xref: /openbmc/linux/mm/swapfile.c (revision b6dcefde)
1 /*
2  *  linux/mm/swapfile.c
3  *
4  *  Copyright (C) 1991, 1992, 1993, 1994  Linus Torvalds
5  *  Swap reorganised 29.12.95, Stephen Tweedie
6  */
7 
8 #include <linux/mm.h>
9 #include <linux/hugetlb.h>
10 #include <linux/mman.h>
11 #include <linux/slab.h>
12 #include <linux/kernel_stat.h>
13 #include <linux/swap.h>
14 #include <linux/vmalloc.h>
15 #include <linux/pagemap.h>
16 #include <linux/namei.h>
17 #include <linux/shm.h>
18 #include <linux/blkdev.h>
19 #include <linux/random.h>
20 #include <linux/writeback.h>
21 #include <linux/proc_fs.h>
22 #include <linux/seq_file.h>
23 #include <linux/init.h>
24 #include <linux/module.h>
25 #include <linux/ksm.h>
26 #include <linux/rmap.h>
27 #include <linux/security.h>
28 #include <linux/backing-dev.h>
29 #include <linux/mutex.h>
30 #include <linux/capability.h>
31 #include <linux/syscalls.h>
32 #include <linux/memcontrol.h>
33 
34 #include <asm/pgtable.h>
35 #include <asm/tlbflush.h>
36 #include <linux/swapops.h>
37 #include <linux/page_cgroup.h>
38 
39 static bool swap_count_continued(struct swap_info_struct *, pgoff_t,
40 				 unsigned char);
41 static void free_swap_count_continuations(struct swap_info_struct *);
42 static sector_t map_swap_entry(swp_entry_t, struct block_device**);
43 
44 static DEFINE_SPINLOCK(swap_lock);
45 static unsigned int nr_swapfiles;
46 long nr_swap_pages;
47 long total_swap_pages;
48 static int least_priority;
49 
50 static const char Bad_file[] = "Bad swap file entry ";
51 static const char Unused_file[] = "Unused swap file entry ";
52 static const char Bad_offset[] = "Bad swap offset entry ";
53 static const char Unused_offset[] = "Unused swap offset entry ";
54 
55 static struct swap_list_t swap_list = {-1, -1};
56 
57 static struct swap_info_struct *swap_info[MAX_SWAPFILES];
58 
59 static DEFINE_MUTEX(swapon_mutex);
60 
61 static inline unsigned char swap_count(unsigned char ent)
62 {
63 	return ent & ~SWAP_HAS_CACHE;	/* may include SWAP_HAS_CONT flag */
64 }
65 
66 /* returns 1 if swap entry is freed */
67 static int
68 __try_to_reclaim_swap(struct swap_info_struct *si, unsigned long offset)
69 {
70 	swp_entry_t entry = swp_entry(si->type, offset);
71 	struct page *page;
72 	int ret = 0;
73 
74 	page = find_get_page(&swapper_space, entry.val);
75 	if (!page)
76 		return 0;
77 	/*
78 	 * This function is called from scan_swap_map() and it's called
79 	 * by vmscan.c at reclaiming pages. So, we hold a lock on a page, here.
80 	 * We have to use trylock for avoiding deadlock. This is a special
81 	 * case and you should use try_to_free_swap() with explicit lock_page()
82 	 * in usual operations.
83 	 */
84 	if (trylock_page(page)) {
85 		ret = try_to_free_swap(page);
86 		unlock_page(page);
87 	}
88 	page_cache_release(page);
89 	return ret;
90 }
91 
92 /*
93  * We need this because the bdev->unplug_fn can sleep and we cannot
94  * hold swap_lock while calling the unplug_fn. And swap_lock
95  * cannot be turned into a mutex.
96  */
97 static DECLARE_RWSEM(swap_unplug_sem);
98 
99 void swap_unplug_io_fn(struct backing_dev_info *unused_bdi, struct page *page)
100 {
101 	swp_entry_t entry;
102 
103 	down_read(&swap_unplug_sem);
104 	entry.val = page_private(page);
105 	if (PageSwapCache(page)) {
106 		struct block_device *bdev = swap_info[swp_type(entry)]->bdev;
107 		struct backing_dev_info *bdi;
108 
109 		/*
110 		 * If the page is removed from swapcache from under us (with a
111 		 * racy try_to_unuse/swapoff) we need an additional reference
112 		 * count to avoid reading garbage from page_private(page) above.
113 		 * If the WARN_ON triggers during a swapoff it maybe the race
114 		 * condition and it's harmless. However if it triggers without
115 		 * swapoff it signals a problem.
116 		 */
117 		WARN_ON(page_count(page) <= 1);
118 
119 		bdi = bdev->bd_inode->i_mapping->backing_dev_info;
120 		blk_run_backing_dev(bdi, page);
121 	}
122 	up_read(&swap_unplug_sem);
123 }
124 
125 /*
126  * swapon tell device that all the old swap contents can be discarded,
127  * to allow the swap device to optimize its wear-levelling.
128  */
129 static int discard_swap(struct swap_info_struct *si)
130 {
131 	struct swap_extent *se;
132 	sector_t start_block;
133 	sector_t nr_blocks;
134 	int err = 0;
135 
136 	/* Do not discard the swap header page! */
137 	se = &si->first_swap_extent;
138 	start_block = (se->start_block + 1) << (PAGE_SHIFT - 9);
139 	nr_blocks = ((sector_t)se->nr_pages - 1) << (PAGE_SHIFT - 9);
140 	if (nr_blocks) {
141 		err = blkdev_issue_discard(si->bdev, start_block,
142 				nr_blocks, GFP_KERNEL, DISCARD_FL_BARRIER);
143 		if (err)
144 			return err;
145 		cond_resched();
146 	}
147 
148 	list_for_each_entry(se, &si->first_swap_extent.list, list) {
149 		start_block = se->start_block << (PAGE_SHIFT - 9);
150 		nr_blocks = (sector_t)se->nr_pages << (PAGE_SHIFT - 9);
151 
152 		err = blkdev_issue_discard(si->bdev, start_block,
153 				nr_blocks, GFP_KERNEL, DISCARD_FL_BARRIER);
154 		if (err)
155 			break;
156 
157 		cond_resched();
158 	}
159 	return err;		/* That will often be -EOPNOTSUPP */
160 }
161 
162 /*
163  * swap allocation tell device that a cluster of swap can now be discarded,
164  * to allow the swap device to optimize its wear-levelling.
165  */
166 static void discard_swap_cluster(struct swap_info_struct *si,
167 				 pgoff_t start_page, pgoff_t nr_pages)
168 {
169 	struct swap_extent *se = si->curr_swap_extent;
170 	int found_extent = 0;
171 
172 	while (nr_pages) {
173 		struct list_head *lh;
174 
175 		if (se->start_page <= start_page &&
176 		    start_page < se->start_page + se->nr_pages) {
177 			pgoff_t offset = start_page - se->start_page;
178 			sector_t start_block = se->start_block + offset;
179 			sector_t nr_blocks = se->nr_pages - offset;
180 
181 			if (nr_blocks > nr_pages)
182 				nr_blocks = nr_pages;
183 			start_page += nr_blocks;
184 			nr_pages -= nr_blocks;
185 
186 			if (!found_extent++)
187 				si->curr_swap_extent = se;
188 
189 			start_block <<= PAGE_SHIFT - 9;
190 			nr_blocks <<= PAGE_SHIFT - 9;
191 			if (blkdev_issue_discard(si->bdev, start_block,
192 				    nr_blocks, GFP_NOIO, DISCARD_FL_BARRIER))
193 				break;
194 		}
195 
196 		lh = se->list.next;
197 		se = list_entry(lh, struct swap_extent, list);
198 	}
199 }
200 
201 static int wait_for_discard(void *word)
202 {
203 	schedule();
204 	return 0;
205 }
206 
207 #define SWAPFILE_CLUSTER	256
208 #define LATENCY_LIMIT		256
209 
210 static inline unsigned long scan_swap_map(struct swap_info_struct *si,
211 					  unsigned char usage)
212 {
213 	unsigned long offset;
214 	unsigned long scan_base;
215 	unsigned long last_in_cluster = 0;
216 	int latency_ration = LATENCY_LIMIT;
217 	int found_free_cluster = 0;
218 
219 	/*
220 	 * We try to cluster swap pages by allocating them sequentially
221 	 * in swap.  Once we've allocated SWAPFILE_CLUSTER pages this
222 	 * way, however, we resort to first-free allocation, starting
223 	 * a new cluster.  This prevents us from scattering swap pages
224 	 * all over the entire swap partition, so that we reduce
225 	 * overall disk seek times between swap pages.  -- sct
226 	 * But we do now try to find an empty cluster.  -Andrea
227 	 * And we let swap pages go all over an SSD partition.  Hugh
228 	 */
229 
230 	si->flags += SWP_SCANNING;
231 	scan_base = offset = si->cluster_next;
232 
233 	if (unlikely(!si->cluster_nr--)) {
234 		if (si->pages - si->inuse_pages < SWAPFILE_CLUSTER) {
235 			si->cluster_nr = SWAPFILE_CLUSTER - 1;
236 			goto checks;
237 		}
238 		if (si->flags & SWP_DISCARDABLE) {
239 			/*
240 			 * Start range check on racing allocations, in case
241 			 * they overlap the cluster we eventually decide on
242 			 * (we scan without swap_lock to allow preemption).
