xref: /openbmc/linux/mm/swapfile.c (revision b9ccfda2)
1 /*
2  *  linux/mm/swapfile.c
3  *
4  *  Copyright (C) 1991, 1992, 1993, 1994  Linus Torvalds
5  *  Swap reorganised 29.12.95, Stephen Tweedie
6  */
7 
8 #include <linux/mm.h>
9 #include <linux/hugetlb.h>
10 #include <linux/mman.h>
11 #include <linux/slab.h>
12 #include <linux/kernel_stat.h>
13 #include <linux/swap.h>
14 #include <linux/vmalloc.h>
15 #include <linux/pagemap.h>
16 #include <linux/namei.h>
17 #include <linux/shmem_fs.h>
18 #include <linux/blkdev.h>
19 #include <linux/random.h>
20 #include <linux/writeback.h>
21 #include <linux/proc_fs.h>
22 #include <linux/seq_file.h>
23 #include <linux/init.h>
24 #include <linux/ksm.h>
25 #include <linux/rmap.h>
26 #include <linux/security.h>
27 #include <linux/backing-dev.h>
28 #include <linux/mutex.h>
29 #include <linux/capability.h>
30 #include <linux/syscalls.h>
31 #include <linux/memcontrol.h>
32 #include <linux/poll.h>
33 #include <linux/oom.h>
34 #include <linux/frontswap.h>
35 #include <linux/swapfile.h>
36 
37 #include <asm/pgtable.h>
38 #include <asm/tlbflush.h>
39 #include <linux/swapops.h>
40 #include <linux/page_cgroup.h>
41 
42 static bool swap_count_continued(struct swap_info_struct *, pgoff_t,
43 				 unsigned char);
44 static void free_swap_count_continuations(struct swap_info_struct *);
45 static sector_t map_swap_entry(swp_entry_t, struct block_device**);
46 
47 DEFINE_SPINLOCK(swap_lock);
48 static unsigned int nr_swapfiles;
49 long nr_swap_pages;
50 long total_swap_pages;
51 static int least_priority;
52 
53 static const char Bad_file[] = "Bad swap file entry ";
54 static const char Unused_file[] = "Unused swap file entry ";
55 static const char Bad_offset[] = "Bad swap offset entry ";
56 static const char Unused_offset[] = "Unused swap offset entry ";
57 
58 struct swap_list_t swap_list = {-1, -1};
59 
60 struct swap_info_struct *swap_info[MAX_SWAPFILES];
61 
62 static DEFINE_MUTEX(swapon_mutex);
63 
64 static DECLARE_WAIT_QUEUE_HEAD(proc_poll_wait);
65 /* Activity counter to indicate that a swapon or swapoff has occurred */
66 static atomic_t proc_poll_event = ATOMIC_INIT(0);
67 
68 static inline unsigned char swap_count(unsigned char ent)
69 {
70 	return ent & ~SWAP_HAS_CACHE;	/* may include SWAP_HAS_CONT flag */
71 }
72 
73 /* returns 1 if swap entry is freed */
74 static int
75 __try_to_reclaim_swap(struct swap_info_struct *si, unsigned long offset)
76 {
77 	swp_entry_t entry = swp_entry(si->type, offset);
78 	struct page *page;
79 	int ret = 0;
80 
81 	page = find_get_page(&swapper_space, entry.val);
82 	if (!page)
83 		return 0;
84 	/*
85 	 * This function is called from scan_swap_map() and it's called
86 	 * by vmscan.c at reclaiming pages. So, we hold a lock on a page, here.
87 	 * We have to use trylock for avoiding deadlock. This is a special
88 	 * case and you should use try_to_free_swap() with explicit lock_page()
89 	 * in usual operations.
90 	 */
91 	if (trylock_page(page)) {
92 		ret = try_to_free_swap(page);
93 		unlock_page(page);
94 	}
95 	page_cache_release(page);
96 	return ret;
97 }
98 
99 /*
100  * swapon tell device that all the old swap contents can be discarded,
101  * to allow the swap device to optimize its wear-levelling.
102  */
103 static int discard_swap(struct swap_info_struct *si)
104 {
105 	struct swap_extent *se;
106 	sector_t start_block;
107 	sector_t nr_blocks;
108 	int err = 0;
109 
110 	/* Do not discard the swap header page! */
111 	se = &si->first_swap_extent;
112 	start_block = (se->start_block + 1) << (PAGE_SHIFT - 9);
113 	nr_blocks = ((sector_t)se->nr_pages - 1) << (PAGE_SHIFT - 9);
114 	if (nr_blocks) {
115 		err = blkdev_issue_discard(si->bdev, start_block,
116 				nr_blocks, GFP_KERNEL, 0);
117 		if (err)
118 			return err;
119 		cond_resched();
120 	}
121 
122 	list_for_each_entry(se, &si->first_swap_extent.list, list) {
123 		start_block = se->start_block << (PAGE_SHIFT - 9);
124 		nr_blocks = (sector_t)se->nr_pages << (PAGE_SHIFT - 9);
125 
126 		err = blkdev_issue_discard(si->bdev, start_block,
127 				nr_blocks, GFP_KERNEL, 0);
128 		if (err)
129 			break;
130 
131 		cond_resched();
132 	}
133 	return err;		/* That will often be -EOPNOTSUPP */
134 }
135 
136 /*
137  * swap allocation tell device that a cluster of swap can now be discarded,
138  * to allow the swap device to optimize its wear-levelling.
139  */
140 static void discard_swap_cluster(struct swap_info_struct *si,
141 				 pgoff_t start_page, pgoff_t nr_pages)
142 {
143 	struct swap_extent *se = si->curr_swap_extent;
144 	int found_extent = 0;
145 
146 	while (nr_pages) {
147 		struct list_head *lh;
148 
149 		if (se->start_page <= start_page &&
150 		    start_page < se->start_page + se->nr_pages) {
151 			pgoff_t offset = start_page - se->start_page;
152 			sector_t start_block = se->start_block + offset;
153 			sector_t nr_blocks = se->nr_pages - offset;
154 
155 			if (nr_blocks > nr_pages)
156 				nr_blocks = nr_pages;
157 			start_page += nr_blocks;
158 			nr_pages -= nr_blocks;
159 
160 			if (!found_extent++)
161 				si->curr_swap_extent = se;
162 
163 			start_block <<= PAGE_SHIFT - 9;
164 			nr_blocks <<= PAGE_SHIFT - 9;
165 			if (blkdev_issue_discard(si->bdev, start_block,
166 				    nr_blocks, GFP_NOIO, 0))
167 				break;
168 		}
169 
170 		lh = se->list.next;
171 		se = list_entry(lh, struct swap_extent, list);
172 	}
173 }
174 
175 static int wait_for_discard(void *word)
176 {
177 	schedule();
178 	return 0;
179 }
180 
181 #define SWAPFILE_CLUSTER	256
182 #define LATENCY_LIMIT		256
183 
184 static unsigned long scan_swap_map(struct swap_info_struct *si,
185 				   unsigned char usage)
186 {
187 	unsigned long offset;
188 	unsigned long scan_base;
189 	unsigned long last_in_cluster = 0;
190 	int latency_ration = LATENCY_LIMIT;
191 	int found_free_cluster = 0;
192 
193 	/*
194 	 * We try to cluster swap pages by allocating them sequentially
195 	 * in swap.  Once we've allocated SWAPFILE_CLUSTER pages this
196 	 * way, however, we resort to first-free allocation, starting
197 	 * a new cluster.  This prevents us from scattering swap pages
198 	 * all over the entire swap partition, so that we reduce
199 	 * overall disk seek times between swap pages.  -- sct
200 	 * But we do now try to find an empty cluster.  -Andrea
201 	 * And we let swap pages go all over an SSD partition.  Hugh
202 	 */
203 
204 	si->flags += SWP_SCANNING;
205 	scan_base = offset = si->cluster_next;
206 
207 	if (unlikely(!si->cluster_nr--)) {
208 		if (si->pages - si->inuse_pages < SWAPFILE_CLUSTER) {
209 			si->cluster_nr = SWAPFILE_CLUSTER - 1;
210 			goto checks;
211 		}
212 		if (si->flags & SWP_DISCARDABLE) {
213 			/*
214 			 * Start range check on racing allocations, in case
215 			 * they overlap the cluster we eventually decide on
216 			 * (we scan without swap_lock to allow preemption).
217 			 * It's hardly conceivable that cluster_nr could be
218 			 * wrapped during our scan, but don't depend on it.
219 			 */
220 			if (si->lowest_alloc)
221 				goto checks;
222 			si->lowest_alloc = si->max;
223 			si->highest_alloc = 0;
224 		}
225 		spin_unlock(&swap_lock);
226 
227 		/*
228 		 * If seek is expensive, start searching for new cluster from
229 		 * start of partition, to minimize the span of allocated swap.
230 		 * But if seek is cheap, search from our current position, so
231 		 * that swap is allocated from all over the partition: if the
232 		 * Flash Translation Layer only remaps within limited zones,
233 		 * we don't want to wear out the first zone too quickly.
234 		 */
235 		if (!(si->flags & SWP_SOLIDSTATE))
236 			scan_base = offset = si->lowest_bit;
237 		last_in_cluster = offset + SWAPFILE_CLUSTER - 1;
238 
239 		/* Locate the first empty (unaligned) cluster */
240 		for (; last_in_cluster <= si->highest_bit; offset++) {
241 			if (si->swap_map[offset])
242 				last_in_cluster = offset + SWAPFILE_CLUSTER;
243 			else if (offset == last_in_cluster) {
244 				spin_lock(&swap_lock);
245 				offset -= SWAPFILE_CLUSTER - 1;
246 				si->cluster_next = offset;
247 				si->cluster_nr = SWAPFILE_CLUSTER - 1;
248 				found_free_cluster = 1;
249 				goto checks;
250 			}
251 			if (unlikely(--latency_ration < 0)) {
252 				cond_resched();
253 				latency_ration = LATENCY_LIMIT;
254 			}
255 		}
256 
257 		offset = si->lowest_bit;
258 		last_in_cluster = offset + SWAPFILE_CLUSTER - 1;
259 
260 		/* Locate the first empty (unaligned) cluster */
261 		for (; last_in_cluster < scan_base; offset++) {
262 			if (si->swap_map[offset])
263 				last_in_cluster = offset + SWAPFILE_CLUSTER;
264 			else if (offset == last_in_cluster) {
265 				spin_lock(&swap_lock);
266 				offset -= SWAPFILE_CLUSTER - 1;
267 				si->cluster_next = offset;
268 				si->cluster_nr = SWAPFILE_CLUSTER - 1;
269 				found_free_cluster = 1;
270 				goto checks;
271 			}
272 			if (unlikely(--latency_ration < 0)) {
273 				cond_resched();
274 				latency_ration = LATENCY_LIMIT;
275 			}
276 		}
277 
278 		offset = scan_base;
279 		spin_lock(&swap_lock);
280 		si->cluster_nr = SWAPFILE_CLUSTER - 1;
281 		si->lowest_alloc = 0;
282 	}
283 
284 checks:
285 	if (!(si->flags & SWP_WRITEOK))
286 		goto no_page;
287 	if (!si->highest_bit)
288 		goto no_page;
289 	if (offset > si->highest_bit)
290 		scan_base = offset = si->lowest_bit;
291 
292 	/* reuse swap entry of cache-only swap if not busy. */
293 	if (vm_swap_full() && si->swap_map[offset] == SWAP_HAS_CACHE) {
294 		int swap_was_freed;
295 		spin_unlock(&swap_lock);
296 		swap_was_freed = __try_to_reclaim_swap(si, offset);
297 		spin_lock(&swap_lock);
298 		/* entry was freed successfully, try to use this again */
299 		if (swap_was_freed)
300 			goto checks;
301 		goto scan; /* check next one */
302 	}
303 
304 	if (si->swap_map[offset])
305 		goto scan;
306 
307 	if (offset == si->lowest_bit)
308 		si->lowest_bit++;
309 	if (offset == si->highest_bit)
310 		si->highest_bit--;
311 	si->inuse_pages++;
312 	if (si->inuse_pages == si->pages) {
313 		si->lowest_bit = si->max;
314 		si->highest_bit = 0;
315 	}
316 	si->swap_map[offset] = usage;
317 	si->cluster_next = offset + 1;
318 	si->flags -= SWP_SCANNING;
319 
320 	if (si->lowest_alloc) {
321 		/*
322 		 * Only set when SWP_DISCARDABLE, and there's a scan
323 		 * for a free cluster in progress or just completed.
