xref: /openbmc/linux/mm/swapfile.c (revision baa7eb025ab14f3cba2e35c0a8648f9c9f01d24f)
1 /*
2  *  linux/mm/swapfile.c
3  *
4  *  Copyright (C) 1991, 1992, 1993, 1994  Linus Torvalds
5  *  Swap reorganised 29.12.95, Stephen Tweedie
6  */
7 
8 #include <linux/mm.h>
9 #include <linux/hugetlb.h>
10 #include <linux/mman.h>
11 #include <linux/slab.h>
12 #include <linux/kernel_stat.h>
13 #include <linux/swap.h>
14 #include <linux/vmalloc.h>
15 #include <linux/pagemap.h>
16 #include <linux/namei.h>
17 #include <linux/shm.h>
18 #include <linux/blkdev.h>
19 #include <linux/random.h>
20 #include <linux/writeback.h>
21 #include <linux/proc_fs.h>
22 #include <linux/seq_file.h>
23 #include <linux/init.h>
24 #include <linux/module.h>
25 #include <linux/ksm.h>
26 #include <linux/rmap.h>
27 #include <linux/security.h>
28 #include <linux/backing-dev.h>
29 #include <linux/mutex.h>
30 #include <linux/capability.h>
31 #include <linux/syscalls.h>
32 #include <linux/memcontrol.h>
33 #include <linux/poll.h>
34 
35 #include <asm/pgtable.h>
36 #include <asm/tlbflush.h>
37 #include <linux/swapops.h>
38 #include <linux/page_cgroup.h>
39 
40 static bool swap_count_continued(struct swap_info_struct *, pgoff_t,
41 				 unsigned char);
42 static void free_swap_count_continuations(struct swap_info_struct *);
43 static sector_t map_swap_entry(swp_entry_t, struct block_device**);
44 
45 static DEFINE_SPINLOCK(swap_lock);
46 static unsigned int nr_swapfiles;
47 long nr_swap_pages;
48 long total_swap_pages;
49 static int least_priority;
50 
51 static const char Bad_file[] = "Bad swap file entry ";
52 static const char Unused_file[] = "Unused swap file entry ";
53 static const char Bad_offset[] = "Bad swap offset entry ";
54 static const char Unused_offset[] = "Unused swap offset entry ";
55 
56 static struct swap_list_t swap_list = {-1, -1};
57 
58 static struct swap_info_struct *swap_info[MAX_SWAPFILES];
59 
60 static DEFINE_MUTEX(swapon_mutex);
61 
62 static DECLARE_WAIT_QUEUE_HEAD(proc_poll_wait);
63 /* Activity counter to indicate that a swapon or swapoff has occurred */
64 static atomic_t proc_poll_event = ATOMIC_INIT(0);
65 
66 static inline unsigned char swap_count(unsigned char ent)
67 {
68 	return ent & ~SWAP_HAS_CACHE;	/* may include SWAP_HAS_CONT flag */
69 }
70 
71 /* returns 1 if swap entry is freed */
72 static int
73 __try_to_reclaim_swap(struct swap_info_struct *si, unsigned long offset)
74 {
75 	swp_entry_t entry = swp_entry(si->type, offset);
76 	struct page *page;
77 	int ret = 0;
78 
79 	page = find_get_page(&swapper_space, entry.val);
80 	if (!page)
81 		return 0;
82 	/*
83 	 * This function is called from scan_swap_map() and it's called
84 	 * by vmscan.c at reclaiming pages. So, we hold a lock on a page, here.
85 	 * We have to use trylock for avoiding deadlock. This is a special
86 	 * case and you should use try_to_free_swap() with explicit lock_page()
87 	 * in usual operations.
88 	 */
89 	if (trylock_page(page)) {
90 		ret = try_to_free_swap(page);
91 		unlock_page(page);
92 	}
93 	page_cache_release(page);
94 	return ret;
95 }
96 
97 /*
98  * We need this because the bdev->unplug_fn can sleep and we cannot
99  * hold swap_lock while calling the unplug_fn. And swap_lock
100  * cannot be turned into a mutex.
101  */
102 static DECLARE_RWSEM(swap_unplug_sem);
103 
104 void swap_unplug_io_fn(struct backing_dev_info *unused_bdi, struct page *page)
105 {
106 	swp_entry_t entry;
107 
108 	down_read(&swap_unplug_sem);
109 	entry.val = page_private(page);
110 	if (PageSwapCache(page)) {
111 		struct block_device *bdev = swap_info[swp_type(entry)]->bdev;
112 		struct backing_dev_info *bdi;
113 
114 		/*
115 		 * If the page is removed from swapcache from under us (with a
116 		 * racy try_to_unuse/swapoff) we need an additional reference
117 		 * count to avoid reading garbage from page_private(page) above.
118 		 * If the WARN_ON triggers during a swapoff it maybe the race
119 		 * condition and it's harmless. However if it triggers without
120 		 * swapoff it signals a problem.
121 		 */
122 		WARN_ON(page_count(page) <= 1);
123 
124 		bdi = bdev->bd_inode->i_mapping->backing_dev_info;
125 		blk_run_backing_dev(bdi, page);
126 	}
127 	up_read(&swap_unplug_sem);
128 }
129 
130 /*
131  * swapon tell device that all the old swap contents can be discarded,
132  * to allow the swap device to optimize its wear-levelling.
133  */
134 static int discard_swap(struct swap_info_struct *si)
135 {
136 	struct swap_extent *se;
137 	sector_t start_block;
138 	sector_t nr_blocks;
139 	int err = 0;
140 
141 	/* Do not discard the swap header page! */
142 	se = &si->first_swap_extent;
143 	start_block = (se->start_block + 1) << (PAGE_SHIFT - 9);
144 	nr_blocks = ((sector_t)se->nr_pages - 1) << (PAGE_SHIFT - 9);
145 	if (nr_blocks) {
146 		err = blkdev_issue_discard(si->bdev, start_block,
147 				nr_blocks, GFP_KERNEL, 0);
148 		if (err)
149 			return err;
150 		cond_resched();
151 	}
152 
153 	list_for_each_entry(se, &si->first_swap_extent.list, list) {
154 		start_block = se->start_block << (PAGE_SHIFT - 9);
155 		nr_blocks = (sector_t)se->nr_pages << (PAGE_SHIFT - 9);
156 
157 		err = blkdev_issue_discard(si->bdev, start_block,
158 				nr_blocks, GFP_KERNEL, 0);
159 		if (err)
160 			break;
161 
162 		cond_resched();
163 	}
164 	return err;		/* That will often be -EOPNOTSUPP */
165 }
166 
167 /*
168  * swap allocation tell device that a cluster of swap can now be discarded,
169  * to allow the swap device to optimize its wear-levelling.
170  */
171 static void discard_swap_cluster(struct swap_info_struct *si,
172 				 pgoff_t start_page, pgoff_t nr_pages)
173 {
174 	struct swap_extent *se = si->curr_swap_extent;
175 	int found_extent = 0;
176 
177 	while (nr_pages) {
178 		struct list_head *lh;
179 
180 		if (se->start_page <= start_page &&
181 		    start_page < se->start_page + se->nr_pages) {
182 			pgoff_t offset = start_page - se->start_page;
183 			sector_t start_block = se->start_block + offset;
184 			sector_t nr_blocks = se->nr_pages - offset;
185 
186 			if (nr_blocks > nr_pages)
187 				nr_blocks = nr_pages;
188 			start_page += nr_blocks;
189 			nr_pages -= nr_blocks;
190 
191 			if (!found_extent++)
192 				si->curr_swap_extent = se;
193 
194 			start_block <<= PAGE_SHIFT - 9;
195 			nr_blocks <<= PAGE_SHIFT - 9;
196 			if (blkdev_issue_discard(si->bdev, start_block,
197 				    nr_blocks, GFP_NOIO, 0))
198 				break;
199 		}
200 
201 		lh = se->list.next;
202 		se = list_entry(lh, struct swap_extent, list);
203 	}
204 }
205 
206 static int wait_for_discard(void *word)
207 {
208 	schedule();
209 	return 0;
210 }
211 
212 #define SWAPFILE_CLUSTER	256
213 #define LATENCY_LIMIT		256
214 
215 static inline unsigned long scan_swap_map(struct swap_info_struct *si,
216 					  unsigned char usage)
217 {
218 	unsigned long offset;
219 	unsigned long scan_base;
220 	unsigned long last_in_cluster = 0;
221 	int latency_ration = LATENCY_LIMIT;
222 	int found_free_cluster = 0;
223 
224 	/*
225 	 * We try to cluster swap pages by allocating them sequentially
226 	 * in swap.  Once we've allocated SWAPFILE_CLUSTER pages this
227 	 * way, however, we resort to first-free allocation, starting
228 	 * a new cluster.  This prevents us from scattering swap pages
229 	 * all over the entire swap partition, so that we reduce
230 	 * overall disk seek times between swap pages.  -- sct
231 	 * But we do now try to find an empty cluster.  -Andrea
232 	 * And we let swap pages go all over an SSD partition.  Hugh
233 	 */
234 
235 	si->flags += SWP_SCANNING;
236 	scan_base = offset = si->cluster_next;
237 
238 	if (unlikely(!si->cluster_nr--)) {
239 		if (si->pages - si->inuse_pages < SWAPFILE_CLUSTER) {
240 			si->cluster_nr = SWAPFILE_CLUSTER - 1;
241 			goto checks;
242 		}
243 		if (si->flags & SWP_DISCARDABLE) {
244 			/*
245 			 * Start range check on racing allocations, in case
246 			 * they overlap the cluster we eventually decide on
247 			 * (we scan without swap_lock to allow preemption).
248 			 * It's hardly conceivable that cluster_nr could be
249 			 * wrapped during our scan, but don't depend on it.
250 			 */
251 			if (si->lowest_alloc)
252 				goto checks;
253 			si->lowest_alloc = si->max;
254 			si->highest_alloc = 0;
255 		}
256 		spin_unlock(&swap_lock);
257 
258 		/*
259 		 * If seek is expensive, start searching for new cluster from
260 		 * start of partition, to minimize the span of allocated swap.
261 		 * But if seek is cheap, search from our current position, so
262 		 * that swap is allocated from all over the partition: if the
263 		 * Flash Translation Layer only remaps within limited zones,
264 		 * we don't want to wear out the first zone too quickly.
265 		 */
266 		if (!(si->flags & SWP_SOLIDSTATE))
267 			scan_base = offset = si->lowest_bit;
268 		last_in_cluster = offset + SWAPFILE_CLUSTER - 1;
269 
270 		/* Locate the first empty (unaligned) cluster */
271 		for (; last_in_cluster <= si->highest_bit; offset++) {
272 			if (si->swap_map[offset])
273 				last_in_cluster = offset + SWAPFILE_CLUSTER;
274 			else if (offset == last_in_cluster) {
275 				spin_lock(&swap_lock);
276 				offset -= SWAPFILE_CLUSTER - 1;
277 				si->cluster_next = offset;
278 				si->cluster_nr = SWAPFILE_CLUSTER - 1;
279 				found_free_cluster = 1;
280 				goto checks;
281 			}
282 			if (unlikely(--latency_ration < 0)) {
283 				cond_resched();
284 				latency_ration = LATENCY_LIMIT;
285 			}
286 		}
287 
288 		offset = si->lowest_bit;
289 		last_in_cluster = offset + SWAPFILE_CLUSTER - 1;
290 
291 		/* Locate the first empty (unaligned) cluster */
292 		for (; last_in_cluster < scan_base; offset++) {
293 			if (si->swap_map[offset])
294 				last_in_cluster = offset + SWAPFILE_CLUSTER;
295 			else if (offset == last_in_cluster) {
296 				spin_lock(&swap_lock);
297 				offset -= SWAPFILE_CLUSTER - 1;
298 				si->cluster_next = offset;
299 				si->cluster_nr = SWAPFILE_CLUSTER - 1;
300 				found_free_cluster = 1;
301 				goto checks;
302 			}
303 			if (unlikely(--latency_ration < 0)) {
304 				cond_resched();
305 				latency_ration = LATENCY_LIMIT;
306 			}
307 		}
308 
309 		offset = scan_base;
310 		spin_lock(&swap_lock);
311 		si->cluster_nr = SWAPFILE_CLUSTER - 1;
312 		si->lowest_alloc = 0;
313 	}
314 
315 checks:
316 	if (!(si->flags & SWP_WRITEOK))
317 		goto no_page;
318 	if (!si->highest_bit)
319 		goto no_page;
320 	if (offset > si->highest_bit)
321 		scan_base = offset = si->lowest_bit;
322 
323 	/* reuse swap entry of cache-only swap if not busy. */
324 	if (vm_swap_full() && si->swap_map[offset] == SWAP_HAS_CACHE) {
325 		int swap_was_freed;
326 		spin_unlock(&swap_lock);
327 		swap_was_freed = __try_to_reclaim_swap(si, offset);
328 		spin_lock(&swap_lock);
329 		/* entry was freed successfully, try to use this again */
330 		if (swap_was_freed)
331 			goto checks;
332 		goto scan; /* check next one */
333 	}
334 
335 	if (si->swap_map[offset])
336 		goto scan;
337 
338 	if (offset == si->lowest_bit)
339 		si->lowest_bit++;
340 	if (offset == si->highest_bit)
341 		si->highest_bit--;
342 	si->inuse_pages++;
343 	if (si->inuse_pages == si->pages) {
344 		si->lowest_bit = si->max;
345 		si->highest_bit = 0;
346 	}
347 	si->swap_map[offset] = usage;
348 	si->cluster_next = offset + 1;
349 	si->flags -= SWP_SCANNING;
350 
351 	if (si->lowest_alloc) {
352 		/*
353 		 * Only set when SWP_DISCARDABLE, and there's a scan
354 		 * for a free cluster in progress or just completed.