243 			 * It's hardly conceivable that cluster_nr could be
244 			 * wrapped during our scan, but don't depend on it.
245 			 */
246 			if (si->lowest_alloc)
247 				goto checks;
248 			si->lowest_alloc = si->max;
249 			si->highest_alloc = 0;
250 		}
251 		spin_unlock(&swap_lock);
252 
253 		/*
254 		 * If seek is expensive, start searching for new cluster from
255 		 * start of partition, to minimize the span of allocated swap.
256 		 * But if seek is cheap, search from our current position, so
257 		 * that swap is allocated from all over the partition: if the
258 		 * Flash Translation Layer only remaps within limited zones,
259 		 * we don't want to wear out the first zone too quickly.
260 		 */
261 		if (!(si->flags & SWP_SOLIDSTATE))
262 			scan_base = offset = si->lowest_bit;
263 		last_in_cluster = offset + SWAPFILE_CLUSTER - 1;
264 
265 		/* Locate the first empty (unaligned) cluster */
266 		for (; last_in_cluster <= si->highest_bit; offset++) {
267 			if (si->swap_map[offset])
268 				last_in_cluster = offset + SWAPFILE_CLUSTER;
269 			else if (offset == last_in_cluster) {
270 				spin_lock(&swap_lock);
271 				offset -= SWAPFILE_CLUSTER - 1;
272 				si->cluster_next = offset;
273 				si->cluster_nr = SWAPFILE_CLUSTER - 1;
274 				found_free_cluster = 1;
275 				goto checks;
276 			}
277 			if (unlikely(--latency_ration < 0)) {
278 				cond_resched();
279 				latency_ration = LATENCY_LIMIT;
280 			}
281 		}
282 
283 		offset = si->lowest_bit;
284 		last_in_cluster = offset + SWAPFILE_CLUSTER - 1;
285 
286 		/* Locate the first empty (unaligned) cluster */
287 		for (; last_in_cluster < scan_base; offset++) {
288 			if (si->swap_map[offset])
289 				last_in_cluster = offset + SWAPFILE_CLUSTER;
290 			else if (offset == last_in_cluster) {
291 				spin_lock(&swap_lock);
292 				offset -= SWAPFILE_CLUSTER - 1;
293 				si->cluster_next = offset;
294 				si->cluster_nr = SWAPFILE_CLUSTER - 1;
295 				found_free_cluster = 1;
296 				goto checks;
297 			}
298 			if (unlikely(--latency_ration < 0)) {
299 				cond_resched();
300 				latency_ration = LATENCY_LIMIT;
301 			}
302 		}
303 
304 		offset = scan_base;
305 		spin_lock(&swap_lock);
306 		si->cluster_nr = SWAPFILE_CLUSTER - 1;
307 		si->lowest_alloc = 0;
308 	}
309 
310 checks:
311 	if (!(si->flags & SWP_WRITEOK))
312 		goto no_page;
313 	if (!si->highest_bit)
314 		goto no_page;
315 	if (offset > si->highest_bit)
316 		scan_base = offset = si->lowest_bit;
317 
318 	/* reuse swap entry of cache-only swap if not busy. */
319 	if (vm_swap_full() && si->swap_map[offset] == SWAP_HAS_CACHE) {
320 		int swap_was_freed;
321 		spin_unlock(&swap_lock);
322 		swap_was_freed = __try_to_reclaim_swap(si, offset);
323 		spin_lock(&swap_lock);
324 		/* entry was freed successfully, try to use this again */
325 		if (swap_was_freed)
326 			goto checks;
327 		goto scan; /* check next one */
328 	}
329 
330 	if (si->swap_map[offset])
331 		goto scan;
332 
333 	if (offset == si->lowest_bit)
334 		si->lowest_bit++;
335 	if (offset == si->highest_bit)
336 		si->highest_bit--;
337 	si->inuse_pages++;
338 	if (si->inuse_pages == si->pages) {
339 		si->lowest_bit = si->max;
340 		si->highest_bit = 0;
341 	}
342 	si->swap_map[offset] = usage;
343 	si->cluster_next = offset + 1;
344 	si->flags -= SWP_SCANNING;
345 
346 	if (si->lowest_alloc) {
347 		/*
348 		 * Only set when SWP_DISCARDABLE, and there's a scan
349 		 * for a free cluster in progress or just completed.
350 		 */
351 		if (found_free_cluster) {
352 			/*
353 			 * To optimize wear-levelling, discard the
354 			 * old data of the cluster, taking care not to
355 			 * discard any of its pages that have already
356 			 * been allocated by racing tasks (offset has
357 			 * already stepped over any at the beginning).
358 			 */
359 			if (offset < si->highest_alloc &&
360 			    si->lowest_alloc <= last_in_cluster)
361 				last_in_cluster = si->lowest_alloc - 1;
362 			si->flags |= SWP_DISCARDING;
363 			spin_unlock(&swap_lock);
364 
365 			if (offset < last_in_cluster)
366 				discard_swap_cluster(si, offset,
367 					last_in_cluster - offset + 1);
368 
369 			spin_lock(&swap_lock);
370 			si->lowest_alloc = 0;
371 			si->flags &= ~SWP_DISCARDING;
372 
373 			smp_mb();	/* wake_up_bit advises this */
374 			wake_up_bit(&si->flags, ilog2(SWP_DISCARDING));
375 
376 		} else if (si->flags & SWP_DISCARDING) {
377 			/*
378 			 * Delay using pages allocated by racing tasks
379 			 * until the whole discard has been issued. We
380 			 * could defer that delay until swap_writepage,
381 			 * but it's easier to keep this self-contained.
382 			 */
383 			spin_unlock(&swap_lock);
384 			wait_on_bit(&si->flags, ilog2(SWP_DISCARDING),
385 				wait_for_discard, TASK_UNINTERRUPTIBLE);
386 			spin_lock(&swap_lock);
387 		} else {
388 			/*
389 			 * Note pages allocated by racing tasks while
390 			 * scan for a free cluster is in progress, so
391 			 * that its final discard can exclude them.
392 			 */
393 			if (offset < si->lowest_alloc)
394 				si->lowest_alloc = offset;
395 			if (offset > si->highest_alloc)
396 				si->highest_alloc = offset;
397 		}
398 	}
399 	return offset;
400 
401 scan:
402 	spin_unlock(&swap_lock);
403 	while (++offset <= si->highest_bit) {
404 		if (!si->swap_map[offset]) {
405 			spin_lock(&swap_lock);
406 			goto checks;
407 		}
408 		if (vm_swap_full() && si->swap_map[offset] == SWAP_HAS_CACHE) {
409 			spin_lock(&swap_lock);
410 			goto checks;
411 		}
412 		if (unlikely(--latency_ration < 0)) {
413 			cond_resched();
414 			latency_ration = LATENCY_LIMIT;
415 		}
416 	}
417 	offset = si->lowest_bit;
418 	while (++offset < scan_base) {
419 		if (!si->swap_map[offset]) {
420 			spin_lock(&swap_lock);
421 			goto checks;
422 		}
423 		if (vm_swap_full() && si->swap_map[offset] == SWAP_HAS_CACHE) {
424 			spin_lock(&swap_lock);
425 			goto checks;
426 		}
427 		if (unlikely(--latency_ration < 0)) {
428 			cond_resched();
429 			latency_ration = LATENCY_LIMIT;
430 		}
431 	}
432 	spin_lock(&swap_lock);
433 
434 no_page:
435 	si->flags -= SWP_SCANNING;
436 	return 0;
437 }
438 
439 swp_entry_t get_swap_page(void)
440 {
441 	struct swap_info_struct *si;
442 	pgoff_t offset;
443 	int type, next;
444 	int wrapped = 0;
445 
446 	spin_lock(&swap_lock);
447 	if (nr_swap_pages <= 0)
448 		goto noswap;
449 	nr_swap_pages--;
450 
451 	for (type = swap_list.next; type >= 0 && wrapped < 2; type = next) {
452 		si = swap_info[type];
453 		next = si->next;
454 		if (next < 0 ||
455 		    (!wrapped && si->prio != swap_info[next]->prio)) {
456 			next = swap_list.head;
457 			wrapped++;
458 		}
459 
460 		if (!si->highest_bit)
461 			continue;
462 		if (!(si->flags & SWP_WRITEOK))
463 			continue;
464 
465 		swap_list.next = next;
466 		/* This is called for allocating swap entry for cache */
467 		offset = scan_swap_map(si, SWAP_HAS_CACHE);
468 		if (offset) {
469 			spin_unlock(&swap_lock);
470 			return swp_entry(type, offset);
471 		}
472 		next = swap_list.next;
473 	}
474 
475 	nr_swap_pages++;
476 noswap:
477 	spin_unlock(&swap_lock);
478 	return (swp_entry_t) {0};
479 }
480 
481 /* The only caller of this function is now susupend routine */
482 swp_entry_t get_swap_page_of_type(int type)
483 {
484 	struct swap_info_struct *si;
485 	pgoff_t offset;
486 
487 	spin_lock(&swap_lock);
488 	si = swap_info[type];
489 	if (si && (si->flags & SWP_WRITEOK)) {
490 		nr_swap_pages--;
491 		/* This is called for allocating swap entry, not cache */
492 		offset = scan_swap_map(si, 1);
493 		if (offset) {
494 			spin_unlock(&swap_lock);
495 			return swp_entry(type, offset);
496 		}
497 		nr_swap_pages++;
498 	}
499 	spin_unlock(&swap_lock);
500 	return (swp_entry_t) {0};
501 }
502 
503 static struct swap_info_struct *swap_info_get(swp_entry_t entry)
504 {
505 	struct swap_info_struct *p;
506 	unsigned long offset, type;
507 
508 	if (!entry.val)
509 		goto out;
510 	type = swp_type(entry);
511 	if (type >= nr_swapfiles)
512 		goto bad_nofile;
513 	p = swap_info[type];
514 	if (!(p->flags & SWP_USED))
515 		goto bad_device;
516 	offset = swp_offset(entry);
517 	if (offset >= p->max)
518 		goto bad_offset;
519 	if (!p->swap_map[offset])
520 		goto bad_free;
521 	spin_lock(&swap_lock);
522 	return p;
523 
524 bad_free:
525 	printk(KERN_ERR "swap_free: %s%08lx\n", Unused_offset, entry.val);
526 	goto out;
527 bad_offset:
528 	printk(KERN_ERR "swap_free: %s%08lx\n", Bad_offset, entry.val);
529 	goto out;
530 bad_device:
531 	printk(KERN_ERR "swap_free: %s%08lx\n", Unused_file, entry.val);
532 	goto out;
533 bad_nofile:
534 	printk(KERN_ERR "swap_free: %s%08lx\n", Bad_file, entry.val);
535 out:
536 	return NULL;
537 }
538 
539 static unsigned char swap_entry_free(struct swap_info_struct *p,
540 				     swp_entry_t entry, unsigned char usage)
541 {
542 	unsigned long offset = swp_offset(entry);
543 	unsigned char count;
544 	unsigned char has_cache;
545 
546 	count = p->swap_map[offset];
547 	has_cache = count & SWAP_HAS_CACHE;
548 	count &= ~SWAP_HAS_CACHE;
549 
550 	if (usage == SWAP_HAS_CACHE) {
551 		VM_BUG_ON(!has_cache);
552 		has_cache = 0;
553 	} else if (count == SWAP_MAP_SHMEM) {
554 		/*
555 		 * Or we could insist on shmem.c using a special
556 		 * swap_shmem_free() and free_shmem_swap_and_cache()...
