1 /* 2 * linux/mm/swapfile.c 3 * 4 * Copyright (C) 1991, 1992, 1993, 1994 Linus Torvalds 5 * Swap reorganised 29.12.95, Stephen Tweedie 6 */ 7 8 #include <linux/mm.h> 9 #include <linux/hugetlb.h> 10 #include <linux/mman.h> 11 #include <linux/slab.h> 12 #include <linux/kernel_stat.h> 13 #include <linux/swap.h> 14 #include <linux/vmalloc.h> 15 #include <linux/pagemap.h> 16 #include <linux/namei.h> 17 #include <linux/shmem_fs.h> 18 #include <linux/blkdev.h> 19 #include <linux/random.h> 20 #include <linux/writeback.h> 21 #include <linux/proc_fs.h> 22 #include <linux/seq_file.h> 23 #include <linux/init.h> 24 #include <linux/ksm.h> 25 #include <linux/rmap.h> 26 #include <linux/security.h> 27 #include <linux/backing-dev.h> 28 #include <linux/mutex.h> 29 #include <linux/capability.h> 30 #include <linux/syscalls.h> 31 #include <linux/memcontrol.h> 32 #include <linux/poll.h> 33 #include <linux/oom.h> 34 #include <linux/frontswap.h> 35 #include <linux/swapfile.h> 36 37 #include <asm/pgtable.h> 38 #include <asm/tlbflush.h> 39 #include <linux/swapops.h> 40 #include <linux/page_cgroup.h> 41 42 static bool swap_count_continued(struct swap_info_struct *, pgoff_t, 43 unsigned char); 44 static void free_swap_count_continuations(struct swap_info_struct *); 45 static sector_t map_swap_entry(swp_entry_t, struct block_device**); 46 47 DEFINE_SPINLOCK(swap_lock); 48 static unsigned int nr_swapfiles; 49 long nr_swap_pages; 50 long total_swap_pages; 51 static int least_priority; 52 53 static const char Bad_file[] = "Bad swap file entry "; 54 static const char Unused_file[] = "Unused swap file entry "; 55 static const char Bad_offset[] = "Bad swap offset entry "; 56 static const char Unused_offset[] = "Unused swap offset entry "; 57 58 struct swap_list_t swap_list = {-1, -1}; 59 60 struct swap_info_struct *swap_info[MAX_SWAPFILES]; 61 62 static DEFINE_MUTEX(swapon_mutex); 63 64 static DECLARE_WAIT_QUEUE_HEAD(proc_poll_wait); 65 /* Activity counter to indicate that a swapon or swapoff has occurred */ 66 static atomic_t proc_poll_event = ATOMIC_INIT(0); 67 68 static inline unsigned char swap_count(unsigned char ent) 69 { 70 return ent & ~SWAP_HAS_CACHE; /* may include SWAP_HAS_CONT flag */ 71 } 72 73 /* returns 1 if swap entry is freed */ 74 static int 75 __try_to_reclaim_swap(struct swap_info_struct *si, unsigned long offset) 76 { 77 swp_entry_t entry = swp_entry(si->type, offset); 78 struct page *page; 79 int ret = 0; 80 81 page = find_get_page(&swapper_space, entry.val); 82 if (!page) 83 return 0; 84 /* 85 * This function is called from scan_swap_map() and it's called 86 * by vmscan.c at reclaiming pages. So, we hold a lock on a page, here. 87 * We have to use trylock for avoiding deadlock. This is a special 88 * case and you should use try_to_free_swap() with explicit lock_page() 89 * in usual operations. 90 */ 91 if (trylock_page(page)) { 92 ret = try_to_free_swap(page); 93 unlock_page(page); 94 } 95 page_cache_release(page); 96 return ret; 97 } 98 99 /* 100 * swapon tell device that all the old swap contents can be discarded, 101 * to allow the swap device to optimize its wear-levelling. 102 */ 103 static int discard_swap(struct swap_info_struct *si) 104 { 105 struct swap_extent *se; 106 sector_t start_block; 107 sector_t nr_blocks; 108 int err = 0; 109 110 /* Do not discard the swap header page! */ 111 se = &si->first_swap_extent; 112 start_block = (se->start_block + 1) << (PAGE_SHIFT - 9); 113 nr_blocks = ((sector_t)se->nr_pages - 1) << (PAGE_SHIFT - 9); 114 if (nr_blocks) { 115 err = blkdev_issue_discard(si->bdev, start_block, 116 nr_blocks, GFP_KERNEL, 0); 117 if (err) 118 return err; 119 cond_resched(); 120 } 121 122 list_for_each_entry(se, &si->first_swap_extent.list, list) { 123 start_block = se->start_block << (PAGE_SHIFT - 9); 124 nr_blocks = (sector_t)se->nr_pages << (PAGE_SHIFT - 9); 125 126 err = blkdev_issue_discard(si->bdev, start_block, 127 nr_blocks, GFP_KERNEL, 0); 128 if (err) 129 break; 130 131 cond_resched(); 132 } 133 return err; /* That will often be -EOPNOTSUPP */ 134 } 135 136 /* 137 * swap allocation tell device that a cluster of swap can now be discarded, 138 * to allow the swap device to optimize its wear-levelling. 139 */ 140 static void discard_swap_cluster(struct swap_info_struct *si, 141 pgoff_t start_page, pgoff_t nr_pages) 142 { 143 struct swap_extent *se = si->curr_swap_extent; 144 int found_extent = 0; 145 146 while (nr_pages) { 147 struct list_head *lh; 148 149 if (se->start_page <= start_page && 150 start_page < se->start_page + se->nr_pages) { 151 pgoff_t offset = start_page - se->start_page; 152 sector_t start_block = se->start_block + offset; 153 sector_t nr_blocks = se->nr_pages - offset; 154 155 if (nr_blocks > nr_pages) 156 nr_blocks = nr_pages; 157 start_page += nr_blocks; 158 nr_pages -= nr_blocks; 159 160 if (!found_extent++) 161 si->curr_swap_extent = se; 162 163 start_block <<= PAGE_SHIFT - 9; 164 nr_blocks <<= PAGE_SHIFT - 9; 165 if (blkdev_issue_discard(si->bdev, start_block, 166 nr_blocks, GFP_NOIO, 0)) 167 break; 168 } 169 170 lh = se->list.next; 171 se = list_entry(lh, struct swap_extent, list); 172 } 173 } 174 175 static int wait_for_discard(void *word) 176 { 177 schedule(); 178 return 0; 179 } 180 181 #define SWAPFILE_CLUSTER 256 182 #define LATENCY_LIMIT 256 183 184 static unsigned long scan_swap_map(struct swap_info_struct *si, 185 unsigned char usage) 186 { 187 unsigned long offset; 188 unsigned long scan_base; 189 unsigned long last_in_cluster = 0; 190 int latency_ration = LATENCY_LIMIT; 191 int found_free_cluster = 0; 192 193 /* 194 * We try to cluster swap pages by allocating them sequentially 195 * in swap. Once we've allocated SWAPFILE_CLUSTER pages this 196 * way, however, we resort to first-free allocation, starting 197 * a new cluster. This prevents us from scattering swap pages 198 * all over the entire swap partition, so that we reduce 199 * overall disk seek times between swap pages. -- sct 200 * But we do now try to find an empty cluster. -Andrea 201 * And we let swap pages go all over an SSD partition. Hugh 202 */ 203 204 si->flags += SWP_SCANNING; 205 scan_base = offset = si->cluster_next; 206 207 if (unlikely(!si->cluster_nr--)) { 208 if (si->pages - si->inuse_pages < SWAPFILE_CLUSTER) { 209 si->cluster_nr = SWAPFILE_CLUSTER - 1; 210 goto checks; 211 } 212 if (si->flags & SWP_DISCARDABLE) { 213 /* 214 * Start range check on racing allocations, in case 215 * they overlap the cluster we eventually decide on 216 * (we scan without swap_lock to allow preemption). 217 * It's hardly conceivable that cluster_nr could be 218 * wrapped during our scan, but don't depend on it. 219 */ 220 if (si->lowest_alloc) 221 goto checks; 222 si->lowest_alloc = si->max; 223 si->highest_alloc = 0; 224 } 225 spin_unlock(&swap_lock); 226 227 /* 228 * If seek is expensive, start searching for new cluster from 229 * start of partition, to minimize the span of allocated swap. 230 * But if seek is cheap, search from our current position, so 231 * that swap is allocated from all over the partition: if the 232 * Flash Translation Layer only remaps within limited zones, 233 * we don't want to wear out the first zone too quickly. 234 */ 235 if (!(si->flags & SWP_SOLIDSTATE)) 236 scan_base = offset = si->lowest_bit; 237 last_in_cluster = offset + SWAPFILE_CLUSTER - 1; 238 239 /* Locate the first empty (unaligned) cluster */ 240 for (; last_in_cluster <= si->highest_bit; offset++) { 241 if (si->swap_map[offset]) 242 last_in_cluster = offset + SWAPFILE_CLUSTER; 243 else if (offset == last_in_cluster) { 244 spin_lock(&swap_lock); 245 offset -= SWAPFILE_CLUSTER - 1; 246 si->cluster_next = offset; 247 si->cluster_nr = SWAPFILE_CLUSTER - 1; 248 found_free_cluster = 1; 249 goto checks; 250 } 251 if (unlikely(--latency_ration < 0)) { 252 cond_resched(); 253 latency_ration = LATENCY_LIMIT; 254 } 255 } 256 257 offset = si->lowest_bit; 258 last_in_cluster = offset + SWAPFILE_CLUSTER - 1; 259 260 /* Locate the first empty (unaligned) cluster */ 261 for (; last_in_cluster < scan_base; offset++) { 262 if (si->swap_map[offset]) 263 last_in_cluster = offset + SWAPFILE_CLUSTER; 264 else if (offset == last_in_cluster) { 265 spin_lock(&swap_lock); 266 offset -= SWAPFILE_CLUSTER - 1; 267 si->cluster_next = offset; 268 si->cluster_nr = SWAPFILE_CLUSTER - 1; 269 found_free_cluster = 1; 270 goto checks; 271 } 272 if (unlikely(--latency_ration < 0)) { 273 cond_resched(); 274 latency_ration = LATENCY_LIMIT; 275 } 276 } 277 278 offset = scan_base; 279 spin_lock(&swap_lock); 280 si->cluster_nr = SWAPFILE_CLUSTER - 1; 281 si->lowest_alloc = 0; 282 } 283 284 checks: 285 if (!