355 		 */
356 		if (found_free_cluster) {
357 			/*
358 			 * To optimize wear-levelling, discard the
359 			 * old data of the cluster, taking care not to
360 			 * discard any of its pages that have already
361 			 * been allocated by racing tasks (offset has
362 			 * already stepped over any at the beginning).
363 			 */
364 			if (offset < si->highest_alloc &&
365 			    si->lowest_alloc <= last_in_cluster)
366 				last_in_cluster = si->lowest_alloc - 1;
367 			si->flags |= SWP_DISCARDING;
368 			spin_unlock(&swap_lock);
369 
370 			if (offset < last_in_cluster)
371 				discard_swap_cluster(si, offset,
372 					last_in_cluster - offset + 1);
373 
374 			spin_lock(&swap_lock);
375 			si->lowest_alloc = 0;
376 			si->flags &= ~SWP_DISCARDING;
377 
378 			smp_mb();	/* wake_up_bit advises this */
379 			wake_up_bit(&si->flags, ilog2(SWP_DISCARDING));
380 
381 		} else if (si->flags & SWP_DISCARDING) {
382 			/*
383 			 * Delay using pages allocated by racing tasks
384 			 * until the whole discard has been issued. We
385 			 * could defer that delay until swap_writepage,
386 			 * but it's easier to keep this self-contained.
387 			 */
388 			spin_unlock(&swap_lock);
389 			wait_on_bit(&si->flags, ilog2(SWP_DISCARDING),
390 				wait_for_discard, TASK_UNINTERRUPTIBLE);
391 			spin_lock(&swap_lock);
392 		} else {
393 			/*
394 			 * Note pages allocated by racing tasks while
395 			 * scan for a free cluster is in progress, so
396 			 * that its final discard can exclude them.
397 			 */
398 			if (offset < si->lowest_alloc)
399 				si->lowest_alloc = offset;
400 			if (offset > si->highest_alloc)
401 				si->highest_alloc = offset;
402 		}
403 	}
404 	return offset;
405 
406 scan:
407 	spin_unlock(&swap_lock);
408 	while (++offset <= si->highest_bit) {
409 		if (!si->swap_map[offset]) {
410 			spin_lock(&swap_lock);
411 			goto checks;
412 		}
413 		if (vm_swap_full() && si->swap_map[offset] == SWAP_HAS_CACHE) {
414 			spin_lock(&swap_lock);
415 			goto checks;
416 		}
417 		if (unlikely(--latency_ration < 0)) {
418 			cond_resched();
419 			latency_ration = LATENCY_LIMIT;
420 		}
421 	}
422 	offset = si->lowest_bit;
423 	while (++offset < scan_base) {
424 		if (!si->swap_map[offset]) {
425 			spin_lock(&swap_lock);
426 			goto checks;
427 		}
428 		if (vm_swap_full() && si->swap_map[offset] == SWAP_HAS_CACHE) {
429 			spin_lock(&swap_lock);
430 			goto checks;
431 		}
432 		if (unlikely(--latency_ration < 0)) {
433 			cond_resched();
434 			latency_ration = LATENCY_LIMIT;
435 		}
436 	}
437 	spin_lock(&swap_lock);
438 
439 no_page:
440 	si->flags -= SWP_SCANNING;
441 	return 0;
442 }
443 
444 swp_entry_t get_swap_page(void)
445 {
446 	struct swap_info_struct *si;
447 	pgoff_t offset;
448 	int type, next;
449 	int wrapped = 0;
450 
451 	spin_lock(&swap_lock);
452 	if (nr_swap_pages <= 0)
453 		goto noswap;
454 	nr_swap_pages--;
455 
456 	for (type = swap_list.next; type >= 0 && wrapped < 2; type = next) {
457 		si = swap_info[type];
458 		next = si->next;
459 		if (next < 0 ||
460 		    (!wrapped && si->prio != swap_info[next]->prio)) {
461 			next = swap_list.head;
462 			wrapped++;
463 		}
464 
465 		if (!si->highest_bit)
466 			continue;
467 		if (!(si->flags & SWP_WRITEOK))
468 			continue;
469 
470 		swap_list.next = next;
471 		/* This is called for allocating swap entry for cache */
472 		offset = scan_swap_map(si, SWAP_HAS_CACHE);
473 		if (offset) {
474 			spin_unlock(&swap_lock);
475 			return swp_entry(type, offset);
476 		}
477 		next = swap_list.next;
478 	}
479 
480 	nr_swap_pages++;
481 noswap:
482 	spin_unlock(&swap_lock);
483 	return (swp_entry_t) {0};
484 }
485 
486 /* The only caller of this function is now susupend routine */
487 swp_entry_t get_swap_page_of_type(int type)
488 {
489 	struct swap_info_struct *si;
490 	pgoff_t offset;
491 
492 	spin_lock(&swap_lock);
493 	si = swap_info[type];
494 	if (si && (si->flags & SWP_WRITEOK)) {
495 		nr_swap_pages--;
496 		/* This is called for allocating swap entry, not cache */
497 		offset = scan_swap_map(si, 1);
498 		if (offset) {
499 			spin_unlock(&swap_lock);
500 			return swp_entry(type, offset);
501 		}
502 		nr_swap_pages++;
503 	}
504 	spin_unlock(&swap_lock);
505 	return (swp_entry_t) {0};
506 }
507 
508 static struct swap_info_struct *swap_info_get(swp_entry_t entry)
509 {
510 	struct swap_info_struct *p;
511 	unsigned long offset, type;
512 
513 	if (!entry.val)
514 		goto out;
515 	type = swp_type(entry);
516 	if (type >= nr_swapfiles)
517 		goto bad_nofile;
518 	p = swap_info[type];
519 	if (!(p->flags & SWP_USED))
520 		goto bad_device;
521 	offset = swp_offset(entry);
522 	if (offset >= p->max)
523 		goto bad_offset;
524 	if (!p->swap_map[offset])
525 		goto bad_free;
526 	spin_lock(&swap_lock);
527 	return p;
528 
529 bad_free:
530 	printk(KERN_ERR "swap_free: %s%08lx\n", Unused_offset, entry.val);
531 	goto out;
532 bad_offset:
533 	printk(KERN_ERR "swap_free: %s%08lx\n", Bad_offset, entry.val);
534 	goto out;
535 bad_device:
536 	printk(KERN_ERR "swap_free: %s%08lx\n", Unused_file, entry.val);
537 	goto out;
538 bad_nofile:
539 	printk(KERN_ERR "swap_free: %s%08lx\n", Bad_file, entry.val);
540 out:
541 	return NULL;
542 }
543 
544 static unsigned char swap_entry_free(struct swap_info_struct *p,
545 				     swp_entry_t entry, unsigned char usage)
546 {
547 	unsigned long offset = swp_offset(entry);
548 	unsigned char count;
549 	unsigned char has_cache;
550 
551 	count = p->swap_map[offset];
552 	has_cache = count & SWAP_HAS_CACHE;
553 	count &= ~SWAP_HAS_CACHE;
554 
555 	if (usage == SWAP_HAS_CACHE) {
556 		VM_BUG_ON(!has_cache);
557 		has_cache = 0;
558 	} else if (count == SWAP_MAP_SHMEM) {
559 		/*
560 		 * Or we could insist on shmem.c using a special
561 		 * swap_shmem_free() and free_shmem_swap_and_cache()...
562 		 */
563 		count = 0;
564 	} else if ((count & ~COUNT_CONTINUED) <= SWAP_MAP_MAX) {
565 		if (count == COUNT_CONTINUED) {
566 			if (swap_count_continued(p, offset, count))
567 				count = SWAP_MAP_MAX | COUNT_CONTINUED;
568 			else
569 				count = SWAP_MAP_MAX;
570 		} else
571 			count--;
572 	}
573 
574 	if (!count)
575 		mem_cgroup_uncharge_swap(entry);
576 
577 	usage = count | has_cache;
578 	p->swap_map[offset] = usage;
579 
580 	/* free if no reference */
581 	if (!usage) {
582 		struct gendisk *disk = p->bdev->bd_disk;
583 		if (offset < p->lowest_bit)
584 			p->lowest_bit = offset;
585 		if (offset > p->highest_bit)
586 			p->highest_bit = offset;
587 		if (swap_list.next >= 0 &&
588 		    p->prio > swap_info[swap_list.next]->prio)
589 			swap_list.next = p->type;
590 		nr_swap_pages++;
591 		p->inuse_pages--;
592 		if ((p->flags & SWP_BLKDEV) &&
593 				disk->fops->swap_slot_free_notify)
594 			disk->fops->swap_slot_free_notify(p->bdev, offset);
595 	}
596 
597 	return usage;
598 }
599 
600 /*
601  * Caller has made sure that the swapdevice corresponding to entry
602  * is still around or has not been recycled.
603  */
604 void swap_free(swp_entry_t entry)
605 {
606 	struct swap_info_struct *p;
607 
608 	p = swap_info_get(entry);
609 	if (p) {
610 		swap_entry_free(p, entry, 1);
611 		spin_unlock(&swap_lock);
612 	}
613 }
614 
615 /*
616  * Called after dropping swapcache to decrease refcnt to swap entries.
617  */
618 void swapcache_free(swp_entry_t entry, struct page *page)
619 {
620 	struct swap_info_struct *p;
621 	unsigned char count;
622 
623 	p = swap_info_get(entry);
624 	if (p) {
625 		count = swap_entry_free(p, entry, SWAP_HAS_CACHE);
626 		if (page)
627 			mem_cgroup_uncharge_swapcache(page, entry, count != 0);
628 		spin_unlock(&swap_lock);
629 	}
630 }
631 
632 /*
633  * How many references to page are currently swapped out?
634  * This does not give an exact answer when swap count is continued,
635  * but does include the high COUNT_CONTINUED flag to allow for that.
636  */
637 static inline int page_swapcount(struct page *page)
638 {
639 	int count = 0;
640 	struct swap_info_struct *p;
641 	swp_entry_t entry;
642 
643 	entry.val = page_private(page);
644 	p = swap_info_get(entry);
645 	if (p) {
646 		count = swap_count(p->swap_map[swp_offset(entry)]);
647 		spin_unlock(&swap_lock);
648 	}
649 	return count;
650 }
651 
652 /*
653  * We can write to an anon page without COW if there are no other references
654  * to it.  And as a side-effect, free up its swap: because the old content
655  * on disk will never be read, and seeking back there to write new content
656  * later would only waste time away from clustering.