557 		 */
558 		count = 0;
559 	} else if ((count & ~COUNT_CONTINUED) <= SWAP_MAP_MAX) {
560 		if (count == COUNT_CONTINUED) {
561 			if (swap_count_continued(p, offset, count))
562 				count = SWAP_MAP_MAX | COUNT_CONTINUED;
563 			else
564 				count = SWAP_MAP_MAX;
565 		} else
566 			count--;
567 	}
568 
569 	if (!count)
570 		mem_cgroup_uncharge_swap(entry);
571 
572 	usage = count | has_cache;
573 	p->swap_map[offset] = usage;
574 
575 	/* free if no reference */
576 	if (!usage) {
577 		if (offset < p->lowest_bit)
578 			p->lowest_bit = offset;
579 		if (offset > p->highest_bit)
580 			p->highest_bit = offset;
581 		if (swap_list.next >= 0 &&
582 		    p->prio > swap_info[swap_list.next]->prio)
583 			swap_list.next = p->type;
584 		nr_swap_pages++;
585 		p->inuse_pages--;
586 	}
587 
588 	return usage;
589 }
590 
591 /*
592  * Caller has made sure that the swapdevice corresponding to entry
593  * is still around or has not been recycled.
594  */
595 void swap_free(swp_entry_t entry)
596 {
597 	struct swap_info_struct *p;
598 
599 	p = swap_info_get(entry);
600 	if (p) {
601 		swap_entry_free(p, entry, 1);
602 		spin_unlock(&swap_lock);
603 	}
604 }
605 
606 /*
607  * Called after dropping swapcache to decrease refcnt to swap entries.
608  */
609 void swapcache_free(swp_entry_t entry, struct page *page)
610 {
611 	struct swap_info_struct *p;
612 	unsigned char count;
613 
614 	p = swap_info_get(entry);
615 	if (p) {
616 		count = swap_entry_free(p, entry, SWAP_HAS_CACHE);
617 		if (page)
618 			mem_cgroup_uncharge_swapcache(page, entry, count != 0);
619 		spin_unlock(&swap_lock);
620 	}
621 }
622 
623 /*
624  * How many references to page are currently swapped out?
625  * This does not give an exact answer when swap count is continued,
626  * but does include the high COUNT_CONTINUED flag to allow for that.
627  */
628 static inline int page_swapcount(struct page *page)
629 {
630 	int count = 0;
631 	struct swap_info_struct *p;
632 	swp_entry_t entry;
633 
634 	entry.val = page_private(page);
635 	p = swap_info_get(entry);
636 	if (p) {
637 		count = swap_count(p->swap_map[swp_offset(entry)]);
638 		spin_unlock(&swap_lock);
639 	}
640 	return count;
641 }
642 
643 /*
644  * We can write to an anon page without COW if there are no other references
645  * to it.  And as a side-effect, free up its swap: because the old content
646  * on disk will never be read, and seeking back there to write new content
647  * later would only waste time away from clustering.
648  */
649 int reuse_swap_page(struct page *page)
650 {
651 	int count;
652 
653 	VM_BUG_ON(!PageLocked(page));
654 	if (unlikely(PageKsm(page)))
655 		return 0;
656 	count = page_mapcount(page);
657 	if (count <= 1 && PageSwapCache(page)) {
658 		count += page_swapcount(page);
659 		if (count == 1 && !PageWriteback(page)) {
660 			delete_from_swap_cache(page);
661 			SetPageDirty(page);
662 		}
663 	}
664 	return count <= 1;
665 }
666 
667 /*
668  * If swap is getting full, or if there are no more mappings of this page,
669  * then try_to_free_swap is called to free its swap space.
670  */
671 int try_to_free_swap(struct page *page)
672 {
673 	VM_BUG_ON(!PageLocked(page));
674 
675 	if (!PageSwapCache(page))
676 		return 0;
677 	if (PageWriteback(page))
678 		return 0;
679 	if (page_swapcount(page))
680 		return 0;
681 
682 	delete_from_swap_cache(page);
683 	SetPageDirty(page);
684 	return 1;
685 }
686 
687 /*
688  * Free the swap entry like above, but also try to
689  * free the page cache entry if it is the last user.
690  */
691 int free_swap_and_cache(swp_entry_t entry)
692 {
693 	struct swap_info_struct *p;
694 	struct page *page = NULL;
695 
696 	if (non_swap_entry(entry))
697 		return 1;
698 
699 	p = swap_info_get(entry);
700 	if (p) {
701 		if (swap_entry_free(p, entry, 1) == SWAP_HAS_CACHE) {
702 			page = find_get_page(&swapper_space, entry.val);
703 			if (page && !trylock_page(page)) {
704 				page_cache_release(page);
705 				page = NULL;
706 			}
707 		}
708 		spin_unlock(&swap_lock);
709 	}
710 	if (page) {
711 		/*
712 		 * Not mapped elsewhere, or swap space full? Free it!
713 		 * Also recheck PageSwapCache now page is locked (above).
714 		 */
715 		if (PageSwapCache(page) && !PageWriteback(page) &&
716 				(!page_mapped(page) || vm_swap_full())) {
717 			delete_from_swap_cache(page);
718 			SetPageDirty(page);
719 		}
720 		unlock_page(page);
721 		page_cache_release(page);
722 	}
723 	return p != NULL;
724 }
725 
726 #ifdef CONFIG_HIBERNATION
727 /*
728  * Find the swap type that corresponds to given device (if any).
729  *
730  * @offset - number of the PAGE_SIZE-sized block of the device, starting
731  * from 0, in which the swap header is expected to be located.
732  *
733  * This is needed for the suspend to disk (aka swsusp).
734  */
735 int swap_type_of(dev_t device, sector_t offset, struct block_device **bdev_p)
736 {
737 	struct block_device *bdev = NULL;
738 	int type;
739 
740 	if (device)
741 		bdev = bdget(device);
742 
743 	spin_lock(&swap_lock);
744 	for (type = 0; type < nr_swapfiles; type++) {
745 		struct swap_info_struct *sis = swap_info[type];
746 
747 		if (!(sis->flags & SWP_WRITEOK))
748 			continue;
749 
750 		if (!bdev) {
751 			if (bdev_p)
752 				*bdev_p = bdgrab(sis->bdev);
753 
754 			spin_unlock(&swap_lock);
755 			return type;
756 		}
757 		if (bdev == sis->bdev) {
758 			struct swap_extent *se = &sis->first_swap_extent;
759 
760 			if (se->start_block == offset) {
761 				if (bdev_p)
762 					*bdev_p = bdgrab(sis->bdev);
763 
764 				spin_unlock(&swap_lock);
765 				bdput(bdev);
766 				return type;
767 			}
768 		}
769 	}
770 	spin_unlock(&swap_lock);
771 	if (bdev)
772 		bdput(bdev);
773 
774 	return -ENODEV;
775 }
776 
777 /*
778  * Get the (PAGE_SIZE) block corresponding to given offset on the swapdev
779  * corresponding to given index in swap_info (swap type).