324 		 */
325 		if (found_free_cluster) {
326 			/*
327 			 * To optimize wear-levelling, discard the
328 			 * old data of the cluster, taking care not to
329 			 * discard any of its pages that have already
330 			 * been allocated by racing tasks (offset has
331 			 * already stepped over any at the beginning).
332 			 */
333 			if (offset < si->highest_alloc &&
334 			    si->lowest_alloc <= last_in_cluster)
335 				last_in_cluster = si->lowest_alloc - 1;
336 			si->flags |= SWP_DISCARDING;
337 			spin_unlock(&swap_lock);
338 
339 			if (offset < last_in_cluster)
340 				discard_swap_cluster(si, offset,
341 					last_in_cluster - offset + 1);
342 
343 			spin_lock(&swap_lock);
344 			si->lowest_alloc = 0;
345 			si->flags &= ~SWP_DISCARDING;
346 
347 			smp_mb();	/* wake_up_bit advises this */
348 			wake_up_bit(&si->flags, ilog2(SWP_DISCARDING));
349 
350 		} else if (si->flags & SWP_DISCARDING) {
351 			/*
352 			 * Delay using pages allocated by racing tasks
353 			 * until the whole discard has been issued. We
354 			 * could defer that delay until swap_writepage,
355 			 * but it's easier to keep this self-contained.
356 			 */
357 			spin_unlock(&swap_lock);
358 			wait_on_bit(&si->flags, ilog2(SWP_DISCARDING),
359 				wait_for_discard, TASK_UNINTERRUPTIBLE);
360 			spin_lock(&swap_lock);
361 		} else {
362 			/*
363 			 * Note pages allocated by racing tasks while
364 			 * scan for a free cluster is in progress, so
365 			 * that its final discard can exclude them.
366 			 */
367 			if (offset < si->lowest_alloc)
368 				si->lowest_alloc = offset;
369 			if (offset > si->highest_alloc)
370 				si->highest_alloc = offset;
371 		}
372 	}
373 	return offset;
374 
375 scan:
376 	spin_unlock(&swap_lock);
377 	while (++offset <= si->highest_bit) {
378 		if (!si->swap_map[offset]) {
379 			spin_lock(&swap_lock);
380 			goto checks;
381 		}
382 		if (vm_swap_full() && si->swap_map[offset] == SWAP_HAS_CACHE) {
383 			spin_lock(&swap_lock);
384 			goto checks;
385 		}
386 		if (unlikely(--latency_ration < 0)) {
387 			cond_resched();
388 			latency_ration = LATENCY_LIMIT;
389 		}
390 	}
391 	offset = si->lowest_bit;
392 	while (++offset < scan_base) {
393 		if (!si->swap_map[offset]) {
394 			spin_lock(&swap_lock);
395 			goto checks;
396 		}
397 		if (vm_swap_full() && si->swap_map[offset] == SWAP_HAS_CACHE) {
398 			spin_lock(&swap_lock);
399 			goto checks;
400 		}
401 		if (unlikely(--latency_ration < 0)) {
402 			cond_resched();
403 			latency_ration = LATENCY_LIMIT;
404 		}
405 	}
406 	spin_lock(&swap_lock);
407 
408 no_page:
409 	si->flags -= SWP_SCANNING;
410 	return 0;
411 }
412 
413 swp_entry_t get_swap_page(void)
414 {
415 	struct swap_info_struct *si;
416 	pgoff_t offset;
417 	int type, next;
418 	int wrapped = 0;
419 
420 	spin_lock(&swap_lock);
421 	if (nr_swap_pages <= 0)
422 		goto noswap;
423 	nr_swap_pages--;
424 
425 	for (type = swap_list.next; type >= 0 && wrapped < 2; type = next) {
426 		si = swap_info[type];
427 		next = si->next;
428 		if (next < 0 ||
429 		    (!wrapped && si->prio != swap_info[next]->prio)) {
430 			next = swap_list.head;
431 			wrapped++;
432 		}
433 
434 		if (!si->highest_bit)
435 			continue;
436 		if (!(si->flags & SWP_WRITEOK))
437 			continue;
438 
439 		swap_list.next = next;
440 		/* This is called for allocating swap entry for cache */
441 		offset = scan_swap_map(si, SWAP_HAS_CACHE);
442 		if (offset) {
443 			spin_unlock(&swap_lock);
444 			return swp_entry(type, offset);
445 		}
446 		next = swap_list.next;
447 	}
448 
449 	nr_swap_pages++;
450 noswap:
451 	spin_unlock(&swap_lock);
452 	return (swp_entry_t) {0};
453 }
454 
455 /* The only caller of this function is now susupend routine */
456 swp_entry_t get_swap_page_of_type(int type)
457 {
458 	struct swap_info_struct *si;
459 	pgoff_t offset;
460 
461 	spin_lock(&swap_lock);
462 	si = swap_info[type];
463 	if (si && (si->flags & SWP_WRITEOK)) {
464 		nr_swap_pages--;
465 		/* This is called for allocating swap entry, not cache */
466 		offset = scan_swap_map(si, 1);
467 		if (offset) {
468 			spin_unlock(&swap_lock);
469 			return swp_entry(type, offset);
470 		}
471 		nr_swap_pages++;
472 	}
473 	spin_unlock(&swap_lock);
474 	return (swp_entry_t) {0};
475 }
476 
477 static struct swap_info_struct *swap_info_get(swp_entry_t entry)
478 {
479 	struct swap_info_struct *p;
480 	unsigned long offset, type;
481 
482 	if (!entry.val)
483 		goto out;
484 	type = swp_type(entry);
485 	if (type >= nr_swapfiles)
486 		goto bad_nofile;
487 	p = swap_info[type];
488 	if (!(p->flags & SWP_USED))
489 		goto bad_device;
490 	offset = swp_offset(entry);
491 	if (offset >= p->max)
492 		goto bad_offset;
493 	if (!p->swap_map[offset])
494 		goto bad_free;
495 	spin_lock(&swap_lock);
496 	return p;
497 
498 bad_free:
499 	printk(KERN_ERR "swap_free: %s%08lx\n", Unused_offset, entry.val);
500 	goto out;
501 bad_offset:
502 	printk(KERN_ERR "swap_free: %s%08lx\n", Bad_offset, entry.val);
503 	goto out;
504 bad_device:
505 	printk(KERN_ERR "swap_free: %s%08lx\n", Unused_file, entry.val);
506 	goto out;
507 bad_nofile:
508 	printk(KERN_ERR "swap_free: %s%08lx\n", Bad_file, entry.val);
509 out:
510 	return NULL;
511 }
512 
513 static unsigned char swap_entry_free(struct swap_info_struct *p,
514 				     swp_entry_t entry, unsigned char usage)
515 {
516 	unsigned long offset = swp_offset(entry);
517 	unsigned char count;
518 	unsigned char has_cache;
519 
520 	count = p->swap_map[offset];
521 	has_cache = count & SWAP_HAS_CACHE;
522 	count &= ~SWAP_HAS_CACHE;
523 
524 	if (usage == SWAP_HAS_CACHE) {
525 		VM_BUG_ON(!has_cache);
526 		has_cache = 0;
527 	} else if (count == SWAP_MAP_SHMEM) {
528 		/*
529 		 * Or we could insist on shmem.c using a special
530 		 * swap_shmem_free() and free_shmem_swap_and_cache()...
531 		 */
532 		count = 0;
533 	} else if ((count & ~COUNT_CONTINUED) <= SWAP_MAP_MAX) {
534 		if (count == COUNT_CONTINUED) {
535 			if (swap_count_continued(p, offset, count))
536 				count = SWAP_MAP_MAX | COUNT_CONTINUED;
537 			else
538 				count = SWAP_MAP_MAX;
539 		} else
540 			count--;
541 	}
542 
543 	if (!count)
544 		mem_cgroup_uncharge_swap(entry);
545 
546 	usage = count | has_cache;
547 	p->swap_map[offset] = usage;
548 
549 	/* free if no reference */
550 	if (!usage) {
551 		struct gendisk *disk = p->bdev->bd_disk;
552 		if (offset < p->lowest_bit)
553 			p->lowest_bit = offset;
554 		if (offset > p->highest_bit)
555 			p->highest_bit = offset;
556 		if (swap_list.next >= 0 &&
557 		    p->prio > swap_info[swap_list.next]->prio)
558 			swap_list.next = p->type;
559 		nr_swap_pages++;
560 		p->inuse_pages--;
561 		frontswap_invalidate_page(p->type, offset);
562 		if ((p->flags & SWP_BLKDEV) &&
563 				disk->fops->swap_slot_free_notify)
564 			disk->fops->swap_slot_free_notify(p->bdev, offset);
565 	}
566 
567 	return usage;
568 }
569 
570 /*
571  * Caller has made sure that the swapdevice corresponding to entry
572  * is still around or has not been recycled.
573  */
574 void swap_free(swp_entry_t entry)
575 {
576 	struct swap_info_struct *p;
577 
578 	p = swap_info_get(entry);
579 	if (p) {
580 		swap_entry_free(p, entry, 1);
581 		spin_unlock(&swap_lock);
582 	}
583 }
584 
585 /*
586  * Called after dropping swapcache to decrease refcnt to swap entries.
587  */
588 void swapcache_free(swp_entry_t entry, struct page *page)
589 {
590 	struct swap_info_struct *p;
591 	unsigned char count;
592 
593 	p = swap_info_get(entry);
594 	if (p) {
595 		count = swap_entry_free(p, entry, SWAP_HAS_CACHE);
596 		if (page)
597 			mem_cgroup_uncharge_swapcache(page, entry, count != 0);
598 		spin_unlock(&swap_lock);
599 	}
600 }
601 
602 /*
603  * How many references to page are currently swapped out?
604  * This does not give an exact answer when swap count is continued,
605  * but does include the high COUNT_CONTINUED flag to allow for that.
606  */
607 int page_swapcount(struct page *page)
608 {
609 	int count = 0;
610 	struct swap_info_struct *p;
611 	swp_entry_t entry;
612 
613 	entry.val = page_private(page);
614 	p = swap_info_get(entry);
615 	if (p) {
616 		count = swap_count(p->swap_map[swp_offset(entry)]);
617 		spin_unlock(&swap_lock);
618 	}
619 	return count;
620 }
621 
622 /*
623  * We can write to an anon page without COW if there are no other references
624  * to it.  And as a side-effect, free up its swap: because the old content
625  * on disk will never be read, and seeking back there to write new content
626  * later would only waste time away from clustering.
627  */
628 int reuse_swap_page(struct page *page)
629 {
630 	int count;
631 
632 	VM_BUG_ON(!PageLocked(page));
633 	if (unlikely(PageKsm(page)))
634 		return 0;
635 	count = page_mapcount(page);
636 	if (count <= 1 && PageSwapCache(page)) {
637 		count += page_swapcount(page);
638 		if (count == 1 && !PageWriteback(page)) {
639 			delete_from_swap_cache(page);
640 			SetPageDirty(page);
641 		}
642 	}
643 	return count <= 1;
644 }
645 
646 /*
647  * If swap is getting full, or if there are no more mappings of this page,
648  * then try_to_free_swap is called to free its swap space.