657  */
658 int reuse_swap_page(struct page *page)
659 {
660 	int count;
661 
662 	VM_BUG_ON(!PageLocked(page));
663 	if (unlikely(PageKsm(page)))
664 		return 0;
665 	count = page_mapcount(page);
666 	if (count <= 1 && PageSwapCache(page)) {
667 		count += page_swapcount(page);
668 		if (count == 1 && !PageWriteback(page)) {
669 			delete_from_swap_cache(page);
670 			SetPageDirty(page);
671 		}
672 	}
673 	return count <= 1;
674 }
675 
676 /*
677  * If swap is getting full, or if there are no more mappings of this page,
678  * then try_to_free_swap is called to free its swap space.
679  */
680 int try_to_free_swap(struct page *page)
681 {
682 	VM_BUG_ON(!PageLocked(page));
683 
684 	if (!PageSwapCache(page))
685 		return 0;
686 	if (PageWriteback(page))
687 		return 0;
688 	if (page_swapcount(page))
689 		return 0;
690 
691 	/*
692 	 * Once hibernation has begun to create its image of memory,
693 	 * there's a danger that one of the calls to try_to_free_swap()
694 	 * - most probably a call from __try_to_reclaim_swap() while
695 	 * hibernation is allocating its own swap pages for the image,
696 	 * but conceivably even a call from memory reclaim - will free
697 	 * the swap from a page which has already been recorded in the
698 	 * image as a clean swapcache page, and then reuse its swap for
699 	 * another page of the image.  On waking from hibernation, the
700 	 * original page might be freed under memory pressure, then
701 	 * later read back in from swap, now with the wrong data.
702 	 *
703 	 * Hibernation clears bits from gfp_allowed_mask to prevent
704 	 * memory reclaim from writing to disk, so check that here.
705 	 */
706 	if (!(gfp_allowed_mask & __GFP_IO))
707 		return 0;
708 
709 	delete_from_swap_cache(page);
710 	SetPageDirty(page);
711 	return 1;
712 }
713 
714 /*
715  * Free the swap entry like above, but also try to
716  * free the page cache entry if it is the last user.
717  */
718 int free_swap_and_cache(swp_entry_t entry)
719 {
720 	struct swap_info_struct *p;
721 	struct page *page = NULL;
722 
723 	if (non_swap_entry(entry))
724 		return 1;
725 
726 	p = swap_info_get(entry);
727 	if (p) {
728 		if (swap_entry_free(p, entry, 1) == SWAP_HAS_CACHE) {
729 			page = find_get_page(&swapper_space, entry.val);
730 			if (page && !trylock_page(page)) {
731 				page_cache_release(page);
732 				page = NULL;
733 			}
734 		}
735 		spin_unlock(&swap_lock);
736 	}
737 	if (page) {
738 		/*
739 		 * Not mapped elsewhere, or swap space full? Free it!
740 		 * Also recheck PageSwapCache now page is locked (above).
741 		 */
742 		if (PageSwapCache(page) && !PageWriteback(page) &&
743 				(!page_mapped(page) || vm_swap_full())) {
744 			delete_from_swap_cache(page);
745 			SetPageDirty(page);
746 		}
747 		unlock_page(page);
748 		page_cache_release(page);
749 	}
750 	return p != NULL;
751 }
752 
753 #ifdef CONFIG_CGROUP_MEM_RES_CTLR
754 /**
755  * mem_cgroup_count_swap_user - count the user of a swap entry
756  * @ent: the swap entry to be checked
757  * @pagep: the pointer for the swap cache page of the entry to be stored
758  *
759  * Returns the number of the user of the swap entry. The number is valid only
760  * for swaps of anonymous pages.
761  * If the entry is found on swap cache, the page is stored to pagep with
762  * refcount of it being incremented.
763  */
764 int mem_cgroup_count_swap_user(swp_entry_t ent, struct page **pagep)
765 {
766 	struct page *page;
767 	struct swap_info_struct *p;
768 	int count = 0;
769 
770 	page = find_get_page(&swapper_space, ent.val);
771 	if (page)
772 		count += page_mapcount(page);
773 	p = swap_info_get(ent);
774 	if (p) {
775 		count += swap_count(p->swap_map[swp_offset(ent)]);
776 		spin_unlock(&swap_lock);
777 	}
778 
779 	*pagep = page;
780 	return count;
781 }
782 #endif
783 
784 #ifdef CONFIG_HIBERNATION
785 /*
786  * Find the swap type that corresponds to given device (if any).
787  *
788  * @offset - number of the PAGE_SIZE-sized block of the device, starting
789  * from 0, in which the swap header is expected to be located.
790  *
791  * This is needed for the suspend to disk (aka swsusp).
792  */
793 int swap_type_of(dev_t device, sector_t offset, struct block_device **bdev_p)
794 {
795 	struct block_device *bdev = NULL;
796 	int type;
797 
798 	if (device)
799 		bdev = bdget(device);
800 
801 	spin_lock(&swap_lock);
802 	for (type = 0; type < nr_swapfiles; type++) {
803 		struct swap_info_struct *sis = swap_info[type];
804 
805 		if (!(sis->flags & SWP_WRITEOK))
806 			continue;
807 
808 		if (!bdev) {
809 			if (bdev_p)
810 				*bdev_p = bdgrab(sis->bdev);
811 
812 			spin_unlock(&swap_lock);
813 			return type;
814 		}
815 		if (bdev == sis->bdev) {
816 			struct swap_extent *se = &sis->first_swap_extent;
817 
818 			if (se->start_block == offset) {
819 				if (bdev_p)
820 					*bdev_p = bdgrab(sis->bdev);
821 
822 				spin_unlock(&swap_lock);
823 				bdput(bdev);
824 				return type;
825 			}
826 		}
827 	}
828 	spin_unlock(&swap_lock);
829 	if (bdev)
830 		bdput(bdev);
831 
832 	return -ENODEV;
833 }
834 
835 /*
836  * Get the (PAGE_SIZE) block corresponding to given offset on the swapdev
837  * corresponding to given index in swap_info (swap type).
838  */
839 sector_t swapdev_block(int type, pgoff_t offset)
840 {
841 	struct block_device *bdev;
842 
843 	if ((unsigned int)type >= nr_swapfiles)
844 		return 0;
845 	if (!(swap_info[type]->flags & SWP_WRITEOK))
846 		return 0;
847 	return map_swap_entry(swp_entry(type, offset), &bdev);
848 }
849 
850 /*
851  * Return either the total number of swap pages of given type, or the number
852  * of free pages of that type (depending on @free)
853  *
854  * This is needed for software suspend
855  */
856 unsigned int count_swap_pages(int type, int free)
857 {
858 	unsigned int n = 0;
859 
860 	spin_lock(&swap_lock);
861 	if ((unsigned int)type < nr_swapfiles) {
862 		struct swap_info_struct *sis = swap_info[type];
863 
864 		if (sis->flags & SWP_WRITEOK) {
865 			n = sis->pages;
866 			if (free)
867 				n -= sis->inuse_pages;
868 		}
869 	}
870 	spin_unlock(&swap_lock);
871 	return n;
872 }
873 #endif /* CONFIG_HIBERNATION */
874 
875 /*
876  * No need to decide whether this PTE shares the swap entry with others,
877  * just let do_wp_page work it out if a write is requested later - to
878  * force COW, vm_page_prot omits write permission from any private vma.
879  */
880 static int unuse_pte(struct vm_area_struct *vma, pmd_t *pmd,
881 		unsigned long addr, swp_entry_t entry, struct page *page)
882 {
883 	struct mem_cgroup *ptr = NULL;
884 	spinlock_t *ptl;
885 	pte_t *pte;
886 	int ret = 1;
887 
888 	if (mem_cgroup_try_charge_swapin(vma->vm_mm, page, GFP_KERNEL, &ptr)) {
889 		ret = -ENOMEM;
890 		goto out_nolock;
891 	}
892 
893 	pte = pte_offset_map_lock(vma->vm_mm, pmd, addr, &ptl);
894 	if (unlikely(!pte_same(*pte, swp_entry_to_pte(entry)))) {
895 		if (ret > 0)
896 			mem_cgroup_cancel_charge_swapin(ptr);
897 		ret = 0;
898 		goto out;
899 	}
900 
901 	dec_mm_counter(vma->vm_mm, MM_SWAPENTS);
902 	inc_mm_counter(vma->vm_mm, MM_ANONPAGES);
903 	get_page(page);
904 	set_pte_at(vma->vm_mm, addr, pte,
905 		   pte_mkold(mk_pte(page, vma->vm_page_prot)));
906 	page_add_anon_rmap(page, vma, addr);
907 	mem_cgroup_commit_charge_swapin(page, ptr);
908 	swap_free(entry);
909 	/*
910 	 * Move the page to the active list so it is not
911 	 * immediately swapped out again after swapon.
912 	 */
913 	activate_page(page);
914 out:
915 	pte_unmap_unlock(pte, ptl);
916 out_nolock:
917 	return ret;
918 }
919 
920 static int unuse_pte_range(struct vm_area_struct *vma, pmd_t *pmd,
921 				unsigned long addr, unsigned long end,
922 				swp_entry_t entry, struct page *page)
923 {
924 	pte_t swp_pte = swp_entry_to_pte(entry);
925 	pte_t *pte;
926 	int ret = 0;
927 
928 	/*
929 	 * We don't actually need pte lock while scanning for swp_pte: since
930 	 * we hold page lock and mmap_sem, swp_pte cannot be inserted into the
931 	 * page table while we're scanning; though it could get zapped, and on
932 	 * some architectures (e.g. x86_32 with PAE) we might catch a glimpse
933 	 * of unmatched parts which look like swp_pte, so unuse_pte must
934 	 * recheck under pte lock.  Scanning without pte lock lets it be
935 	 * preemptible whenever CONFIG_PREEMPT but not CONFIG_HIGHPTE.
936 	 */
937 	pte = pte_offset_map(pmd, addr);
938 	do {
939 		/*
940 		 * swapoff spends a _lot_ of time in this loop!
941 		 * Test inline before going to call unuse_pte.
942 		 */
943 		if (unlikely(pte_same(*pte, swp_pte))) {
944 			pte_unmap(pte);
945 			ret = unuse_pte(vma, pmd, addr, entry, page);
946 			if (ret)
947 				goto out;
948 			pte = pte_offset_map(pmd, addr);
949 		}
950 	} while (pte++, addr += PAGE_SIZE, addr != end);
951 	pte_unmap(pte - 1);
952 out:
953 	return ret;
954 }
955 
956 static inline int unuse_pmd_range(struct vm_area_struct *vma, pud_t *pud,
957 				unsigned long addr, unsigned long end,
958 				swp_entry_t entry, struct page *page)
959 {
960 	pmd_t *pmd;
961 	unsigned long next;
962 	int ret;
963 
964 	pmd = pmd_offset(pud, addr);
965 	do {
966 		next = pmd_addr_end(addr, end);
967 		if (pmd_none_or_clear_bad(pmd))
968 			continue;
969 		ret = unuse_pte_range(vma, pmd, addr, next, entry, page);
970 		if (ret)
971 			return ret;
972 	} while (pmd++, addr = next, addr != end);
973 	return 0;
974 }
975 
976 static inline int unuse_pud_range(struct vm_area_struct *vma, pgd_t *pgd,
977 				unsigned long addr, unsigned long end,
978 				swp_entry_t entry, struct page *page)
979 {
980 	pud_t *pud;
981 	unsigned long next;
982 	int ret;
983 
984 	pud = pud_offset(pgd, addr);
985 	do {
986 		next = pud_addr_end(addr, end);
987 		if (pud_none_or_clear_bad(pud))
988 			continue;
989 		ret = unuse_pmd_range(vma, pud, addr, next, entry, page);
990 		if (ret)
991 			return ret;
992 	} while (pud++, addr = next, addr != end);
993 	return 0;
994 }
995 
996 static int unuse_vma(struct vm_area_struct *vma,
997 				swp_entry_t entry, struct page *page)
998 {
999 	pgd_t *pgd;
1000 	unsigned long addr, end, next;
1001 	int ret;
1002 
1003 	if (page_anon_vma(page)) {
1004 		addr = page_address_in_vma(page, vma);
1005 		if (addr == -EFAULT)
1006 			return 0;
1007 		else
1008 			end = addr + PAGE_SIZE;
1009 	} else {
1010 		addr = vma->vm_start;
1011 		end = vma->vm_end;
1012 	}
1013 
1014 	pgd = pgd_offset(vma->vm_mm, addr);
1015 	do {
1016 		next = pgd_addr_end(addr, end);
1017 		if (pgd_none_or_clear_bad(pgd))
1018 			continue;
1019 		ret = unuse_pud_range(vma, pgd, addr, next, entry, page);
1020 		if (ret)
1021 			return ret;
1022 	} while (pgd++, addr = next, addr != end);
1023 	return 0;
1024 }
1025 
1026 static int unuse_mm(struct mm_struct *mm,
1027 				swp_entry_t entry, struct page *page)
1028 {
1029 	struct vm_area_struct *vma;
1030 	int ret = 0;
1031 
1032 	if (!down_read_trylock(&mm->mmap_sem)) {
1033 		/*
1034 		 * Activate page so shrink_inactive_list is unlikely to unmap
1035 		 * its ptes while lock is dropped, so swapoff can make progress.