780  */
781 sector_t swapdev_block(int type, pgoff_t offset)
782 {
783 	struct block_device *bdev;
784 
785 	if ((unsigned int)type >= nr_swapfiles)
786 		return 0;
787 	if (!(swap_info[type]->flags & SWP_WRITEOK))
788 		return 0;
789 	return map_swap_entry(swp_entry(type, offset), &bdev);
790 }
791 
792 /*
793  * Return either the total number of swap pages of given type, or the number
794  * of free pages of that type (depending on @free)
795  *
796  * This is needed for software suspend
797  */
798 unsigned int count_swap_pages(int type, int free)
799 {
800 	unsigned int n = 0;
801 
802 	spin_lock(&swap_lock);
803 	if ((unsigned int)type < nr_swapfiles) {
804 		struct swap_info_struct *sis = swap_info[type];
805 
806 		if (sis->flags & SWP_WRITEOK) {
807 			n = sis->pages;
808 			if (free)
809 				n -= sis->inuse_pages;
810 		}
811 	}
812 	spin_unlock(&swap_lock);
813 	return n;
814 }
815 #endif /* CONFIG_HIBERNATION */
816 
817 /*
818  * No need to decide whether this PTE shares the swap entry with others,
819  * just let do_wp_page work it out if a write is requested later - to
820  * force COW, vm_page_prot omits write permission from any private vma.
821  */
822 static int unuse_pte(struct vm_area_struct *vma, pmd_t *pmd,
823 		unsigned long addr, swp_entry_t entry, struct page *page)
824 {
825 	struct mem_cgroup *ptr = NULL;
826 	spinlock_t *ptl;
827 	pte_t *pte;
828 	int ret = 1;
829 
830 	if (mem_cgroup_try_charge_swapin(vma->vm_mm, page, GFP_KERNEL, &ptr)) {
831 		ret = -ENOMEM;
832 		goto out_nolock;
833 	}
834 
835 	pte = pte_offset_map_lock(vma->vm_mm, pmd, addr, &ptl);
836 	if (unlikely(!pte_same(*pte, swp_entry_to_pte(entry)))) {
837 		if (ret > 0)
838 			mem_cgroup_cancel_charge_swapin(ptr);
839 		ret = 0;
840 		goto out;
841 	}
842 
843 	inc_mm_counter(vma->vm_mm, anon_rss);
844 	get_page(page);
845 	set_pte_at(vma->vm_mm, addr, pte,
846 		   pte_mkold(mk_pte(page, vma->vm_page_prot)));
847 	page_add_anon_rmap(page, vma, addr);
848 	mem_cgroup_commit_charge_swapin(page, ptr);
849 	swap_free(entry);
850 	/*
851 	 * Move the page to the active list so it is not
852 	 * immediately swapped out again after swapon.
853 	 */
854 	activate_page(page);
855 out:
856 	pte_unmap_unlock(pte, ptl);
857 out_nolock:
858 	return ret;
859 }
860 
861 static int unuse_pte_range(struct vm_area_struct *vma, pmd_t *pmd,
862 				unsigned long addr, unsigned long end,
863 				swp_entry_t entry, struct page *page)
864 {
865 	pte_t swp_pte = swp_entry_to_pte(entry);
866 	pte_t *pte;
867 	int ret = 0;
868 
869 	/*
870 	 * We don't actually need pte lock while scanning for swp_pte: since
871 	 * we hold page lock and mmap_sem, swp_pte cannot be inserted into the
872 	 * page table while we're scanning; though it could get zapped, and on
873 	 * some architectures (e.g. x86_32 with PAE) we might catch a glimpse
874 	 * of unmatched parts which look like swp_pte, so unuse_pte must
875 	 * recheck under pte lock.  Scanning without pte lock lets it be
876 	 * preemptible whenever CONFIG_PREEMPT but not CONFIG_HIGHPTE.
877 	 */
878 	pte = pte_offset_map(pmd, addr);
879 	do {
880 		/*
881 		 * swapoff spends a _lot_ of time in this loop!
882 		 * Test inline before going to call unuse_pte.
883 		 */
884 		if (unlikely(pte_same(*pte, swp_pte))) {
885 			pte_unmap(pte);
886 			ret = unuse_pte(vma, pmd, addr, entry, page);
887 			if (ret)
888 				goto out;
889 			pte = pte_offset_map(pmd, addr);
890 		}
891 	} while (pte++, addr += PAGE_SIZE, addr != end);
892 	pte_unmap(pte - 1);
893 out:
894 	return ret;
895 }
896 
897 static inline int unuse_pmd_range(struct vm_area_struct *vma, pud_t *pud,
898 				unsigned long addr, unsigned long end,
899 				swp_entry_t entry, struct page *page)
900 {
901 	pmd_t *pmd;
902 	unsigned long next;
903 	int ret;
904 
905 	pmd = pmd_offset(pud, addr);
906 	do {
907 		next = pmd_addr_end(addr, end);
908 		if (pmd_none_or_clear_bad(pmd))
909 			continue;
910 		ret = unuse_pte_range(vma, pmd, addr, next, entry, page);
911 		if (ret)
912 			return ret;
913 	} while (pmd++, addr = next, addr != end);
914 	return 0;
915 }
916 
917 static inline int unuse_pud_range(struct vm_area_struct *vma, pgd_t *pgd,
918 				unsigned long addr, unsigned long end,
919 				swp_entry_t entry, struct page *page)
920 {
921 	pud_t *pud;
922 	unsigned long next;
923 	int ret;
924 
925 	pud = pud_offset(pgd, addr);
926 	do {
927 		next = pud_addr_end(addr, end);
928 		if (pud_none_or_clear_bad(pud))
929 			continue;
930 		ret = unuse_pmd_range(vma, pud, addr, next, entry, page);
931 		if (ret)
932 			return ret;
933 	} while (pud++, addr = next, addr != end);
934 	return 0;
935 }
936 
937 static int unuse_vma(struct vm_area_struct *vma,
938 				swp_entry_t entry, struct page *page)
939 {
940 	pgd_t *pgd;
941 	unsigned long addr, end, next;
942 	int ret;
943 
944 	if (page_anon_vma(page)) {
945 		addr = page_address_in_vma(page, vma);
946 		if (addr == -EFAULT)
947 			return 0;
948 		else
949 			end = addr + PAGE_SIZE;
950 	} else {
951 		addr = vma->vm_start;
952 		end = vma->vm_end;
953 	}
954 
955 	pgd = pgd_offset(vma->vm_mm, addr);
956 	do {
957 		next = pgd_addr_end(addr, end);
958 		if (pgd_none_or_clear_bad(pgd))
959 			continue;
960 		ret = unuse_pud_range(vma, pgd, addr, next, entry, page);
961 		if (ret)
962 			return ret;
963 	} while (pgd++, addr = next, addr != end);
964 	return 0;
965 }
966 
967 static int unuse_mm(struct mm_struct *mm,
968 				swp_entry_t entry, struct page *page)
969 {
970 	struct vm_area_struct *vma;
971 	int ret = 0;
972 
973 	if (!down_read_trylock(&mm->mmap_sem)) {
974 		/*
975 		 * Activate page so shrink_inactive_list is unlikely to unmap
976 		 * its ptes while lock is dropped, so swapoff can make progress.
977 		 */
978 		activate_page(page);
979 		unlock_page(page);
980 		down_read(&mm->mmap_sem);
981 		lock_page(page);
982 	}
983 	for (vma = mm->mmap; vma; vma = vma->vm_next) {
984 		if (vma->anon_vma && (ret = unuse_vma(vma, entry, page)))
985 			break;
986 	}
987 	up_read(&mm->mmap_sem);
988 	return (ret < 0)? ret: 0;
989 }
990 
991 /*
992  * Scan swap_map from current position to next entry still in use.
993  * Recycle to start on reaching the end, returning 0 when empty.
994  */
995 static unsigned int find_next_to_unuse(struct swap_info_struct *si,
996 					unsigned int prev)
997 {
998 	unsigned int max = si->max;
999 	unsigned int i = prev;
1000 	unsigned char count;
1001 
1002 	/*
1003 	 * No need for swap_lock here: we're just looking
1004 	 * for whether an entry is in use, not modifying it; false
1005 	 * hits are okay, and sys_swapoff() has already prevented new
1006 	 * allocations from this area (while holding swap_lock).
1007 	 */
1008 	for (;;) {
1009 		if (++i >= max) {
1010 			if (!prev) {
1011 				i = 0;
1012 				break;
1013 			}
1014 			/*
1015 			 * No entries in use at top of swap_map,
1016 			 * loop back to start and recheck there.