(si->flags & SWP_WRITEOK)) 286 goto no_page; 287 if (!si->highest_bit) 288 goto no_page; 289 if (offset > si->highest_bit) 290 scan_base = offset = si->lowest_bit; 291 292 /* reuse swap entry of cache-only swap if not busy. */ 293 if (vm_swap_full() && si->swap_map[offset] == SWAP_HAS_CACHE) { 294 int swap_was_freed; 295 spin_unlock(&swap_lock); 296 swap_was_freed = __try_to_reclaim_swap(si, offset); 297 spin_lock(&swap_lock); 298 /* entry was freed successfully, try to use this again */ 299 if (swap_was_freed) 300 goto checks; 301 goto scan; /* check next one */ 302 } 303 304 if (si->swap_map[offset]) 305 goto scan; 306 307 if (offset == si->lowest_bit) 308 si->lowest_bit++; 309 if (offset == si->highest_bit) 310 si->highest_bit--; 311 si->inuse_pages++; 312 if (si->inuse_pages == si->pages) { 313 si->lowest_bit = si->max; 314 si->highest_bit = 0; 315 } 316 si->swap_map[offset] = usage; 317 si->cluster_next = offset + 1; 318 si->flags -= SWP_SCANNING; 319 320 if (si->lowest_alloc) { 321 /* 322 * Only set when SWP_DISCARDABLE, and there's a scan 323 * for a free cluster in progress or just completed. 324 */ 325 if (found_free_cluster) { 326 /* 327 * To optimize wear-levelling, discard the 328 * old data of the cluster, taking care not to 329 * discard any of its pages that have already 330 * been allocated by racing tasks (offset has 331 * already stepped over any at the beginning). 332 */ 333 if (offset < si->highest_alloc && 334 si->lowest_alloc <= last_in_cluster) 335 last_in_cluster = si->lowest_alloc - 1; 336 si->flags |= SWP_DISCARDING; 337 spin_unlock(&swap_lock); 338 339 if (offset < last_in_cluster) 340 discard_swap_cluster(si, offset, 341 last_in_cluster - offset + 1); 342 343 spin_lock(&swap_lock); 344 si->lowest_alloc = 0; 345 si->flags &= ~SWP_DISCARDING; 346 347 smp_mb(); /* wake_up_bit advises this */ 348 wake_up_bit(&si->flags, ilog2(SWP_DISCARDING)); 349 350 } else if (si->flags & SWP_DISCARDING) { 351 /* 352 * Delay using pages allocated by racing tasks 353 * until the whole discard has been issued. We 354 * could defer that delay until swap_writepage, 355 * but it's easier to keep this self-contained. 356 */ 357 spin_unlock(&swap_lock); 358 wait_on_bit(&si->flags, ilog2(SWP_DISCARDING), 359 wait_for_discard, TASK_UNINTERRUPTIBLE); 360 spin_lock(&swap_lock); 361 } else { 362 /* 363 * Note pages allocated by racing tasks while 364 * scan for a free cluster is in progress, so 365 * that its final discard can exclude them. 366 */ 367 if (offset < si->lowest_alloc) 368 si->lowest_alloc = offset; 369 if (offset > si->highest_alloc) 370 si->highest_alloc = offset; 371 } 372 } 373 return offset; 374 375 scan: 376 spin_unlock(&swap_lock); 377 while (++offset <= si->highest_bit) { 378 if (!si->swap_map[offset]) { 379 spin_lock(&swap_lock); 380 goto checks; 381 } 382 if (vm_swap_full() && si->swap_map[offset] == SWAP_HAS_CACHE) { 383 spin_lock(&swap_lock); 384 goto checks; 385 } 386 if (unlikely(--latency_ration < 0)) { 387 cond_resched(); 388 latency_ration = LATENCY_LIMIT; 389 } 390 } 391 offset = si->lowest_bit; 392 while (++offset < scan_base) { 393 if (!si->swap_map[offset]) { 394 spin_lock(&swap_lock); 395 goto checks; 396 } 397 if (vm_swap_full() && si->swap_map[offset] == SWAP_HAS_CACHE) { 398 spin_lock(&swap_lock); 399 goto checks; 400 } 401 if (unlikely(--latency_ration < 0)) { 402 cond_resched(); 403 latency_ration = LATENCY_LIMIT; 404 } 405 } 406 spin_lock(&swap_lock); 407 408 no_page: 409 si->flags -= SWP_SCANNING; 410 return 0; 411 } 412 413 swp_entry_t get_swap_page(void) 414 { 415 struct swap_info_struct *si; 416 pgoff_t offset; 417 int type, next; 418 int wrapped = 0; 419 420 spin_lock(&swap_lock); 421 if (nr_swap_pages <= 0) 422 goto noswap; 423 nr_swap_pages--; 424 425 for (type = swap_list.next; type >= 0 && wrapped < 2; type = next) { 426 si = swap_info[type]; 427 next = si->next; 428 if (next < 0 || 429 (!wrapped && si->prio != swap_info[next]->prio)) { 430 next = swap_list.head; 431 wrapped++; 432 } 433 434 if (!si->highest_bit) 435 continue; 436 if (!(si->flags & SWP_WRITEOK)) 437 continue; 438 439 swap_list.next = next; 440 /* This is called for allocating swap entry for cache */ 441 offset = scan_swap_map(si, SWAP_HAS_CACHE); 442 if (offset) { 443 spin_unlock(&swap_lock); 444 return swp_entry(type, offset); 445 } 446 next = swap_list.next; 447 } 448 449 nr_swap_pages++; 450 noswap: 451 spin_unlock(&swap_lock); 452 return (swp_entry_t) {0}; 453 } 454 455 /* The only caller of this function is now susupend routine */ 456 swp_entry_t get_swap_page_of_type(int type) 457 { 458 struct swap_info_struct *si; 459 pgoff_t offset; 460 461 spin_lock(&swap_lock); 462 si = swap_info[type]; 463 if (si && (si->flags & SWP_WRITEOK)) { 464 nr_swap_pages--; 465 /* This is called for allocating swap entry, not cache */ 466 offset = scan_swap_map(si, 1); 467 if (offset) { 468 spin_unlock(&swap_lock); 469 return swp_entry(type, offset); 470 } 471 nr_swap_pages++; 472 } 473 spin_unlock(&swap_lock); 474 return (swp_entry_t) {0}; 475 } 476 477 static struct swap_info_struct *swap_info_get(swp_entry_t entry) 478 { 479 struct swap_info_struct *p; 480 unsigned long offset, type; 481 482 if (!entry.val) 483 goto out; 484 type = swp_type(entry); 485 if (type >= nr_swapfiles) 486 goto bad_nofile; 487 p = swap_info[type]; 488 if (!(p->flags & SWP_USED)) 489 goto bad_device; 490 offset = swp_offset(entry); 491 if (offset >= p->max) 492 goto bad_offset; 493 if (!p->swap_map[offset]) 494 goto bad_free; 495 spin_lock(&swap_lock); 496 return p; 497 498 bad_free: 499 printk(KERN_ERR "swap_free: %s%08lx\n", Unused_offset, entry.val); 500 goto out; 501 bad_offset: 502 printk(KERN_ERR "swap_free: %s%08lx\n", Bad_offset, entry.val); 503 goto out; 504 bad_device: 505 printk(KERN_ERR "swap_free: %s%08lx\n", Unused_file, entry.val); 506 goto out; 507 bad_nofile: 508 printk(KERN_ERR "swap_free: %s%08lx\n", Bad_file, entry.val); 509 out: 510 return NULL; 511 } 512 513 static unsigned char swap_entry_free(struct swap_info_struct *p, 514 swp_entry_t entry, unsigned char usage) 515 { 516 unsigned long offset = swp_offset(entry); 517 unsigned char count; 518 unsigned char has_cache; 519 520 count = p->swap_map[offset]; 521 has_cache = count & SWAP_HAS_CACHE; 522 count &= ~SWAP_HAS_CACHE; 523 524 if (usage == SWAP_HAS_CACHE) { 525 VM_BUG_ON(!has_cache); 526 has_cache = 0; 527 } else if (count == SWAP_MAP_SHMEM) { 528 /* 529 * Or we could insist on shmem.c using a special 530 * swap_shmem_free() and free_shmem_swap_and_cache()... 531 */ 532 count = 0; 533 } else if ((count & ~COUNT_CONTINUED) <= SWAP_MAP_MAX) { 534 if (count == COUNT_CONTINUED) { 535 if (swap_count_continued(p, offset, count)) 536 count = SWAP_MAP_MAX | COUNT_CONTINUED; 537 else 538 count = SWAP_MAP_MAX; 539 } else 540 count--; 541 } 542 543 if (!count) 544 mem_cgroup_uncharge_swap(entry); 545 546 usage = count | has_cache; 547 p->swap_map[offset] = usage; 548 549 /* free if no reference */ 550 if (!usage) { 551 struct gendisk *disk = p->bdev->bd_disk; 552 if (offset < p->lowest_bit) 553 p->lowest_bit = offset; 554 if (offset > p->highest_bit) 555 p->highest_bit = offset; 556 if (swap_list.next >= 0 && 557 p->prio > swap_info[swap_list.next]->prio) 558 swap_list.next = p->type; 559 nr_swap_pages++; 560 p->inuse_pages--; 561 frontswap_invalidate_page(p->type, offset); 562 if ((p->flags & SWP_BLKDEV) && 563 disk->fops->swap_slot_free_notify) 564 disk->fops->swap_slot_free_notify(p->bdev, offset); 565 } 566 567 return usage; 568 } 569 570 /* 571 * Caller has made sure that the swapdevice corresponding to entry 572 * is still around or has not been recycled. 573 */ 574 void swap_free(swp_entry_t entry) 575 { 576 struct swap_info_struct *p; 577 578 p = swap_info_get(entry); 579 if (p) { 580 swap_entry_free(p, entry, 1); 581 spin_unlock(&swap_lock); 582 } 583 } 584 585 /* 586 * Called after dropping swapcache to decrease refcnt to swap entries. 587 */ 588 void swapcache_free(swp_entry_t entry, struct page *page) 589 { 590 struct swap_info_struct *p; 591 unsigned char count; 592 593 p = swap_info_get(entry); 594 if (p) { 595 count = swap_entry_free(p, entry, SWAP_HAS_CACHE); 596 if (page) 597 mem_cgroup_uncharge_swapcache(page, entry, count != 0); 598 spin_unlock(&swap_lock); 599 } 600 } 601 602 /* 603 * How many references to page are currently swapped out? 604 * This does not give an exact answer when swap count is continued, 605 * but does include the high COUNT_CONTINUED flag to allow for that. 606 */ 607 int page_swapcount(struct page *page) 608 { 609 int count = 0; 610 struct swap_info_struct *p; 611 swp_entry_t entry; 612 613 entry.val = page_private(page); 614 p = swap_info_get(entry); 615 if (p) { 616 count = swap_count(p->swap_map[swp_offset(entry)]); 617 spin_unlock(&swap_lock); 618 } 619 return count; 620 } 621 622 /* 623 * We can write to an anon page without COW if there are no other references 624 * to it. And as a side-effect, free up its swap: because the old content 625 * on disk will never be read, and seeking back there to write new content 626 * later would only waste time away from clustering. 627 */ 628 int reuse_swap_page(struct page *page) 629 { 630 int count; 631 632 VM_BUG_ON(!PageLocked(page)); 633 if (unlikely(PageKsm(page))) 634 return 0; 635 count = page_mapcount(page); 636 if (count <= 1 && PageSwapCache(page)) { 637 count += page_swapcount(page); 638 if (count == 1 && !PageWriteback(page)) { 639 delete_from_swap_cache(page); 640 SetPageDirty(page); 641 } 642 } 643 return count <= 1; 644 } 645 646 /* 647 * If swap is getting full, or if there are no more mappings of this page, 648 * then try_to_free_swap is called to free its swap space. 