if (S_ISBLK(inode->i_mode)) { 1678 struct block_device *bdev = I_BDEV(inode); 1679 set_blocksize(bdev, p->old_block_size); 1680 bd_release(bdev); 1681 } else { 1682 mutex_lock(&inode->i_mutex); 1683 inode->i_flags &= ~S_SWAPFILE; 1684 mutex_unlock(&inode->i_mutex); 1685 } 1686 filp_close(swap_file, NULL); 1687 err = 0; 1688 atomic_inc(&proc_poll_event); 1689 wake_up_interruptible(&proc_poll_wait); 1690 1691 out_dput: 1692 filp_close(victim, NULL); 1693 out: 1694 return err; 1695 } 1696 1697 #ifdef CONFIG_PROC_FS 1698 struct proc_swaps { 1699 struct seq_file seq; 1700 int event; 1701 }; 1702 1703 static unsigned swaps_poll(struct file *file, poll_table *wait) 1704 { 1705 struct proc_swaps *s = file->private_data; 1706 1707 poll_wait(file, &proc_poll_wait, wait); 1708 1709 if (s->event != atomic_read(&proc_poll_event)) { 1710 s->event = atomic_read(&proc_poll_event); 1711 return POLLIN | POLLRDNORM | POLLERR | POLLPRI; 1712 } 1713 1714 return POLLIN | POLLRDNORM; 1715 } 1716 1717 /* iterator */ 1718 static void *swap_start(struct seq_file *swap, loff_t *pos) 1719 { 1720 struct swap_info_struct *si; 1721 int type; 1722 loff_t l = *pos; 1723 1724 mutex_lock(&swapon_mutex); 1725 1726 if (!l) 1727 return SEQ_START_TOKEN; 1728 1729 for (type = 0; type < nr_swapfiles; type++) { 1730 smp_rmb(); /* read nr_swapfiles before swap_info[type] */ 1731 si = swap_info[type]; 1732 if (!(si->flags & SWP_USED) || !si->swap_map) 1733 continue; 1734 if (!--l) 1735 return si; 1736 } 1737 1738 return NULL; 1739 } 1740 1741 static void *swap_next(struct seq_file *swap, void *v, loff_t *pos) 1742 { 1743 struct swap_info_struct *si = v; 1744 int type; 1745 1746 if (v == SEQ_START_TOKEN) 1747 type = 0; 1748 else 1749 type = si->type + 1; 1750 1751 for (; type < nr_swapfiles; type++) { 1752 smp_rmb(); /* read nr_swapfiles before swap_info[type] */ 1753 si = swap_info[type]; 1754 if (!(si->flags & SWP_USED) || !si->swap_map) 1755 continue; 1756 ++*pos; 1757 return si; 1758 } 1759 1760 return NULL; 1761 } 1762 1763 static void swap_stop(struct seq_file *swap, void *v) 1764 { 1765 mutex_unlock(&swapon_mutex); 1766 } 1767 1768 static int swap_show(struct seq_file *swap, void *v) 1769 { 1770 struct swap_info_struct *si = v; 1771 struct file *file; 1772 int len; 1773 1774 if (si == SEQ_START_TOKEN) { 1775 seq_puts(swap,"Filename\t\t\t\tType\t\tSize\tUsed\tPriority\n"); 1776 return 0; 1777 } 1778 1779 file = si->swap_file; 1780 len = seq_path(swap, &file->f_path, " \t\n\\"); 1781 seq_printf(swap, "%*s%s\t%u\t%u\t%d\n", 1782 len < 40 ? 40 - len : 1, " ", 1783 S_ISBLK(file->f_path.dentry->d_inode->i_mode) ? 1784 "partition" : "file\t", 1785 si->pages << (PAGE_SHIFT - 10), 1786 si->inuse_pages << (PAGE_SHIFT - 10), 1787 si->prio); 1788 return 0; 1789 } 1790 1791 static const struct seq_operations swaps_op = { 1792 .start = swap_start, 1793 .next = swap_next, 1794 .stop = swap_stop, 1795 .show = swap_show 1796 }; 1797 1798 static int swaps_open(struct inode *inode, struct file *file) 1799 { 1800 struct proc_swaps *s; 1801 int ret; 1802 1803 s = kmalloc(sizeof(struct proc_swaps), GFP_KERNEL); 1804 if (!s) 1805 return -ENOMEM; 1806 1807 file->private_data = s; 1808 1809 ret = seq_open(file, &swaps_op); 