1017 			 */
1018 			max = prev + 1;
1019 			prev = 0;
1020 			i = 1;
1021 		}
1022 		count = si->swap_map[i];
1023 		if (count && swap_count(count) != SWAP_MAP_BAD)
1024 			break;
1025 	}
1026 	return i;
1027 }
1028 
1029 /*
1030  * We completely avoid races by reading each swap page in advance,
1031  * and then search for the process using it.  All the necessary
1032  * page table adjustments can then be made atomically.
1033  */
1034 static int try_to_unuse(unsigned int type)
1035 {
1036 	struct swap_info_struct *si = swap_info[type];
1037 	struct mm_struct *start_mm;
1038 	unsigned char *swap_map;
1039 	unsigned char swcount;
1040 	struct page *page;
1041 	swp_entry_t entry;
1042 	unsigned int i = 0;
1043 	int retval = 0;
1044 
1045 	/*
1046 	 * When searching mms for an entry, a good strategy is to
1047 	 * start at the first mm we freed the previous entry from
1048 	 * (though actually we don't notice whether we or coincidence
1049 	 * freed the entry).  Initialize this start_mm with a hold.
1050 	 *
1051 	 * A simpler strategy would be to start at the last mm we
1052 	 * freed the previous entry from; but that would take less
1053 	 * advantage of mmlist ordering, which clusters forked mms
1054 	 * together, child after parent.  If we race with dup_mmap(), we
1055 	 * prefer to resolve parent before child, lest we miss entries
1056 	 * duplicated after we scanned child: using last mm would invert
1057 	 * that.
1058 	 */
1059 	start_mm = &init_mm;
1060 	atomic_inc(&init_mm.mm_users);
1061 
1062 	/*
1063 	 * Keep on scanning until all entries have gone.  Usually,
1064 	 * one pass through swap_map is enough, but not necessarily:
1065 	 * there are races when an instance of an entry might be missed.
1066 	 */
1067 	while ((i = find_next_to_unuse(si, i)) != 0) {
1068 		if (signal_pending(current)) {
1069 			retval = -EINTR;
1070 			break;
1071 		}
1072 
1073 		/*
1074 		 * Get a page for the entry, using the existing swap
1075 		 * cache page if there is one.  Otherwise, get a clean
1076 		 * page and read the swap into it.
1077 		 */
1078 		swap_map = &si->swap_map[i];
1079 		entry = swp_entry(type, i);
1080 		page = read_swap_cache_async(entry,
1081 					GFP_HIGHUSER_MOVABLE, NULL, 0);
1082 		if (!page) {
1083 			/*
1084 			 * Either swap_duplicate() failed because entry
1085 			 * has been freed independently, and will not be
1086 			 * reused since sys_swapoff() already disabled
1087 			 * allocation from here, or alloc_page() failed.
1088 			 */
1089 			if (!*swap_map)
1090 				continue;
1091 			retval = -ENOMEM;
1092 			break;
1093 		}
1094 
1095 		/*
1096 		 * Don't hold on to start_mm if it looks like exiting.
1097 		 */
1098 		if (atomic_read(&start_mm->mm_users) == 1) {
1099 			mmput(start_mm);
1100 			start_mm = &init_mm;
1101 			atomic_inc(&init_mm.mm_users);
1102 		}
1103 
1104 		/*
1105 		 * Wait for and lock page.  When do_swap_page races with
1106 		 * try_to_unuse, do_swap_page can handle the fault much
1107 		 * faster than try_to_unuse can locate the entry.  This
1108 		 * apparently redundant "wait_on_page_locked" lets try_to_unuse
1109 		 * defer to do_swap_page in such a case - in some tests,
1110 		 * do_swap_page and try_to_unuse repeatedly compete.
1111 		 */
1112 		wait_on_page_locked(page);
1113 		wait_on_page_writeback(page);
1114 		lock_page(page);
1115 		wait_on_page_writeback(page);
1116 
1117 		/*
1118 		 * Remove all references to entry.
1119 		 */
1120 		swcount = *swap_map;
1121 		if (swap_count(swcount) == SWAP_MAP_SHMEM) {
1122 			retval = shmem_unuse(entry, page);
1123 			/* page has already been unlocked and released */
1124 			if (retval < 0)
1125 				break;
1126 			continue;
1127 		}
1128 		if (swap_count(swcount) && start_mm != &init_mm)
1129 			retval = unuse_mm(start_mm, entry, page);
1130 
1131 		if (swap_count(*swap_map)) {
1132 			int set_start_mm = (*swap_map >= swcount);
1133 			struct list_head *p = &start_mm->mmlist;
1134 			struct mm_struct *new_start_mm = start_mm;
1135 			struct mm_struct *prev_mm = start_mm;
1136 			struct mm_struct *mm;
1137 
1138 			atomic_inc(&new_start_mm->mm_users);
1139 			atomic_inc(&prev_mm->mm_users);
1140 			spin_lock(&mmlist_lock);
1141 			while (swap_count(*swap_map) && !retval &&
1142 					(p = p->next) != &start_mm->mmlist) {
1143 				mm = list_entry(p, struct mm_struct, mmlist);
1144 				if (!atomic_inc_not_zero(&mm->mm_users))
1145 					continue;
1146 				spin_unlock(&mmlist_lock);
1147 				mmput(prev_mm);
1148 				prev_mm = mm;
1149 
1150 				cond_resched();
1151 
1152 				swcount = *swap_map;
1153 				if (!swap_count(swcount)) /* any usage ? */
1154 					;
1155 				else if (mm == &init_mm)
1156 					set_start_mm = 1;
1157 				else
1158 					retval = unuse_mm(mm, entry, page);
1159 
1160 				if (set_start_mm && *swap_map < swcount) {
1161 					mmput(new_start_mm);
1162 					atomic_inc(&mm->mm_users);
1163 					new_start_mm = mm;
1164 					set_start_mm = 0;
1165 				}
1166 				spin_lock(&mmlist_lock);
1167 			}
1168 			spin_unlock(&mmlist_lock);
1169 			mmput(prev_mm);
1170 			mmput(start_mm);
1171 			start_mm = new_start_mm;
1172 		}
1173 		if (retval) {
1174 			unlock_page(page);
1175 			page_cache_release(page);
1176 			break;
1177 		}
1178 
1179 		/*
1180 		 * If a reference remains (rare), we would like to leave
1181 		 * the page in the swap cache; but try_to_unmap could
1182 		 * then re-duplicate the entry once we drop page lock,
1183 		 * so we might loop indefinitely; also, that page could
1184 		 * not be swapped out to other storage meanwhile.  So:
1185 		 * delete from cache even if there's another reference,
1186 		 * after ensuring that the data has been saved to disk -
1187 		 * since if the reference remains (rarer), it will be
1188 		 * read from disk into another page.  Splitting into two
1189 		 * pages would be incorrect if swap supported "shared
1190 		 * private" pages, but they are handled by tmpfs files.
1191 		 *
1192 		 * Given how unuse_vma() targets one particular offset
1193 		 * in an anon_vma, once the anon_vma has been determined,
1194 		 * this splitting happens to be just what is needed to
1195 		 * handle where KSM pages have been swapped out: re-reading
1196 		 * is unnecessarily slow, but we can fix that later on.
1197 		 */
1198 		if (swap_count(*swap_map) &&
1199 		     PageDirty(page) && PageSwapCache(page)) {
1200 			struct writeback_control wbc = {
1201 				.sync_mode = WB_SYNC_NONE,
1202 			};
1203 
1204 			swap_writepage(page, &wbc);
1205 			lock_page(page);
1206 			wait_on_page_writeback(page);
1207 		}
1208 
1209 		/*
1210 		 * It is conceivable that a racing task removed this page from
1211 		 * swap cache just before we acquired the page lock at the top,
1212 		 * or while we dropped it in unuse_mm().  The page might even
1213 		 * be back in swap cache on another swap area: that we must not
1214 		 * delete, since it may not have been written out to swap yet.
1215 		 */
1216 		if (PageSwapCache(page) &&
1217 		    likely(page_private(page) == entry.val))
1218 			delete_from_swap_cache(page);
1219 
1220 		/*
1221 		 * So we could skip searching mms once swap count went
1222 		 * to 1, we did not mark any present ptes as dirty: must
1223 		 * mark page dirty so shrink_page_list will preserve it.
1224 		 */
1225 		SetPageDirty(page);
1226 		unlock_page(page);
1227 		page_cache_release(page);
1228 
1229 		/*
1230 		 * Make sure that we aren't completely killing
1231 		 * interactive performance.
1232 		 */
1233 		cond_resched();
1234 	}
1235 
1236 	mmput(start_mm);
1237 	return retval;
1238 }
1239 
1240 /*
1241  * After a successful try_to_unuse, if no swap is now in use, we know
1242  * we can empty the mmlist.  swap_lock must be held on entry and exit.
1243  * Note that mmlist_lock nests inside swap_lock, and an mm must be
1244  * added to the mmlist just after page_duplicate - before would be racy.
1245  */
1246 static void drain_mmlist(void)
1247 {
1248 	struct list_head *p, *next;
1249 	unsigned int type;
1250 
1251 	for (type = 0; type < nr_swapfiles; type++)
1252 		if (swap_info[type]->inuse_pages)
1253 			return;
1254 	spin_lock(&mmlist_lock);
1255 	list_for_each_safe(p, next, &init_mm.mmlist)
1256 		list_del_init(p);
1257 	spin_unlock(&mmlist_lock);
1258 }
1259 
1260 /*
1261  * Use this swapdev's extent info to locate the (PAGE_SIZE) block which
1262  * corresponds to page offset for the specified swap entry.