649  */
650 int try_to_free_swap(struct page *page)
651 {
652 	VM_BUG_ON(!PageLocked(page));
653 
654 	if (!PageSwapCache(page))
655 		return 0;
656 	if (PageWriteback(page))
657 		return 0;
658 	if (page_swapcount(page))
659 		return 0;
660 
661 	/*
662 	 * Once hibernation has begun to create its image of memory,
663 	 * there's a danger that one of the calls to try_to_free_swap()
664 	 * - most probably a call from __try_to_reclaim_swap() while
665 	 * hibernation is allocating its own swap pages for the image,
666 	 * but conceivably even a call from memory reclaim - will free
667 	 * the swap from a page which has already been recorded in the
668 	 * image as a clean swapcache page, and then reuse its swap for
669 	 * another page of the image.  On waking from hibernation, the
670 	 * original page might be freed under memory pressure, then
671 	 * later read back in from swap, now with the wrong data.
672 	 *
673 	 * Hibration suspends storage while it is writing the image
674 	 * to disk so check that here.
675 	 */
676 	if (pm_suspended_storage())
677 		return 0;
678 
679 	delete_from_swap_cache(page);
680 	SetPageDirty(page);
681 	return 1;
682 }
683 
684 /*
685  * Free the swap entry like above, but also try to
686  * free the page cache entry if it is the last user.
687  */
688 int free_swap_and_cache(swp_entry_t entry)
689 {
690 	struct swap_info_struct *p;
691 	struct page *page = NULL;
692 
693 	if (non_swap_entry(entry))
694 		return 1;
695 
696 	p = swap_info_get(entry);
697 	if (p) {
698 		if (swap_entry_free(p, entry, 1) == SWAP_HAS_CACHE) {
699 			page = find_get_page(&swapper_space, entry.val);
700 			if (page && !trylock_page(page)) {
701 				page_cache_release(page);
702 				page = NULL;
703 			}
704 		}
705 		spin_unlock(&swap_lock);
706 	}
707 	if (page) {
708 		/*
709 		 * Not mapped elsewhere, or swap space full? Free it!
710 		 * Also recheck PageSwapCache now page is locked (above).
711 		 */
712 		if (PageSwapCache(page) && !PageWriteback(page) &&
713 				(!page_mapped(page) || vm_swap_full())) {
714 			delete_from_swap_cache(page);
715 			SetPageDirty(page);
716 		}
717 		unlock_page(page);
718 		page_cache_release(page);
719 	}
720 	return p != NULL;
721 }
722 
723 #ifdef CONFIG_HIBERNATION
724 /*
725  * Find the swap type that corresponds to given device (if any).
726  *
727  * @offset - number of the PAGE_SIZE-sized block of the device, starting
728  * from 0, in which the swap header is expected to be located.
729  *
730  * This is needed for the suspend to disk (aka swsusp).
731  */
732 int swap_type_of(dev_t device, sector_t offset, struct block_device **bdev_p)
733 {
734 	struct block_device *bdev = NULL;
735 	int type;
736 
737 	if (device)
738 		bdev = bdget(device);
739 
740 	spin_lock(&swap_lock);
741 	for (type = 0; type < nr_swapfiles; type++) {
742 		struct swap_info_struct *sis = swap_info[type];
743 
744 		if (!(sis->flags & SWP_WRITEOK))
745 			continue;
746 
747 		if (!bdev) {
748 			if (bdev_p)
749 				*bdev_p = bdgrab(sis->bdev);
750 
751 			spin_unlock(&swap_lock);
752 			return type;
753 		}
754 		if (bdev == sis->bdev) {
755 			struct swap_extent *se = &sis->first_swap_extent;
756 
757 			if (se->start_block == offset) {
758 				if (bdev_p)
759 					*bdev_p = bdgrab(sis->bdev);
760 
761 				spin_unlock(&swap_lock);
762 				bdput(bdev);
763 				return type;
764 			}
765 		}
766 	}
767 	spin_unlock(&swap_lock);
768 	if (bdev)
769 		bdput(bdev);
770 
771 	return -ENODEV;
772 }
773 
774 /*
775  * Get the (PAGE_SIZE) block corresponding to given offset on the swapdev
776  * corresponding to given index in swap_info (swap type).
777  */
778 sector_t swapdev_block(int type, pgoff_t offset)
779 {
780 	struct block_device *bdev;
781 
782 	if ((unsigned int)type >= nr_swapfiles)
783 		return 0;
784 	if (!(swap_info[type]->flags & SWP_WRITEOK))
785 		return 0;
786 	return map_swap_entry(swp_entry(type, offset), &bdev);
787 }
788 
789 /*
790  * Return either the total number of swap pages of given type, or the number
791  * of free pages of that type (depending on @free)
792  *
793  * This is needed for software suspend
794  */
795 unsigned int count_swap_pages(int type, int free)
796 {
797 	unsigned int n = 0;
798 
799 	spin_lock(&swap_lock);
800 	if ((unsigned int)type < nr_swapfiles) {
801 		struct swap_info_struct *sis = swap_info[type];
802 
803 		if (sis->flags & SWP_WRITEOK) {
804 			n = sis->pages;
805 			if (free)
806 				n -= sis->inuse_pages;
807 		}
808 	}
809 	spin_unlock(&swap_lock);
810 	return n;
811 }
812 #endif /* CONFIG_HIBERNATION */
813 
814 /*
815  * No need to decide whether this PTE shares the swap entry with others,
816  * just let do_wp_page work it out if a write is requested later - to
817  * force COW, vm_page_prot omits write permission from any private vma.
818  */
819 static int unuse_pte(struct vm_area_struct *vma, pmd_t *pmd,
820 		unsigned long addr, swp_entry_t entry, struct page *page)
821 {
822 	struct mem_cgroup *memcg;
823 	spinlock_t *ptl;
824 	pte_t *pte;
825 	int ret = 1;
826 
827 	if (mem_cgroup_try_charge_swapin(vma->vm_mm, page,
828 					 GFP_KERNEL, &memcg)) {
829 		ret = -ENOMEM;
830 		goto out_nolock;
831 	}
832 
833 	pte = pte_offset_map_lock(vma->vm_mm, pmd, addr, &ptl);
834 	if (unlikely(!pte_same(*pte, swp_entry_to_pte(entry)))) {
835 		if (ret > 0)
836 			mem_cgroup_cancel_charge_swapin(memcg);
837 		ret = 0;
838 		goto out;
839 	}
840 
841 	dec_mm_counter(vma->vm_mm, MM_SWAPENTS);
842 	inc_mm_counter(vma->vm_mm, MM_ANONPAGES);
843 	get_page(page);
844 	set_pte_at(vma->vm_mm, addr, pte,
845 		   pte_mkold(mk_pte(page, vma->vm_page_prot)));
846 	page_add_anon_rmap(page, vma, addr);
847 	mem_cgroup_commit_charge_swapin(page, memcg);
848 	swap_free(entry);
849 	/*
850 	 * Move the page to the active list so it is not
851 	 * immediately swapped out again after swapon.
852 	 */
853 	activate_page(page);
854 out:
855 	pte_unmap_unlock(pte, ptl);
856 out_nolock:
857 	return ret;
858 }
859 
860 static int unuse_pte_range(struct vm_area_struct *vma, pmd_t *pmd,
861 				unsigned long addr, unsigned long end,
862 				swp_entry_t entry, struct page *page)
863 {
864 	pte_t swp_pte = swp_entry_to_pte(entry);
865 	pte_t *pte;
866 	int ret = 0;
867 
868 	/*
869 	 * We don't actually need pte lock while scanning for swp_pte: since
870 	 * we hold page lock and mmap_sem, swp_pte cannot be inserted into the
871 	 * page table while we're scanning; though it could get zapped, and on
872 	 * some architectures (e.g. x86_32 with PAE) we might catch a glimpse
873 	 * of unmatched parts which look like swp_pte, so unuse_pte must
874 	 * recheck under pte lock.  Scanning without pte lock lets it be
875 	 * preemptible whenever CONFIG_PREEMPT but not CONFIG_HIGHPTE.
876 	 */
877 	pte = pte_offset_map(pmd, addr);
878 	do {
879 		/*
880 		 * swapoff spends a _lot_ of time in this loop!
881 		 * Test inline before going to call unuse_pte.
882 		 */
883 		if (unlikely(pte_same(*pte, swp_pte))) {
884 			pte_unmap(pte);
885 			ret = unuse_pte(vma, pmd, addr, entry, page);
886 			if (ret)
887 				goto out;
888 			pte = pte_offset_map(pmd, addr);
889 		}
890 	} while (pte++, addr += PAGE_SIZE, addr != end);
891 	pte_unmap(pte - 1);
892 out:
893 	return ret;
894 }
895 
896 static inline int unuse_pmd_range(struct vm_area_struct *vma, pud_t *pud,
897 				unsigned long addr, unsigned long end,
898 				swp_entry_t entry, struct page *page)
899 {
900 	pmd_t *pmd;
901 	unsigned long next;
902 	int ret;
903 
904 	pmd = pmd_offset(pud, addr);
905 	do {
906 		next = pmd_addr_end(addr, end);
907 		if (pmd_none_or_trans_huge_or_clear_bad(pmd))
908 			continue;
909 		ret = unuse_pte_range(vma, pmd, addr, next, entry, page);
910 		if (ret)
911 			return ret;
912 	} while (pmd++, addr = next, addr != end);
913 	return 0;
914 }
915 
916 static inline int unuse_pud_range(struct vm_area_struct *vma, pgd_t *pgd,
917 				unsigned long addr, unsigned long end,
918 				swp_entry_t entry, struct page *page)
919 {
920 	pud_t *pud;
921 	unsigned long next;
922 	int ret;
923 
924 	pud = pud_offset(pgd, addr);
925 	do {
926 		next = pud_addr_end(addr, end);
927 		if (pud_none_or_clear_bad(pud))
928 			continue;
929 		ret = unuse_pmd_range(vma, pud, addr, next, entry, page);
930 		if (ret)
931 			return ret;
932 	} while (pud++, addr = next, addr != end);
933 	return 0;
934 }
935 
936 static int unuse_vma(struct vm_area_struct *vma,
937 				swp_entry_t entry, struct page *page)
938 {
939 	pgd_t *pgd;
940 	unsigned long addr, end, next;
941 	int ret;
942 
943 	if (page_anon_vma(page)) {
944 		addr = page_address_in_vma(page, vma);
945 		if (addr == -EFAULT)
946 			return 0;
947 		else
948 			end = addr + PAGE_SIZE;
949 	} else {
950 		addr = vma->vm_start;
951 		end = vma->vm_end;
952 	}
953 
954 	pgd = pgd_offset(vma->vm_mm, addr);
955 	do {
956 		next = pgd_addr_end(addr, end);
957 		if (pgd_none_or_clear_bad(pgd))
958 			continue;
959 		ret = unuse_pud_range(vma, pgd, addr, next, entry, page);
960 		if (ret)
961 			return ret;
962 	} while (pgd++, addr = next, addr != end);
963 	return 0;
964 }
965 
966 static int unuse_mm(struct mm_struct *mm,
967 				swp_entry_t entry, struct page *page)
968 {
969 	struct vm_area_struct *vma;
970 	int ret = 0;
971 
972 	if (!down_read_trylock(&mm->mmap_sem)) {
973 		/*
974 		 * Activate page so shrink_inactive_list is unlikely to unmap
975 		 * its ptes while lock is dropped, so swapoff can make progress.