1810 if (ret) { 1811 kfree(s); 1812 return ret; 1813 } 1814 1815 s->seq.private = s; 1816 s->event = atomic_read(&proc_poll_event); 1817 return ret; 1818 } 1819 1820 static const struct file_operations proc_swaps_operations = { 1821 .open = swaps_open, 1822 .read = seq_read, 1823 .llseek = seq_lseek, 1824 .release = seq_release, 1825 .poll = swaps_poll, 1826 }; 1827 1828 static int __init procswaps_init(void) 1829 { 1830 proc_create("swaps", 0, NULL, &proc_swaps_operations); 1831 return 0; 1832 } 1833 __initcall(procswaps_init); 1834 #endif /* CONFIG_PROC_FS */ 1835 1836 #ifdef MAX_SWAPFILES_CHECK 1837 static int __init max_swapfiles_check(void) 1838 { 1839 MAX_SWAPFILES_CHECK(); 1840 return 0; 1841 } 1842 late_initcall(max_swapfiles_check); 1843 #endif 1844 1845 /* 1846 * Written 01/25/92 by Simmule Turner, heavily changed by Linus. 1847 * 1848 * The swapon system call 1849 */ 1850 SYSCALL_DEFINE2(swapon, const char __user *, specialfile, int, swap_flags) 1851 { 1852 struct swap_info_struct *p; 1853 char *name = NULL; 1854 struct block_device *bdev = NULL; 1855 struct file *swap_file = NULL; 1856 struct address_space *mapping; 1857 unsigned int type; 1858 int i, prev; 1859 int error; 1860 union swap_header *swap_header; 1861 unsigned int nr_good_pages; 1862 int nr_extents = 0; 1863 sector_t span; 1864 unsigned long maxpages; 1865 unsigned long swapfilepages; 1866 unsigned char *swap_map = NULL; 1867 struct page *page = NULL; 1868 struct inode *inode = NULL; 1869 int did_down = 0; 1870 1871 if (!capable(CAP_SYS_ADMIN)) 1872 return -EPERM; 1873 1874 p = kzalloc(sizeof(*p), GFP_KERNEL); 1875 if (!p) 1876 return -ENOMEM; 1877 1878 spin_lock(&swap_lock); 1879 for (type = 0; type < nr_swapfiles; type++) { 1880 if (!(swap_info[type]->flags & SWP_USED)) 1881 break; 1882 } 1883 error = -EPERM; 1884 if (type >= MAX_SWAPFILES) { 1885 spin_unlock(&swap_lock); 1886 kfree(p); 1887 goto out; 1888 } 1889 if (type >= nr_swapfiles) { 1890 p->type = type; 1891 swap_info[type] = p; 1892 /* 1893 * Write swap_info[type] before nr_swapfiles, in case a 1894 * racing procfs swap_start() or swap_next() is reading them. 1895 * (We never shrink nr_swapfiles, we never free this entry.) 1896 */ 1897 smp_wmb(); 1898 nr_swapfiles++; 1899 } else { 1900 kfree(p); 1901 p = swap_info[type]; 1902 /* 1903 * Do not memset this entry: a racing procfs swap_next() 1904 * would be relying on p->type to remain valid. 1905 */ 1906 } 1907 INIT_LIST_HEAD(&p->first_swap_extent.list); 1908 p->flags = SWP_USED; 1909 p->next = -1; 1910 spin_unlock(&swap_lock); 1911 1912 name = getname(specialfile); 1913 error = PTR_ERR(name); 1914 if (IS_ERR(name)) { 1915 name = NULL; 1916 goto bad_swap_2; 1917 } 1918 swap_file = filp_open(name, O_RDWR|O_LARGEFILE, 0); 1919 error = PTR_ERR(swap_file); 1920 if (IS_ERR(swap_file)) { 1921 swap_file = NULL; 1922 goto bad_swap_2; 1923 } 1924 1925 p->swap_file = swap_file; 1926 mapping = swap_file->f_mapping; 1927 inode = mapping->host; 1928 1929 error = -EBUSY; 1930 for (i = 0; i < nr_swapfiles; i++) { 1931 struct swap_info_struct *q = swap_info[i]; 1932 1933 if (i == type || !q->swap_file) 1934 continue; 1935 if (mapping == q->swap_file->f_mapping) 1936 