1036 		 */
1037 		activate_page(page);
1038 		unlock_page(page);
1039 		down_read(&mm->mmap_sem);
1040 		lock_page(page);
1041 	}
1042 	for (vma = mm->mmap; vma; vma = vma->vm_next) {
1043 		if (vma->anon_vma && (ret = unuse_vma(vma, entry, page)))
1044 			break;
1045 	}
1046 	up_read(&mm->mmap_sem);
1047 	return (ret < 0)? ret: 0;
1048 }
1049 
1050 /*
1051  * Scan swap_map from current position to next entry still in use.
1052  * Recycle to start on reaching the end, returning 0 when empty.
1053  */
1054 static unsigned int find_next_to_unuse(struct swap_info_struct *si,
1055 					unsigned int prev)
1056 {
1057 	unsigned int max = si->max;
1058 	unsigned int i = prev;
1059 	unsigned char count;
1060 
1061 	/*
1062 	 * No need for swap_lock here: we're just looking
1063 	 * for whether an entry is in use, not modifying it; false
1064 	 * hits are okay, and sys_swapoff() has already prevented new
1065 	 * allocations from this area (while holding swap_lock).
1066 	 */
1067 	for (;;) {
1068 		if (++i >= max) {
1069 			if (!prev) {
1070 				i = 0;
1071 				break;
1072 			}
1073 			/*
1074 			 * No entries in use at top of swap_map,
1075 			 * loop back to start and recheck there.
1076 			 */
1077 			max = prev + 1;
1078 			prev = 0;
1079 			i = 1;
1080 		}
1081 		count = si->swap_map[i];
1082 		if (count && swap_count(count) != SWAP_MAP_BAD)
1083 			break;
1084 	}
1085 	return i;
1086 }
1087 
1088 /*
1089  * We completely avoid races by reading each swap page in advance,
1090  * and then search for the process using it.  All the necessary
1091  * page table adjustments can then be made atomically.
1092  */
1093 static int try_to_unuse(unsigned int type)
1094 {
1095 	struct swap_info_struct *si = swap_info[type];
1096 	struct mm_struct *start_mm;
1097 	unsigned char *swap_map;
1098 	unsigned char swcount;
1099 	struct page *page;
1100 	swp_entry_t entry;
1101 	unsigned int i = 0;
1102 	int retval = 0;
1103 
1104 	/*
1105 	 * When searching mms for an entry, a good strategy is to
1106 	 * start at the first mm we freed the previous entry from
1107 	 * (though actually we don't notice whether we or coincidence
1108 	 * freed the entry).  Initialize this start_mm with a hold.
1109 	 *
1110 	 * A simpler strategy would be to start at the last mm we
1111 	 * freed the previous entry from; but that would take less
1112 	 * advantage of mmlist ordering, which clusters forked mms
1113 	 * together, child after parent.  If we race with dup_mmap(), we
1114 	 * prefer to resolve parent before child, lest we miss entries
1115 	 * duplicated after we scanned child: using last mm would invert
1116 	 * that.
1117 	 */
1118 	start_mm = &init_mm;
1119 	atomic_inc(&init_mm.mm_users);
1120 
1121 	/*
1122 	 * Keep on scanning until all entries have gone.  Usually,
1123 	 * one pass through swap_map is enough, but not necessarily:
1124 	 * there are races when an instance of an entry might be missed.
1125 	 */
1126 	while ((i = find_next_to_unuse(si, i)) != 0) {
1127 		if (signal_pending(current)) {
1128 			retval = -EINTR;
1129 			break;
1130 		}
1131 
1132 		/*
1133 		 * Get a page for the entry, using the existing swap
1134 		 * cache page if there is one.  Otherwise, get a clean
1135 		 * page and read the swap into it.
1136 		 */
1137 		swap_map = &si->swap_map[i];
1138 		entry = swp_entry(type, i);
1139 		page = read_swap_cache_async(entry,
1140 					GFP_HIGHUSER_MOVABLE, NULL, 0);
1141 		if (!page) {
1142 			/*
1143 			 * Either swap_duplicate() failed because entry
1144 			 * has been freed independently, and will not be
1145 			 * reused since sys_swapoff() already disabled
1146 			 * allocation from here, or alloc_page() failed.
1147 			 */
1148 			if (!*swap_map)
1149 				continue;
1150 			retval = -ENOMEM;
1151 			break;
1152 		}
1153 
1154 		/*
1155 		 * Don't hold on to start_mm if it looks like exiting.
1156 		 */
1157 		if (atomic_read(&start_mm->mm_users) == 1) {
1158 			mmput(start_mm);
1159 			start_mm = &init_mm;
1160 			atomic_inc(&init_mm.mm_users);
1161 		}
1162 
1163 		/*
1164 		 * Wait for and lock page.  When do_swap_page races with
1165 		 * try_to_unuse, do_swap_page can handle the fault much
1166 		 * faster than try_to_unuse can locate the entry.  This
1167 		 * apparently redundant "wait_on_page_locked" lets try_to_unuse
1168 		 * defer to do_swap_page in such a case - in some tests,
1169 		 * do_swap_page and try_to_unuse repeatedly compete.
1170 		 */
1171 		wait_on_page_locked(page);
1172 		wait_on_page_writeback(page);
1173 		lock_page(page);
1174 		wait_on_page_writeback(page);
1175 
1176 		/*
1177 		 * Remove all references to entry.
1178 		 */
1179 		swcount = *swap_map;
1180 		if (swap_count(swcount) == SWAP_MAP_SHMEM) {
1181 			retval = shmem_unuse(entry, page);
1182 			/* page has already been unlocked and released */
1183 			if (retval < 0)
1184 				break;
1185 			continue;
1186 		}
1187 		if (swap_count(swcount) && start_mm != &init_mm)
1188 			retval = unuse_mm(start_mm, entry, page);
1189 
1190 		if (swap_count(*swap_map)) {
1191 			int set_start_mm = (*swap_map >= swcount);
1192 			struct list_head *p = &start_mm->mmlist;
1193 			struct mm_struct *new_start_mm = start_mm;
1194 			struct mm_struct *prev_mm = start_mm;
1195 			struct mm_struct *mm;
1196 
1197 			atomic_inc(&new_start_mm->mm_users);
1198 			atomic_inc(&prev_mm->mm_users);
1199 			spin_lock(&mmlist_lock);
1200 			while (swap_count(*swap_map) && !retval &&
1201 					(p = p->next) != &start_mm->mmlist) {
1202 				mm = list_entry(p, struct mm_struct, mmlist);
1203 				if (!atomic_inc_not_zero(&mm->mm_users))
1204 					continue;
1205 				spin_unlock(&mmlist_lock);
1206 				mmput(prev_mm);
1207 				prev_mm = mm;
1208 
1209 				cond_resched();
1210 
1211 				swcount = *swap_map;
1212 				if (!swap_count(swcount)) /* any usage ? */
1213 					;
1214 				else if (mm == &init_mm)
1215 					set_start_mm = 1;
1216 				else
1217 					retval = unuse_mm(mm, entry, page);
1218 
1219 				if (set_start_mm && *swap_map < swcount) {
1220 					mmput(new_start_mm);
1221 					atomic_inc(&mm->mm_users);
1222 					new_start_mm = mm;
1223 					set_start_mm = 0;
1224 				}
1225 				spin_lock(&mmlist_lock);
1226 			}
1227 			spin_unlock(&mmlist_lock);
1228 			mmput(prev_mm);
1229 			mmput(start_mm);
1230 			start_mm = new_start_mm;
1231 		}
1232 		if (retval) {
1233 			unlock_page(page);
1234 			page_cache_release(page);
1235 			break;
1236 		}
1237 
1238 		/*
1239 		 * If a reference remains (rare), we would like to leave
1240 		 * the page in the swap cache; but try_to_unmap could
1241 		 * then re-duplicate the entry once we drop page lock,
1242 		 * so we might loop indefinitely; also, that page could
1243 		 * not be swapped out to other storage meanwhile.  So:
1244 		 * delete from cache even if there's another reference,
1245 		 * after ensuring that the data has been saved to disk -
1246 		 * since if the reference remains (rarer), it will be
1247 		 * read from disk into another page.  Splitting into two
1248 		 * pages would be incorrect if swap supported "shared
1249 		 * private" pages, but they are handled by tmpfs files.
1250 		 *
1251 		 * Given how unuse_vma() targets one particular offset
1252 		 * in an anon_vma, once the anon_vma has been determined,
1253 		 * this splitting happens to be just what is needed to
1254 		 * handle where KSM pages have been swapped out: re-reading
1255 		 * is unnecessarily slow, but we can fix that later on.
1256 		 */
1257 		if (swap_count(*swap_map) &&
1258 		     PageDirty(page) && PageSwapCache(page)) {
1259 			struct writeback_control wbc = {
1260 				.sync_mode = WB_SYNC_NONE,
1261 			};
1262 
1263 			swap_writepage(page, &wbc);
1264 			lock_page(page);
1265 			wait_on_page_writeback(page);
1266 		}
1267 
1268 		/*
1269 		 * It is conceivable that a racing task removed this page from
1270 		 * swap cache just before we acquired the page lock at the top,
1271 		 * or while we dropped it in unuse_mm().  The page might even
1272 		 * be back in swap cache on another swap area: that we must not
1273 		 * delete, since it may not have been written out to swap yet.
1274 		 */
1275 		if (PageSwapCache(page) &&
1276 		    likely(page_private(page) == entry.val))
1277 			delete_from_swap_cache(page);
1278 
1279 		/*
1280 		 * So we could skip searching mms once swap count went
1281 		 * to 1, we did not mark any present ptes as dirty: must
1282 		 * mark page dirty so shrink_page_list will preserve it.
1283 		 */
1284 		SetPageDirty(page);
1285 		unlock_page(page);
1286 		page_cache_release(page);
1287 
1288 		/*
1289 		 * Make sure that we aren't completely killing
1290 		 * interactive performance.
1291 		 */
1292 		cond_resched();
1293 	}
1294 
1295 	mmput(start_mm);
1296 	return retval;
1297 }
1298 
1299 /*
1300  * After a successful try_to_unuse, if no swap is now in use, we know
1301  * we can empty the mmlist.  swap_lock must be held on entry and exit.
1302  * Note that mmlist_lock nests inside swap_lock, and an mm must be
1303  * added to the mmlist just after page_duplicate - before would be racy.
1304  */
1305 static void drain_mmlist(void)
1306 {
1307 	struct list_head *p, *next;
1308 	unsigned int type;
1309 
1310 	for (type = 0; type < nr_swapfiles; type++)
1311 		if (swap_info[type]->inuse_pages)
1312 			return;
1313 	spin_lock(&mmlist_lock);
1314 	list_for_each_safe(p, next, &init_mm.mmlist)
1315 		list_del_init(p);
1316 	spin_unlock(&mmlist_lock);
1317 }
1318 
1319 /*
1320  * Use this swapdev's extent info to locate the (PAGE_SIZE) block which
1321  * corresponds to page offset for the specified swap entry.