976 		 */
977 		activate_page(page);
978 		unlock_page(page);
979 		down_read(&mm->mmap_sem);
980 		lock_page(page);
981 	}
982 	for (vma = mm->mmap; vma; vma = vma->vm_next) {
983 		if (vma->anon_vma && (ret = unuse_vma(vma, entry, page)))
984 			break;
985 	}
986 	up_read(&mm->mmap_sem);
987 	return (ret < 0)? ret: 0;
988 }
989 
990 /*
991  * Scan swap_map (or frontswap_map if frontswap parameter is true)
992  * from current position to next entry still in use.
993  * Recycle to start on reaching the end, returning 0 when empty.
994  */
995 static unsigned int find_next_to_unuse(struct swap_info_struct *si,
996 					unsigned int prev, bool frontswap)
997 {
998 	unsigned int max = si->max;
999 	unsigned int i = prev;
1000 	unsigned char count;
1001 
1002 	/*
1003 	 * No need for swap_lock here: we're just looking
1004 	 * for whether an entry is in use, not modifying it; false
1005 	 * hits are okay, and sys_swapoff() has already prevented new
1006 	 * allocations from this area (while holding swap_lock).
1007 	 */
1008 	for (;;) {
1009 		if (++i >= max) {
1010 			if (!prev) {
1011 				i = 0;
1012 				break;
1013 			}
1014 			/*
1015 			 * No entries in use at top of swap_map,
1016 			 * loop back to start and recheck there.
1017 			 */
1018 			max = prev + 1;
1019 			prev = 0;
1020 			i = 1;
1021 		}
1022 		if (frontswap) {
1023 			if (frontswap_test(si, i))
1024 				break;
1025 			else
1026 				continue;
1027 		}
1028 		count = si->swap_map[i];
1029 		if (count && swap_count(count) != SWAP_MAP_BAD)
1030 			break;
1031 	}
1032 	return i;
1033 }
1034 
1035 /*
1036  * We completely avoid races by reading each swap page in advance,
1037  * and then search for the process using it.  All the necessary
1038  * page table adjustments can then be made atomically.
1039  *
1040  * if the boolean frontswap is true, only unuse pages_to_unuse pages;
1041  * pages_to_unuse==0 means all pages; ignored if frontswap is false
1042  */
1043 int try_to_unuse(unsigned int type, bool frontswap,
1044 		 unsigned long pages_to_unuse)
1045 {
1046 	struct swap_info_struct *si = swap_info[type];
1047 	struct mm_struct *start_mm;
1048 	unsigned char *swap_map;
1049 	unsigned char swcount;
1050 	struct page *page;
1051 	swp_entry_t entry;
1052 	unsigned int i = 0;
1053 	int retval = 0;
1054 
1055 	/*
1056 	 * When searching mms for an entry, a good strategy is to
1057 	 * start at the first mm we freed the previous entry from
1058 	 * (though actually we don't notice whether we or coincidence
1059 	 * freed the entry).  Initialize this start_mm with a hold.
1060 	 *
1061 	 * A simpler strategy would be to start at the last mm we
1062 	 * freed the previous entry from; but that would take less
1063 	 * advantage of mmlist ordering, which clusters forked mms
1064 	 * together, child after parent.  If we race with dup_mmap(), we
1065 	 * prefer to resolve parent before child, lest we miss entries
1066 	 * duplicated after we scanned child: using last mm would invert
1067 	 * that.
1068 	 */
1069 	start_mm = &init_mm;
1070 	atomic_inc(&init_mm.mm_users);
1071 
1072 	/*
1073 	 * Keep on scanning until all entries have gone.  Usually,
1074 	 * one pass through swap_map is enough, but not necessarily:
1075 	 * there are races when an instance of an entry might be missed.
1076 	 */
1077 	while ((i = find_next_to_unuse(si, i, frontswap)) != 0) {
1078 		if (signal_pending(current)) {
1079 			retval = -EINTR;
1080 			break;
1081 		}
1082 
1083 		/*
1084 		 * Get a page for the entry, using the existing swap
1085 		 * cache page if there is one.  Otherwise, get a clean
1086 		 * page and read the swap into it.
1087 		 */
1088 		swap_map = &si->swap_map[i];
1089 		entry = swp_entry(type, i);
1090 		page = read_swap_cache_async(entry,
1091 					GFP_HIGHUSER_MOVABLE, NULL, 0);
1092 		if (!page) {
1093 			/*
1094 			 * Either swap_duplicate() failed because entry
1095 			 * has been freed independently, and will not be
1096 			 * reused since sys_swapoff() already disabled
1097 			 * allocation from here, or alloc_page() failed.
1098 			 */
1099 			if (!*swap_map)
1100 				continue;
1101 			retval = -ENOMEM;
1102 			break;
1103 		}
1104 
1105 		/*
1106 		 * Don't hold on to start_mm if it looks like exiting.
1107 		 */
1108 		if (atomic_read(&start_mm->mm_users) == 1) {
1109 			mmput(start_mm);
1110 			start_mm = &init_mm;
1111 			atomic_inc(&init_mm.mm_users);
1112 		}
1113 
1114 		/*
1115 		 * Wait for and lock page.  When do_swap_page races with
1116 		 * try_to_unuse, do_swap_page can handle the fault much
1117 		 * faster than try_to_unuse can locate the entry.  This
1118 		 * apparently redundant "wait_on_page_locked" lets try_to_unuse
1119 		 * defer to do_swap_page in such a case - in some tests,
1120 		 * do_swap_page and try_to_unuse repeatedly compete.
1121 		 */
1122 		wait_on_page_locked(page);
1123 		wait_on_page_writeback(page);
1124 		lock_page(page);
1125 		wait_on_page_writeback(page);
1126 
1127 		/*
1128 		 * Remove all references to entry.
1129 		 */
1130 		swcount = *swap_map;
1131 		if (swap_count(swcount) == SWAP_MAP_SHMEM) {
1132 			retval = shmem_unuse(entry, page);
1133 			/* page has already been unlocked and released */
1134 			if (retval < 0)
1135 				break;
1136 			continue;
1137 		}
1138 		if (swap_count(swcount) && start_mm != &init_mm)
1139 			retval = unuse_mm(start_mm, entry, page);
1140 
1141 		if (swap_count(*swap_map)) {
1142 			int set_start_mm = (*swap_map >= swcount);
1143 			struct list_head *p = &start_mm->mmlist;
1144 			struct mm_struct *new_start_mm = start_mm;
1145 			struct mm_struct *prev_mm = start_mm;
1146 			struct mm_struct *mm;
1147 
1148 			atomic_inc(&new_start_mm->mm_users);
1149 			atomic_inc(&prev_mm->mm_users);
1150 			spin_lock(&mmlist_lock);
1151 			while (swap_count(*swap_map) && !retval &&
1152 					(p = p->next) != &start_mm->mmlist) {
1153 				mm = list_entry(p, struct mm_struct, mmlist);
1154 				if (!atomic_inc_not_zero(&mm->mm_users))
1155 					continue;
1156 				spin_unlock(&mmlist_lock);
1157 				mmput(prev_mm);
1158 				prev_mm = mm;
1159 
1160 				cond_resched();
1161 
1162 				swcount = *swap_map;
1163 				if (!swap_count(swcount)) /* any usage ? */
1164 					;
1165 				else if (mm == &init_mm)
1166 					set_start_mm = 1;
1167 				else
1168 					retval = unuse_mm(mm, entry, page);
1169 
1170 				if (set_start_mm && *swap_map < swcount) {
1171 					mmput(new_start_mm);
1172 					atomic_inc(&mm->mm_users);
1173 					new_start_mm = mm;
1174 					set_start_mm = 0;
1175 				}
1176 				spin_lock(&mmlist_lock);
1177 			}
1178 			spin_unlock(&mmlist_lock);
1179 			mmput(prev_mm);
1180 			mmput(start_mm);
1181 			start_mm = new_start_mm;
1182 		}
1183 		if (retval) {
1184 			unlock_page(page);
1185 			page_cache_release(page);
1186 			break;
1187 		}
1188 
1189 		/*
1190 		 * If a reference remains (rare), we would like to leave
1191 		 * the page in the swap cache; but try_to_unmap could
1192 		 * then re-duplicate the entry once we drop page lock,
1193 		 * so we might loop indefinitely; also, that page could
1194 		 * not be swapped out to other storage meanwhile.  So:
1195 		 * delete from cache even if there's another reference,
1196 		 * after ensuring that the data has been saved to disk -
1197 		 * since if the reference remains (rarer), it will be
1198 		 * read from disk into another page.  Splitting into two
1199 		 * pages would be incorrect if swap supported "shared
1200 		 * private" pages, but they are handled by tmpfs files.
1201 		 *
1202 		 * Given how unuse_vma() targets one particular offset
1203 		 * in an anon_vma, once the anon_vma has been determined,
1204 		 * this splitting happens to be just what is needed to
1205 		 * handle where KSM pages have been swapped out: re-reading
1206 		 * is unnecessarily slow, but we can fix that later on.
1207 		 */
1208 		if (swap_count(*swap_map) &&
1209 		     PageDirty(page) && PageSwapCache(page)) {
1210 			struct writeback_control wbc = {
1211 				.sync_mode = WB_SYNC_NONE,
1212 			};
1213 
1214 			swap_writepage(page, &wbc);
1215 			lock_page(page);
1216 			wait_on_page_writeback(page);
1217 		}
1218 
1219 		/*
1220 		 * It is conceivable that a racing task removed this page from
1221 		 * swap cache just before we acquired the page lock at the top,
1222 		 * or while we dropped it in unuse_mm().  The page might even
1223 		 * be back in swap cache on another swap area: that we must not
1224 		 * delete, since it may not have been written out to swap yet.
1225 		 */
1226 		if (PageSwapCache(page) &&
1227 		    likely(page_private(page) == entry.val))
1228 			delete_from_swap_cache(page);
1229 
1230 		/*
1231 		 * So we could skip searching mms once swap count went
1232 		 * to 1, we did not mark any present ptes as dirty: must
1233 		 * mark page dirty so shrink_page_list will preserve it.
1234 		 */
1235 		SetPageDirty(page);
1236 		unlock_page(page);
1237 		page_cache_release(page);
1238 
1239 		/*
1240 		 * Make sure that we aren't completely killing
1241 		 * interactive performance.
1242 		 */
1243 		cond_resched();
1244 		if (frontswap && pages_to_unuse > 0) {
1245 			if (!--pages_to_unuse)
1246 				break;
1247 		}
1248 	}
1249 
1250 	mmput(start_mm);
1251 	return retval;
1252 }
1253 
1254 /*
1255  * After a successful try_to_unuse, if no swap is now in use, we know
1256  * we can empty the mmlist.  swap_lock must be held on entry and exit.
1257  * Note that mmlist_lock nests inside swap_lock, and an mm must be
1258  * added to the mmlist just after page_duplicate - before would be racy.
1259  */
1260 static void drain_mmlist(void)
1261 {
1262 	struct list_head *p, *next;
1263 	unsigned int type;
1264 
1265 	for (type = 0; type < nr_swapfiles; type++)
1266 		if (swap_info[type]->inuse_pages)
1267 			return;
1268 	spin_lock(&mmlist_lock);
1269 	list_for_each_safe(p, next, &init_mm.mmlist)
1270 		list_del_init(p);
1271 	spin_unlock(&mmlist_lock);
1272 }
1273 
1274 /*
1275  * Use this swapdev's extent info to locate the (PAGE_SIZE) block which
1276  * corresponds to page offset for the specified swap entry.
1277  * Note that the type of this function is sector_t, but it returns page offset
1278  * into the bdev, not sector offset.