goto bad_swap; 1937 } 1938 1939 error = -EINVAL; 1940 if (S_ISBLK(inode->i_mode)) { 1941 bdev = I_BDEV(inode); 1942 error = bd_claim(bdev, sys_swapon); 1943 if (error < 0) { 1944 bdev = NULL; 1945 error = -EINVAL; 1946 goto bad_swap; 1947 } 1948 p->old_block_size = block_size(bdev); 1949 error = set_blocksize(bdev, PAGE_SIZE); 1950 if (error < 0) 1951 goto bad_swap; 1952 p->bdev = bdev; 1953 p->flags |= SWP_BLKDEV; 1954 } else if (S_ISREG(inode->i_mode)) { 1955 p->bdev = inode->i_sb->s_bdev; 1956 mutex_lock(&inode->i_mutex); 1957 did_down = 1; 1958 if (IS_SWAPFILE(inode)) { 1959 error = -EBUSY; 1960 goto bad_swap; 1961 } 1962 } else { 1963 goto bad_swap; 1964 } 1965 1966 swapfilepages = i_size_read(inode) >> PAGE_SHIFT; 1967 1968 /* 1969 * Read the swap header. 1970 */ 1971 if (!mapping->a_ops->readpage) { 1972 error = -EINVAL; 1973 goto bad_swap; 1974 } 1975 page = read_mapping_page(mapping, 0, swap_file); 1976 if (IS_ERR(page)) { 1977 error = PTR_ERR(page); 1978 goto bad_swap; 1979 } 1980 swap_header = kmap(page); 1981 1982 if (memcmp("SWAPSPACE2", swap_header->magic.magic, 10)) { 1983 printk(KERN_ERR "Unable to find swap-space signature\n"); 1984 error = -EINVAL; 1985 goto bad_swap; 1986 } 1987 1988 /* swap partition endianess hack... */ 1989 if (swab32(swap_header->info.version) == 1) { 1990 swab32s(&swap_header->info.version); 1991 swab32s(&swap_header->info.last_page); 1992 swab32s(&swap_header->info.nr_badpages); 1993 for (i = 0; i < swap_header->info.nr_badpages; i++) 1994 swab32s(&swap_header->info.badpages[i]); 1995 } 1996 /* Check the swap header's sub-version */ 1997 if (swap_header->info.version != 1) { 1998 printk(KERN_WARNING 1999 "Unable to handle swap header version %d\n", 2000 swap_header->info.version); 2001 error = -EINVAL; 2002 goto bad_swap; 2003 } 2004 2005 p->lowest_bit = 1; 2006 p->cluster_next = 1; 2007 p->cluster_nr = 0; 2008 2009 /* 2010 * Find out how many pages are allowed for a single swap 2011 * device. There are two limiting factors: 1) the number of 2012 * bits for the swap offset in the swp_entry_t type and 2013 * 2) the number of bits in the a swap pte as defined by 2014 * the different architectures. In order to find the 2015 * largest possible bit mask a swap entry with swap type 0 2016 * and swap offset ~0UL is created, encoded to a swap pte, 2017 * decoded to a swp_entry_t again and finally the swap 2018 * offset is extracted. This will mask all the bits from 2019 * the initial ~0UL mask that can't be encoded in either 2020 * the swp_entry_t or the architecture definition of a 2021 * swap pte. 2022 */ 2023 maxpages = swp_offset(pte_to_swp_entry( 2024 swp_entry_to_pte(swp_entry(0, ~0UL)))) + 1; 2025 if (maxpages > swap_header->info.last_page) { 2026 maxpages = swap_header->info.last_page + 1; 2027 /* p->max is an unsigned int: don't overflow it */ 2028 if ((unsigned int)maxpages == 0) 2029 maxpages = UINT_MAX; 2030 } 2031 p->highest_bit = maxpages - 1; 2032 2033 error = -EINVAL; 2034 if (!maxpages) 2035 goto bad_swap; 2036 if (swapfilepages && maxpages > swapfilepages) { 2037 printk(KERN_WARNING 2038 "Swap area shorter than signature indicates\n"); 2039 goto bad_swap; 2040 } 2041 if (swap_header->info.nr_badpages && S_ISREG(inode->i_mode)) 2042 goto bad_swap; 2043 if (swap_header->info.nr_badpages > MAX_SWAP_BADPAGES) 2044 goto bad_swap; 2045 2046 /* OK, set up the swap map and apply the bad block list */ 2047 swap_map = vmalloc(maxpages); 2048 if (!swap_map) { 2049 error = -ENOMEM; 2050 goto bad_swap; 2051 } 2052 2053 memset(swap_map, 0, maxpages); 2054 nr_good_pages = maxpages - 1; /* omit header page */ 2055 2056 for (i = 0; i < swap_header->info.nr_badpages; i++) { 2057 unsigned int page_nr = swap_header->info.badpages[i]; 2058 if (page_nr == 0 || page_nr > swap_header->info.last_page) { 2059 error = -EINVAL; 2060 goto bad_swap; 2061 } 2062 if (page_nr < maxpages) { 2063 swap_map[page_nr] = SWAP_MAP_BAD; 2064 nr_good_pages--; 2065 } 2066 } 2067 2068 error = swap_cgroup_swapon(type, maxpages); 2069 if (error) 2070 goto bad_swap; 2071 2072 if (nr_good_pages) { 2073 swap_map[0] = SWAP_MAP_BAD; 2074 p->max = maxpages; 2075 p->pages = nr_good_pages; 2076 nr_extents = setup_swap_extents(p, &span); 2077 if (nr_extents < 0) { 2078 error = nr_extents; 2079 goto bad_swap; 2080 } 2081 nr_good_pages = p->pages; 2082 } 2083 if (!nr_good_pages) { 2084 printk(KERN_WARNING "Empty swap-file\n"); 2085 error = -EINVAL; 2086 goto bad_swap; 2087 } 2088 2089 if (p->bdev) { 2090 if (blk_queue_nonrot(bdev_get_queue(p->bdev))) { 2091 p->flags |= SWP_SOLIDSTATE; 2092 p->cluster_next = 1 + (random32() % p->highest_bit); 2093 } 2094 if (discard_swap(p) == 0 && (swap_flags & SWAP_FLAG_DISCARD)) 2095 p->flags |= SWP_DISCARDABLE; 2096 } 2097 2098 mutex_lock(&swapon_mutex); 2099 spin_lock(&swap_lock); 2100 if (swap_flags & SWAP_FLAG_PREFER) 2101 p->prio = 2102 (swap_flags & SWAP_FLAG_PRIO_MASK) >> SWAP_FLAG_PRIO_SHIFT; 2103 else 2104 p->prio = --least_priority; 2105 p->swap_map = swap_map; 2106 p->flags |= SWP_WRITEOK; 2107 nr_swap_pages += nr_good_pages; 2108 total_swap_pages += nr_good_pages; 2109 2110 printk(KERN_INFO "Adding %uk swap on %s. " 2111 "Priority:%d extents:%d across:%lluk %s%s\n", 2112 nr_good_pages<<(PAGE_SHIFT-10), name, p->prio, 2113 nr_extents, (unsigned long long)span<<(PAGE_SHIFT-10), 2114 (p->flags & SWP_SOLIDSTATE) ? "SS" : "", 2115 (p->flags & SWP_DISCARDABLE) ? "D" : ""); 2116 2117 /* insert swap space into swap_list: */ 2118 prev = -1; 2119 for (i = swap_list.head; i >= 0; i = swap_info[i]->next) { 2120 if (p->prio >= swap_info[i]->prio) 2121 break; 2122 prev = i; 2123 } 2124 p->next = i; 2125 if (prev < 0) 2126 swap_list.head = swap_list.next = type; 2127 else 2128 swap_info[prev]->next = type; 2129 spin_unlock(&swap_lock); 2130 mutex_unlock(&swapon_mutex); 2131 atomic_inc(&proc_poll_event); 2132 wake_up_interruptible(&proc_poll_wait); 2133 2134 error = 0; 2135 goto out; 2136 bad_swap: 2137 if (bdev) { 2138 set_blocksize(bdev, p->old_block_size); 2139 bd_release(bdev); 2140 } 2141 destroy_swap_extents(p); 2142 swap_cgroup_swapoff(type); 2143 bad_swap_2: 2144 spin_lock(&swap_lock); 2145 p->swap_file = NULL; 2146 p->flags = 0; 2147 spin_unlock(&swap_lock); 2148 vfree(swap_map); 2149 if (swap_file) 2150 filp_close(swap_file, NULL); 2151 out: 2152 if (page && !IS_ERR(page)) { 2153 kunmap(page); 2154 page_cache_release(page); 2155 } 2156 if (name) 2157 putname(name); 2158 if (did_down) { 2159 if (!error) 2160 inode->i_flags |= S_SWAPFILE; 2161 mutex_unlock(&inode->i_mutex); 2162 } 2163 return error; 2164 } 2165 2166 void si_swapinfo(struct sysinfo *val) 2167 { 2168 unsigned int type; 2169 unsigned long nr_to_be_unused = 0; 2170 2171 spin_lock(&swap_lock); 2172 for (type = 0; type < nr_swapfiles; type++) { 2173 struct swap_info_struct *si = swap_info[type]; 2174 2175 if ((si->flags & SWP_USED) && !