1322  * Note that the type of this function is sector_t, but it returns page offset
1323  * into the bdev, not sector offset.
1324  */
1325 static sector_t map_swap_entry(swp_entry_t entry, struct block_device **bdev)
1326 {
1327 	struct swap_info_struct *sis;
1328 	struct swap_extent *start_se;
1329 	struct swap_extent *se;
1330 	pgoff_t offset;
1331 
1332 	sis = swap_info[swp_type(entry)];
1333 	*bdev = sis->bdev;
1334 
1335 	offset = swp_offset(entry);
1336 	start_se = sis->curr_swap_extent;
1337 	se = start_se;
1338 
1339 	for ( ; ; ) {
1340 		struct list_head *lh;
1341 
1342 		if (se->start_page <= offset &&
1343 				offset < (se->start_page + se->nr_pages)) {
1344 			return se->start_block + (offset - se->start_page);
1345 		}
1346 		lh = se->list.next;
1347 		se = list_entry(lh, struct swap_extent, list);
1348 		sis->curr_swap_extent = se;
1349 		BUG_ON(se == start_se);		/* It *must* be present */
1350 	}
1351 }
1352 
1353 /*
1354  * Returns the page offset into bdev for the specified page's swap entry.
1355  */
1356 sector_t map_swap_page(struct page *page, struct block_device **bdev)
1357 {
1358 	swp_entry_t entry;
1359 	entry.val = page_private(page);
1360 	return map_swap_entry(entry, bdev);
1361 }
1362 
1363 /*
1364  * Free all of a swapdev's extent information
1365  */
1366 static void destroy_swap_extents(struct swap_info_struct *sis)
1367 {
1368 	while (!list_empty(&sis->first_swap_extent.list)) {
1369 		struct swap_extent *se;
1370 
1371 		se = list_entry(sis->first_swap_extent.list.next,
1372 				struct swap_extent, list);
1373 		list_del(&se->list);
1374 		kfree(se);
1375 	}
1376 }
1377 
1378 /*
1379  * Add a block range (and the corresponding page range) into this swapdev's
1380  * extent list.  The extent list is kept sorted in page order.
1381  *
1382  * This function rather assumes that it is called in ascending page order.
1383  */
1384 static int
1385 add_swap_extent(struct swap_info_struct *sis, unsigned long start_page,
1386 		unsigned long nr_pages, sector_t start_block)
1387 {
1388 	struct swap_extent *se;
1389 	struct swap_extent *new_se;
1390 	struct list_head *lh;
1391 
1392 	if (start_page == 0) {
1393 		se = &sis->first_swap_extent;
1394 		sis->curr_swap_extent = se;
1395 		se->start_page = 0;
1396 		se->nr_pages = nr_pages;
1397 		se->start_block = start_block;
1398 		return 1;
1399 	} else {
1400 		lh = sis->first_swap_extent.list.prev;	/* Highest extent */
1401 		se = list_entry(lh, struct swap_extent, list);
1402 		BUG_ON(se->start_page + se->nr_pages != start_page);
1403 		if (se->start_block + se->nr_pages == start_block) {
1404 			/* Merge it */
1405 			se->nr_pages += nr_pages;
1406 			return 0;
1407 		}
1408 	}
1409 
1410 	/*
1411 	 * No merge.  Insert a new extent, preserving ordering.
1412 	 */
1413 	new_se = kmalloc(sizeof(*se), GFP_KERNEL);
1414 	if (new_se == NULL)
1415 		return -ENOMEM;
1416 	new_se->start_page = start_page;
1417 	new_se->nr_pages = nr_pages;
1418 	new_se->start_block = start_block;
1419 
1420 	list_add_tail(&new_se->list, &sis->first_swap_extent.list);
1421 	return 1;
1422 }
1423 
1424 /*
1425  * A `swap extent' is a simple thing which maps a contiguous range of pages
1426  * onto a contiguous range of disk blocks.  An ordered list of swap extents
1427  * is built at swapon time and is then used at swap_writepage/swap_readpage
1428  * time for locating where on disk a page belongs.
1429  *
1430  * If the swapfile is an S_ISBLK block device, a single extent is installed.
1431  * This is done so that the main operating code can treat S_ISBLK and S_ISREG
1432  * swap files identically.
1433  *
1434  * Whether the swapdev is an S_ISREG file or an S_ISBLK blockdev, the swap
1435  * extent list operates in PAGE_SIZE disk blocks.  Both S_ISREG and S_ISBLK
1436  * swapfiles are handled *identically* after swapon time.
1437  *
1438  * For S_ISREG swapfiles, setup_swap_extents() will walk all the file's blocks
1439  * and will parse them into an ordered extent list, in PAGE_SIZE chunks.  If
1440  * some stray blocks are found which do not fall within the PAGE_SIZE alignment
1441  * requirements, they are simply tossed out - we will never use those blocks
1442  * for swapping.
1443  *
1444  * For S_ISREG swapfiles we set S_SWAPFILE across the life of the swapon.  This
1445  * prevents root from shooting her foot off by ftruncating an in-use swapfile,
1446  * which will scribble on the fs.
1447  *
1448  * The amount of disk space which a single swap extent represents varies.
1449  * Typically it is in the 1-4 megabyte range.  So we can have hundreds of
1450  * extents in the list.  To avoid much list walking, we cache the previous
1451  * search location in `curr_swap_extent', and start new searches from there.
1452  * This is extremely effective.  The average number of iterations in
1453  * map_swap_page() has been measured at about 0.3 per page.  - akpm.
1454  */
1455 static int setup_swap_extents(struct swap_info_struct *sis, sector_t *span)
1456 {
1457 	struct inode *inode;
1458 	unsigned blocks_per_page;
1459 	unsigned long page_no;
1460 	unsigned blkbits;
1461 	sector_t probe_block;
1462 	sector_t last_block;
1463 	sector_t lowest_block = -1;
1464 	sector_t highest_block = 0;
1465 	int nr_extents = 0;
1466 	int ret;
1467 
1468 	inode = sis->swap_file->f_mapping->host;
1469 	if (S_ISBLK(inode->i_mode)) {
1470 		ret = add_swap_extent(sis, 0, sis->max, 0);
1471 		*span = sis->pages;
1472 		goto out;
1473 	}
1474 
1475 	blkbits = inode->i_blkbits;
1476 	blocks_per_page = PAGE_SIZE >> blkbits;
1477 
1478 	/*
1479 	 * Map all the blocks into the extent list.  This code doesn't try
1480 	 * to be very smart.
1481 	 */
1482 	probe_block = 0;
1483 	page_no = 0;
1484 	last_block = i_size_read(inode) >> blkbits;
1485 	while ((probe_block + blocks_per_page) <= last_block &&
1486 			page_no < sis->max) {
1487 		unsigned block_in_page;
1488 		sector_t first_block;
1489 
1490 		first_block = bmap(inode, probe_block);
1491 		if (first_block == 0)
1492 			goto bad_bmap;
1493 
1494 		/*
1495 		 * It must be PAGE_SIZE aligned on-disk
1496 		 */
1497 		if (first_block & (blocks_per_page - 1)) {
1498 			probe_block++;
1499 			goto reprobe;
1500 		}
1501 
1502 		for (block_in_page = 1; block_in_page < blocks_per_page;
1503 					block_in_page++) {
1504 			sector_t block;
1505 
1506 			block = bmap(inode, probe_block + block_in_page);
1507 			if (block == 0)
1508 				goto bad_bmap;
1509 			if (block != first_block + block_in_page) {
1510 				/* Discontiguity */
1511 				probe_block++;
1512 				goto reprobe;
1513 			}
1514 		}
1515 
1516 		first_block >>= (PAGE_SHIFT - blkbits);
1517 		if (page_no) {	/* exclude the header page */
1518 			if (first_block < lowest_block)
1519 				lowest_block = first_block;
1520 			if (first_block > highest_block)
1521 				highest_block = first_block;
1522 		}
1523 
1524 		/*
1525 		 * We found a PAGE_SIZE-length, PAGE_SIZE-aligned run of blocks
1526 		 */
1527 		ret = add_swap_extent(sis, page_no, 1, first_block);
1528 		if (ret < 0)
1529 			goto out;
1530 		nr_extents += ret;
1531 		page_no++;
1532 		probe_block += blocks_per_page;
1533 reprobe:
1534 		continue;
1535 	}
1536 	ret = nr_extents;
1537 	*span = 1 + highest_block - lowest_block;
1538 	if (page_no == 0)
1539 		page_no = 1;	/* force Empty message */
1540 	sis->max = page_no;
1541 	sis->pages = page_no - 1;
1542 	sis->highest_bit = page_no - 1;
1543 out:
1544 	return ret;
1545 bad_bmap:
1546 	printk(KERN_ERR "swapon: swapfile has holes\n");
1547 	ret = -EINVAL;
1548 	goto out;
1549 }
1550 
1551 SYSCALL_DEFINE1(swapoff, const char __user *, specialfile)
1552 {
1553 	struct swap_info_struct *p = NULL;
1554 	unsigned char *swap_map;
1555 	struct file *swap_file, *victim;
1556 	struct address_space *mapping;
1557 	struct inode *inode;
1558 	char *pathname;
1559 	int i, type, prev;
1560 	int err;
1561 
1562 	if (!capable(CAP_SYS_ADMIN))
1563 		return -EPERM;
1564 
1565 	pathname = getname(specialfile);
1566 	err = PTR_ERR(pathname);
1567 	if (IS_ERR(pathname))
1568 		goto out;
1569 
1570 	victim = filp_open(pathname, O_RDWR|O_LARGEFILE, 0);
1571 	putname(pathname);
1572 	err = PTR_ERR(victim);
1573 	if (IS_ERR(victim))
1574 		goto out;
1575 
1576 	mapping = victim->f_mapping;
1577 	prev = -1;
1578 	spin_lock(&swap_lock);
1579 	for (type = swap_list.head; type >= 0; type = swap_info[type]->next) {
1580 		p = swap_info[type];
1581 		if (p->flags & SWP_WRITEOK) {
1582 			if (p->swap_file->f_mapping == mapping)
1583 				break;
1584 		}
1585 		prev = type;
1586 	}
1587 	if (type < 0) {
1588 		err = -EINVAL;
1589 		spin_unlock(&swap_lock);
1590 		goto out_dput;
1591 	}
1592 	if (!security_vm_enough_memory(p->pages))
1593 		vm_unacct_memory(p->pages);
1594 	else {
1595 		err = -ENOMEM;
1596 		spin_unlock(&swap_lock);
1597 		goto out_dput;
1598 	}
1599 	if (prev < 0)
1600 		swap_list.head = p->next;
1601 	else
1602 		swap_info[prev]->next = p->next;
1603 	if (type == swap_list.next) {
1604 		/* just pick something that's safe... */
1605 		swap_list.next = swap_list.head;
1606 	}
1607 	if (p->prio < 0) {
1608 		for (i = p->next; i >= 0; i = swap_info[i]->next)
1609 			swap_info[i]->prio = p->prio--;
1610 		least_priority++;
1611 	}
1612 	nr_swap_pages -= p->pages;
1613 	total_swap_pages -= p->pages;
1614 	p->flags &= ~SWP_WRITEOK;