649 */ 650 int try_to_free_swap(struct page *page) 651 { 652 VM_BUG_ON(!PageLocked(page)); 653 654 if (!PageSwapCache(page)) 655 return 0; 656 if (PageWriteback(page)) 657 return 0; 658 if (page_swapcount(page)) 659 return 0; 660 661 /* 662 * Once hibernation has begun to create its image of memory, 663 * there's a danger that one of the calls to try_to_free_swap() 664 * - most probably a call from __try_to_reclaim_swap() while 665 * hibernation is allocating its own swap pages for the image, 666 * but conceivably even a call from memory reclaim - will free 667 * the swap from a page which has already been recorded in the 668 * image as a clean swapcache page, and then reuse its swap for 669 * another page of the image. On waking from hibernation, the 670 * original page might be freed under memory pressure, then 671 * later read back in from swap, now with the wrong data. 672 * 673 * Hibration suspends storage while it is writing the image 674 * to disk so check that here. 675 */ 676 if (pm_suspended_storage()) 677 return 0; 678 679 delete_from_swap_cache(page); 680 SetPageDirty(page); 681 return 1; 682 } 683 684 /* 685 * Free the swap entry like above, but also try to 686 * free the page cache entry if it is the last user. 687 */ 688 int free_swap_and_cache(swp_entry_t entry) 689 { 690 struct swap_info_struct *p; 691 struct page *page = NULL; 692 693 if (non_swap_entry(entry)) 694 return 1; 695 696 p = swap_info_get(entry); 697 if (p) { 698 if (swap_entry_free(p, entry, 1) == SWAP_HAS_CACHE) { 699 page = find_get_page(&swapper_space, entry.val); 700 if (page && !trylock_page(page)) { 701 page_cache_release(page); 702 page = NULL; 703 } 704 } 705 spin_unlock(&swap_lock); 706 } 707 if (page) { 708 /* 709 * Not mapped elsewhere, or swap space full? Free it! 710 * Also recheck PageSwapCache now page is locked (above). 711 */ 712 if (PageSwapCache(page) && !PageWriteback(page) && 713 (!page_mapped(page) || vm_swap_full())) { 714 delete_from_swap_cache(page); 715 SetPageDirty(page); 716 } 717 unlock_page(page); 718 page_cache_release(page); 719 } 720 return p != NULL; 721 } 722 723 #ifdef CONFIG_HIBERNATION 724 /* 725 * Find the swap type that corresponds to given device (if any). 726 * 727 * @offset - number of the PAGE_SIZE-sized block of the device, starting 728 * from 0, in which the swap header is expected to be located. 729 * 730 * This is needed for the suspend to disk (aka swsusp). 731 */ 732 int swap_type_of(dev_t device, sector_t offset, struct block_device **bdev_p) 733 { 734 struct block_device *bdev = NULL; 735 int type; 736 737 if (device) 738 bdev = bdget(device); 739 740 spin_lock(&swap_lock); 741 for (type = 0; type < nr_swapfiles; type++) { 742 struct swap_info_struct *sis = swap_info[type]; 743 744 if (!(sis->flags & SWP_WRITEOK)) 745 continue; 746 747 if (!bdev) { 748 if (bdev_p) 749 *bdev_p = bdgrab(sis->bdev); 750 751 spin_unlock(&swap_lock); 752 return type; 753 } 754 if (bdev == sis->bdev) { 755 struct swap_extent *se = &sis->first_swap_extent; 756 757 if (se->start_block == offset) { 758 if (bdev_p) 759 *bdev_p = bdgrab(sis->bdev); 760 761 spin_unlock(&swap_lock); 762 bdput(bdev); 763 return type; 764 } 765 } 766 } 767 spin_unlock(&swap_lock); 768 if (bdev) 769 bdput(bdev); 770 771 return -ENODEV; 772 } 773 774 /* 775 * Get the (PAGE_SIZE) block corresponding to given offset on the swapdev 776 * corresponding to given index in swap_info (swap type). 777 */ 778 sector_t swapdev_block(int type, pgoff_t offset) 779 { 780 struct block_device *bdev; 781 782 if ((unsigned int)type >= nr_swapfiles) 783 return 0; 784 if (!(swap_info[type]->flags & SWP_WRITEOK)) 785 return 0; 786 return map_swap_entry(swp_entry(type, offset), &bdev); 787 } 788 789 /* 790 * Return either the total number of swap pages of given type, or the number 791 * of free pages of that type (depending on @free) 792 * 793 * This is needed for software suspend 794 */ 795 unsigned int count_swap_pages(int type, int free) 796 { 797 unsigned int n = 0; 798 799 spin_lock(&swap_lock); 800 if ((unsigned int)type < nr_swapfiles) { 801 struct swap_info_struct *sis = swap_info[type]; 802 803 if (sis->flags & SWP_WRITEOK) { 804 n = sis->pages; 805 if (free) 806 n -= sis->inuse_pages; 807 } 808 } 809 spin_unlock(&swap_lock); 810 return n; 811 } 812 #endif /* CONFIG_HIBERNATION */ 813 814 /* 815 * No need to decide whether this PTE shares the swap entry with others, 816 * just let do_wp_page work it out if a write is requested later - to 817 * force COW, vm_page_prot omits write permission from any private vma. 818 */ 819 static int unuse_pte(struct vm_area_struct *vma, pmd_t *pmd, 820 unsigned long addr, swp_entry_t entry, struct page *page) 821 { 822 struct mem_cgroup *memcg; 823 spinlock_t *ptl; 824 pte_t *pte; 825 int ret = 1; 826 827 if (mem_cgroup_try_charge_swapin(vma->vm_mm, page, 828 GFP_KERNEL, &memcg)) { 829 ret = -ENOMEM; 830 goto out_nolock; 831 } 832 833 pte = pte_offset_map_lock(vma->vm_mm, pmd, addr, &ptl); 834 if (unlikely(!pte_same(*pte, swp_entry_to_pte(entry)))) { 835 if (ret > 0) 836 mem_cgroup_cancel_charge_swapin(memcg); 837 ret = 0; 838 goto out; 839 } 840 841 dec_mm_counter(vma->vm_mm, MM_SWAPENTS); 842 inc_mm_counter(vma->vm_mm, MM_ANONPAGES); 843 get_page(page); 844 set_pte_at(vma->vm_mm, addr, pte, 845 pte_mkold(mk_pte(page, vma->vm_page_prot))); 846 page_add_anon_rmap(page, vma, addr); 847 mem_cgroup_commit_charge_swapin(page, memcg); 848 swap_free(entry); 849 /* 850 * Move the page to the active list so it is not 851 * immediately swapped out again after swapon. 852 */ 853 activate_page(page); 854 out: 855 pte_unmap_unlock(pte, ptl); 856 out_nolock: 857 return ret; 858 } 859 860 static int unuse_pte_range(struct vm_area_struct *vma, pmd_t *pmd, 861 unsigned long addr, unsigned long end, 862 swp_entry_t entry, struct page *page) 863 { 864 pte_t swp_pte = swp_entry_to_pte(entry); 865 pte_t *pte; 866 int ret = 0; 867 868 /* 869 * We don't actually need pte lock while scanning for swp_pte: since 870 * we hold page lock and mmap_sem, swp_pte cannot be inserted into the 871 * page table while we're scanning; though it could get zapped, and on 872 * some architectures (e.g. x86_32 with PAE) we might catch a glimpse 873 * of unmatched parts which look like swp_pte, so unuse_pte must 874 * recheck under pte lock. Scanning without pte lock lets it be 875 * preemptible whenever CONFIG_PREEMPT but not CONFIG_HIGHPTE. 876 */ 877 pte = pte_offset_map(pmd, addr); 878 do { 879 /* 880 * swapoff spends a _lot_ of time in this loop! 881 * Test inline before going to call unuse_pte. 882 */ 883 if (unlikely(pte_same(*pte, swp_pte))) { 884 pte_unmap(pte); 885 ret = unuse_pte(vma, pmd, addr, entry, page); 886 if (ret) 887 goto out; 888 pte = pte_offset_map(pmd, addr); 889 } 890 } while (pte++, addr += PAGE_SIZE, addr != end); 891 pte_unmap(pte - 1); 892 out: 893 return ret; 894 } 895 896 static inline int unuse_pmd_range(struct vm_area_struct *vma, pud_t *pud, 897 unsigned long addr, unsigned long end, 898 swp_entry_t entry, struct page *page) 899 { 900 pmd_t *pmd; 901 unsigned long next; 902 int ret; 903 904 pmd = pmd_offset(pud, addr); 905 do { 906 next = pmd_addr_end(addr, end); 907 if (pmd_none_or_trans_huge_or_clear_bad(pmd)) 908 continue; 909 ret = unuse_pte_range(vma, pmd, addr, next, entry, page); 910 if (ret) 911 return ret; 912 } while (pmd++, addr = next, addr != end); 913 return 0; 914 } 915 916 static inline int unuse_pud_range(struct vm_area_struct *vma, pgd_t *pgd, 917 unsigned long addr, unsigned long end, 918 swp_entry_t entry, struct page *page) 919 { 920 pud_t *pud; 921 unsigned long next; 922 int ret; 923 924 pud = pud_offset(pgd, addr); 925 do { 926 next = pud_addr_end(addr, end); 927 if (pud_none_or_clear_bad(pud)) 928 continue; 929 ret = unuse_pmd_range(vma, pud, addr, next, entry, page); 930 if (ret) 931 return ret; 932 } while (pud++, addr = next, addr != end); 933 return 0; 934 } 935 936 static int unuse_vma(struct vm_area_struct *vma, 937 swp_entry_t entry, struct page *page) 938 { 939 pgd_t *pgd; 940 unsigned long addr, end, next; 941 int ret; 942 943 if (page_anon_vma(page)) { 944 addr = page_address_in_vma(page, vma); 945 if (addr == -EFAULT) 946 return 0; 947 else 948 end = addr + PAGE_SIZE; 949 } else { 950 addr = vma->vm_start; 951 end = vma->vm_end; 952 } 953 954 pgd = pgd_offset(vma->vm_mm, addr); 955 do { 956 next = pgd_addr_end(addr, end); 957 if (pgd_none_or_clear_bad(pgd)) 958 continue; 959 ret = unuse_pud_range(vma, pgd, addr, next, entry, page); 960 if (ret) 961 return ret; 962 } while (pgd++, addr = next, addr != end); 963 return 0; 964 } 965 966 static int unuse_mm(struct mm_struct *mm, 967 swp_entry_t entry, struct page *page) 968 { 969 struct vm_area_struct *vma; 970 int ret = 0; 971 972 if (!down_read_trylock(&mm->mmap_sem)) { 973 /* 974 * Activate page so shrink_inactive_list is unlikely to unmap 975 * its ptes while lock is dropped, so swapoff can make progress. 