(si->flags & SWP_WRITEOK)) 2176 nr_to_be_unused += si->inuse_pages; 2177 } 2178 val->freeswap = nr_swap_pages + nr_to_be_unused; 2179 val->totalswap = total_swap_pages + nr_to_be_unused; 2180 spin_unlock(&swap_lock); 2181 } 2182 2183 /* 2184 * Verify that a swap entry is valid and increment its swap map count. 2185 * 2186 * Returns error code in following case. 2187 * - success -> 0 2188 * - swp_entry is invalid -> EINVAL 2189 * - swp_entry is migration entry -> EINVAL 2190 * - swap-cache reference is requested but there is already one. -> EEXIST 2191 * - swap-cache reference is requested but the entry is not used. -> ENOENT 2192 * - swap-mapped reference requested but needs continued swap count. -> ENOMEM 2193 */ 2194 static int __swap_duplicate(swp_entry_t entry, unsigned char usage) 2195 { 2196 struct swap_info_struct *p; 2197 unsigned long offset, type; 2198 unsigned char count; 2199 unsigned char has_cache; 2200 int err = -EINVAL; 2201 2202 if (non_swap_entry(entry)) 2203 goto out; 2204 2205 type = swp_type(entry); 2206 if (type >= nr_swapfiles) 2207 goto bad_file; 2208 p = swap_info[type]; 2209 offset = swp_offset(entry); 2210 2211 spin_lock(&swap_lock); 2212 if (unlikely(offset >= p->max)) 2213 goto unlock_out; 2214 2215 count = p->swap_map[offset]; 2216 has_cache = count & SWAP_HAS_CACHE; 2217 count &= ~SWAP_HAS_CACHE; 2218 err = 0; 2219 2220 if (usage == SWAP_HAS_CACHE) { 2221 2222 /* set SWAP_HAS_CACHE if there is no cache and entry is used */ 2223 if (!has_cache && count) 2224 has_cache = SWAP_HAS_CACHE; 2225 else if (has_cache) /* someone else added cache */ 2226 err = -EEXIST; 2227 else /* no users remaining */ 2228 err = -ENOENT; 2229 2230 } else if (count || has_cache) { 2231 2232 if ((count & ~COUNT_CONTINUED) < SWAP_MAP_MAX) 2233 count += usage; 2234 else if ((count & ~COUNT_CONTINUED) > SWAP_MAP_MAX) 2235 err = -EINVAL; 2236 else if (swap_count_continued(p, offset, count)) 2237 count = COUNT_CONTINUED; 2238 else 2239 err = -ENOMEM; 2240 } else 2241 err = -ENOENT; /* unused swap entry */ 2242 2243 p->swap_map[offset] = count | has_cache; 2244 2245 unlock_out: 2246 spin_unlock(&swap_lock); 2247 out: 2248 return err; 2249 2250 bad_file: 2251 printk(KERN_ERR "swap_dup: %s%08lx\n", Bad_file, entry.val); 2252 goto out; 2253 } 2254 2255 /* 2256 * Help swapoff by noting that swap entry belongs to shmem/tmpfs 2257 * (in which case its reference count is never incremented). 2258 */ 2259 void swap_shmem_alloc(swp_entry_t entry) 2260 { 2261 __swap_duplicate(entry, SWAP_MAP_SHMEM); 2262 } 2263 2264 /* 2265 * Increase reference count of swap entry by 1. 2266 * Returns 0 for success, or -ENOMEM if a swap_count_continuation is required 2267 * but could not be atomically allocated. Returns 0, just as if it succeeded, 2268 * if __swap_duplicate() fails for another reason (-EINVAL or -ENOENT), which 2269 * might occur if a page table entry has got corrupted. 