1615 	spin_unlock(&swap_lock);
1616 
1617 	current->flags |= PF_OOM_ORIGIN;
1618 	err = try_to_unuse(type);
1619 	current->flags &= ~PF_OOM_ORIGIN;
1620 
1621 	if (err) {
1622 		/* re-insert swap space back into swap_list */
1623 		spin_lock(&swap_lock);
1624 		if (p->prio < 0)
1625 			p->prio = --least_priority;
1626 		prev = -1;
1627 		for (i = swap_list.head; i >= 0; i = swap_info[i]->next) {
1628 			if (p->prio >= swap_info[i]->prio)
1629 				break;
1630 			prev = i;
1631 		}
1632 		p->next = i;
1633 		if (prev < 0)
1634 			swap_list.head = swap_list.next = type;
1635 		else
1636 			swap_info[prev]->next = type;
1637 		nr_swap_pages += p->pages;
1638 		total_swap_pages += p->pages;
1639 		p->flags |= SWP_WRITEOK;
1640 		spin_unlock(&swap_lock);
1641 		goto out_dput;
1642 	}
1643 
1644 	/* wait for any unplug function to finish */
1645 	down_write(&swap_unplug_sem);
1646 	up_write(&swap_unplug_sem);
1647 
1648 	destroy_swap_extents(p);
1649 	if (p->flags & SWP_CONTINUED)
1650 		free_swap_count_continuations(p);
1651 
1652 	mutex_lock(&swapon_mutex);
1653 	spin_lock(&swap_lock);
1654 	drain_mmlist();
1655 
1656 	/* wait for anyone still in scan_swap_map */
1657 	p->highest_bit = 0;		/* cuts scans short */
1658 	while (p->flags >= SWP_SCANNING) {
1659 		spin_unlock(&swap_lock);
1660 		schedule_timeout_uninterruptible(1);
1661 		spin_lock(&swap_lock);
1662 	}
1663 
1664 	swap_file = p->swap_file;
1665 	p->swap_file = NULL;
1666 	p->max = 0;
1667 	swap_map = p->swap_map;
1668 	p->swap_map = NULL;
1669 	p->flags = 0;
1670 	spin_unlock(&swap_lock);
1671 	mutex_unlock(&swapon_mutex);
1672 	vfree(swap_map);
1673 	/* Destroy swap account informatin */
1674 	swap_cgroup_swapoff(type);
1675 
1676 	inode = mapping->host;
1677 	if (S_ISBLK(inode->i_mode)) {
1678 		struct block_device *bdev = I_BDEV(inode);
1679 		set_blocksize(bdev, p->old_block_size);
1680 		bd_release(bdev);
1681 	} else {
1682 		mutex_lock(&inode->i_mutex);
1683 		inode->i_flags &= ~S_SWAPFILE;
1684 		mutex_unlock(&inode->i_mutex);
1685 	}
1686 	filp_close(swap_file, NULL);
1687 	err = 0;
1688 	atomic_inc(&proc_poll_event);
1689 	wake_up_interruptible(&proc_poll_wait);
1690 
1691 out_dput:
1692 	filp_close(victim, NULL);
1693 out:
1694 	return err;
1695 }
1696 
1697 #ifdef CONFIG_PROC_FS
1698 struct proc_swaps {
1699 	struct seq_file seq;
1700 	int event;
1701 };
1702 
1703 static unsigned swaps_poll(struct file *file, poll_table *wait)
1704 {
1705 	struct proc_swaps *s = file->private_data;
1706 
1707 	poll_wait(file, &proc_poll_wait, wait);
1708 
1709 	if (s->event != atomic_read(&proc_poll_event)) {
1710 		s->event = atomic_read(&proc_poll_event);
1711 		return POLLIN | POLLRDNORM | POLLERR | POLLPRI;
1712 	}
1713 
1714 	return POLLIN | POLLRDNORM;
1715 }
1716 
1717 /* iterator */
1718 static void *swap_start(struct seq_file *swap, loff_t *pos)
1719 {
1720 	struct swap_info_struct *si;
1721 	int type;
1722 	loff_t l = *pos;
1723 
1724 	mutex_lock(&swapon_mutex);
1725 
1726 	if (!l)
1727 		return SEQ_START_TOKEN;
1728 
1729 	for (type = 0; type < nr_swapfiles; type++) {
1730 		smp_rmb();	/* read nr_swapfiles before swap_info[type] */
1731 		si = swap_info[type];
1732 		if (!(si->flags & SWP_USED) || !si->swap_map)
1733 			continue;
1734 		if (!--l)
1735 			return si;
1736 	}
1737 
1738 	return NULL;
1739 }
1740 
1741 static void *swap_next(struct seq_file *swap, void *v, loff_t *pos)
1742 {
1743 	struct swap_info_struct *si = v;
1744 	int type;
1745 
1746 	if (v == SEQ_START_TOKEN)
1747 		type = 0;
1748 	else
1749 		type = si->type + 1;
1750 
1751 	for (; type < nr_swapfiles; type++) {
1752 		smp_rmb();	/* read nr_swapfiles before swap_info[type] */
1753 		si = swap_info[type];
1754 		if (!(si->flags & SWP_USED) || !si->swap_map)
1755 			continue;
1756 		++*pos;
1757 		return si;
1758 	}
1759 
1760 	return NULL;
1761 }
1762 
1763 static void swap_stop(struct seq_file *swap, void *v)
1764 {
1765 	mutex_unlock(&swapon_mutex);
1766 }
1767 
1768 static int swap_show(struct seq_file *swap, void *v)
1769 {
1770 	struct swap_info_struct *si = v;
1771 	struct file *file;
1772 	int len;
1773 
1774 	if (si == SEQ_START_TOKEN) {
1775 		seq_puts(swap,"Filename\t\t\t\tType\t\tSize\tUsed\tPriority\n");
1776 		return 0;
1777 	}
1778 
1779 	file = si->swap_file;
1780 	len = seq_path(swap, &file->f_path, " \t\n\\");
1781 	seq_printf(swap, "%*s%s\t%u\t%u\t%d\n",
1782 			len < 40 ? 40 - len : 1, " ",
1783 			S_ISBLK(file->f_path.dentry->d_inode->i_mode) ?
1784 				"partition" : "file\t",
1785 			si->pages << (PAGE_SHIFT - 10),
1786 			si->inuse_pages << (PAGE_SHIFT - 10),
1787 			si->prio);
1788 	return 0;
1789 }
1790 
1791 static const struct seq_operations swaps_op = {
1792 	.start =	swap_start,
1793 	.next =		swap_next,
1794 	.stop =		swap_stop,
1795 	.show =		swap_show
1796 };
1797 
1798 static int swaps_open(struct inode *inode, struct file *file)
1799 {
1800 	struct proc_swaps *s;
1801 	int ret;
1802 
1803 	s = kmalloc(sizeof(struct proc_swaps), GFP_KERNEL);
1804 	if (!s)
1805 		return -ENOMEM;
1806 
1807 	file->private_data = s;
1808 
1809 	ret = seq_open(file, &swaps_op);
1810 	if (ret) {
1811 		kfree(s);
1812 		return ret;
1813 	}
1814 
1815 	s->seq.private = s;
1816 	s->event = atomic_read(&proc_poll_event);
1817 	return ret;
1818 }
1819 
1820 static const struct file_operations proc_swaps_operations = {
1821 	.open		= swaps_open,
1822 	.read		= seq_read,
1823 	.llseek		= seq_lseek,
1824 	.release	= seq_release,
1825 	.poll		= swaps_poll,
1826 };
1827 
1828 static int __init procswaps_init(void)
1829 {
1830 	proc_create("swaps", 0, NULL, &proc_swaps_operations);
1831 	return 0;
1832 }
1833 __initcall(procswaps_init);
1834 #endif /* CONFIG_PROC_FS */
1835 
1836 #ifdef MAX_SWAPFILES_CHECK
1837 static int __init max_swapfiles_check(void)
1838 {
1839 	MAX_SWAPFILES_CHECK();
1840 	return 0;
1841 }
1842 late_initcall(max_swapfiles_check);
1843 #endif
1844 
1845 /*
1846  * Written 01/25/92 by Simmule Turner, heavily changed by Linus.
1847  *
1848  * The swapon system call
1849  */
1850 SYSCALL_DEFINE2(swapon, const char __user *, specialfile, int, swap_flags)
1851 {
1852 	struct swap_info_struct *p;
1853 	char *name = NULL;
1854 	struct block_device *bdev = NULL;
1855 	struct file *swap_file = NULL;
1856 	struct address_space *mapping;
1857 	unsigned int type;
1858 	int i, prev;
1859 	int error;
1860 	union swap_header *swap_header;
1861 	unsigned int nr_good_pages;
1862 	int nr_extents = 0;
1863 	sector_t span;
1864 	unsigned long maxpages;
1865 	unsigned long swapfilepages;
1866 	unsigned char *swap_map = NULL;
1867 	struct page *page = NULL;
1868 	struct inode *inode = NULL;
1869 	int did_down = 0;
1870 
1871 	if (!capable(CAP_SYS_ADMIN))
1872 		return -EPERM;
1873 
1874 	p = kzalloc(sizeof(*p), GFP_KERNEL);
1875 	if (!p)
1876 		return -ENOMEM;
1877 
1878 	spin_lock(&swap_lock);
1879 	for (type = 0; type < nr_swapfiles; type++) {
1880 		if (!(swap_info[type]->flags & SWP_USED))
1881 			break;
1882 	}
1883 	error = -EPERM;
1884 	if (type >= MAX_SWAPFILES) {
1885 		spin_unlock(&swap_lock);
1886 		kfree(p);
1887 		goto out;
1888 	}
1889 	if (type >= nr_swapfiles) {
1890 		p->type = type;
1891 		swap_info[type] = p;
1892 		/*
1893 		 * Write swap_info[type] before nr_swapfiles, in case a
1894 		 * racing procfs swap_start() or swap_next() is reading them.
1895 		 * (We never shrink nr_swapfiles, we never free this entry.)
1896 		 */
1897 		smp_wmb();
1898 		nr_swapfiles++;
1899 	} else {
1900 		kfree(p);
1901 		p = swap_info[type];
1902 		/*
1903 		 * Do not memset this entry: a racing procfs swap_next()
1904 		 * would be relying on p->type to remain valid.
1905 		 */
1906 	}
1907 	INIT_LIST_HEAD(&p->first_swap_extent.list);
1908 	p->flags = SWP_USED;
1909 	p->next = -1;
1910 	spin_unlock(&swap_lock);
1911 
1912 	name = getname(specialfile);
1913 	error = PTR_ERR(name);
1914 	if (IS_ERR(name)) {
1915 		name = NULL;
1916 		goto bad_swap_2;
1917 	}
1918 	swap_file = filp_open(name, O_RDWR|O_LARGEFILE, 0);
1919 	error = PTR_ERR(swap_file);
1920 	if (IS_ERR(swap_file)) {
1921 		swap_file = NULL;
1922 		goto bad_swap_2;
1923 	}
1924 
1925 	p->swap_file = swap_file;
1926 	mapping = swap_file->f_mapping;
1927 	inode = mapping->host;
1928 
1929 	error = -EBUSY;
1930 	for (i = 0; i < nr_swapfiles; i++) {
1931 		struct swap_info_struct *q = swap_info[i];
1932 
1933 		if (i == type || !q->swap_file)
1934 			continue;
1935 		if (mapping == q->swap_file->f_mapping)
1936 			goto bad_swap;
1937 	}
1938 
1939 	error = -EINVAL;
1940 	if (S_ISBLK(inode->i_mode)) {
1941 		bdev = I_BDEV(inode);
1942 		error = bd_claim(bdev, sys_swapon);
1943 		if (error < 0) {
1944 			bdev = NULL;
1945 			error = -EINVAL;
1946 			goto bad_swap;
1947 		}
1948 		p->old_block_size = block_size(bdev);
1949 		error = set_blocksize(bdev, PAGE_SIZE);
1950 		if (error < 0)
1951 			goto bad_swap;
1952 		p->bdev = bdev;
1953 		p->flags |= SWP_BLKDEV;
1954 	} else if (S_ISREG(inode->i_mode)) {
1955 		p->bdev = inode->i_sb->s_bdev;
1956 		mutex_lock(&inode->i_mutex);
1957 		did_down = 1;
1958 		if (IS_SWAPFILE(inode)) {
1959 			error = -EBUSY;
1960 			goto bad_swap;
1961 		}
1962 	} else {
1963 		goto bad_swap;
1964 	}
1965 
1966 	swapfilepages = i_size_read(inode) >> PAGE_SHIFT;
1967 
1968 	/*
1969 	 * Read the swap header.