1279  */
1280 static sector_t map_swap_entry(swp_entry_t entry, struct block_device **bdev)
1281 {
1282 	struct swap_info_struct *sis;
1283 	struct swap_extent *start_se;
1284 	struct swap_extent *se;
1285 	pgoff_t offset;
1286 
1287 	sis = swap_info[swp_type(entry)];
1288 	*bdev = sis->bdev;
1289 
1290 	offset = swp_offset(entry);
1291 	start_se = sis->curr_swap_extent;
1292 	se = start_se;
1293 
1294 	for ( ; ; ) {
1295 		struct list_head *lh;
1296 
1297 		if (se->start_page <= offset &&
1298 				offset < (se->start_page + se->nr_pages)) {
1299 			return se->start_block + (offset - se->start_page);
1300 		}
1301 		lh = se->list.next;
1302 		se = list_entry(lh, struct swap_extent, list);
1303 		sis->curr_swap_extent = se;
1304 		BUG_ON(se == start_se);		/* It *must* be present */
1305 	}
1306 }
1307 
1308 /*
1309  * Returns the page offset into bdev for the specified page's swap entry.
1310  */
1311 sector_t map_swap_page(struct page *page, struct block_device **bdev)
1312 {
1313 	swp_entry_t entry;
1314 	entry.val = page_private(page);
1315 	return map_swap_entry(entry, bdev);
1316 }
1317 
1318 /*
1319  * Free all of a swapdev's extent information
1320  */
1321 static void destroy_swap_extents(struct swap_info_struct *sis)
1322 {
1323 	while (!list_empty(&sis->first_swap_extent.list)) {
1324 		struct swap_extent *se;
1325 
1326 		se = list_entry(sis->first_swap_extent.list.next,
1327 				struct swap_extent, list);
1328 		list_del(&se->list);
1329 		kfree(se);
1330 	}
1331 }
1332 
1333 /*
1334  * Add a block range (and the corresponding page range) into this swapdev's
1335  * extent list.  The extent list is kept sorted in page order.
1336  *
1337  * This function rather assumes that it is called in ascending page order.
1338  */
1339 static int
1340 add_swap_extent(struct swap_info_struct *sis, unsigned long start_page,
1341 		unsigned long nr_pages, sector_t start_block)
1342 {
1343 	struct swap_extent *se;
1344 	struct swap_extent *new_se;
1345 	struct list_head *lh;
1346 
1347 	if (start_page == 0) {
1348 		se = &sis->first_swap_extent;
1349 		sis->curr_swap_extent = se;
1350 		se->start_page = 0;
1351 		se->nr_pages = nr_pages;
1352 		se->start_block = start_block;
1353 		return 1;
1354 	} else {
1355 		lh = sis->first_swap_extent.list.prev;	/* Highest extent */
1356 		se = list_entry(lh, struct swap_extent, list);
1357 		BUG_ON(se->start_page + se->nr_pages != start_page);
1358 		if (se->start_block + se->nr_pages == start_block) {
1359 			/* Merge it */
1360 			se->nr_pages += nr_pages;
1361 			return 0;
1362 		}
1363 	}
1364 
1365 	/*
1366 	 * No merge.  Insert a new extent, preserving ordering.
1367 	 */
1368 	new_se = kmalloc(sizeof(*se), GFP_KERNEL);
1369 	if (new_se == NULL)
1370 		return -ENOMEM;
1371 	new_se->start_page = start_page;
1372 	new_se->nr_pages = nr_pages;
1373 	new_se->start_block = start_block;
1374 
1375 	list_add_tail(&new_se->list, &sis->first_swap_extent.list);
1376 	return 1;
1377 }
1378 
1379 /*
1380  * A `swap extent' is a simple thing which maps a contiguous range of pages
1381  * onto a contiguous range of disk blocks.  An ordered list of swap extents
1382  * is built at swapon time and is then used at swap_writepage/swap_readpage
1383  * time for locating where on disk a page belongs.
1384  *
1385  * If the swapfile is an S_ISBLK block device, a single extent is installed.
1386  * This is done so that the main operating code can treat S_ISBLK and S_ISREG
1387  * swap files identically.
1388  *
1389  * Whether the swapdev is an S_ISREG file or an S_ISBLK blockdev, the swap
1390  * extent list operates in PAGE_SIZE disk blocks.  Both S_ISREG and S_ISBLK
1391  * swapfiles are handled *identically* after swapon time.
1392  *
1393  * For S_ISREG swapfiles, setup_swap_extents() will walk all the file's blocks
1394  * and will parse them into an ordered extent list, in PAGE_SIZE chunks.  If
1395  * some stray blocks are found which do not fall within the PAGE_SIZE alignment
1396  * requirements, they are simply tossed out - we will never use those blocks
1397  * for swapping.
1398  *
1399  * For S_ISREG swapfiles we set S_SWAPFILE across the life of the swapon.  This
1400  * prevents root from shooting her foot off by ftruncating an in-use swapfile,
1401  * which will scribble on the fs.
1402  *
1403  * The amount of disk space which a single swap extent represents varies.
1404  * Typically it is in the 1-4 megabyte range.  So we can have hundreds of
1405  * extents in the list.  To avoid much list walking, we cache the previous
1406  * search location in `curr_swap_extent', and start new searches from there.
1407  * This is extremely effective.  The average number of iterations in
1408  * map_swap_page() has been measured at about 0.3 per page.  - akpm.
1409  */
1410 static int setup_swap_extents(struct swap_info_struct *sis, sector_t *span)
1411 {
1412 	struct inode *inode;
1413 	unsigned blocks_per_page;
1414 	unsigned long page_no;
1415 	unsigned blkbits;
1416 	sector_t probe_block;
1417 	sector_t last_block;
1418 	sector_t lowest_block = -1;
1419 	sector_t highest_block = 0;
1420 	int nr_extents = 0;
1421 	int ret;
1422 
1423 	inode = sis->swap_file->f_mapping->host;
1424 	if (S_ISBLK(inode->i_mode)) {
1425 		ret = add_swap_extent(sis, 0, sis->max, 0);
1426 		*span = sis->pages;
1427 		goto out;
1428 	}
1429 
1430 	blkbits = inode->i_blkbits;
1431 	blocks_per_page = PAGE_SIZE >> blkbits;
1432 
1433 	/*
1434 	 * Map all the blocks into the extent list.  This code doesn't try
1435 	 * to be very smart.
1436 	 */
1437 	probe_block = 0;
1438 	page_no = 0;
1439 	last_block = i_size_read(inode) >> blkbits;
1440 	while ((probe_block + blocks_per_page) <= last_block &&
1441 			page_no < sis->max) {
1442 		unsigned block_in_page;
1443 		sector_t first_block;
1444 
1445 		first_block = bmap(inode, probe_block);
1446 		if (first_block == 0)
1447 			goto bad_bmap;
1448 
1449 		/*
1450 		 * It must be PAGE_SIZE aligned on-disk
1451 		 */
1452 		if (first_block & (blocks_per_page - 1)) {
1453 			probe_block++;
1454 			goto reprobe;
1455 		}
1456 
1457 		for (block_in_page = 1; block_in_page < blocks_per_page;
1458 					block_in_page++) {
1459 			sector_t block;
1460 
1461 			block = bmap(inode, probe_block + block_in_page);
1462 			if (block == 0)
1463 				goto bad_bmap;
1464 			if (block != first_block + block_in_page) {
1465 				/* Discontiguity */
1466 				probe_block++;
1467 				goto reprobe;
1468 			}
1469 		}
1470 
1471 		first_block >>= (PAGE_SHIFT - blkbits);
1472 		if (page_no) {	/* exclude the header page */
1473 			if (first_block < lowest_block)
1474 				lowest_block = first_block;
1475 			if (first_block > highest_block)
1476 				highest_block = first_block;
1477 		}
1478 
1479 		/*
1480 		 * We found a PAGE_SIZE-length, PAGE_SIZE-aligned run of blocks
1481 		 */
1482 		ret = add_swap_extent(sis, page_no, 1, first_block);
1483 		if (ret < 0)
1484 			goto out;
1485 		nr_extents += ret;
1486 		page_no++;
1487 		probe_block += blocks_per_page;
1488 reprobe:
1489 		continue;
1490 	}
1491 	ret = nr_extents;
1492 	*span = 1 + highest_block - lowest_block;
1493 	if (page_no == 0)
1494 		page_no = 1;	/* force Empty message */
1495 	sis->max = page_no;
1496 	sis->pages = page_no - 1;
1497 	sis->highest_bit = page_no - 1;
1498 out:
1499 	return ret;
1500 bad_bmap:
1501 	printk(KERN_ERR "swapon: swapfile has holes\n");
1502 	ret = -EINVAL;
1503 	goto out;
1504 }
1505 
1506 static void enable_swap_info(struct swap_info_struct *p, int prio,
1507 				unsigned char *swap_map,
1508 				unsigned long *frontswap_map)
1509 {
1510 	int i, prev;
1511 
1512 	spin_lock(&swap_lock);
1513 	if (prio >= 0)
1514 		p->prio = prio;
1515 	else
1516 		p->prio = --least_priority;
1517 	p->swap_map = swap_map;
1518 	frontswap_map_set(p, frontswap_map);
1519 	p->flags |= SWP_WRITEOK;
1520 	nr_swap_pages += p->pages;
1521 	total_swap_pages += p->pages;
1522 
1523 	/* insert swap space into swap_list: */
1524 	prev = -1;
1525 	for (i = swap_list.head; i >= 0; i = swap_info[i]->next) {
1526 		if (p->prio >= swap_info[i]->prio)
1527 			break;
1528 		prev = i;
1529 	}
1530 	p->next = i;
1531 	if (prev < 0)
1532 		swap_list.head = swap_list.next = p->type;
1533 	else
1534 		swap_info[prev]->next = p->type;
1535 	frontswap_init(p->type);
1536 	spin_unlock(&swap_lock);
1537 }
1538 
1539 SYSCALL_DEFINE1(swapoff, const char __user *, specialfile)
1540 {
1541 	struct swap_info_struct *p = NULL;
1542 	unsigned char *swap_map;
1543 	struct file *swap_file, *victim;
1544 	struct address_space *mapping;
1545 	struct inode *inode;
1546 	char *pathname;
1547 	int oom_score_adj;
1548 	int i, type, prev;
1549 	int err;
1550 
1551 	if (!capable(CAP_SYS_ADMIN))
1552 		return -EPERM;
1553 
1554 	BUG_ON(!current->mm);
1555 
1556 	pathname = getname(specialfile);
1557 	err = PTR_ERR(pathname);
1558 	if (IS_ERR(pathname))
1559 		goto out;
1560 
1561 	victim = filp_open(pathname, O_RDWR|O_LARGEFILE, 0);
1562 	putname(pathname);
1563 	err = PTR_ERR(victim);
1564 	if (IS_ERR(victim))
1565 		goto out;
1566 
1567 	mapping = victim->f_mapping;
1568 	prev = -1;
1569 	spin_lock(&swap_lock);
1570 	for (type = swap_list.head; type >= 0; type = swap_info[type]->next) {
1571 		p = swap_info[type];
1572 		if (p->flags & SWP_WRITEOK) {
1573 			if (p->swap_file->f_mapping == mapping)
1574 				break;
1575 		}
1576 		prev = type;
1577 	}
1578 	if (type < 0) {
1579 		err = -EINVAL;
1580 		spin_unlock(&swap_lock);
1581 		goto out_dput;
1582 	}
1583 	if (!security_vm_enough_memory_mm(current->mm, p->pages))
1584 		vm_unacct_memory(p->pages);
1585 	else {
1586 		err = -ENOMEM;
1587 		spin_unlock(&swap_lock);
1588 		goto out_dput;
1589 	}
1590 	if (prev < 0)
1591 		swap_list.head = p->next;
1592 	else
1593 		swap_info[prev]->next = p->next;
1594 	if (type == swap_list.next) {
1595 		/* just pick something that's safe... */
1596 		swap_list.next = swap_list.head;
1597 	}
1598 	if (p->prio < 0) {
1599 		for (i = p->next; i >= 0; i = swap_info[i]->next)
1600 			swap_info[i]->prio = p->prio--;
1601 		least_priority++;
1602 	}
1603 	nr_swap_pages -= p->pages;
1604 	total_swap_pages -= p->pages;
1605 	p->flags &= ~SWP_WRITEOK;
1606 	spin_unlock(&swap_lock);
1607 
1608 	oom_score_adj = test_set_oom_score_adj(OOM_SCORE_ADJ_MAX);
1609 	err = try_to_unuse(type, false, 0); /* force all pages to be unused */
1610 	compare_swap_oom_score_adj(OOM_SCORE_ADJ_MAX, oom_score_adj);
1611 
1612 	if (err) {
1613 		/*
1614 		 * reading p->prio and p->swap_map outside the lock is
1615 		 * safe here because only sys_swapon and sys_swapoff
1616 		 * change them, and there can be no other sys_swapon or
1617 		 * sys_swapoff for this swap_info_struct at this point.