976 */ 977 activate_page(page); 978 unlock_page(page); 979 down_read(&mm->mmap_sem); 980 lock_page(page); 981 } 982 for (vma = mm->mmap; vma; vma = vma->vm_next) { 983 if (vma->anon_vma && (ret = unuse_vma(vma, entry, page))) 984 break; 985 } 986 up_read(&mm->mmap_sem); 987 return (ret < 0)? ret: 0; 988 } 989 990 /* 991 * Scan swap_map (or frontswap_map if frontswap parameter is true) 992 * from current position to next entry still in use. 993 * Recycle to start on reaching the end, returning 0 when empty. 994 */ 995 static unsigned int find_next_to_unuse(struct swap_info_struct *si, 996 unsigned int prev, bool frontswap) 997 { 998 unsigned int max = si->max; 999 unsigned int i = prev; 1000 unsigned char count; 1001 1002 /* 1003 * No need for swap_lock here: we're just looking 1004 * for whether an entry is in use, not modifying it; false 1005 * hits are okay, and sys_swapoff() has already prevented new 1006 * allocations from this area (while holding swap_lock). 1007 */ 1008 for (;;) { 1009 if (++i >= max) { 1010 if (!prev) { 1011 i = 0; 1012 break; 1013 } 1014 /* 1015 * No entries in use at top of swap_map, 1016 * loop back to start and recheck there. 1017 */ 1018 max = prev + 1; 1019 prev = 0; 1020 i = 1; 1021 } 1022 if (frontswap) { 1023 if (frontswap_test(si, i)) 1024 break; 1025 else 1026 continue; 1027 } 1028 count = si->swap_map[i]; 1029 if (count && swap_count(count) != SWAP_MAP_BAD) 1030 break; 1031 } 1032 return i; 1033 } 1034 1035 /* 1036 * We completely avoid races by reading each swap page in advance, 1037 * and then search for the process using it. All the necessary 1038 * page table adjustments can then be made atomically. 1039 * 1040 * if the boolean frontswap is true, only unuse pages_to_unuse pages; 1041 * pages_to_unuse==0 means all pages; ignored if frontswap is false 1042 */ 1043 int try_to_unuse(unsigned int type, bool frontswap, 1044 unsigned long pages_to_unuse) 1045 { 1046 struct swap_info_struct *si = swap_info[type]; 1047 struct mm_struct *start_mm; 1048 unsigned char *swap_map; 1049 unsigned char swcount; 1050 struct page *page; 1051 swp_entry_t entry; 1052 unsigned int i = 0; 1053 int retval = 0; 1054 1055 /* 1056 * When searching mms for an entry, a good strategy is to 1057 * start at the first mm we freed the previous entry from 1058 * (though actually we don't notice whether we or coincidence 1059 * freed the entry). Initialize this start_mm with a hold. 1060 * 1061 * A simpler strategy would be to start at the last mm we 1062 * freed the previous entry from; but that would take less 1063 * advantage of mmlist ordering, which clusters forked mms 1064 * together, child after parent. If we race with dup_mmap(), we 1065 * prefer to resolve parent before child, lest we miss entries 1066 * duplicated after we scanned child: using last mm would invert 1067 * that. 1068 */ 1069 start_mm = &init_mm; 1070 atomic_inc(&init_mm.mm_users); 1071 1072 /* 1073 * Keep on scanning until all entries have gone. Usually, 1074 * one pass through swap_map is enough, but not necessarily: 1075 * there are races when an instance of an entry might be missed. 1076 */ 1077 while ((i = find_next_to_unuse(si, i, frontswap)) != 0) { 1078 if (signal_pending(current)) { 1079 retval = -EINTR; 1080 break; 1081 } 1082 1083 /* 1084 * Get a page for the entry, using the existing swap 1085 * cache page if there is one. Otherwise, get a clean 1086 * page and read the swap into it. 1087 */ 1088 swap_map = &si->swap_map[i]; 1089 entry = swp_entry(type, i); 1090 page = read_swap_cache_async(entry, 1091 GFP_HIGHUSER_MOVABLE, NULL, 0); 1092 if (!page) { 1093 /* 1094 * Either swap_duplicate() failed because entry 1095 * has been freed independently, and will not be 1096 * reused since sys_swapoff() already disabled 1097 * allocation from here, or alloc_page() failed. 1098 */ 1099 if (!*swap_map) 1100 continue; 1101 retval = -ENOMEM; 1102 break; 1103 } 1104 1105 /* 1106 * Don't hold on to start_mm if it looks like exiting. 1107 */ 1108 if (atomic_read(&start_mm->mm_users) == 1) { 1109 mmput(start_mm); 1110 start_mm = &init_mm; 1111 atomic_inc(&init_mm.mm_users); 1112 } 1113 1114 /* 1115 * Wait for and lock page. When do_swap_page races with 1116 * try_to_unuse, do_swap_page can handle the fault much 1117 * faster than try_to_unuse can locate the entry. This 1118 * apparently redundant "wait_on_page_locked" lets try_to_unuse 1119 * defer to do_swap_page in such a case - in some tests, 1120 * do_swap_page and try_to_unuse repeatedly compete. 1121 */ 1122 wait_on_page_locked(page); 1123 wait_on_page_writeback(page); 1124 lock_page(page); 1125 wait_on_page_writeback(page); 1126 1127 /* 1128 * Remove all references to entry. 1129 */ 1130 swcount = *swap_map; 1131 if (swap_count(swcount) == SWAP_MAP_SHMEM) { 1132 retval = shmem_unuse(entry, page); 1133 /* page has already been unlocked and released */ 1134 if (retval < 0) 1135 break; 1136 continue; 1137 } 1138 if (swap_count(swcount) && start_mm != &init_mm) 1139 retval = unuse_mm(start_mm, entry, page); 1140 1141 if (swap_count(*swap_map)) { 1142 int set_start_mm = (*swap_map >= swcount); 1143 struct list_head *p = &start_mm->mmlist; 1144 struct mm_struct *new_start_mm = start_mm; 1145 struct mm_struct *prev_mm = start_mm; 1146 struct mm_struct *mm; 1147 1148 atomic_inc(&new_start_mm->mm_users); 1149 atomic_inc(&prev_mm->mm_users); 1150 spin_lock(&mmlist_lock); 1151 while (swap_count(*swap_map) && !retval && 1152 (p = p->next) != &start_mm->mmlist) { 1153 mm = list_entry(p, struct mm_struct, mmlist); 1154 if (!atomic_inc_not_zero(&mm->mm_users)) 1155 continue; 1156 spin_unlock(&mmlist_lock); 1157 mmput(prev_mm); 1158 prev_mm = mm; 1159 1160 cond_resched(); 1161 1162 swcount = *swap_map; 1163 if (!swap_count(swcount)) /* any usage ? */ 1164 ; 1165 else if (mm == &init_mm) 1166 set_start_mm = 1; 1167 else 1168 retval = unuse_mm(mm, entry, page); 1169 1170 if (set_start_mm && *swap_map < swcount) { 1171 mmput(new_start_mm); 1172 atomic_inc(&mm->mm_users); 1173 new_start_mm = mm; 1174 set_start_mm = 0; 1175 } 1176 spin_lock(&mmlist_lock); 1177 } 1178 spin_unlock(&mmlist_lock); 1179 mmput(prev_mm); 1180 mmput(start_mm); 1181 start_mm = new_start_mm; 1182 } 1183 if (retval) { 1184 unlock_page(page); 1185 page_cache_release(page); 1186 break; 1187 } 1188 1189 /* 1190 * If a reference remains (rare), we would like to leave 1191 * the page in the swap cache; but try_to_unmap could 1192 * then re-duplicate the entry once we drop page lock, 1193 * so we might loop indefinitely; also, that page could 1194 * not be swapped out to other storage meanwhile. So: 1195 * delete from cache even if there's another reference, 1196 * after ensuring that the data has been saved to disk - 1197 * since if the reference remains (rarer), it will be 1198 * read from disk into another page. Splitting into two 1199 * pages would be incorrect if swap supported "shared 1200 * private" pages, but they are handled by tmpfs files. 1201 * 1202 * Given how unuse_vma() targets one particular offset 1203 * in an anon_vma, once the anon_vma has been determined, 1204 * this splitting happens to be just what is needed to 1205 * handle where KSM pages have been swapped out: re-reading 1206 * is unnecessarily slow, but we can fix that later on. 1207 */ 1208 if (swap_count(*swap_map) && 1209 PageDirty(page) && PageSwapCache(page)) { 1210 struct writeback_control wbc = { 1211 .sync_mode = WB_SYNC_NONE, 1212 }; 1213 1214 swap_writepage(page, &wbc); 1215 lock_page(page); 1216 wait_on_page_writeback(page); 1217 } 1218 1219 /* 1220 * It is conceivable that a racing task removed this page from 1221 * swap cache just before we acquired the page lock at the top, 1222 * or while we dropped it in unuse_mm(). The page might even 1223 * be back in swap cache on another swap area: that we must not 1224 * delete, since it may not have been written out to swap yet. 1225 */ 1226 if (PageSwapCache(page) && 1227 likely(page_private(page) == entry.val)) 1228 delete_from_swap_cache(page); 1229 1230 /* 1231 * So we could skip searching mms once swap count went 1232 * to 1, we did not mark any present ptes as dirty: must 1233 * mark page dirty so shrink_page_list will preserve it. 1234 */ 1235 SetPageDirty(page); 1236 unlock_page(page); 1237 page_cache_release(page); 1238 1239 /* 1240 * Make sure that we aren't completely killing 1241 * interactive performance. 1242 */ 1243 cond_resched(); 1244 if (frontswap && pages_to_unuse > 0) { 1245 if (!--pages_to_unuse) 1246 break; 1247 } 1248 } 1249 1250 mmput(start_mm); 1251 return retval; 1252 } 1253 1254 /* 1255 * After a successful try_to_unuse, if no swap is now in use, we know 1256 * we can empty the mmlist. swap_lock must be held on entry and exit. 1257 * Note that mmlist_lock nests inside swap_lock, and an mm must be 1258 * added to the mmlist just after page_duplicate - before would be racy. 1259 */ 1260 static void drain_mmlist(void) 1261 { 1262 struct list_head *p, *next; 1263 unsigned int type; 1264 1265 for (type = 0; type < nr_swapfiles; type++) 1266 if (swap_info[type]->inuse_pages) 1267 return; 1268 spin_lock(&mmlist_lock); 1269 list_for_each_safe(p, next, &init_mm.mmlist) 1270 list_del_init(p); 1271 spin_unlock(&mmlist_lock); 1272 } 1273 1274 /* 1275 * Use this swapdev's extent info to locate the (PAGE_SIZE) block which 1276 * corresponds to page offset for the specified swap entry. 