1970 	 */
1971 	if (!mapping->a_ops->readpage) {
1972 		error = -EINVAL;
1973 		goto bad_swap;
1974 	}
1975 	page = read_mapping_page(mapping, 0, swap_file);
1976 	if (IS_ERR(page)) {
1977 		error = PTR_ERR(page);
1978 		goto bad_swap;
1979 	}
1980 	swap_header = kmap(page);
1981 
1982 	if (memcmp("SWAPSPACE2", swap_header->magic.magic, 10)) {
1983 		printk(KERN_ERR "Unable to find swap-space signature\n");
1984 		error = -EINVAL;
1985 		goto bad_swap;
1986 	}
1987 
1988 	/* swap partition endianess hack... */
1989 	if (swab32(swap_header->info.version) == 1) {
1990 		swab32s(&swap_header->info.version);
1991 		swab32s(&swap_header->info.last_page);
1992 		swab32s(&swap_header->info.nr_badpages);
1993 		for (i = 0; i < swap_header->info.nr_badpages; i++)
1994 			swab32s(&swap_header->info.badpages[i]);
1995 	}
1996 	/* Check the swap header's sub-version */
1997 	if (swap_header->info.version != 1) {
1998 		printk(KERN_WARNING
1999 		       "Unable to handle swap header version %d\n",
2000 		       swap_header->info.version);
2001 		error = -EINVAL;
2002 		goto bad_swap;
2003 	}
2004 
2005 	p->lowest_bit  = 1;
2006 	p->cluster_next = 1;
2007 	p->cluster_nr = 0;
2008 
2009 	/*
2010 	 * Find out how many pages are allowed for a single swap
2011 	 * device. There are two limiting factors: 1) the number of
2012 	 * bits for the swap offset in the swp_entry_t type and
2013 	 * 2) the number of bits in the a swap pte as defined by
2014 	 * the different architectures. In order to find the
2015 	 * largest possible bit mask a swap entry with swap type 0
2016 	 * and swap offset ~0UL is created, encoded to a swap pte,
2017 	 * decoded to a swp_entry_t again and finally the swap
2018 	 * offset is extracted. This will mask all the bits from
2019 	 * the initial ~0UL mask that can't be encoded in either
2020 	 * the swp_entry_t or the architecture definition of a
2021 	 * swap pte.
2022 	 */
2023 	maxpages = swp_offset(pte_to_swp_entry(
2024 			swp_entry_to_pte(swp_entry(0, ~0UL)))) + 1;
2025 	if (maxpages > swap_header->info.last_page) {
2026 		maxpages = swap_header->info.last_page + 1;
2027 		/* p->max is an unsigned int: don't overflow it */
2028 		if ((unsigned int)maxpages == 0)
2029 			maxpages = UINT_MAX;
2030 	}
2031 	p->highest_bit = maxpages - 1;
2032 
2033 	error = -EINVAL;
2034 	if (!maxpages)
2035 		goto bad_swap;
2036 	if (swapfilepages && maxpages > swapfilepages) {
2037 		printk(KERN_WARNING
2038 		       "Swap area shorter than signature indicates\n");
2039 		goto bad_swap;
2040 	}
2041 	if (swap_header->info.nr_badpages && S_ISREG(inode->i_mode))
2042 		goto bad_swap;
2043 	if (swap_header->info.nr_badpages > MAX_SWAP_BADPAGES)
2044 		goto bad_swap;
2045 
2046 	/* OK, set up the swap map and apply the bad block list */
2047 	swap_map = vmalloc(maxpages);
2048 	if (!swap_map) {
2049 		error = -ENOMEM;
2050 		goto bad_swap;
2051 	}
2052 
2053 	memset(swap_map, 0, maxpages);
2054 	nr_good_pages = maxpages - 1;	/* omit header page */
2055 
2056 	for (i = 0; i < swap_header->info.nr_badpages; i++) {
2057 		unsigned int page_nr = swap_header->info.badpages[i];
2058 		if (page_nr == 0 || page_nr > swap_header->info.last_page) {
2059 			error = -EINVAL;
2060 			goto bad_swap;
2061 		}
2062 		if (page_nr < maxpages) {
2063 			swap_map[page_nr] = SWAP_MAP_BAD;
2064 			nr_good_pages--;
2065 		}
2066 	}
2067 
2068 	error = swap_cgroup_swapon(type, maxpages);
2069 	if (error)
2070 		goto bad_swap;
2071 
2072 	if (nr_good_pages) {
2073 		swap_map[0] = SWAP_MAP_BAD;
2074 		p->max = maxpages;
2075 		p->pages = nr_good_pages;
2076 		nr_extents = setup_swap_extents(p, &span);
2077 		if (nr_extents < 0) {
2078 			error = nr_extents;
2079 			goto bad_swap;
2080 		}
2081 		nr_good_pages = p->pages;
2082 	}
2083 	if (!nr_good_pages) {
2084 		printk(KERN_WARNING "Empty swap-file\n");
2085 		error = -EINVAL;
2086 		goto bad_swap;
2087 	}
2088 
2089 	if (p->bdev) {
2090 		if (blk_queue_nonrot(bdev_get_queue(p->bdev))) {
2091 			p->flags |= SWP_SOLIDSTATE;
2092 			p->cluster_next = 1 + (random32() % p->highest_bit);
2093 		}
2094 		if (discard_swap(p) == 0 && (swap_flags & SWAP_FLAG_DISCARD))
2095 			p->flags |= SWP_DISCARDABLE;
2096 	}
2097 
2098 	mutex_lock(&swapon_mutex);
2099 	spin_lock(&swap_lock);
2100 	if (swap_flags & SWAP_FLAG_PREFER)
2101 		p->prio =
2102 		  (swap_flags & SWAP_FLAG_PRIO_MASK) >> SWAP_FLAG_PRIO_SHIFT;
2103 	else
2104 		p->prio = --least_priority;
2105 	p->swap_map = swap_map;
2106 	p->flags |= SWP_WRITEOK;
2107 	nr_swap_pages += nr_good_pages;
2108 	total_swap_pages += nr_good_pages;
2109 
2110 	printk(KERN_INFO "Adding %uk swap on %s.  "
2111 			"Priority:%d extents:%d across:%lluk %s%s\n",
2112 		nr_good_pages<<(PAGE_SHIFT-10), name, p->prio,
2113 		nr_extents, (unsigned long long)span<<(PAGE_SHIFT-10),
2114 		(p->flags & SWP_SOLIDSTATE) ? "SS" : "",
2115 		(p->flags & SWP_DISCARDABLE) ? "D" : "");
2116 
2117 	/* insert swap space into swap_list: */
2118 	prev = -1;
2119 	for (i = swap_list.head; i >= 0; i = swap_info[i]->next) {
2120 		if (p->prio >= swap_info[i]->prio)
2121 			break;
2122 		prev = i;
2123 	}
2124 	p->next = i;
2125 	if (prev < 0)
2126 		swap_list.head = swap_list.next = type;
2127 	else
2128 		swap_info[prev]->next = type;
2129 	spin_unlock(&swap_lock);
2130 	mutex_unlock(&swapon_mutex);
2131 	atomic_inc(&proc_poll_event);
2132 	wake_up_interruptible(&proc_poll_wait);
2133 
2134 	error = 0;
2135 	goto out;
2136 bad_swap:
2137 	if (bdev) {
2138 		set_blocksize(bdev, p->old_block_size);
2139 		bd_release(bdev);
2140 	}
2141 	destroy_swap_extents(p);
2142 	swap_cgroup_swapoff(type);
2143 bad_swap_2:
2144 	spin_lock(&swap_lock);
2145 	p->swap_file = NULL;
2146 	p->flags = 0;
2147 	spin_unlock(&swap_lock);
2148 	vfree(swap_map);
2149 	if (swap_file)
2150 		filp_close(swap_file, NULL);
2151 out:
2152 	if (page && !IS_ERR(page)) {
2153 		kunmap(page);
2154 		page_cache_release(page);
2155 	}
2156 	if (name)
2157 		putname(name);
2158 	if (did_down) {
2159 		if (!error)
2160 			inode->i_flags |= S_SWAPFILE;
2161 		mutex_unlock(&inode->i_mutex);
2162 	}
2163 	return error;
2164 }
2165 
2166 void si_swapinfo(struct sysinfo *val)
2167 {
2168 	unsigned int type;
2169 	unsigned long nr_to_be_unused = 0;
2170 
2171 	spin_lock(&swap_lock);
2172 	for (type = 0; type < nr_swapfiles; type++) {
2173 		struct swap_info_struct *si = swap_info[type];
2174 
2175 		if ((si->flags & SWP_USED) && !(si->flags & SWP_WRITEOK))
2176 			nr_to_be_unused += si->inuse_pages;
2177 	}
2178 	val->freeswap = nr_swap_pages + nr_to_be_unused;
2179 	val->totalswap = total_swap_pages + nr_to_be_unused;
2180 	spin_unlock(&swap_lock);
2181 }
2182 
2183 /*
2184  * Verify that a swap entry is valid and increment its swap map count.
2185  *
2186  * Returns error code in following case.
2187  * - success -> 0
2188  * - swp_entry is invalid -> EINVAL
2189  * - swp_entry is migration entry -> EINVAL
2190  * - swap-cache reference is requested but there is already one. -> EEXIST
2191  * - swap-cache reference is requested but the entry is not used. -> ENOENT
2192  * - swap-mapped reference requested but needs continued swap count. -> ENOMEM
2193  */
2194 static int __swap_duplicate(swp_entry_t entry, unsigned char usage)
2195 {
2196 	struct swap_info_struct *p;
2197 	unsigned long offset, type;
2198 	unsigned char count;
2199 	unsigned char has_cache;
2200 	int err = -EINVAL;
2201 
2202 	if (non_swap_entry(entry))
2203 		goto out;
2204 
2205 	type = swp_type(entry);
2206 	if (type >= nr_swapfiles)
2207 		goto bad_file;
2208 	p = swap_info[type];
2209 	offset = swp_offset(entry);
2210 
2211 	spin_lock(&swap_lock);
2212 	if (unlikely(offset >= p->max))
2213 		goto unlock_out;
2214 
2215 	count = p->swap_map[offset];
2216 	has_cache = count & SWAP_HAS_CACHE;
2217 	count &= ~SWAP_HAS_CACHE;
2218 	err = 0;
2219 
2220 	if (usage == SWAP_HAS_CACHE) {
2221 
2222 		/* set SWAP_HAS_CACHE if there is no cache and entry is used */
2223 		if (!has_cache && count)
2224 			has_cache = SWAP_HAS_CACHE;
2225 		else if (has_cache)		/* someone else added cache */
2226 			err = -EEXIST;
2227 		else				/* no users remaining */
2228 			err = -ENOENT;
2229 
2230 	} else if (count || has_cache) {
2231 
2232 		if ((count & ~COUNT_CONTINUED) < SWAP_MAP_MAX)
2233 			count += usage;
2234 		else if ((count & ~COUNT_CONTINUED) > SWAP_MAP_MAX)
2235 			err = -EINVAL;
2236 		else if (swap_count_continued(p, offset, count))
2237 			count = COUNT_CONTINUED;
2238 		else
2239 			err = -ENOMEM;
2240 	} else
2241 		err = -ENOENT;			/* unused swap entry */
2242 
2243 	p->swap_map[offset] = count | has_cache;
2244 
2245 unlock_out:
2246 	spin_unlock(&swap_lock);
2247 out:
2248 	return err;
2249 
2250 bad_file:
2251 	printk(KERN_ERR "swap_dup: %s%08lx\n", Bad_file, entry.val);
2252 	goto out;
2253 }
2254 
2255 /*
2256  * Help swapoff by noting that swap entry belongs to shmem/tmpfs
2257  * (in which case its reference count is never incremented).
2258  */
2259 void swap_shmem_alloc(swp_entry_t entry)
2260 {
2261 	__swap_duplicate(entry, SWAP_MAP_SHMEM);
2262 }
2263 
2264 /*
2265  * Increase reference count of swap entry by 1.