1618 		 */
1619 		/* re-insert swap space back into swap_list */
1620 		enable_swap_info(p, p->prio, p->swap_map, frontswap_map_get(p));
1621 		goto out_dput;
1622 	}
1623 
1624 	destroy_swap_extents(p);
1625 	if (p->flags & SWP_CONTINUED)
1626 		free_swap_count_continuations(p);
1627 
1628 	mutex_lock(&swapon_mutex);
1629 	spin_lock(&swap_lock);
1630 	drain_mmlist();
1631 
1632 	/* wait for anyone still in scan_swap_map */
1633 	p->highest_bit = 0;		/* cuts scans short */
1634 	while (p->flags >= SWP_SCANNING) {
1635 		spin_unlock(&swap_lock);
1636 		schedule_timeout_uninterruptible(1);
1637 		spin_lock(&swap_lock);
1638 	}
1639 
1640 	swap_file = p->swap_file;
1641 	p->swap_file = NULL;
1642 	p->max = 0;
1643 	swap_map = p->swap_map;
1644 	p->swap_map = NULL;
1645 	p->flags = 0;
1646 	frontswap_invalidate_area(type);
1647 	spin_unlock(&swap_lock);
1648 	mutex_unlock(&swapon_mutex);
1649 	vfree(swap_map);
1650 	vfree(frontswap_map_get(p));
1651 	/* Destroy swap account informatin */
1652 	swap_cgroup_swapoff(type);
1653 
1654 	inode = mapping->host;
1655 	if (S_ISBLK(inode->i_mode)) {
1656 		struct block_device *bdev = I_BDEV(inode);
1657 		set_blocksize(bdev, p->old_block_size);
1658 		blkdev_put(bdev, FMODE_READ | FMODE_WRITE | FMODE_EXCL);
1659 	} else {
1660 		mutex_lock(&inode->i_mutex);
1661 		inode->i_flags &= ~S_SWAPFILE;
1662 		mutex_unlock(&inode->i_mutex);
1663 	}
1664 	filp_close(swap_file, NULL);
1665 	err = 0;
1666 	atomic_inc(&proc_poll_event);
1667 	wake_up_interruptible(&proc_poll_wait);
1668 
1669 out_dput:
1670 	filp_close(victim, NULL);
1671 out:
1672 	return err;
1673 }
1674 
1675 #ifdef CONFIG_PROC_FS
1676 static unsigned swaps_poll(struct file *file, poll_table *wait)
1677 {
1678 	struct seq_file *seq = file->private_data;
1679 
1680 	poll_wait(file, &proc_poll_wait, wait);
1681 
1682 	if (seq->poll_event != atomic_read(&proc_poll_event)) {
1683 		seq->poll_event = atomic_read(&proc_poll_event);
1684 		return POLLIN | POLLRDNORM | POLLERR | POLLPRI;
1685 	}
1686 
1687 	return POLLIN | POLLRDNORM;
1688 }
1689 
1690 /* iterator */
1691 static void *swap_start(struct seq_file *swap, loff_t *pos)
1692 {
1693 	struct swap_info_struct *si;
1694 	int type;
1695 	loff_t l = *pos;
1696 
1697 	mutex_lock(&swapon_mutex);
1698 
1699 	if (!l)
1700 		return SEQ_START_TOKEN;
1701 
1702 	for (type = 0; type < nr_swapfiles; type++) {
1703 		smp_rmb();	/* read nr_swapfiles before swap_info[type] */
1704 		si = swap_info[type];
1705 		if (!(si->flags & SWP_USED) || !si->swap_map)
1706 			continue;
1707 		if (!--l)
1708 			return si;
1709 	}
1710 
1711 	return NULL;
1712 }
1713 
1714 static void *swap_next(struct seq_file *swap, void *v, loff_t *pos)
1715 {
1716 	struct swap_info_struct *si = v;
1717 	int type;
1718 
1719 	if (v == SEQ_START_TOKEN)
1720 		type = 0;
1721 	else
1722 		type = si->type + 1;
1723 
1724 	for (; type < nr_swapfiles; type++) {
1725 		smp_rmb();	/* read nr_swapfiles before swap_info[type] */
1726 		si = swap_info[type];
1727 		if (!(si->flags & SWP_USED) || !si->swap_map)
1728 			continue;
1729 		++*pos;
1730 		return si;
1731 	}
1732 
1733 	return NULL;
1734 }
1735 
1736 static void swap_stop(struct seq_file *swap, void *v)
1737 {
1738 	mutex_unlock(&swapon_mutex);
1739 }
1740 
1741 static int swap_show(struct seq_file *swap, void *v)
1742 {
1743 	struct swap_info_struct *si = v;
1744 	struct file *file;
1745 	int len;
1746 
1747 	if (si == SEQ_START_TOKEN) {
1748 		seq_puts(swap,"Filename\t\t\t\tType\t\tSize\tUsed\tPriority\n");
1749 		return 0;
1750 	}
1751 
1752 	file = si->swap_file;
1753 	len = seq_path(swap, &file->f_path, " \t\n\\");
1754 	seq_printf(swap, "%*s%s\t%u\t%u\t%d\n",
1755 			len < 40 ? 40 - len : 1, " ",
1756 			S_ISBLK(file->f_path.dentry->d_inode->i_mode) ?
1757 				"partition" : "file\t",
1758 			si->pages << (PAGE_SHIFT - 10),
1759 			si->inuse_pages << (PAGE_SHIFT - 10),
1760 			si->prio);
1761 	return 0;
1762 }
1763 
1764 static const struct seq_operations swaps_op = {
1765 	.start =	swap_start,
1766 	.next =		swap_next,
1767 	.stop =		swap_stop,
1768 	.show =		swap_show
1769 };
1770 
1771 static int swaps_open(struct inode *inode, struct file *file)
1772 {
1773 	struct seq_file *seq;
1774 	int ret;
1775 
1776 	ret = seq_open(file, &swaps_op);
1777 	if (ret)
1778 		return ret;
1779 
1780 	seq = file->private_data;
1781 	seq->poll_event = atomic_read(&proc_poll_event);
1782 	return 0;
1783 }
1784 
1785 static const struct file_operations proc_swaps_operations = {
1786 	.open		= swaps_open,
1787 	.read		= seq_read,
1788 	.llseek		= seq_lseek,
1789 	.release	= seq_release,
1790 	.poll		= swaps_poll,
1791 };
1792 
1793 static int __init procswaps_init(void)
1794 {
1795 	proc_create("swaps", 0, NULL, &proc_swaps_operations);
1796 	return 0;
1797 }
1798 __initcall(procswaps_init);
1799 #endif /* CONFIG_PROC_FS */
1800 
1801 #ifdef MAX_SWAPFILES_CHECK
1802 static int __init max_swapfiles_check(void)
1803 {
1804 	MAX_SWAPFILES_CHECK();
1805 	return 0;
1806 }
1807 late_initcall(max_swapfiles_check);
1808 #endif
1809 
1810 static struct swap_info_struct *alloc_swap_info(void)
1811 {
1812 	struct swap_info_struct *p;
1813 	unsigned int type;
1814 
1815 	p = kzalloc(sizeof(*p), GFP_KERNEL);
1816 	if (!p)
1817 		return ERR_PTR(-ENOMEM);
1818 
1819 	spin_lock(&swap_lock);
1820 	for (type = 0; type < nr_swapfiles; type++) {
1821 		if (!(swap_info[type]->flags & SWP_USED))
1822 			break;
1823 	}
1824 	if (type >= MAX_SWAPFILES) {
1825 		spin_unlock(&swap_lock);
1826 		kfree(p);
1827 		return ERR_PTR(-EPERM);
1828 	}
1829 	if (type >= nr_swapfiles) {
1830 		p->type = type;
1831 		swap_info[type] = p;
1832 		/*
1833 		 * Write swap_info[type] before nr_swapfiles, in case a
1834 		 * racing procfs swap_start() or swap_next() is reading them.
1835 		 * (We never shrink nr_swapfiles, we never free this entry.)
1836 		 */
1837 		smp_wmb();
1838 		nr_swapfiles++;
1839 	} else {
1840 		kfree(p);
1841 		p = swap_info[type];
1842 		/*
1843 		 * Do not memset this entry: a racing procfs swap_next()
1844 		 * would be relying on p->type to remain valid.
1845 		 */
1846 	}
1847 	INIT_LIST_HEAD(&p->first_swap_extent.list);
1848 	p->flags = SWP_USED;
1849 	p->next = -1;
1850 	spin_unlock(&swap_lock);
1851 
1852 	return p;
1853 }
1854 
1855 static int claim_swapfile(struct swap_info_struct *p, struct inode *inode)
1856 {
1857 	int error;
1858 
1859 	if (S_ISBLK(inode->i_mode)) {
1860 		p->bdev = bdgrab(I_BDEV(inode));
1861 		error = blkdev_get(p->bdev,
1862 				   FMODE_READ | FMODE_WRITE | FMODE_EXCL,
1863 				   sys_swapon);
1864 		if (error < 0) {
1865 			p->bdev = NULL;
1866 			return -EINVAL;
1867 		}
1868 		p->old_block_size = block_size(p->bdev);
1869 		error = set_blocksize(p->bdev, PAGE_SIZE);
1870 		if (error < 0)
1871 			return error;
1872 		p->flags |= SWP_BLKDEV;
1873 	} else if (S_ISREG(inode->i_mode)) {
1874 		p->bdev = inode->i_sb->s_bdev;
1875 		mutex_lock(&inode->i_mutex);
1876 		if (IS_SWAPFILE(inode))
1877 			return -EBUSY;
1878 	} else
1879 		return -EINVAL;
1880 
1881 	return 0;
1882 }
1883 
1884 static unsigned long read_swap_header(struct swap_info_struct *p,
1885 					union swap_header *swap_header,
1886 					struct inode *inode)
1887 {
1888 	int i;
1889 	unsigned long maxpages;
1890 	unsigned long swapfilepages;
1891 
1892 	if (memcmp("SWAPSPACE2", swap_header->magic.magic, 10)) {
1893 		printk(KERN_ERR "Unable to find swap-space signature\n");
1894 		return 0;
1895 	}
1896 
1897 	/* swap partition endianess hack... */
1898 	if (swab32(swap_header->info.version) == 1) {
1899 		swab32s(&swap_header->info.version);
1900 		swab32s(&swap_header->info.last_page);
1901 		swab32s(&swap_header->info.nr_badpages);
1902 		for (i = 0; i < swap_header->info.nr_badpages; i++)
1903 			swab32s(&swap_header->info.badpages[i]);
1904 	}
1905 	/* Check the swap header's sub-version */
1906 	if (swap_header->info.version != 1) {
1907 		printk(KERN_WARNING
1908 		       "Unable to handle swap header version %d\n",
1909 		       swap_header->info.version);
1910 		return 0;
1911 	}
1912 
1913 	p->lowest_bit  = 1;
1914 	p->cluster_next = 1;
1915 	p->cluster_nr = 0;
1916 
1917 	/*
1918 	 * Find out how many pages are allowed for a single swap
1919 	 * device. There are two limiting factors: 1) the number
1920 	 * of bits for the swap offset in the swp_entry_t type, and
1921 	 * 2) the number of bits in the swap pte as defined by the
1922 	 * different architectures. In order to find the
1923 	 * largest possible bit mask, a swap entry with swap type 0
1924 	 * and swap offset ~0UL is created, encoded to a swap pte,
1925 	 * decoded to a swp_entry_t again, and finally the swap
1926 	 * offset is extracted. This will mask all the bits from
1927 	 * the initial ~0UL mask that can't be encoded in either
1928 	 * the swp_entry_t or the architecture definition of a
1929 	 * swap pte.