1277 * Note that the type of this function is sector_t, but it returns page offset 1278 * into the bdev, not sector offset. 1279 */ 1280 static sector_t map_swap_entry(swp_entry_t entry, struct block_device **bdev) 1281 { 1282 struct swap_info_struct *sis; 1283 struct swap_extent *start_se; 1284 struct swap_extent *se; 1285 pgoff_t offset; 1286 1287 sis = swap_info[swp_type(entry)]; 1288 *bdev = sis->bdev; 1289 1290 offset = swp_offset(entry); 1291 start_se = sis->curr_swap_extent; 1292 se = start_se; 1293 1294 for ( ; ; ) { 1295 struct list_head *lh; 1296 1297 if (se->start_page <= offset && 1298 offset < (se->start_page + se->nr_pages)) { 1299 return se->start_block + (offset - se->start_page); 1300 } 1301 lh = se->list.next; 1302 se = list_entry(lh, struct swap_extent, list); 1303 sis->curr_swap_extent = se; 1304 BUG_ON(se == start_se); /* It *must* be present */ 1305 } 1306 } 1307 1308 /* 1309 * Returns the page offset into bdev for the specified page's swap entry. 1310 */ 1311 sector_t map_swap_page(struct page *page, struct block_device **bdev) 1312 { 1313 swp_entry_t entry; 1314 entry.val = page_private(page); 1315 return map_swap_entry(entry, bdev); 1316 } 1317 1318 /* 1319 * Free all of a swapdev's extent information 1320 */ 1321 static void destroy_swap_extents(struct swap_info_struct *sis) 1322 { 1323 while (!list_empty(&sis->first_swap_extent.list)) { 1324 struct swap_extent *se; 1325 1326 se = list_entry(sis->first_swap_extent.list.next, 1327 struct swap_extent, list); 1328 list_del(&se->list); 1329 kfree(se); 1330 } 1331 } 1332 1333 /* 1334 * Add a block range (and the corresponding page range) into this swapdev's 1335 * extent list. The extent list is kept sorted in page order. 1336 * 1337 * This function rather assumes that it is called in ascending page order. 1338 */ 1339 static int 1340 add_swap_extent(struct swap_info_struct *sis, unsigned long start_page, 1341 unsigned long nr_pages, sector_t start_block) 1342 { 1343 struct swap_extent *se; 1344 struct swap_extent *new_se; 1345 struct list_head *lh; 1346 1347 if (start_page == 0) { 1348 se = &sis->first_swap_extent; 1349 sis->curr_swap_extent = se; 1350 se->start_page = 0; 1351 se->nr_pages = nr_pages; 1352 se->start_block = start_block; 1353 return 1; 1354 } else { 1355 lh = sis->first_swap_extent.list.prev; /* Highest extent */ 1356 se = list_entry(lh, struct swap_extent, list); 1357 BUG_ON(se->start_page + se->nr_pages != start_page); 1358 if (se->start_block + se->nr_pages == start_block) { 1359 /* Merge it */ 1360 se->nr_pages += nr_pages; 1361 return 0; 1362 } 1363 } 1364 1365 /* 1366 * No merge. Insert a new extent, preserving ordering. 1367 */ 1368 new_se = kmalloc(sizeof(*se), GFP_KERNEL); 1369 if (new_se == NULL) 1370 return -ENOMEM; 1371 new_se->start_page = start_page; 1372 new_se->nr_pages = nr_pages; 1373 new_se->start_block = start_block; 1374 1375 list_add_tail(&new_se->list, &sis->first_swap_extent.list); 1376 return 1; 1377 } 1378 1379 /* 1380 * A `swap extent' is a simple thing which maps a contiguous range of pages 1381 * onto a contiguous range of disk blocks. An ordered list of swap extents 1382 * is built at swapon time and is then used at swap_writepage/swap_readpage 1383 * time for locating where on disk a page belongs. 1384 * 1385 * If the swapfile is an S_ISBLK block device, a single extent is installed. 1386 * This is done so that the main operating code can treat S_ISBLK and S_ISREG 1387 * swap files identically. 1388 * 1389 * Whether the swapdev is an S_ISREG file or an S_ISBLK blockdev, the swap 1390 * extent list operates in PAGE_SIZE disk blocks. Both S_ISREG and S_ISBLK 1391 * swapfiles are handled *identically* after swapon time. 1392 * 1393 * For S_ISREG swapfiles, setup_swap_extents() will walk all the file's blocks 1394 * and will parse them into an ordered extent list, in PAGE_SIZE chunks. If 1395 * some stray blocks are found which do not fall within the PAGE_SIZE alignment 1396 * requirements, they are simply tossed out - we will never use those blocks 1397 * for swapping. 1398 * 1399 * For S_ISREG swapfiles we set S_SWAPFILE across the life of the swapon. This 1400 * prevents root from shooting her foot off by ftruncating an in-use swapfile, 1401 * which will scribble on the fs. 1402 * 1403 * The amount of disk space which a single swap extent represents varies. 1404 * Typically it is in the 1-4 megabyte range. So we can have hundreds of 1405 * extents in the list. To avoid much list walking, we cache the previous 1406 * search location in `curr_swap_extent', and start new searches from there. 1407 * This is extremely effective. The average number of iterations in 1408 * map_swap_page() has been measured at about 0.3 per page. - akpm. 1409 */ 1410 static int setup_swap_extents(struct swap_info_struct *sis, sector_t *span) 1411 { 1412 struct inode *inode; 1413 unsigned blocks_per_page; 1414 unsigned long page_no; 1415 unsigned blkbits; 1416 sector_t probe_block; 1417 sector_t last_block; 1418 sector_t lowest_block = -1; 1419 sector_t highest_block = 0; 1420 int nr_extents = 0; 1421 int ret; 1422 1423 inode = sis->swap_file->f_mapping->host; 1424 if (S_ISBLK(inode->i_mode)) { 1425 ret = add_swap_extent(sis, 0, sis->max, 0); 1426 *span = sis->pages; 1427 goto out; 1428 } 1429 1430 blkbits = inode->i_blkbits; 1431 blocks_per_page = PAGE_SIZE >> blkbits; 1432 1433 /* 1434 * Map all the blocks into the extent list. This code doesn't try 1435 * to be very smart. 1436 */ 1437 probe_block = 0; 1438 page_no = 0; 1439 last_block = i_size_read(inode) >> blkbits; 1440 while ((probe_block + blocks_per_page) <= last_block && 1441 page_no < sis->max) { 1442 unsigned block_in_page; 1443 sector_t first_block; 1444 1445 first_block = bmap(inode, probe_block); 1446 if (first_block == 0) 1447 goto bad_bmap; 1448 1449 /* 1450 * It must be PAGE_SIZE aligned on-disk 1451 */ 1452 if (first_block & (blocks_per_page - 1)) { 1453 probe_block++; 1454 goto reprobe; 1455 } 1456 1457 for (block_in_page = 1; block_in_page < blocks_per_page; 1458 block_in_page++) { 1459 sector_t block; 1460 1461 block = bmap(inode, probe_block + block_in_page); 1462 if (block == 0) 1463 goto bad_bmap; 1464 if (block != first_block + block_in_page) { 1465 /* Discontiguity */ 1466 probe_block++; 1467 goto reprobe; 1468 } 1469 } 1470 1471 first_block >>= (PAGE_SHIFT - blkbits); 1472 if (page_no) { /* exclude the header page */ 1473 if (first_block < lowest_block) 1474 lowest_block = first_block; 1475 if (first_block > highest_block) 1476 highest_block = first_block; 1477 } 1478 1479 /* 1480 * We found a PAGE_SIZE-length, PAGE_SIZE-aligned run of blocks 1481 */ 1482 ret = add_swap_extent(sis, page_no, 1, first_block); 1483 if (ret < 0) 1484 goto out; 1485 nr_extents += ret; 1486 page_no++; 1487 probe_block += blocks_per_page; 1488 reprobe: 1489 continue; 1490 } 1491 ret = nr_extents; 1492 *span = 1 + highest_block - lowest_block; 1493 if (page_no == 0) 1494 page_no = 1; /* force Empty message */ 1495 sis->max = page_no; 1496 sis->pages = page_no - 1; 1497 sis->highest_bit = page_no - 1; 1498 out: 1499 return ret; 1500 bad_bmap: 1501 printk(KERN_ERR "swapon: swapfile has holes\n"); 1502 ret = -EINVAL; 1503 goto out; 1504 } 1505 1506 static void enable_swap_info(struct swap_info_struct *p, int prio, 1507 unsigned char *swap_map, 1508 unsigned long *frontswap_map) 1509 { 1510 int i, prev; 1511 1512 spin_lock(&swap_lock); 1513 if (prio >= 0) 1514 p->prio = prio; 1515 else 1516 p->prio = --least_priority; 1517 p->swap_map = swap_map; 1518 frontswap_map_set(p, frontswap_map); 1519 p->flags |= SWP_WRITEOK; 1520 nr_swap_pages += p->pages; 1521 total_swap_pages += p->pages; 1522 1523 /* insert swap space into swap_list: */ 1524 prev = -1; 1525 for (i = swap_list.head; i >= 0; i = swap_info[i]->next) { 1526 if (p->prio >= swap_info[i]->prio) 1527 break; 1528 prev = i; 1529 } 1530 p->next = i; 1531 if (prev < 0) 1532 swap_list.head = swap_list.next = p->type; 1533 else 1534 swap_info[prev]->next = p->type; 1535 frontswap_init(p->type); 1536 spin_unlock(&swap_lock); 1537 } 1538 1539 SYSCALL_DEFINE1(swapoff, const char __user *, specialfile) 1540 { 1541 struct swap_info_struct *p = NULL; 1542 unsigned char *swap_map; 1543 struct file *swap_file, *victim; 1544 struct address_space *mapping; 1545 struct inode *inode; 1546 char *pathname; 1547 int oom_score_adj; 1548 int i, type, prev; 1549 int err; 1550 1551 if (!capable(CAP_SYS_ADMIN)) 1552 return -EPERM; 1553 1554 BUG_ON(!current->mm); 1555 1556 pathname = getname(specialfile); 1557 err = PTR_ERR(pathname); 1558 if (IS_ERR(pathname)) 1559 goto out; 1560 1561 victim = filp_open(pathname, O_RDWR|O_LARGEFILE, 0); 1562 putname(pathname); 1563 err = PTR_ERR(victim); 1564 