1263  * Note that the type of this function is sector_t, but it returns page offset
1264  * into the bdev, not sector offset.
1265  */
1266 static sector_t map_swap_entry(swp_entry_t entry, struct block_device **bdev)
1267 {
1268 	struct swap_info_struct *sis;
1269 	struct swap_extent *start_se;
1270 	struct swap_extent *se;
1271 	pgoff_t offset;
1272 
1273 	sis = swap_info[swp_type(entry)];
1274 	*bdev = sis->bdev;
1275 
1276 	offset = swp_offset(entry);
1277 	start_se = sis->curr_swap_extent;
1278 	se = start_se;
1279 
1280 	for ( ; ; ) {
1281 		struct list_head *lh;
1282 
1283 		if (se->start_page <= offset &&
1284 				offset < (se->start_page + se->nr_pages)) {
1285 			return se->start_block + (offset - se->start_page);
1286 		}
1287 		lh = se->list.next;
1288 		se = list_entry(lh, struct swap_extent, list);
1289 		sis->curr_swap_extent = se;
1290 		BUG_ON(se == start_se);		/* It *must* be present */
1291 	}
1292 }
1293 
1294 /*
1295  * Returns the page offset into bdev for the specified page's swap entry.
1296  */
1297 sector_t map_swap_page(struct page *page, struct block_device **bdev)
1298 {
1299 	swp_entry_t entry;
1300 	entry.val = page_private(page);
1301 	return map_swap_entry(entry, bdev);
1302 }
1303 
1304 /*
1305  * Free all of a swapdev's extent information
1306  */
1307 static void destroy_swap_extents(struct swap_info_struct *sis)
1308 {
1309 	while (!list_empty(&sis->first_swap_extent.list)) {
1310 		struct swap_extent *se;
1311 
1312 		se = list_entry(sis->first_swap_extent.list.next,
1313 				struct swap_extent, list);
1314 		list_del(&se->list);
1315 		kfree(se);
1316 	}
1317 }
1318 
1319 /*
1320  * Add a block range (and the corresponding page range) into this swapdev's
1321  * extent list.  The extent list is kept sorted in page order.
1322  *
1323  * This function rather assumes that it is called in ascending page order.
1324  */
1325 static int
1326 add_swap_extent(struct swap_info_struct *sis, unsigned long start_page,
1327 		unsigned long nr_pages, sector_t start_block)
1328 {
1329 	struct swap_extent *se;
1330 	struct swap_extent *new_se;
1331 	struct list_head *lh;
1332 
1333 	if (start_page == 0) {
1334 		se = &sis->first_swap_extent;
1335 		sis->curr_swap_extent = se;
1336 		se->start_page = 0;
1337 		se->nr_pages = nr_pages;
1338 		se->start_block = start_block;
1339 		return 1;
1340 	} else {
1341 		lh = sis->first_swap_extent.list.prev;	/* Highest extent */
1342 		se = list_entry(lh, struct swap_extent, list);
1343 		BUG_ON(se->start_page + se->nr_pages != start_page);
1344 		if (se->start_block + se->nr_pages == start_block) {
1345 			/* Merge it */
1346 			se->nr_pages += nr_pages;
1347 			return 0;
1348 		}
1349 	}
1350 
1351 	/*
1352 	 * No merge.  Insert a new extent, preserving ordering.
1353 	 */
1354 	new_se = kmalloc(sizeof(*se), GFP_KERNEL);
1355 	if (new_se == NULL)
1356 		return -ENOMEM;
1357 	new_se->start_page = start_page;
1358 	new_se->nr_pages = nr_pages;
1359 	new_se->start_block = start_block;
1360 
1361 	list_add_tail(&new_se->list, &sis->first_swap_extent.list);
1362 	return 1;
1363 }
1364 
1365 /*
1366  * A `swap extent' is a simple thing which maps a contiguous range of pages
1367  * onto a contiguous range of disk blocks.  An ordered list of swap extents
1368  * is built at swapon time and is then used at swap_writepage/swap_readpage
1369  * time for locating where on disk a page belongs.
1370  *
1371  * If the swapfile is an S_ISBLK block device, a single extent is installed.
1372  * This is done so that the main operating code can treat S_ISBLK and S_ISREG
1373  * swap files identically.
1374  *
1375  * Whether the swapdev is an S_ISREG file or an S_ISBLK blockdev, the swap
1376  * extent list operates in PAGE_SIZE disk blocks.  Both S_ISREG and S_ISBLK
1377  * swapfiles are handled *identically* after swapon time.
1378  *
1379  * For S_ISREG swapfiles, setup_swap_extents() will walk all the file's blocks
1380  * and will parse them into an ordered extent list, in PAGE_SIZE chunks.  If
1381  * some stray blocks are found which do not fall within the PAGE_SIZE alignment
1382  * requirements, they are simply tossed out - we will never use those blocks
1383  * for swapping.
1384  *
1385  * For S_ISREG swapfiles we set S_SWAPFILE across the life of the swapon.  This
1386  * prevents root from shooting her foot off by ftruncating an in-use swapfile,
1387  * which will scribble on the fs.
1388  *
1389  * The amount of disk space which a single swap extent represents varies.
1390  * Typically it is in the 1-4 megabyte range.  So we can have hundreds of
1391  * extents in the list.  To avoid much list walking, we cache the previous
1392  * search location in `curr_swap_extent', and start new searches from there.
1393  * This is extremely effective.  The average number of iterations in
1394  * map_swap_page() has been measured at about 0.3 per page.  - akpm.
1395  */
1396 static int setup_swap_extents(struct swap_info_struct *sis, sector_t *span)
1397 {
1398 	struct inode *inode;
1399 	unsigned blocks_per_page;
1400 	unsigned long page_no;
1401 	unsigned blkbits;
1402 	sector_t probe_block;
1403 	sector_t last_block;
1404 	sector_t lowest_block = -1;
1405 	sector_t highest_block = 0;
1406 	int nr_extents = 0;
1407 	int ret;
1408 
1409 	inode = sis->swap_file->f_mapping->host;
1410 	if (S_ISBLK(inode->i_mode)) {
1411 		ret = add_swap_extent(sis, 0, sis->max, 0);
1412 		*span = sis->pages;
1413 		goto out;
1414 	}
1415 
1416 	blkbits = inode->i_blkbits;
1417 	blocks_per_page = PAGE_SIZE >> blkbits;
1418 
1419 	/*
1420 	 * Map all the blocks into the extent list.  This code doesn't try
1421 	 * to be very smart.