2266  * Returns 0 for success, or -ENOMEM if a swap_count_continuation is required
2267  * but could not be atomically allocated.  Returns 0, just as if it succeeded,
2268  * if __swap_duplicate() fails for another reason (-EINVAL or -ENOENT), which
2269  * might occur if a page table entry has got corrupted.
2270  */
2271 int swap_duplicate(swp_entry_t entry)
2272 {
2273 	int err = 0;
2274 
2275 	while (!err && __swap_duplicate(entry, 1) == -ENOMEM)
2276 		err = add_swap_count_continuation(entry, GFP_ATOMIC);
2277 	return err;
2278 }
2279 
2280 /*
2281  * @entry: swap entry for which we allocate swap cache.
2282  *
2283  * Called when allocating swap cache for existing swap entry,
2284  * This can return error codes. Returns 0 at success.
2285  * -EBUSY means there is a swap cache.
2286  * Note: return code is different from swap_duplicate().
2287  */
2288 int swapcache_prepare(swp_entry_t entry)
2289 {
2290 	return __swap_duplicate(entry, SWAP_HAS_CACHE);
2291 }
2292 
2293 /*
2294  * swap_lock prevents swap_map being freed. Don't grab an extra
2295  * reference on the swaphandle, it doesn't matter if it becomes unused.
2296  */
2297 int valid_swaphandles(swp_entry_t entry, unsigned long *offset)
2298 {
2299 	struct swap_info_struct *si;
2300 	int our_page_cluster = page_cluster;
2301 	pgoff_t target, toff;
2302 	pgoff_t base, end;
2303 	int nr_pages = 0;
2304 
2305 	if (!our_page_cluster)	/* no readahead */
2306 		return 0;
2307 
2308 	si = swap_info[swp_type(entry)];
2309 	target = swp_offset(entry);
2310 	base = (target >> our_page_cluster) << our_page_cluster;
2311 	end = base + (1 << our_page_cluster);
2312 	if (!base)		/* first page is swap header */
2313 		base++;
2314 
2315 	spin_lock(&swap_lock);
2316 	if (end > si->max)	/* don't go beyond end of map */
2317 		end = si->max;
2318 
2319 	/* Count contiguous allocated slots above our target */
2320 	for (toff = target; ++toff < end; nr_pages++) {
2321 		/* Don't read in free or bad pages */
2322 		if (!si->swap_map[toff])
2323 			break;
2324 		if (swap_count(si->swap_map[toff]) == SWAP_MAP_BAD)
2325 			break;
2326 	}
2327 	/* Count contiguous allocated slots below our target */
2328 	for (toff = target; --toff >= base; nr_pages++) {
2329 		/* Don't read in free or bad pages */
2330 		if (!si->swap_map[toff])
2331 			break;
2332 		if (swap_count(si->swap_map[toff]) == SWAP_MAP_BAD)
2333 			break;
2334 	}
2335 	spin_unlock(&swap_lock);
2336 
2337 	/*
2338 	 * Indicate starting offset, and return number of pages to get:
2339 	 * if only 1, say 0, since there's then no readahead to be done.
2340 	 */
2341 	*offset = ++toff;
2342 	return nr_pages? ++nr_pages: 0;
2343 }
2344 
2345 /*
2346  * add_swap_count_continuation - called when a swap count is duplicated
2347  * beyond SWAP_MAP_MAX, it allocates a new page and links that to the entry's
2348  * page of the original vmalloc'ed swap_map, to hold the continuation count
2349  * (for that entry and for its neighbouring PAGE_SIZE swap entries).  Called
2350  * again when count is duplicated beyond SWAP_MAP_MAX * SWAP_CONT_MAX, etc.
2351  *
2352  * These continuation pages are seldom referenced: the common paths all work
2353  * on the original swap_map, only referring to a continuation page when the
2354  * low "digit" of a count is incremented or decremented through SWAP_MAP_MAX.
2355  *
2356  * add_swap_count_continuation(, GFP_ATOMIC) can be called while holding
2357  * page table locks; if it fails, add_swap_count_continuation(, GFP_KERNEL)
2358  * can be called after dropping locks.
2359  */
2360 int add_swap_count_continuation(swp_entry_t entry, gfp_t gfp_mask)
2361 {
2362 	struct swap_info_struct *si;
2363 	struct page *head;
2364 	struct page *page;
2365 	struct page *list_page;
2366 	pgoff_t offset;
2367 	unsigned char count;
2368 
2369 	/*
2370 	 * When debugging, it's easier to use __GFP_ZERO here; but it's better
2371 	 * for latency not to zero a page while GFP_ATOMIC and holding locks.
2372 	 */
2373 	page = alloc_page(gfp_mask | __GFP_HIGHMEM);
2374 
2375 	si = swap_info_get(entry);
2376 	if (!si) {
2377 		/*
2378 		 * An acceptable race has occurred since the failing
2379 		 * __swap_duplicate(): the swap entry has been freed,
2380 		 * perhaps even the whole swap_map cleared for swapoff.
2381 		 */
2382 		goto outer;
2383 	}
2384 
2385 	offset = swp_offset(entry);
2386 	count = si->swap_map[offset] & ~SWAP_HAS_CACHE;
2387 
2388 	if ((count & ~COUNT_CONTINUED) != SWAP_MAP_MAX) {
2389 		/*
2390 		 * The higher the swap count, the more likely it is that tasks
2391 		 * will race to add swap count continuation: we need to avoid
2392 		 * over-provisioning.
2393 		 */
2394 		goto out;
2395 	}
2396 
2397 	if (!page) {
2398 		spin_unlock(&swap_lock);
2399 		return -ENOMEM;
2400 	}
2401 
2402 	/*
2403 	 * We are fortunate that although vmalloc_to_page uses pte_offset_map,
2404 	 * no architecture is using highmem pages for kernel pagetables: so it
2405 	 * will not corrupt the GFP_ATOMIC caller's atomic pagetable kmaps.
2406 	 */
2407 	head = vmalloc_to_page(si->swap_map + offset);
2408 	offset &= ~PAGE_MASK;
2409 
2410 	/*
2411 	 * Page allocation does not initialize the page's lru field,
2412 	 * but it does always reset its private field.
2413 	 */
2414 	if (!page_private(head)) {
2415 		BUG_ON(count & COUNT_CONTINUED);
2416 		INIT_LIST_HEAD(&head->lru);
2417 		set_page_private(head, SWP_CONTINUED);
2418 		si->flags |= SWP_CONTINUED;
2419 	}
2420 
2421 	list_for_each_entry(list_page, &head->lru, lru) {
2422 		unsigned char *map;
2423 
2424 		/*
2425 		 * If the previous map said no continuation, but we've found
2426 		 * a continuation page, free our allocation and use this one.
2427 		 */
2428 		if (!(count & COUNT_CONTINUED))
2429 			goto out;
2430 
2431 		map = kmap_atomic(list_page, KM_USER0) + offset;
2432 		count = *map;
2433 		kunmap_atomic(map, KM_USER0);
2434 
2435 		/*
2436 		 * If this continuation count now has some space in it,
2437 		 * free our allocation and use this one.
2438 		 */
2439 		if ((count & ~COUNT_CONTINUED) != SWAP_CONT_MAX)
2440 			goto out;
2441 	}
2442 
2443 	list_add_tail(&page->lru, &head->lru);
2444 	page = NULL;			/* now it's attached, don't free it */
2445 out:
2446 	spin_unlock(&swap_lock);
2447 outer:
2448 	if (page)
2449 		__free_page(page);
2450 	return 0;
2451 }
2452 
2453 /*
2454  * swap_count_continued - when the original swap_map count is incremented
2455  * from SWAP_MAP_MAX, check if there is already a continuation page to carry
2456  * into, carry if so, or else fail until a new continuation page is allocated;
2457  * when the original swap_map count is decremented from 0 with continuation,
2458  * borrow from the continuation and report whether it still holds more.
2459  * Called while __swap_duplicate() or swap_entry_free() holds swap_lock.
2460  */
2461 static bool swap_count_continued(struct swap_info_struct *si,
2462 				 pgoff_t offset, unsigned char count)
2463 {
2464 	struct page *head;
2465 	struct page *page;
2466 	unsigned char *map;
2467 
2468 	head = vmalloc_to_page(si->swap_map + offset);
2469 	if (page_private(head) != SWP_CONTINUED) {
2470 		BUG_ON(count & COUNT_CONTINUED);
2471 		return false;		/* need to add count continuation */
2472 	}
2473 
2474 	offset &= ~PAGE_MASK;
2475 	page = list_entry(head->lru.next, struct page, lru);
2476 	map = kmap_atomic(page, KM_USER0) + offset;
2477 
2478 	if (count == SWAP_MAP_MAX)	/* initial increment from swap_map */
2479 		goto init_map;		/* jump over SWAP_CONT_MAX checks */
2480 
2481 	if (count == (SWAP_MAP_MAX | COUNT_CONTINUED)) { /* incrementing */
2482 		/*
2483 		 * Think of how you add 1 to 999
2484 		 */
2485 		while (*map == (SWAP_CONT_MAX | COUNT_CONTINUED)) {
2486 			kunmap_atomic(map, KM_USER0);
2487 			page = list_entry(page->lru.next, struct page, lru);
2488 			BUG_ON(page == head);
2489 			map = kmap_atomic(page, KM_USER0) + offset;
2490 		}
2491 		if (*map == SWAP_CONT_MAX) {
2492 			kunmap_atomic(map, KM_USER0);
2493 			page = list_entry(page->lru.next, struct page, lru);
2494 			if (page == head)
2495 				return false;	/* add count continuation */
2496 			map = kmap_atomic(page, KM_USER0) + offset;
2497 init_map:		*map = 0;		/* we didn't zero the page */
2498 		}
2499 		*map += 1;
2500 		kunmap_atomic(map, KM_USER0);
2501 		page = list_entry(page->lru.prev, struct page, lru);
2502 		while (page != head) {
2503 			map = kmap_atomic(page, KM_USER0) + offset;
2504 			*map = COUNT_CONTINUED;
2505 			kunmap_atomic(map, KM_USER0);
2506 			page = list_entry(page->lru.prev, struct page, lru);
2507 		}
2508 		return true;			/* incremented */
2509 
2510 	} else {				/* decrementing */
2511 		/*
2512 		 * Think of how you subtract 1 from 1000
2513 		 */
2514 		BUG_ON(count != COUNT_CONTINUED);
2515 		while (*map == COUNT_CONTINUED) {
2516 			kunmap_atomic(map, KM_USER0);
2517 			page = list_entry(page->lru.next, struct page, lru);
2518 			BUG_ON(page == head);
2519 			map = kmap_atomic(page, KM_USER0) + offset;
2520 		}
2521 		BUG_ON(*map == 0);
2522 		*map -= 1;
2523 		if (*map == 0)
2524 			count = 0;
2525 		kunmap_atomic(map, KM_USER0);
2526 		page = list_entry(page->lru.prev, struct page, lru);
2527 		while (page != head) {
2528 			map = kmap_atomic(page, KM_USER0) + offset;
2529 			*map = SWAP_CONT_MAX | count;
2530 			count = COUNT_CONTINUED;
2531 			kunmap_atomic(map, KM_USER0);
2532 			page = list_entry(page->lru.prev, struct page, lru);
2533 		}
2534 		return count == COUNT_CONTINUED;
2535 	}
2536 }
2537 
2538 /*
2539  * free_swap_count_continuations - swapoff free all the continuation pages
2540  * appended to the swap_map, after swap_map is quiesced, before vfree'ing it.
2541  */
2542 static void free_swap_count_continuations(struct swap_info_struct *si)
2543 {
2544 	pgoff_t offset;
2545 
2546 	for (offset = 0; offset < si->max; offset += PAGE_SIZE) {
2547 		struct page *head;
2548 		head = vmalloc_to_page(si->swap_map + offset);
2549 		if (page_private(head)) {
2550 			struct list_head *this, *next;
2551 			list_for_each_safe(this, next, &head->lru) {
2552 				struct page *page;
2553 				page = list_entry(this, struct page, lru);
2554 				list_del(this);
2555 				__free_page(page);
2556 			}
2557 		}
2558 	}
2559 }
2560