if (IS_ERR(victim)) 1565 goto out; 1566 1567 mapping = victim->f_mapping; 1568 prev = -1; 1569 spin_lock(&swap_lock); 1570 for (type = swap_list.head; type >= 0; type = swap_info[type]->next) { 1571 p = swap_info[type]; 1572 if (p->flags & SWP_WRITEOK) { 1573 if (p->swap_file->f_mapping == mapping) 1574 break; 1575 } 1576 prev = type; 1577 } 1578 if (type < 0) { 1579 err = -EINVAL; 1580 spin_unlock(&swap_lock); 1581 goto out_dput; 1582 } 1583 if (!security_vm_enough_memory_mm(current->mm, p->pages)) 1584 vm_unacct_memory(p->pages); 1585 else { 1586 err = -ENOMEM; 1587 spin_unlock(&swap_lock); 1588 goto out_dput; 1589 } 1590 if (prev < 0) 1591 swap_list.head = p->next; 1592 else 1593 swap_info[prev]->next = p->next; 1594 if (type == swap_list.next) { 1595 /* just pick something that's safe... */ 1596 swap_list.next = swap_list.head; 1597 } 1598 if (p->prio < 0) { 1599 for (i = p->next; i >= 0; i = swap_info[i]->next) 1600 swap_info[i]->prio = p->prio--; 1601 least_priority++; 1602 } 1603 nr_swap_pages -= p->pages; 1604 total_swap_pages -= p->pages; 1605 p->flags &= ~SWP_WRITEOK; 1606 spin_unlock(&swap_lock); 1607 1608 oom_score_adj = test_set_oom_score_adj(OOM_SCORE_ADJ_MAX); 1609 err = try_to_unuse(type, false, 0); /* force all pages to be unused */ 1610 compare_swap_oom_score_adj(OOM_SCORE_ADJ_MAX, oom_score_adj); 1611 1612 if (err) { 1613 /* 1614 * reading p->prio and p->swap_map outside the lock is 1615 * safe here because only sys_swapon and sys_swapoff 1616 * change them, and there can be no other sys_swapon or 1617 * sys_swapoff for this swap_info_struct at this point. 1618 */ 1619 /* re-insert swap space back into swap_list */ 1620 enable_swap_info(p, p->prio, p->swap_map, frontswap_map_get(p)); 1621 goto out_dput; 1622 } 1623 1624 destroy_swap_extents(p); 1625 if (p->flags & SWP_CONTINUED) 1626 free_swap_count_continuations(p); 1627 1628 mutex_lock(&swapon_mutex); 1629 spin_lock(&swap_lock); 1630 drain_mmlist(); 1631 1632 /* wait for anyone still in scan_swap_map */ 1633 p->highest_bit = 0; /* cuts scans short */ 1634 while (p->flags >= SWP_SCANNING) { 1635 spin_unlock(&swap_lock); 1636 schedule_timeout_uninterruptible(1); 1637 spin_lock(&swap_lock); 1638 } 1639 1640 swap_file = p->swap_file; 1641 p->swap_file = NULL; 1642 p->max = 0; 1643 swap_map = p->swap_map; 1644 p->swap_map = NULL; 1645 p->flags = 0; 1646 frontswap_invalidate_area(type); 1647 spin_unlock(&swap_lock); 1648 mutex_unlock(&swapon_mutex); 1649 vfree(swap_map); 1650 vfree(frontswap_map_get(p)); 1651 /* Destroy swap account informatin */ 1652 swap_cgroup_swapoff(type); 1653 1654 inode = mapping->host; 1655 if (S_ISBLK(inode->i_mode)) { 1656 struct block_device *bdev = I_BDEV(inode); 1657 set_blocksize(bdev, p->old_block_size); 1658 blkdev_put(bdev, FMODE_READ | FMODE_WRITE | FMODE_EXCL); 1659 } else { 1660 mutex_lock(&inode->i_mutex); 1661 inode->i_flags &= ~S_SWAPFILE; 1662 mutex_unlock(&inode->i_mutex); 1663 } 1664 filp_close(swap_file, NULL); 1665 err = 0; 1666 atomic_inc(&proc_poll_event); 1667 wake_up_interruptible(&proc_poll_wait); 1668 1669 out_dput: 1670 filp_close(victim, NULL); 1671 out: 1672 return err; 1673 } 1674 1675 #ifdef CONFIG_PROC_FS 1676 static unsigned swaps_poll(struct file *file, poll_table *wait) 1677 { 1678 struct seq_file *seq = file->private_data; 1679 1680 poll_wait(file, &proc_poll_wait, wait); 1681 1682 if (seq->poll_event != atomic_read(&proc_poll_event)) { 1683 seq->poll_event = atomic_read(&proc_poll_event); 1684 return POLLIN | POLLRDNORM | POLLERR | POLLPRI; 1685 } 1686 1687 return POLLIN | POLLRDNORM; 1688 } 1689 1690 /* iterator */ 1691 static void *swap_start(struct seq_file *swap, loff_t *pos) 1692 { 1693 struct swap_info_struct *si; 1694 int type; 1695 loff_t l = *pos; 1696 1697 mutex_lock(&swapon_mutex); 1698 1699 if (!l) 1700 return SEQ_START_TOKEN; 1701 1702 for (type = 0; type < nr_swapfiles; type++) { 1703 smp_rmb(); /* read nr_swapfiles before swap_info[type] */ 1704 si = swap_info[type]; 1705 if (!(si->flags & SWP_USED) || !si->swap_map) 1706 continue; 1707 if (!--l) 1708 return si; 1709 } 1710 1711 return NULL; 1712 } 1713 1714 static void *swap_next(struct seq_file *swap, void *v, loff_t *pos) 1715 { 1716 struct swap_info_struct *si = v; 1717 int type; 1718 1719 if (v == SEQ_START_TOKEN) 1720 type = 0; 1721 else 1722 type = si->type + 1; 1723 1724 for (; type < nr_swapfiles; type++) { 1725 smp_rmb(); /* read nr_swapfiles before swap_info[type] */ 1726 si = swap_info[type]; 1727 if (!(si->flags & SWP_USED) || !si->swap_map) 1728 continue; 1729 ++*pos; 1730 return si; 1731 } 1732 1733 return NULL; 1734 } 1735 1736 static void swap_stop(struct seq_file *swap, void *v) 1737 { 1738 mutex_unlock(&swapon_mutex); 1739 } 1740 1741 static int swap_show(struct seq_file *swap, void *v) 1742 { 1743 struct swap_info_struct *si = v; 1744 struct file *file; 1745 int len; 1746 1747 if (si == SEQ_START_TOKEN) { 1748 seq_puts(swap,"Filename\t\t\t\tType\t\tSize\tUsed\tPriority\n"); 1749 return 0; 1750 } 1751 1752 file = si->swap_file; 1753 len = seq_path(swap, &file->f_path, " \t\n\\"); 1754 seq_printf(swap, "%*s%s\t%u\t%u\t%d\n", 1755 len < 40 ? 40 - len : 1, " ", 1756 S_ISBLK(file->f_path.dentry->d_inode->i_mode) ? 1757 "partition" : "file\t", 1758 si->pages << (PAGE_SHIFT - 10), 1759 si->inuse_pages << (PAGE_SHIFT - 10), 1760 si->prio); 1761 return 0; 1762 } 1763 1764 static const struct seq_operations swaps_op = { 1765 .start = swap_start, 1766 .next = swap_next, 1767 .stop = swap_stop, 1768 .show = swap_show 1769 }; 1770 1771 static int swaps_open(struct inode *inode, struct file *file) 1772 { 1773 struct seq_file *seq; 1774 int ret; 1775 1776 ret = seq_open(file, &swaps_op); 1777 if (ret) 1778 return ret; 1779 1780 seq = file->private_data; 1781 seq->poll_event = atomic_read(&proc_poll_event); 1782 return 0; 1783 } 1784 1785 static const struct file_operations proc_swaps_operations = { 1786 .open = swaps_open, 1787 .read = seq_read, 1788 .llseek = seq_lseek, 1789 .release = seq_release, 1790 .poll = swaps_poll, 1791 }; 1792 1793 static int __init procswaps_init(void) 1794 { 1795 proc_create("swaps", 0, NULL, &proc_swaps_operations); 1796 return 0; 1797 } 1798 __initcall(procswaps_init); 1799 #endif /* CONFIG_PROC_FS */ 1800 1801 #ifdef MAX_SWAPFILES_CHECK 1802 static int __init max_swapfiles_check(void) 1803 { 1804 MAX_SWAPFILES_CHECK(); 1805 return 0; 1806 } 1807 late_initcall(max_swapfiles_check); 1808 #endif 1809 1810 static struct swap_info_struct *alloc_swap_info(void) 1811 { 1812 struct swap_info_struct *p; 1813 unsigned int type; 1814 1815 p = kzalloc(sizeof(*p), GFP_KERNEL); 1816 if (!p) 1817 return ERR_PTR(-ENOMEM); 1818 1819 spin_lock(&swap_lock); 1820 for (type = 0; type < nr_swapfiles; type++) { 1821 if (!(swap_info[type]->flags & SWP_USED)) 1822 break; 1823 } 1824 if (type >= MAX_SWAPFILES) { 1825 spin_unlock(&swap_lock); 1826 kfree(p); 1827 return ERR_PTR(-EPERM); 1828 } 1829 if (type >= nr_swapfiles) { 1830 p->type = type; 1831 swap_info[type] = p; 1832 /* 1833 * Write swap_info[type] before nr_swapfiles, in case a 1834 * racing procfs swap_start() or swap_next() is reading them. 1835 * (We never shrink nr_swapfiles, we never free this entry.) 1836 */ 1837 smp_wmb(); 1838 nr_swapfiles++; 1839 } else { 1840 kfree(p); 1841 p = swap_info[type]; 1842 /* 1843 * Do not memset this entry: a racing procfs swap_next() 1844 * would be relying on p->type to remain valid. 1845 */ 1846 } 1847 INIT_LIST_HEAD(&p->first_swap_extent.list); 1848 p->flags = SWP_USED; 1849 p->next = -1; 1850 spin_unlock(&swap_lock); 1851 1852 return p; 1853 } 1854 1855 static int claim_swapfile(struct swap_info_struct *p, struct inode *inode) 1856 { 1857 int error; 1858 1859 if (S_ISBLK(inode->i_mode)) { 1860 p->bdev = bdgrab(I_BDEV(inode)); 1861 error = blkdev_get(p->bdev, 1862 FMODE_READ | FMODE_WRITE | FMODE_EXCL, 1863 sys_swapon); 1864 if (error < 0) { 1865 p->bdev = NULL; 1866 return -EINVAL; 1867 } 1868 p->old_block_size = block_size(p->bdev); 1869 error = set_blocksize(p->bdev, PAGE_SIZE); 1870 if (error < 0) 1871 return error; 1872 p->flags |= SWP_BLKDEV; 1873 } else if (S_ISREG(inode->i_mode)) { 1874 p->bdev = inode->i_sb->s_bdev; 1875 mutex_lock(&inode->i_mutex); 1876 if (IS_SWAPFILE(inode)) 1877 return -EBUSY; 1878 } else 1879 return -EINVAL; 1880 1881 return 0; 1882 } 1883 1884 static unsigned long read_swap_header(struct swap_info_struct *p, 1885 union swap_header *swap_header, 1886 struct inode *inode) 1887 { 1888 int i; 1889 unsigned long maxpages; 1890 unsigned long swapfilepages; 1891 1892 if (memcmp("SWAPSPACE2", swap_header->magic.magic, 10)) { 1893 printk(KERN_ERR "Unable to find swap-space signature\n"); 1894 return 0; 1895 } 1896 1897 /* swap partition endianess hack... */ 1898 if (swab32(swap_header->info.version) == 1) { 1899 swab32s(&swap_header->info.version); 1900 swab32s(&swap_header->info.last_page); 1901 swab32s(&swap_header->info.nr_badpages); 1902 for (i = 0; i < swap_header->info.nr_badpages; i++) 1903 swab32s(&swap_header->info.badpages[i]); 1904 } 1905 /* Check the swap header's