2270 */ 2271 int swap_duplicate(swp_entry_t entry) 2272 { 2273 int err = 0; 2274 2275 while (!err && __swap_duplicate(entry, 1) == -ENOMEM) 2276 err = add_swap_count_continuation(entry, GFP_ATOMIC); 2277 return err; 2278 } 2279 2280 /* 2281 * @entry: swap entry for which we allocate swap cache. 2282 * 2283 * Called when allocating swap cache for existing swap entry, 2284 * This can return error codes. Returns 0 at success. 2285 * -EBUSY means there is a swap cache. 2286 * Note: return code is different from swap_duplicate(). 2287 */ 2288 int swapcache_prepare(swp_entry_t entry) 2289 { 2290 return __swap_duplicate(entry, SWAP_HAS_CACHE); 2291 } 2292 2293 /* 2294 * swap_lock prevents swap_map being freed. Don't grab an extra 2295 * reference on the swaphandle, it doesn't matter if it becomes unused. 2296 */ 2297 int valid_swaphandles(swp_entry_t entry, unsigned long *offset) 2298 { 2299 struct swap_info_struct *si; 2300 int our_page_cluster = page_cluster; 2301 pgoff_t target, toff; 2302 pgoff_t base, end; 2303 int nr_pages = 0; 2304 2305 if (!our_page_cluster) /* no readahead */ 2306 return 0; 2307 2308 si = swap_info[swp_type(entry)]; 2309 target = swp_offset(entry); 2310 base = (target >> our_page_cluster) << our_page_cluster; 2311 end = base + (1 << our_page_cluster); 2312 if (!base) /* first page is swap header */ 2313 base++; 2314 2315 spin_lock(&swap_lock); 2316 if (end > si->max) /* don't go beyond end of map */ 2317 end = si->max; 2318 2319 /* Count contiguous allocated slots above our target */ 2320 for (toff = target; ++toff < end; nr_pages++) { 2321 /* Don't read in free or bad pages */ 2322 if (!si->swap_map[toff]) 2323 break; 2324 if (swap_count(si->swap_map[toff]) == SWAP_MAP_BAD) 2325 break; 2326 } 2327 /* Count contiguous allocated slots below our target */ 2328 for (toff = target; --toff >= base; nr_pages++) { 2329 /* Don't read in free or bad pages */ 2330 if (!si->swap_map[toff]) 2331 break; 2332 if (swap_count(si->swap_map[toff]) == SWAP_MAP_BAD) 2333 break; 2334 } 2335 spin_unlock(&swap_lock); 2336 2337 /* 2338 * Indicate starting offset, and return number of pages to get: 2339 * if only 1, say 0, since there's then no readahead to be done. 2340 */ 2341 *offset = ++toff; 2342 return nr_pages? ++nr_pages: 0; 2343 } 2344 2345 /* 2346 * add_swap_count_continuation - called when a swap count is duplicated 2347 * beyond SWAP_MAP_MAX, it allocates a new page and links that to the entry's 2348 * page of the original vmalloc'ed swap_map, to hold the continuation count 2349 * (for that entry and for its neighbouring PAGE_SIZE swap entries). Called 2350 * again when count is duplicated beyond SWAP_MAP_MAX * SWAP_CONT_MAX, etc. 2351 * 2352 * These continuation pages are seldom referenced: the common paths all work 2353 * on the original swap_map, only referring to a continuation page when the 2354 * low "digit" of a count is incremented or decremented through SWAP_MAP_MAX. 2355 * 2356 * add_swap_count_continuation(, GFP_ATOMIC) can be called while holding 2357 * page table locks; if it fails, add_swap_count_continuation(, GFP_KERNEL) 2358 * can be called after dropping locks. 