1422 	 */
1423 	probe_block = 0;
1424 	page_no = 0;
1425 	last_block = i_size_read(inode) >> blkbits;
1426 	while ((probe_block + blocks_per_page) <= last_block &&
1427 			page_no < sis->max) {
1428 		unsigned block_in_page;
1429 		sector_t first_block;
1430 
1431 		first_block = bmap(inode, probe_block);
1432 		if (first_block == 0)
1433 			goto bad_bmap;
1434 
1435 		/*
1436 		 * It must be PAGE_SIZE aligned on-disk
1437 		 */
1438 		if (first_block & (blocks_per_page - 1)) {
1439 			probe_block++;
1440 			goto reprobe;
1441 		}
1442 
1443 		for (block_in_page = 1; block_in_page < blocks_per_page;
1444 					block_in_page++) {
1445 			sector_t block;
1446 
1447 			block = bmap(inode, probe_block + block_in_page);
1448 			if (block == 0)
1449 				goto bad_bmap;
1450 			if (block != first_block + block_in_page) {
1451 				/* Discontiguity */
1452 				probe_block++;
1453 				goto reprobe;
1454 			}
1455 		}
1456 
1457 		first_block >>= (PAGE_SHIFT - blkbits);
1458 		if (page_no) {	/* exclude the header page */
1459 			if (first_block < lowest_block)
1460 				lowest_block = first_block;
1461 			if (first_block > highest_block)
1462 				highest_block = first_block;
1463 		}
1464 
1465 		/*
1466 		 * We found a PAGE_SIZE-length, PAGE_SIZE-aligned run of blocks
1467 		 */
1468 		ret = add_swap_extent(sis, page_no, 1, first_block);
1469 		if (ret < 0)
1470 			goto out;
1471 		nr_extents += ret;
1472 		page_no++;
1473 		probe_block += blocks_per_page;
1474 reprobe:
1475 		continue;
1476 	}
1477 	ret = nr_extents;
1478 	*span = 1 + highest_block - lowest_block;
1479 	if (page_no == 0)
1480 		page_no = 1;	/* force Empty message */
1481 	sis->max = page_no;
1482 	sis->pages = page_no - 1;
1483 	sis->highest_bit = page_no - 1;
1484 out:
1485 	return ret;
1486 bad_bmap:
1487 	printk(KERN_ERR "swapon: swapfile has holes\n");
1488 	ret = -EINVAL;
1489 	goto out;
1490 }
1491 
1492 SYSCALL_DEFINE1(swapoff, const char __user *, specialfile)
1493 {
1494 	struct swap_info_struct *p = NULL;
1495 	unsigned char *swap_map;
1496 	struct file *swap_file, *victim;
1497 	struct address_space *mapping;
1498 	struct inode *inode;
1499 	char *pathname;
1500 	int i, type, prev;
1501 	int err;
1502 
1503 	if (!capable(CAP_SYS_ADMIN))
1504 		return -EPERM;
1505 
1506 	pathname = getname(specialfile);
1507 	err = PTR_ERR(pathname);
1508 	if (IS_ERR(pathname))
1509 		goto out;
1510 
1511 	victim = filp_open(pathname, O_RDWR|O_LARGEFILE, 0);
1512 	putname(pathname);
1513 	err = PTR_ERR(victim);
1514 	if (IS_ERR(victim))
1515 		goto out;
1516 
1517 	mapping = victim->f_mapping;
1518 	prev = -1;
1519 	spin_lock(&swap_lock);
1520 	for (type = swap_list.head; type >= 0; type = swap_info[type]->next) {
1521 		p = swap_info[type];
1522 		if (p->flags & SWP_WRITEOK) {
1523 			if (p->swap_file->f_mapping == mapping)
1524 				break;
1525 		}
1526 		prev = type;
1527 	}
1528 	if (type < 0) {
1529 		err = -EINVAL;
1530 		spin_unlock(&swap_lock);
1531 		goto out_dput;
1532 	}
1533 	if (!security_vm_enough_memory(p->pages))
1534 		vm_unacct_memory(p->pages);
1535 	else {
1536 		err = -ENOMEM;
1537 		spin_unlock(&swap_lock);
1538 		goto out_dput;
1539 	}
1540 	if (prev < 0)
1541 		swap_list.head = p->next;
1542 	else
1543 		swap_info[prev]->next = p->next;
1544 	if (type == swap_list.next) {
1545 		/* just pick something that's safe... */
1546 		swap_list.next = swap_list.head;
1547 	}
1548 	if (p->prio < 0) {
1549 		for (i = p->next; i >= 0; i = swap_info[i]->next)
1550 			swap_info[i]->prio = p->prio--;
1551 		least_priority++;
1552 	}
1553 	nr_swap_pages -= p->pages;
1554 	total_swap_pages -= p->pages;
1555 	p->flags &= ~SWP_WRITEOK;
1556 	spin_unlock(&swap_lock);
1557 
1558 	current->flags |= PF_OOM_ORIGIN;
1559 	err = try_to_unuse(type);
1560 	current->flags &= ~PF_OOM_ORIGIN;
1561 
1562 	if (err) {
1563 		/* re-insert swap space back into swap_list */
1564 		spin_lock(&swap_lock);
1565 		if (p->prio < 0)
1566 			p->prio = --least_priority;
1567 		prev = -1;
1568 		for (i = swap_list.head; i >= 0; i = swap_info[i]->next) {
1569 			if (p->prio >= swap_info[i]->prio)
1570 				break;
1571 			prev = i;
1572 		}
1573 		p->next = i;
1574 		if (prev < 0)
1575 			swap_list.head = swap_list.next = type;
1576 		else
1577 			swap_info[prev]->next = type;
1578 		nr_swap_pages += p->pages;
1579 		total_swap_pages += p->pages;
1580 		p->flags |= SWP_WRITEOK;
1581 		spin_unlock(&swap_lock);
1582 		goto out_dput;
1583 	}
1584 
1585 	/* wait for any unplug function to finish */
1586 	down_write(&swap_unplug_sem);
1587 	up_write(&swap_unplug_sem);
1588 
1589 	destroy_swap_extents(p);
1590 	if (p->flags & SWP_CONTINUED)
1591 		free_swap_count_continuations(p);
1592 
1593 	mutex_lock(&swapon_mutex);
1594 	spin_lock(&swap_lock);
1595 	drain_mmlist();
1596 
1597 	/* wait for anyone still in scan_swap_map */
1598 	p->highest_bit = 0;		/* cuts scans short */
1599 	while (p->flags >= SWP_SCANNING) {
1600 		spin_unlock(&swap_lock);
1601 		schedule_timeout_uninterruptible(1);
1602 		spin_lock(&swap_lock);
1603 	}
1604 
1605 	swap_file = p->swap_file;
1606 	p->swap_file = NULL;
1607 	p->max = 0;
1608 	swap_map = p->swap_map;
1609 	p->swap_map = NULL;
1610 	p->flags = 0;
1611 	spin_unlock(&swap_lock);
1612 	mutex_unlock(&swapon_mutex);
1613 	vfree(swap_map);
1614 	/* Destroy swap account informatin */
1615 	swap_cgroup_swapoff(type);
1616 
1617 	inode = mapping->host;
1618 	if (S_ISBLK(inode->i_mode)) {
1619 		struct block_device *bdev = I_BDEV(inode);
1620 		set_blocksize(bdev, p->old_block_size);
1621 		bd_release(bdev);
1622 	} else {
1623 		mutex_lock(&inode->i_mutex);
1624 		inode->i_flags &= ~S_SWAPFILE;
1625 		mutex_unlock(&inode->i_mutex);
1626 	}
1627 	filp_close(swap_file, NULL);
1628 	err = 0;
1629 
1630 out_dput:
1631 	filp_close(victim, NULL);
1632 out:
1633 	return err;
1634 }
1635 
1636 #ifdef CONFIG_PROC_FS
1637 /* iterator */
1638 static void *swap_start(struct seq_file *swap, loff_t *pos)
1639 {
1640 	struct swap_info_struct *si;
1641 	int type;
1642 	loff_t l = *pos;
1643 
1644 	mutex_lock(&swapon_mutex);
1645 
1646 	if (!l)
1647 		return SEQ_START_TOKEN;
1648 
1649 	for (type = 0; type < nr_swapfiles; type++) {
1650 		smp_rmb();	/* read nr_swapfiles before swap_info[type] */
1651 		si = swap_info[type];
1652 		if (!(si->flags & SWP_USED) || !si->swap_map)
1653 			continue;
1654 		if (!--l)
1655 			return si;
1656 	}
1657 
1658 	return NULL;
1659 }
1660 
1661 static void *swap_next(struct seq_file *swap, void *v, loff_t *pos)
1662 {
1663 	struct swap_info_struct *si = v;
1664 	int type;
1665 
1666 	if (v == SEQ_START_TOKEN)
1667 		type = 0;
1668 	else
1669 		type = si->type + 1;
1670 
1671 	for (; type < nr_swapfiles; type++) {
1672 		smp_rmb();	/* read nr_swapfiles before swap_info[type] */
1673 		si = swap_info[type];
1674 		if (!(si->flags & SWP_USED) || !si->swap_map)
1675 			continue;
1676 		++*pos;
1677 		return si;
1678 	}
1679 
1680 	return NULL;
1681 }
1682 
1683 static void swap_stop(struct seq_file *swap, void *v)
1684 {
1685 	mutex_unlock(&swapon_mutex);
1686 }
1687 
1688 static int swap_show(struct seq_file *swap, void *v)
1689 {
1690 	struct swap_info_struct *si = v;
1691 	struct file *file;
1692 	int len;
1693 
1694 	if (si == SEQ_START_TOKEN) {
1695 		seq_puts(swap,"Filename\t\t\t\tType\t\tSize\tUsed\tPriority\n");
1696 		return 0;
1697 	}
1698 
1699 	file = si->swap_file;
1700 	len = seq_path(swap, &file->f_path, " \t\n\\");
1701 	seq_printf(swap, "%*s%s\t%u\t%u\t%d\n",
1702 			len < 40 ? 40 - len : 1, " ",
1703 			S_ISBLK(file->f_path.dentry->d_inode->i_mode) ?
1704 				"partition" : "file\t",
1705 			si->pages << (PAGE_SHIFT - 10),
1706 			si->inuse_pages << (PAGE_SHIFT - 10),
1707 			si->prio);
1708 	return 0;
1709 }
1710 
1711 static const struct seq_operations swaps_op = {
1712 	.start =	swap_start,
1713 	.next =		swap_next,
1714 	.stop =		swap_stop,
1715 	.show =		swap_show
1716 };
1717 
1718 static int swaps_open(struct inode *inode, struct file *file)
1719 {
1720 	return seq_open(file, &swaps_op);
1721 }
1722 
1723 static const struct file_operations proc_swaps_operations = {
1724 	.open		= swaps_open,
1725 	.read		= seq_read,
1726 	.llseek		= seq_lseek,
1727 	.release	= seq_release,
1728 };
1729 
1730 static int __init procswaps_init(void)
1731 {
1732 	proc_create("swaps", 0, NULL, &proc_swaps_operations);
1733 	return 0;
1734 }
1735 __initcall(procswaps_init);
1736 #endif /* CONFIG_PROC_FS */
1737 
1738 #ifdef MAX_SWAPFILES_CHECK
1739 static int __init max_swapfiles_check(void)
1740 {
1741 	MAX_SWAPFILES_CHECK();
1742 	return 0;
1743 }
1744 late_initcall(max_swapfiles_check);
1745 #endif
1746 
1747 /*
1748  * Written 01/25/92 by Simmule Turner, heavily changed by Linus.