1930 	 */
1931 	maxpages = swp_offset(pte_to_swp_entry(
1932 			swp_entry_to_pte(swp_entry(0, ~0UL)))) + 1;
1933 	if (maxpages > swap_header->info.last_page) {
1934 		maxpages = swap_header->info.last_page + 1;
1935 		/* p->max is an unsigned int: don't overflow it */
1936 		if ((unsigned int)maxpages == 0)
1937 			maxpages = UINT_MAX;
1938 	}
1939 	p->highest_bit = maxpages - 1;
1940 
1941 	if (!maxpages)
1942 		return 0;
1943 	swapfilepages = i_size_read(inode) >> PAGE_SHIFT;
1944 	if (swapfilepages && maxpages > swapfilepages) {
1945 		printk(KERN_WARNING
1946 		       "Swap area shorter than signature indicates\n");
1947 		return 0;
1948 	}
1949 	if (swap_header->info.nr_badpages && S_ISREG(inode->i_mode))
1950 		return 0;
1951 	if (swap_header->info.nr_badpages > MAX_SWAP_BADPAGES)
1952 		return 0;
1953 
1954 	return maxpages;
1955 }
1956 
1957 static int setup_swap_map_and_extents(struct swap_info_struct *p,
1958 					union swap_header *swap_header,
1959 					unsigned char *swap_map,
1960 					unsigned long maxpages,
1961 					sector_t *span)
1962 {
1963 	int i;
1964 	unsigned int nr_good_pages;
1965 	int nr_extents;
1966 
1967 	nr_good_pages = maxpages - 1;	/* omit header page */
1968 
1969 	for (i = 0; i < swap_header->info.nr_badpages; i++) {
1970 		unsigned int page_nr = swap_header->info.badpages[i];
1971 		if (page_nr == 0 || page_nr > swap_header->info.last_page)
1972 			return -EINVAL;
1973 		if (page_nr < maxpages) {
1974 			swap_map[page_nr] = SWAP_MAP_BAD;
1975 			nr_good_pages--;
1976 		}
1977 	}
1978 
1979 	if (nr_good_pages) {
1980 		swap_map[0] = SWAP_MAP_BAD;
1981 		p->max = maxpages;
1982 		p->pages = nr_good_pages;
1983 		nr_extents = setup_swap_extents(p, span);
1984 		if (nr_extents < 0)
1985 			return nr_extents;
1986 		nr_good_pages = p->pages;
1987 	}
1988 	if (!nr_good_pages) {
1989 		printk(KERN_WARNING "Empty swap-file\n");
1990 		return -EINVAL;
1991 	}
1992 
1993 	return nr_extents;
1994 }
1995 
1996 SYSCALL_DEFINE2(swapon, const char __user *, specialfile, int, swap_flags)
1997 {
1998 	struct swap_info_struct *p;
1999 	char *name;
2000 	struct file *swap_file = NULL;
2001 	struct address_space *mapping;
2002 	int i;
2003 	int prio;
2004 	int error;
2005 	union swap_header *swap_header;
2006 	int nr_extents;
2007 	sector_t span;
2008 	unsigned long maxpages;
2009 	unsigned char *swap_map = NULL;
2010 	unsigned long *frontswap_map = NULL;
2011 	struct page *page = NULL;
2012 	struct inode *inode = NULL;
2013 
2014 	if (swap_flags & ~SWAP_FLAGS_VALID)
2015 		return -EINVAL;
2016 
2017 	if (!capable(CAP_SYS_ADMIN))
2018 		return -EPERM;
2019 
2020 	p = alloc_swap_info();
2021 	if (IS_ERR(p))
2022 		return PTR_ERR(p);
2023 
2024 	name = getname(specialfile);
2025 	if (IS_ERR(name)) {
2026 		error = PTR_ERR(name);
2027 		name = NULL;
2028 		goto bad_swap;
2029 	}
2030 	swap_file = filp_open(name, O_RDWR|O_LARGEFILE, 0);
2031 	if (IS_ERR(swap_file)) {
2032 		error = PTR_ERR(swap_file);
2033 		swap_file = NULL;
2034 		goto bad_swap;
2035 	}
2036 
2037 	p->swap_file = swap_file;
2038 	mapping = swap_file->f_mapping;
2039 
2040 	for (i = 0; i < nr_swapfiles; i++) {
2041 		struct swap_info_struct *q = swap_info[i];
2042 
2043 		if (q == p || !q->swap_file)
2044 			continue;
2045 		if (mapping == q->swap_file->f_mapping) {
2046 			error = -EBUSY;
2047 			goto bad_swap;
2048 		}
2049 	}
2050 
2051 	inode = mapping->host;
2052 	/* If S_ISREG(inode->i_mode) will do mutex_lock(&inode->i_mutex); */
2053 	error = claim_swapfile(p, inode);
2054 	if (unlikely(error))
2055 		goto bad_swap;
2056 
2057 	/*
2058 	 * Read the swap header.
2059 	 */
2060 	if (!mapping->a_ops->readpage) {
2061 		error = -EINVAL;
2062 		goto bad_swap;
2063 	}
2064 	page = read_mapping_page(mapping, 0, swap_file);
2065 	if (IS_ERR(page)) {
2066 		error = PTR_ERR(page);
2067 		goto bad_swap;
2068 	}
2069 	swap_header = kmap(page);
2070 
2071 	maxpages = read_swap_header(p, swap_header, inode);
2072 	if (unlikely(!maxpages)) {
2073 		error = -EINVAL;
2074 		goto bad_swap;
2075 	}
2076 
2077 	/* OK, set up the swap map and apply the bad block list */
2078 	swap_map = vzalloc(maxpages);
2079 	if (!swap_map) {
2080 		error = -ENOMEM;
2081 		goto bad_swap;
2082 	}
2083 
2084 	error = swap_cgroup_swapon(p->type, maxpages);
2085 	if (error)
2086 		goto bad_swap;
2087 
2088 	nr_extents = setup_swap_map_and_extents(p, swap_header, swap_map,
2089 		maxpages, &span);
2090 	if (unlikely(nr_extents < 0)) {
2091 		error = nr_extents;
2092 		goto bad_swap;
2093 	}
2094 	/* frontswap enabled? set up bit-per-page map for frontswap */
2095 	if (frontswap_enabled)
2096 		frontswap_map = vzalloc(maxpages / sizeof(long));
2097 
2098 	if (p->bdev) {
2099 		if (blk_queue_nonrot(bdev_get_queue(p->bdev))) {
2100 			p->flags |= SWP_SOLIDSTATE;
2101 			p->cluster_next = 1 + (random32() % p->highest_bit);
2102 		}
2103 		if ((swap_flags & SWAP_FLAG_DISCARD) && discard_swap(p) == 0)
2104 			p->flags |= SWP_DISCARDABLE;
2105 	}
2106 
2107 	mutex_lock(&swapon_mutex);
2108 	prio = -1;
2109 	if (swap_flags & SWAP_FLAG_PREFER)
2110 		prio =
2111 		  (swap_flags & SWAP_FLAG_PRIO_MASK) >> SWAP_FLAG_PRIO_SHIFT;
2112 	enable_swap_info(p, prio, swap_map, frontswap_map);
2113 
2114 	printk(KERN_INFO "Adding %uk swap on %s.  "
2115 			"Priority:%d extents:%d across:%lluk %s%s%s\n",
2116 		p->pages<<(PAGE_SHIFT-10), name, p->prio,
2117 		nr_extents, (unsigned long long)span<<(PAGE_SHIFT-10),
2118 		(p->flags & SWP_SOLIDSTATE) ? "SS" : "",
2119 		(p->flags & SWP_DISCARDABLE) ? "D" : "",
2120 		(frontswap_map) ? "FS" : "");
2121 
2122 	mutex_unlock(&swapon_mutex);
2123 	atomic_inc(&proc_poll_event);
2124 	wake_up_interruptible(&proc_poll_wait);
2125 
2126 	if (S_ISREG(inode->i_mode))
2127 		inode->i_flags |= S_SWAPFILE;
2128 	error = 0;
2129 	goto out;
2130 bad_swap:
2131 	if (inode && S_ISBLK(inode->i_mode) && p->bdev) {
2132 		set_blocksize(p->bdev, p->old_block_size);
2133 		blkdev_put(p->bdev, FMODE_READ | FMODE_WRITE | FMODE_EXCL);
2134 	}
2135 	destroy_swap_extents(p);
2136 	swap_cgroup_swapoff(p->type);
2137 	spin_lock(&swap_lock);
2138 	p->swap_file = NULL;
2139 	p->flags = 0;
2140 	spin_unlock(&swap_lock);
2141 	vfree(swap_map);
2142 	if (swap_file) {
2143 		if (inode && S_ISREG(inode->i_mode)) {
2144 			mutex_unlock(&inode->i_mutex);
2145 			inode = NULL;
2146 		}
2147 		filp_close(swap_file, NULL);
2148 	}
2149 out:
2150 	if (page && !IS_ERR(page)) {
2151 		kunmap(page);
2152 		page_cache_release(page);
2153 	}
2154 	if (name)
2155 		putname(name);
2156 	if (inode && S_ISREG(inode->i_mode))
2157 		mutex_unlock(&inode->i_mutex);
2158 	return error;
2159 }
2160 
2161 void si_swapinfo(struct sysinfo *val)
2162 {
2163 	unsigned int type;
2164 	unsigned long nr_to_be_unused = 0;
2165 
2166 	spin_lock(&swap_lock);
2167 	for (type = 0; type < nr_swapfiles; type++) {
2168 		struct swap_info_struct *si = swap_info[type];
2169 
2170 		if ((si->flags & SWP_USED) && !(si->flags & SWP_WRITEOK))
2171 			nr_to_be_unused += si->inuse_pages;
2172 	}
2173 	val->freeswap = nr_swap_pages + nr_to_be_unused;
2174 	val->totalswap = total_swap_pages + nr_to_be_unused;
2175 	spin_unlock(&swap_lock);
2176 }
2177 
2178 /*
2179  * Verify that a swap entry is valid and increment its swap map count.
2180  *
2181  * Returns error code in following case.