2359 */ 2360 int add_swap_count_continuation(swp_entry_t entry, gfp_t gfp_mask) 2361 { 2362 struct swap_info_struct *si; 2363 struct page *head; 2364 struct page *page; 2365 struct page *list_page; 2366 pgoff_t offset; 2367 unsigned char count; 2368 2369 /* 2370 * When debugging, it's easier to use __GFP_ZERO here; but it's better 2371 * for latency not to zero a page while GFP_ATOMIC and holding locks. 2372 */ 2373 page = alloc_page(gfp_mask | __GFP_HIGHMEM); 2374 2375 si = swap_info_get(entry); 2376 if (!si) { 2377 /* 2378 * An acceptable race has occurred since the failing 2379 * __swap_duplicate(): the swap entry has been freed, 2380 * perhaps even the whole swap_map cleared for swapoff. 2381 */ 2382 goto outer; 2383 } 2384 2385 offset = swp_offset(entry); 2386 count = si->swap_map[offset] & ~SWAP_HAS_CACHE; 2387 2388 if ((count & ~COUNT_CONTINUED) != SWAP_MAP_MAX) { 2389 /* 2390 * The higher the swap count, the more likely it is that tasks 2391 * will race to add swap count continuation: we need to avoid 2392 * over-provisioning. 2393 */ 2394 goto out; 2395 } 2396 2397 if (!page) { 2398 spin_unlock(&swap_lock); 2399 return -ENOMEM; 2400 } 2401 2402 /* 2403 * We are fortunate that although vmalloc_to_page uses pte_offset_map, 2404 * no architecture is using highmem pages for kernel pagetables: so it 2405 * will not corrupt the GFP_ATOMIC caller's atomic pagetable kmaps. 2406 */ 2407 head = vmalloc_to_page(si->swap_map + offset); 2408 offset &= ~PAGE_MASK; 2409 2410 /* 2411 * Page allocation does not initialize the page's lru field, 2412 * but it does always reset its private field. 2413 */ 2414 if (!page_private(head)) { 2415 BUG_ON(count & COUNT_CONTINUED); 2416 INIT_LIST_HEAD(&head->lru); 2417 set_page_private(head, SWP_CONTINUED); 2418 si->flags |= SWP_CONTINUED; 2419 } 2420 2421 list_for_each_entry(list_page, &head->lru, lru) { 2422 unsigned char *map; 2423 2424 /* 2425 * If the previous map said no continuation, but we've found 2426 * a continuation page, free our allocation and use this one. 2427 */ 2428 if (!(count & COUNT_CONTINUED)) 2429 goto out; 2430 2431 map = kmap_atomic(list_page, KM_USER0) + offset; 2432 count = *map; 2433 kunmap_atomic(map, KM_USER0); 2434 2435 /* 2436 * If this continuation count now has some space in it, 2437 * free our allocation and use this one. 2438 */ 2439 if ((count & ~COUNT_CONTINUED) != SWAP_CONT_MAX) 2440 goto out; 2441 } 2442 2443 list_add_tail(&page->lru, &head->lru); 2444 page = NULL; /* now it's attached, don't free it */ 2445 out: 2446 spin_unlock(&swap_lock); 2447 outer: 2448 if (page) 2449 __free_page(page); 2450 return 0; 2451 } 2452 2453 /* 2454 * swap_count_continued - when the original swap_map count is incremented 2455 * from SWAP_MAP_MAX, check if there is already a continuation page to carry 2456 * into, carry if so, or else fail until a new continuation page is allocated; 2457 * when the original swap_map count is decremented from 0 with continuation, 2458 * borrow from the continuation and report whether it still holds more. 2459 * Called while __swap_duplicate() or swap_entry_free() holds swap_lock. 2460 */ 2461 static bool swap_count_continued(struct swap_info_struct *si, 2462 pgoff_t offset, unsigned char count) 2463 { 2464 struct page *head; 2465 struct page *page; 2466 unsigned char *map; 2467 2468 head = vmalloc_to_page(si->swap_map + offset); 2469 if (page_private(head) != SWP_CONTINUED) { 2470 BUG_ON(count & COUNT_CONTINUED); 2471 return false; /* need to add count continuation */ 2472 } 2473 2474 offset &= ~PAGE_MASK; 2475 page = list_entry(head->lru.next, struct page, lru); 2476 map = kmap_atomic(page, KM_USER0) + offset; 2477 2478 if (count == SWAP_MAP_MAX) /* initial increment from swap_map */ 2479 goto init_map; /* jump over SWAP_CONT_MAX checks */ 2480 2481 if (count == (SWAP_MAP_MAX | COUNT_CONTINUED)) { /* incrementing */ 2482 /* 2483 * Think of how you add 1 to 999 2484 */ 2485 while (*map == (SWAP_CONT_MAX | COUNT_CONTINUED)) { 2486 kunmap_atomic(map, KM_USER0); 2487 page = list_entry(page->lru.next, struct page, lru); 2488 BUG_ON(page == head); 2489 map = kmap_atomic(page, KM_USER0) + offset; 2490 } 2491 if (*map == SWAP_CONT_MAX) { 2492 kunmap_atomic(map, KM_USER0); 2493 page = list_entry(page->lru.next, struct page, lru); 2494 if (page == head) 2495 return false; /* add count continuation */ 2496 map = kmap_atomic(page, KM_USER0) + offset; 2497 init_map: *map = 0; /* we didn't zero the page */ 2498 } 2499 *map += 1; 2500 kunmap_atomic(map, KM_USER0); 2501 page = list_entry(page->lru.prev, struct page, lru); 2502 while (page != head) { 2503 map = kmap_atomic(page, KM_USER0) + offset; 2504 *map = COUNT_CONTINUED; 2505 kunmap_atomic(map, KM_USER0); 2506 page = list_entry(page->lru.prev, struct page, lru); 2507 } 2508 return true; /* incremented */ 2509 2510 } else { /* decrementing */ 2511 /* 2512 * Think of how you subtract 1 from 1000 2513 */ 2514 BUG_ON(count != COUNT_CONTINUED); 2515 while (*map == COUNT_CONTINUED) { 2516 kunmap_atomic(map, KM_USER0); 2517 page = list_entry(page->lru.next, struct page, lru); 2518 BUG_ON(page == head); 2519 map = kmap_atomic(page, KM_USER0) + offset; 2520 } 2521 BUG_ON(*map == 0); 2522 *map -= 1; 2523 if (*map == 0) 2524 count = 0; 2525 kunmap_atomic(map, KM_USER0); 2526 page = list_entry(page->lru.prev, struct page, lru); 2527 while (page != head) { 2528 map = kmap_atomic(page, KM_USER0) + offset; 2529 *map = SWAP_CONT_MAX | count; 2530 count = COUNT_CONTINUED; 2531 kunmap_atomic(map, KM_USER0); 2532 page = list_entry(page->lru.prev, struct page, lru); 2533 } 2534 return count == COUNT_CONTINUED; 2535 } 2536 } 2537 2538 /* 2539 * free_swap_count_continuations - swapoff free all the continuation pages 2540 * appended to the swap_map, after swap_map is quiesced, before vfree'ing it. 2541 */ 2542 static void free_swap_count_continuations(struct swap_info_struct *si) 2543 { 2544 pgoff_t offset; 2545 2546 for (offset = 0; offset < si->max; offset += PAGE_SIZE) { 2547 struct page *head; 2548 head = vmalloc_to_page(si->swap_map + offset); 2549 if (page_private(head)) { 2550 struct list_head *this, *next; 2551 list_for_each_safe(this, next, &head->lru) { 2552 struct page *page; 2553 page = list_entry(this, struct page, lru); 2554 list_del(this); 2555 __free_page(page); 2556 } 2557 } 2558 } 2559 } 2560