sub-version */ 1906 if (swap_header->info.version != 1) { 1907 printk(KERN_WARNING 1908 "Unable to handle swap header version %d\n", 1909 swap_header->info.version); 1910 return 0; 1911 } 1912 1913 p->lowest_bit = 1; 1914 p->cluster_next = 1; 1915 p->cluster_nr = 0; 1916 1917 /* 1918 * Find out how many pages are allowed for a single swap 1919 * device. There are two limiting factors: 1) the number 1920 * of bits for the swap offset in the swp_entry_t type, and 1921 * 2) the number of bits in the swap pte as defined by the 1922 * different architectures. In order to find the 1923 * largest possible bit mask, a swap entry with swap type 0 1924 * and swap offset ~0UL is created, encoded to a swap pte, 1925 * decoded to a swp_entry_t again, and finally the swap 1926 * offset is extracted. This will mask all the bits from 1927 * the initial ~0UL mask that can't be encoded in either 1928 * the swp_entry_t or the architecture definition of a 1929 * swap pte. 1930 */ 1931 maxpages = swp_offset(pte_to_swp_entry( 1932 swp_entry_to_pte(swp_entry(0, ~0UL)))) + 1; 1933 if (maxpages > swap_header->info.last_page) { 1934 maxpages = swap_header->info.last_page + 1; 1935 /* p->max is an unsigned int: don't overflow it */ 1936 if ((unsigned int)maxpages == 0) 1937 maxpages = UINT_MAX; 1938 } 1939 p->highest_bit = maxpages - 1; 1940 1941 if (!maxpages) 1942 return 0; 1943 swapfilepages = i_size_read(inode) >> PAGE_SHIFT; 1944 if (swapfilepages && maxpages > swapfilepages) { 1945 printk(KERN_WARNING 1946 "Swap area shorter than signature indicates\n"); 1947 return 0; 1948 } 1949 if (swap_header->info.nr_badpages && S_ISREG(inode->i_mode)) 1950 return 0; 1951 if (swap_header->info.nr_badpages > MAX_SWAP_BADPAGES) 1952 return 0; 1953 1954 return maxpages; 1955 } 1956 1957 static int setup_swap_map_and_extents(struct swap_info_struct *p, 1958 union swap_header *swap_header, 1959 unsigned char *swap_map, 1960 unsigned long maxpages, 1961 sector_t *span) 1962 { 1963 int i; 1964 unsigned int nr_good_pages; 1965 int nr_extents; 1966 1967 nr_good_pages = maxpages - 1; /* omit header page */ 1968 1969 for (i = 0; i < swap_header->info.nr_badpages; i++) { 1970 unsigned int page_nr = swap_header->info.badpages[i]; 1971 if (page_nr == 0 || page_nr > swap_header->info.last_page) 1972 return -EINVAL; 1973 if (page_nr < maxpages) { 1974 swap_map[page_nr] = SWAP_MAP_BAD; 1975 nr_good_pages--; 1976 } 1977 } 1978 1979 if (nr_good_pages) { 1980 swap_map[0] = SWAP_MAP_BAD; 1981 p->max = maxpages; 1982 p->pages = nr_good_pages; 1983 nr_extents = setup_swap_extents(p, span); 1984 if (nr_extents < 0) 1985 return nr_extents; 1986 nr_good_pages = p->pages; 1987 } 1988 if (!nr_good_pages) { 1989 printk(KERN_WARNING "Empty swap-file\n"); 1990 return -EINVAL; 1991 } 1992 1993 return nr_extents; 1994 } 1995 1996 SYSCALL_DEFINE2(swapon, const char __user *, specialfile, int, swap_flags) 1997 { 1998 struct swap_info_struct *p; 1999 char *name; 2000 struct file *swap_file = NULL; 2001 struct address_space *mapping; 2002 int i; 2003 int prio; 2004 int error; 2005 union swap_header *swap_header; 2006 int nr_extents; 2007 sector_t span; 2008 unsigned long maxpages; 2009 unsigned char *swap_map = NULL; 2010 unsigned long *frontswap_map = NULL; 2011 struct page *page = NULL; 2012 struct inode *inode = NULL; 2013 2014 if (swap_flags & ~SWAP_FLAGS_VALID) 2015 return -EINVAL; 2016 2017 if (!capable(CAP_SYS_ADMIN)) 2018 return -EPERM; 2019 2020 p = alloc_swap_info(); 2021 if (IS_ERR(p)) 2022 return PTR_ERR(p); 2023 2024 name = getname(specialfile); 2025 if (IS_ERR(name)) { 2026 error = PTR_ERR(name); 2027 name = NULL; 2028 goto bad_swap; 2029 } 2030 swap_file = filp_open(name, O_RDWR|O_LARGEFILE, 0); 2031 if (IS_ERR(swap_file)) { 2032 error = PTR_ERR(swap_file); 2033 swap_file = NULL; 2034 goto bad_swap; 2035 } 2036 2037 p->swap_file = swap_file; 2038 mapping = swap_file->f_mapping; 2039 2040 for (i = 0; i < nr_swapfiles; i++) { 2041 struct swap_info_struct *q = swap_info[i]; 2042 2043 if (q == p || !q->swap_file) 2044 continue; 2045 if (mapping == q->swap_file->f_mapping) { 2046 error = -EBUSY; 2047 goto bad_swap; 2048 } 2049 } 2050 2051 inode = mapping->host; 2052 /* If S_ISREG(inode->i_mode) will do mutex_lock(&inode->i_mutex); */ 2053 error = claim_swapfile(p, inode); 2054 if (unlikely(error)) 2055 goto bad_swap; 2056 2057 /* 2058 * Read the swap header. 2059 */ 2060 if (!mapping->a_ops->readpage) { 2061 error = -EINVAL; 2062 goto bad_swap; 2063 } 2064 page = read_mapping_page(mapping, 0, swap_file); 2065 if (IS_ERR(page)) { 2066 error = PTR_ERR(page); 2067 goto bad_swap; 2068 } 2069 swap_header = kmap(page); 2070 2071 maxpages = read_swap_header(p, swap_header, inode); 2072 if (unlikely(!maxpages)) { 2073 error = -EINVAL; 2074 goto bad_swap; 2075 } 2076 2077 /* OK, set up the swap map and apply the bad block list */ 2078 swap_map = vzalloc(maxpages); 2079 if (!swap_map) { 2080 error = -ENOMEM; 2081 goto bad_swap; 2082 } 2083 2084 error = swap_cgroup_swapon(p->type, maxpages); 2085 if (error) 2086 goto bad_swap; 2087 2088 nr_extents = setup_swap_map_and_extents(p, swap_header, swap_map, 2089 maxpages, &span); 2090 if (unlikely(nr_extents < 0)) { 2091 error = nr_extents; 2092 goto bad_swap; 2093 } 2094 /* frontswap enabled? set up bit-per-page map for frontswap */ 2095 if (frontswap_enabled) 2096 frontswap_map = vzalloc(maxpages / sizeof(long)); 2097 2098 if (p->bdev) { 2099 if (blk_queue_nonrot(bdev_get_queue(p->bdev))) { 2100 p->flags |= SWP_SOLIDSTATE; 2101 p->cluster_next = 1 + (random32() % p->highest_bit); 2102 } 2103 if ((swap_flags & SWAP_FLAG_DISCARD) && discard_swap(p) == 0) 2104 p->flags |= SWP_DISCARDABLE; 2105 } 2106 2107 mutex_lock(&swapon_mutex); 2108 prio = -1; 2109 if (swap_flags & SWAP_FLAG_PREFER) 2110 prio = 2111 (swap_flags & SWAP_FLAG_PRIO_MASK) >> SWAP_FLAG_PRIO_SHIFT; 2112 enable_swap_info(p, prio, swap_map, frontswap_map); 2113 2114 printk(KERN_INFO "Adding %uk swap on %s. " 2115 "Priority:%d extents:%d across:%lluk %s%s%s\n", 2116 p->pages<<(PAGE_SHIFT-10), name, p->prio, 2117 nr_extents, (unsigned long long)span<<(PAGE_SHIFT-10), 2118 (p->flags & SWP_SOLIDSTATE) ? "SS" : "", 2119 (p->flags & SWP_DISCARDABLE) ? "D" : "", 2120 (frontswap_map) ? "FS" : ""); 2121 2122 mutex_unlock(&swapon_mutex); 2123 atomic_inc(&proc_poll_event); 2124 wake_up_interruptible(&proc_poll_wait); 2125 2126 if (S_ISREG(inode->i_mode)) 2127 inode->i_flags |= S_SWAPFILE; 2128 error = 0; 2129 goto out; 2130 bad_swap: 2131 if (inode && S_ISBLK(inode->i_mode) && p->bdev) { 2132 set_blocksize(p->bdev, p->old_block_size); 2133 blkdev_put(p->bdev, FMODE_READ | FMODE_WRITE | FMODE_EXCL); 2134 } 2135 destroy_swap_extents(p); 2136 swap_cgroup_swapoff(p->type); 2137 spin_lock(&swap_lock); 2138 p->swap_file = NULL; 2139 p->flags = 0; 2140 spin_unlock(&swap_lock); 2141 vfree(swap_map); 2142 if (swap_file) { 2143 if (inode && S_ISREG(inode->i_mode)) { 2144 mutex_unlock(&inode->i_mutex); 2145 inode = NULL; 2146 } 2147 filp_close(swap_file, NULL); 2148 } 2149 out: 2150 if (page && !IS_ERR(page)) { 2151 kunmap(page); 2152 page_cache_release(page); 2153 } 2154 if (name) 2155 putname(name); 2156 if (inode && S_ISREG(inode->i_mode)) 2157 mutex_unlock(&inode->i_mutex); 2158 return error; 2159 } 2160 2161 void si_swapinfo(struct sysinfo *val) 2162 { 2163 unsigned int type; 2164 unsigned long nr_to_be_unused = 0; 2165 2166 spin_lock(&swap_lock); 2167 for (type = 0; type < nr_swapfiles; type++) { 2168 struct swap_info_struct *si = swap_info[type]; 2169 2170 if ((si->flags & SWP_USED) && !(si->flags & SWP_WRITEOK)) 2171 nr_to_be_unused += si->inuse_pages; 2172 } 2173 val->freeswap = nr_swap_pages + nr_to_be_unused; 2174 val->totalswap = total_swap_pages + nr_to_be_unused; 2175 spin_unlock(&swap_lock); 2176 } 2177 2178 /* 2179 * Verify that a swap entry is valid and increment its swap map count. 2180 * 2181 * Returns error code in following case. 2182 * - success -> 0 2183 * - swp_entry is invalid -> EINVAL 2184 * - swp_entry is migration entry -> EINVAL 2185 * - swap-cache reference is requested but there is already one. -> EEXIST 2186 * - swap-cache reference is requested but the entry is not used. -> ENOENT 2187 * - swap-mapped reference requested but needs continued swap count. -> ENOMEM 2188 */ 2189 static int __swap_duplicate(swp_entry_t entry, unsigned char usage) 2190 { 2191 struct swap_info_struct *p; 2192 unsigned long offset, type; 2193 unsigned char count; 2194 unsigned char has_cache; 2195 int err = -EINVAL; 2196 2197 if (non_swap_entry(entry)) 2198 goto out; 2199 2200 type = swp_type(entry); 2201 if (type >= nr_swapfiles) 2202 goto bad_file; 2203 p = swap_info[type]; 2204 offset = swp_offset(entry); 2205 2206 spin_lock(&swap_lock); 2207 if (unlikely(offset >= p->max)) 2208 goto unlock_out; 2209 2210 count = p->swap_map[offset]; 2211 has_cache = count & SWAP_HAS_CACHE; 2212 count &= ~SWAP_HAS_CACHE; 2213 err = 0; 2214 2215 if (usage == SWAP_HAS_CACHE) { 2216 2217 /* set SWAP_HAS_CACHE if there is no cache and entry is used */ 2218 if (!has_cache && count) 2219 has_cache = SWAP_HAS_CACHE; 2220 else if (has_cache) /* someone else added cache */ 2221 err = -EEXIST; 2222 else /* no users remaining */ 2223 err = -ENOENT; 2224 2225 } else if (count || has_cache) { 2226 2227 if ((count & ~COUNT_CONTINUED) < SWAP_MAP_MAX) 2228 count += usage; 2229 else if ((count & ~COUNT_CONTINUED) > SWAP_MAP_MAX) 2230 err = -EINVAL; 2231 else if (swap_count_continued(p, offset, count)) 2232 count = COUNT_CONTINUED; 2233 else 2234 err = -ENOMEM; 2235 } else 2236 err = -ENOENT; /* unused swap entry */ 2237 2238 p->swap_map[offset] = count | has_cache; 2239 2240 unlock_out: 2241 spin_unlock(&swap_lock); 2242 out: 2243 return err; 2244 2245 bad_file: 2246 printk(KERN_ERR "swap_dup: %s%08lx\n", Bad_file, entry.val); 2247 goto out; 2248 } 2249 2250 /* 2251 * Help swapoff by noting that swap entry belongs to shmem/tmpfs 2252 * (in which case its reference count is never incremented). 