2182  * - success -> 0
2183  * - swp_entry is invalid -> EINVAL
2184  * - swp_entry is migration entry -> EINVAL
2185  * - swap-cache reference is requested but there is already one. -> EEXIST
2186  * - swap-cache reference is requested but the entry is not used. -> ENOENT
2187  * - swap-mapped reference requested but needs continued swap count. -> ENOMEM
2188  */
2189 static int __swap_duplicate(swp_entry_t entry, unsigned char usage)
2190 {
2191 	struct swap_info_struct *p;
2192 	unsigned long offset, type;
2193 	unsigned char count;
2194 	unsigned char has_cache;
2195 	int err = -EINVAL;
2196 
2197 	if (non_swap_entry(entry))
2198 		goto out;
2199 
2200 	type = swp_type(entry);
2201 	if (type >= nr_swapfiles)
2202 		goto bad_file;
2203 	p = swap_info[type];
2204 	offset = swp_offset(entry);
2205 
2206 	spin_lock(&swap_lock);
2207 	if (unlikely(offset >= p->max))
2208 		goto unlock_out;
2209 
2210 	count = p->swap_map[offset];
2211 	has_cache = count & SWAP_HAS_CACHE;
2212 	count &= ~SWAP_HAS_CACHE;
2213 	err = 0;
2214 
2215 	if (usage == SWAP_HAS_CACHE) {
2216 
2217 		/* set SWAP_HAS_CACHE if there is no cache and entry is used */
2218 		if (!has_cache && count)
2219 			has_cache = SWAP_HAS_CACHE;
2220 		else if (has_cache)		/* someone else added cache */
2221 			err = -EEXIST;
2222 		else				/* no users remaining */
2223 			err = -ENOENT;
2224 
2225 	} else if (count || has_cache) {
2226 
2227 		if ((count & ~COUNT_CONTINUED) < SWAP_MAP_MAX)
2228 			count += usage;
2229 		else if ((count & ~COUNT_CONTINUED) > SWAP_MAP_MAX)
2230 			err = -EINVAL;
2231 		else if (swap_count_continued(p, offset, count))
2232 			count = COUNT_CONTINUED;
2233 		else
2234 			err = -ENOMEM;
2235 	} else
2236 		err = -ENOENT;			/* unused swap entry */
2237 
2238 	p->swap_map[offset] = count | has_cache;
2239 
2240 unlock_out:
2241 	spin_unlock(&swap_lock);
2242 out:
2243 	return err;
2244 
2245 bad_file:
2246 	printk(KERN_ERR "swap_dup: %s%08lx\n", Bad_file, entry.val);
2247 	goto out;
2248 }
2249 
2250 /*
2251  * Help swapoff by noting that swap entry belongs to shmem/tmpfs
2252  * (in which case its reference count is never incremented).
2253  */
2254 void swap_shmem_alloc(swp_entry_t entry)
2255 {
2256 	__swap_duplicate(entry, SWAP_MAP_SHMEM);
2257 }
2258 
2259 /*
2260  * Increase reference count of swap entry by 1.
2261  * Returns 0 for success, or -ENOMEM if a swap_count_continuation is required
2262  * but could not be atomically allocated.  Returns 0, just as if it succeeded,
2263  * if __swap_duplicate() fails for another reason (-EINVAL or -ENOENT), which
2264  * might occur if a page table entry has got corrupted.
2265  */
2266 int swap_duplicate(swp_entry_t entry)
2267 {
2268 	int err = 0;
2269 
2270 	while (!err && __swap_duplicate(entry, 1) == -ENOMEM)
2271 		err = add_swap_count_continuation(entry, GFP_ATOMIC);
2272 	return err;
2273 }
2274 
2275 /*
2276  * @entry: swap entry for which we allocate swap cache.
2277  *
2278  * Called when allocating swap cache for existing swap entry,
2279  * This can return error codes. Returns 0 at success.
2280  * -EBUSY means there is a swap cache.
2281  * Note: return code is different from swap_duplicate().
2282  */
2283 int swapcache_prepare(swp_entry_t entry)
2284 {
2285 	return __swap_duplicate(entry, SWAP_HAS_CACHE);
2286 }
2287 
2288 /*
2289  * add_swap_count_continuation - called when a swap count is duplicated
2290  * beyond SWAP_MAP_MAX, it allocates a new page and links that to the entry's
2291  * page of the original vmalloc'ed swap_map, to hold the continuation count
2292  * (for that entry and for its neighbouring PAGE_SIZE swap entries).  Called
2293  * again when count is duplicated beyond SWAP_MAP_MAX * SWAP_CONT_MAX, etc.
2294  *
2295  * These continuation pages are seldom referenced: the common paths all work
2296  * on the original swap_map, only referring to a continuation page when the
2297  * low "digit" of a count is incremented or decremented through SWAP_MAP_MAX.
2298  *
2299  * add_swap_count_continuation(, GFP_ATOMIC) can be called while holding
2300  * page table locks; if it fails, add_swap_count_continuation(, GFP_KERNEL)
2301  * can be called after dropping locks.
2302  */
2303 int add_swap_count_continuation(swp_entry_t entry, gfp_t gfp_mask)
2304 {
2305 	struct swap_info_struct *si;
2306 	struct page *head;
2307 	struct page *page;
2308 	struct page *list_page;
2309 	pgoff_t offset;
2310 	unsigned char count;
2311 
2312 	/*
2313 	 * When debugging, it's easier to use __GFP_ZERO here; but it's better
2314 	 * for latency not to zero a page while GFP_ATOMIC and holding locks.
2315 	 */
2316 	page = alloc_page(gfp_mask | __GFP_HIGHMEM);
2317 
2318 	si = swap_info_get(entry);
2319 	if (!si) {
2320 		/*
2321 		 * An acceptable race has occurred since the failing
2322 		 * __swap_duplicate(): the swap entry has been freed,
2323 		 * perhaps even the whole swap_map cleared for swapoff.
2324 		 */
2325 		goto outer;
2326 	}
2327 
2328 	offset = swp_offset(entry);
2329 	count = si->swap_map[offset] & ~SWAP_HAS_CACHE;
2330 
2331 	if ((count & ~COUNT_CONTINUED) != SWAP_MAP_MAX) {
2332 		/*
2333 		 * The higher the swap count, the more likely it is that tasks
2334 		 * will race to add swap count continuation: we need to avoid
2335 		 * over-provisioning.
2336 		 */
2337 		goto out;
2338 	}
2339 
2340 	if (!page) {
2341 		spin_unlock(&swap_lock);
2342 		return -ENOMEM;
2343 	}
2344 
2345 	/*
2346 	 * We are fortunate that although vmalloc_to_page uses pte_offset_map,
2347 	 * no architecture is using highmem pages for kernel pagetables: so it
2348 	 * will not corrupt the GFP_ATOMIC caller's atomic pagetable kmaps.
2349 	 */
2350 	head = vmalloc_to_page(si->swap_map + offset);
2351 	offset &= ~PAGE_MASK;
2352 
2353 	/*
2354 	 * Page allocation does not initialize the page's lru field,
2355 	 * but it does always reset its private field.
2356 	 */
2357 	if (!page_private(head)) {
2358 		BUG_ON(count & COUNT_CONTINUED);
2359 		INIT_LIST_HEAD(&head->lru);
2360 		set_page_private(head, SWP_CONTINUED);
2361 		si->flags |= SWP_CONTINUED;
2362 	}
2363 
2364 	list_for_each_entry(list_page, &head->lru, lru) {
2365 		unsigned char *map;
2366 
2367 		/*
2368 		 * If the previous map said no continuation, but we've found
2369 		 * a continuation page, free our allocation and use this one.
2370 		 */
2371 		if (!(count & COUNT_CONTINUED))
2372 			goto out;
2373 
2374 		map = kmap_atomic(list_page) + offset;
2375 		count = *map;
2376 		kunmap_atomic(map);
2377 
2378 		/*
2379 		 * If this continuation count now has some space in it,
2380 		 * free our allocation and use this one.
2381 		 */
2382 		if ((count & ~COUNT_CONTINUED) != SWAP_CONT_MAX)
2383 			goto out;
2384 	}
2385 
2386 	list_add_tail(&page->lru, &head->lru);
2387 	page = NULL;			/* now it's attached, don't free it */
2388 out:
2389 	spin_unlock(&swap_lock);
2390 outer:
2391 	if (page)
2392 		__free_page(page);
2393 	return 0;
2394 }
2395 
2396 /*
2397  * swap_count_continued - when the original swap_map count is incremented
2398  * from SWAP_MAP_MAX, check if there is already a continuation page to carry
2399  * into, carry if so, or else fail until a new continuation page is allocated;
2400  * when the original swap_map count is decremented from 0 with continuation,
2401  * borrow from the continuation and report whether it still holds more.
2402  * Called while __swap_duplicate() or swap_entry_free() holds swap_lock.
2403  */
2404 static bool swap_count_continued(struct swap_info_struct *si,
2405 				 pgoff_t offset, unsigned char count)
2406 {
2407 	struct page *head;
2408 	struct page *page;
2409 	unsigned char *map;
2410 
2411 	head = vmalloc_to_page(si->swap_map + offset);
2412 	if (page_private(head) != SWP_CONTINUED) {
2413 		BUG_ON(count & COUNT_CONTINUED);
2414 		return false;		/* need to add count continuation */
2415 	}
2416 
2417 	offset &= ~PAGE_MASK;
2418 	page = list_entry(head->lru.next, struct page, lru);
2419 	map = kmap_atomic(page) + offset;
2420 
2421 	if (count == SWAP_MAP_MAX)	/* initial increment from swap_map */
2422 		goto init_map;		/* jump over SWAP_CONT_MAX checks */
2423 
2424 	if (count == (SWAP_MAP_MAX | COUNT_CONTINUED)) { /* incrementing */
2425 		/*
2426 		 * Think of how you add 1 to 999
2427 		 */
2428 		while (*map == (SWAP_CONT_MAX | COUNT_CONTINUED)) {
2429 			kunmap_atomic(map);
2430 			page = list_entry(page->lru.next, struct page, lru);
2431 			BUG_ON(page == head);
2432 			map = kmap_atomic(page) + offset;
2433 		}
2434 		if (*map == SWAP_CONT_MAX) {
2435 			kunmap_atomic(map);
2436 			page = list_entry(page->lru.next, struct page, lru);
2437 			if (page == head)
2438 				return false;	/* add count continuation */
2439 			map = kmap_atomic(page) + offset;
2440 init_map:		*map = 0;		/* we didn't zero the page */
2441 		}
2442 		*map += 1;
2443 		kunmap_atomic(map);
2444 		page = list_entry(page->lru.prev, struct page, lru);
2445 		while (page != head) {
2446 			map = kmap_atomic(page) + offset;
2447 			*map = COUNT_CONTINUED;
2448 			kunmap_atomic(map);
2449 			page = list_entry(page->lru.prev, struct page, lru);
2450 		}
2451 		return true;			/* incremented */
2452 
2453 	} else {				/* decrementing */
2454 		/*
2455 		 * Think of how you subtract 1 from 1000
2456 		 */
2457 		BUG_ON(count != COUNT_CONTINUED);
2458 		while (*map == COUNT_CONTINUED) {
2459 			kunmap_atomic(map);
2460 			page = list_entry(page->lru.next, struct page, lru);
2461 			BUG_ON(page == head);
2462 			map = kmap_atomic(page) + offset;
2463 		}
2464 		BUG_ON(*map == 0);
2465 		*map -= 1;
2466 		if (*map == 0)
2467 			count = 0;
2468 		kunmap_atomic(map);
2469 		page = list_entry(page->lru.prev, struct page, lru);
2470 		while (page != head) {
2471 			map = kmap_atomic(page) + offset;
2472 			*map = SWAP_CONT_MAX | count;
2473 			count = COUNT_CONTINUED;
2474 			kunmap_atomic(map);
2475 			page = list_entry(page->lru.prev, struct page, lru);
2476 		}
2477 		return count == COUNT_CONTINUED;
2478 	}
2479 }
2480 
2481 /*
2482  * free_swap_count_continuations - swapoff free all the continuation pages
2483  * appended to the swap_map, after swap_map is quiesced, before vfree'ing it.
2484  */
2485 static void free_swap_count_continuations(struct swap_info_struct *si)
2486 {
2487 	pgoff_t offset;
2488 
2489 	for (offset = 0; offset < si->max; offset += PAGE_SIZE) {
2490 		struct page *head;
2491 		head = vmalloc_to_page(si->swap_map + offset);
2492 		if (page_private(head)) {
2493 			struct list_head *this, *next;
2494 			list_for_each_safe(this, next, &head->lru) {
2495 				struct page *page;
2496 				page = list_entry(this, struct page, lru);
2497 				list_del(this);
2498 				__free_page(page);
2499 			}
2500 		}
2501 	}
2502 }
2503