2253 */ 2254 void swap_shmem_alloc(swp_entry_t entry) 2255 { 2256 __swap_duplicate(entry, SWAP_MAP_SHMEM); 2257 } 2258 2259 /* 2260 * Increase reference count of swap entry by 1. 2261 * Returns 0 for success, or -ENOMEM if a swap_count_continuation is required 2262 * but could not be atomically allocated. Returns 0, just as if it succeeded, 2263 * if __swap_duplicate() fails for another reason (-EINVAL or -ENOENT), which 2264 * might occur if a page table entry has got corrupted. 2265 */ 2266 int swap_duplicate(swp_entry_t entry) 2267 { 2268 int err = 0; 2269 2270 while (!err && __swap_duplicate(entry, 1) == -ENOMEM) 2271 err = add_swap_count_continuation(entry, GFP_ATOMIC); 2272 return err; 2273 } 2274 2275 /* 2276 * @entry: swap entry for which we allocate swap cache. 2277 * 2278 * Called when allocating swap cache for existing swap entry, 2279 * This can return error codes. Returns 0 at success. 2280 * -EBUSY means there is a swap cache. 2281 * Note: return code is different from swap_duplicate(). 2282 */ 2283 int swapcache_prepare(swp_entry_t entry) 2284 { 2285 return __swap_duplicate(entry, SWAP_HAS_CACHE); 2286 } 2287 2288 /* 2289 * add_swap_count_continuation - called when a swap count is duplicated 2290 * beyond SWAP_MAP_MAX, it allocates a new page and links that to the entry's 2291 * page of the original vmalloc'ed swap_map, to hold the continuation count 2292 * (for that entry and for its neighbouring PAGE_SIZE swap entries). Called 2293 * again when count is duplicated beyond SWAP_MAP_MAX * SWAP_CONT_MAX, etc. 2294 * 2295 * These continuation pages are seldom referenced: the common paths all work 2296 * on the original swap_map, only referring to a continuation page when the 2297 * low "digit" of a count is incremented or decremented through SWAP_MAP_MAX. 2298 * 2299 * add_swap_count_continuation(, GFP_ATOMIC) can be called while holding 2300 * page table locks; if it fails, add_swap_count_continuation(, GFP_KERNEL) 2301 * can be called after dropping locks. 2302 */ 2303 int add_swap_count_continuation(swp_entry_t entry, gfp_t gfp_mask) 2304 { 2305 struct swap_info_struct *si; 2306 struct page *head; 2307 struct page *page; 2308 struct page *list_page; 2309 pgoff_t offset; 2310 unsigned char count; 2311 2312 /* 2313 * When debugging, it's easier to use __GFP_ZERO here; but it's better 2314 * for latency not to zero a page while GFP_ATOMIC and holding locks. 2315 */ 2316 page = alloc_page(gfp_mask | __GFP_HIGHMEM); 2317 2318 si = swap_info_get(entry); 2319 if (!si) { 2320 /* 2321 * An acceptable race has occurred since the failing 2322 * __swap_duplicate(): the swap entry has been freed, 2323 * perhaps even the whole swap_map cleared for swapoff. 2324 */ 2325 goto outer; 2326 } 2327 2328 offset = swp_offset(entry); 2329 count = si->swap_map[offset] & ~SWAP_HAS_CACHE; 2330 2331 if ((count & ~COUNT_CONTINUED) != SWAP_MAP_MAX) { 2332 /* 2333 * The higher the swap count, the more likely it is that tasks 2334 * will race to add swap count continuation: we need to avoid 2335 * over-provisioning. 2336 */ 2337 goto out; 2338 } 2339 2340 if (!page) { 2341 spin_unlock(&swap_lock); 2342 return -ENOMEM; 2343 } 2344 2345 /* 2346 * We are fortunate that although vmalloc_to_page uses pte_offset_map, 2347 * no architecture is using highmem pages for kernel pagetables: so it 2348 * will not corrupt the GFP_ATOMIC caller's atomic pagetable kmaps. 2349 */ 2350 head = vmalloc_to_page(si->swap_map + offset); 2351 offset &= ~PAGE_MASK; 2352 2353 /* 2354 * Page allocation does not initialize the page's lru field, 2355 * but it does always reset its private field. 2356 */ 2357 if (!page_private(head)) { 2358 BUG_ON(count & COUNT_CONTINUED); 2359 INIT_LIST_HEAD(&head->lru); 2360 set_page_private(head, SWP_CONTINUED); 2361 si->flags |= SWP_CONTINUED; 2362 } 2363 2364 list_for_each_entry(list_page, &head->lru, lru) { 2365 unsigned char *map; 2366 2367 /* 2368 * If the previous map said no continuation, but we've found 2369 * a continuation page, free our allocation and use this one. 2370 */ 2371 if (!(count & COUNT_CONTINUED)) 2372 goto out; 2373 2374 map = kmap_atomic(list_page) + offset; 2375 count = *map; 2376 kunmap_atomic(map); 2377 2378 /* 2379 * If this continuation count now has some space in it, 2380 * free our allocation and use this one. 2381 */ 2382 if ((count & ~COUNT_CONTINUED) != SWAP_CONT_MAX) 2383 goto out; 2384 } 2385 2386 list_add_tail(&page->lru, &head->lru); 2387 page = NULL; /* now it's attached, don't free it */ 2388 out: 2389 spin_unlock(&swap_lock); 2390 outer: 2391 if (page) 2392 __free_page(page); 2393 return 0; 2394 } 2395 2396 /* 2397 * swap_count_continued - when the original swap_map count is incremented 2398 * from SWAP_MAP_MAX, check if there is already a continuation page to carry 2399 * into, carry if so, or else fail until a new continuation page is allocated; 2400 * when the original swap_map count is decremented from 0 with continuation, 2401 * borrow from the continuation and report whether it still holds more. 2402 * Called while __swap_duplicate() or swap_entry_free() holds swap_lock. 2403 */ 2404 static bool swap_count_continued(struct swap_info_struct *si, 2405 pgoff_t offset, unsigned char count) 2406 { 2407 struct page *head; 2408 struct page *page; 2409 unsigned char *map; 2410 2411 head = vmalloc_to_page(si->swap_map + offset); 2412 if (page_private(head) != SWP_CONTINUED) { 2413 BUG_ON(count & COUNT_CONTINUED); 2414 return false; /* need to add count continuation */ 2415 } 2416 2417 offset &= ~PAGE_MASK; 2418 page = list_entry(head->lru.next, struct page, lru); 2419 map = kmap_atomic(page) + offset; 2420 2421 if (count == SWAP_MAP_MAX) /* initial increment from swap_map */ 2422 goto init_map; /* jump over SWAP_CONT_MAX checks */ 2423 2424 if (count == (SWAP_MAP_MAX | COUNT_CONTINUED)) { /* incrementing */ 2425 /* 2426 * Think of how you add 1 to 999 2427 */ 2428 while (*map == (SWAP_CONT_MAX | COUNT_CONTINUED)) { 2429 kunmap_atomic(map); 2430 page = list_entry(page->lru.next, struct page, lru); 2431 BUG_ON(page == head); 2432 map = kmap_atomic(page) + offset; 2433 } 2434 if (*map == SWAP_CONT_MAX) { 2435 kunmap_atomic(map); 2436 page = list_entry(page->lru.next, struct page, lru); 2437 if (page == head) 2438 return false; /* add count continuation */ 2439 map = kmap_atomic(page) + offset; 2440 init_map: *map = 0; /* we didn't zero the page */ 2441 } 2442 *map += 1; 2443 kunmap_atomic(map); 2444 page = list_entry(page->lru.prev, struct page, lru); 2445 while (page != head) { 2446 map = kmap_atomic(page) + offset; 2447 *map = COUNT_CONTINUED; 2448 kunmap_atomic(map); 2449 page = list_entry(page->lru.prev, struct page, lru); 2450 } 2451 return true; /* incremented */ 2452 2453 } else { /* decrementing */ 2454 /* 2455 * Think of how you subtract 1 from 1000 2456 */ 2457 BUG_ON(count != COUNT_CONTINUED); 2458 while (*map == COUNT_CONTINUED) { 2459 kunmap_atomic(map); 2460 page = list_entry(page->lru.next, struct page, lru); 2461 BUG_ON(page == head); 2462 map = kmap_atomic(page) + offset; 2463 } 2464 BUG_ON(*map == 0); 2465 *map -= 1; 2466 if (*map == 0) 2467 count = 0; 2468 kunmap_atomic(map); 2469 page = list_entry(page->lru.prev, struct page, lru); 2470 while (page != head) { 2471 map = kmap_atomic(page) + offset; 2472 *map = SWAP_CONT_MAX | count; 2473 count = COUNT_CONTINUED; 2474 kunmap_atomic(map); 2475 page = list_entry(page->lru.prev, struct page, lru); 2476 } 2477 return count == COUNT_CONTINUED; 2478 } 2479 } 2480 2481 /* 2482 * free_swap_count_continuations - swapoff free all the continuation pages 2483 * appended to the swap_map, after swap_map is quiesced, before vfree'ing it. 2484 */ 2485 static void free_swap_count_continuations(struct swap_info_struct *si) 2486 { 2487 pgoff_t offset; 2488 2489 for (offset = 0; offset < si->max; offset += PAGE_SIZE) { 2490 struct page *head; 2491 head = vmalloc_to_page(si->swap_map + offset); 2492 if (page_private(head)) { 2493 struct list_head *this, *next; 2494 list_for_each_safe(this, next, &head->lru) { 2495 struct page *page; 2496 page = list_entry(this, struct page, lru); 2497 list_del(this); 2498 __free_page(page); 2499 } 2500 } 2501 } 2502 } 2503