1749  *
1750  * The swapon system call
1751  */
1752 SYSCALL_DEFINE2(swapon, const char __user *, specialfile, int, swap_flags)
1753 {
1754 	struct swap_info_struct *p;
1755 	char *name = NULL;
1756 	struct block_device *bdev = NULL;
1757 	struct file *swap_file = NULL;
1758 	struct address_space *mapping;
1759 	unsigned int type;
1760 	int i, prev;
1761 	int error;
1762 	union swap_header *swap_header = NULL;
1763 	unsigned int nr_good_pages = 0;
1764 	int nr_extents = 0;
1765 	sector_t span;
1766 	unsigned long maxpages = 1;
1767 	unsigned long swapfilepages;
1768 	unsigned char *swap_map = NULL;
1769 	struct page *page = NULL;
1770 	struct inode *inode = NULL;
1771 	int did_down = 0;
1772 
1773 	if (!capable(CAP_SYS_ADMIN))
1774 		return -EPERM;
1775 
1776 	p = kzalloc(sizeof(*p), GFP_KERNEL);
1777 	if (!p)
1778 		return -ENOMEM;
1779 
1780 	spin_lock(&swap_lock);
1781 	for (type = 0; type < nr_swapfiles; type++) {
1782 		if (!(swap_info[type]->flags & SWP_USED))
1783 			break;
1784 	}
1785 	error = -EPERM;
1786 	if (type >= MAX_SWAPFILES) {
1787 		spin_unlock(&swap_lock);
1788 		kfree(p);
1789 		goto out;
1790 	}
1791 	if (type >= nr_swapfiles) {
1792 		p->type = type;
1793 		swap_info[type] = p;
1794 		/*
1795 		 * Write swap_info[type] before nr_swapfiles, in case a
1796 		 * racing procfs swap_start() or swap_next() is reading them.
1797 		 * (We never shrink nr_swapfiles, we never free this entry.)
1798 		 */
1799 		smp_wmb();
1800 		nr_swapfiles++;
1801 	} else {
1802 		kfree(p);
1803 		p = swap_info[type];
1804 		/*
1805 		 * Do not memset this entry: a racing procfs swap_next()
1806 		 * would be relying on p->type to remain valid.
1807 		 */
1808 	}
1809 	INIT_LIST_HEAD(&p->first_swap_extent.list);
1810 	p->flags = SWP_USED;
1811 	p->next = -1;
1812 	spin_unlock(&swap_lock);
1813 
1814 	name = getname(specialfile);
1815 	error = PTR_ERR(name);
1816 	if (IS_ERR(name)) {
1817 		name = NULL;
1818 		goto bad_swap_2;
1819 	}
1820 	swap_file = filp_open(name, O_RDWR|O_LARGEFILE, 0);
1821 	error = PTR_ERR(swap_file);
1822 	if (IS_ERR(swap_file)) {
1823 		swap_file = NULL;
1824 		goto bad_swap_2;
1825 	}
1826 
1827 	p->swap_file = swap_file;
1828 	mapping = swap_file->f_mapping;
1829 	inode = mapping->host;
1830 
1831 	error = -EBUSY;
1832 	for (i = 0; i < nr_swapfiles; i++) {
1833 		struct swap_info_struct *q = swap_info[i];
1834 
1835 		if (i == type || !q->swap_file)
1836 			continue;
1837 		if (mapping == q->swap_file->f_mapping)
1838 			goto bad_swap;
1839 	}
1840 
1841 	error = -EINVAL;
1842 	if (S_ISBLK(inode->i_mode)) {
1843 		bdev = I_BDEV(inode);
1844 		error = bd_claim(bdev, sys_swapon);
1845 		if (error < 0) {
1846 			bdev = NULL;
1847 			error = -EINVAL;
1848 			goto bad_swap;
1849 		}
1850 		p->old_block_size = block_size(bdev);
1851 		error = set_blocksize(bdev, PAGE_SIZE);
1852 		if (error < 0)
1853 			goto bad_swap;
1854 		p->bdev = bdev;
1855 	} else if (S_ISREG(inode->i_mode)) {
1856 		p->bdev = inode->i_sb->s_bdev;
1857 		mutex_lock(&inode->i_mutex);
1858 		did_down = 1;
1859 		if (IS_SWAPFILE(inode)) {
1860 			error = -EBUSY;
1861 			goto bad_swap;
1862 		}
1863 	} else {
1864 		goto bad_swap;
1865 	}
1866 
1867 	swapfilepages = i_size_read(inode) >> PAGE_SHIFT;
1868 
1869 	/*
1870 	 * Read the swap header.
1871 	 */
1872 	if (!mapping->a_ops->readpage) {
1873 		error = -EINVAL;
1874 		goto bad_swap;
1875 	}
1876 	page = read_mapping_page(mapping, 0, swap_file);
1877 	if (IS_ERR(page)) {
1878 		error = PTR_ERR(page);
1879 		goto bad_swap;
1880 	}
1881 	swap_header = kmap(page);
1882 
1883 	if (memcmp("SWAPSPACE2", swap_header->magic.magic, 10)) {
1884 		printk(KERN_ERR "Unable to find swap-space signature\n");
1885 		error = -EINVAL;
1886 		goto bad_swap;
1887 	}
1888 
1889 	/* swap partition endianess hack... */
1890 	if (swab32(swap_header->info.version) == 1) {
1891 		swab32s(&swap_header->info.version);
1892 		swab32s(&swap_header->info.last_page);
1893 		swab32s(&swap_header->info.nr_badpages);
1894 		for (i = 0; i < swap_header->info.nr_badpages; i++)
1895 			swab32s(&swap_header->info.badpages[i]);
1896 	}
1897 	/* Check the swap header's sub-version */
1898 	if (swap_header->info.version != 1) {
1899 		printk(KERN_WARNING
1900 		       "Unable to handle swap header version %d\n",
1901 		       swap_header->info.version);
1902 		error = -EINVAL;
1903 		goto bad_swap;
1904 	}
1905 
1906 	p->lowest_bit  = 1;
1907 	p->cluster_next = 1;
1908 	p->cluster_nr = 0;
1909 
1910 	/*
1911 	 * Find out how many pages are allowed for a single swap
1912 	 * device. There are two limiting factors: 1) the number of
1913 	 * bits for the swap offset in the swp_entry_t type and
1914 	 * 2) the number of bits in the a swap pte as defined by
1915 	 * the different architectures. In order to find the
1916 	 * largest possible bit mask a swap entry with swap type 0
1917 	 * and swap offset ~0UL is created, encoded to a swap pte,
1918 	 * decoded to a swp_entry_t again and finally the swap
1919 	 * offset is extracted. This will mask all the bits from
1920 	 * the initial ~0UL mask that can't be encoded in either
1921 	 * the swp_entry_t or the architecture definition of a
1922 	 * swap pte.
1923 	 */
1924 	maxpages = swp_offset(pte_to_swp_entry(
1925 			swp_entry_to_pte(swp_entry(0, ~0UL)))) - 1;
1926 	if (maxpages > swap_header->info.last_page)
1927 		maxpages = swap_header->info.last_page;
1928 	p->highest_bit = maxpages - 1;
1929 
1930 	error = -EINVAL;
1931 	if (!maxpages)
1932 		goto bad_swap;
1933 	if (swapfilepages && maxpages > swapfilepages) {
1934 		printk(KERN_WARNING
1935 		       "Swap area shorter than signature indicates\n");
1936 		goto bad_swap;
1937 	}
1938 	if (swap_header->info.nr_badpages && S_ISREG(inode->i_mode))
1939 		goto bad_swap;
1940 	if (swap_header->info.nr_badpages > MAX_SWAP_BADPAGES)
1941 		goto bad_swap;
1942 
1943 	/* OK, set up the swap map and apply the bad block list */
1944 	swap_map = vmalloc(maxpages);
1945 	if (!swap_map) {
1946 		error = -ENOMEM;
1947 		goto bad_swap;
1948 	}
1949 
1950 	memset(swap_map, 0, maxpages);
1951 	for (i = 0; i < swap_header->info.nr_badpages; i++) {
1952 		int page_nr = swap_header->info.badpages[i];
1953 		if (page_nr <= 0 || page_nr >= swap_header->info.last_page) {
1954 			error = -EINVAL;
1955 			goto bad_swap;
1956 		}
1957 		swap_map[page_nr] = SWAP_MAP_BAD;
1958 	}
1959 
1960 	error = swap_cgroup_swapon(type, maxpages);
1961 	if (error)
1962 		goto bad_swap;
1963 
1964 	nr_good_pages = swap_header->info.last_page -
1965 			swap_header->info.nr_badpages -
1966 			1 /* header page */;
1967 
1968 	if (nr_good_pages) {
1969 		swap_map[0] = SWAP_MAP_BAD;
1970 		p->max = maxpages;
1971 		p->pages = nr_good_pages;
1972 		nr_extents = setup_swap_extents(p, &span);
1973 		if (nr_extents < 0) {
1974 			error = nr_extents;
1975 			goto bad_swap;
1976 		}
1977 		nr_good_pages = p->pages;
1978 	}
1979 	if (!nr_good_pages) {
1980 		printk(KERN_WARNING "Empty swap-file\n");
1981 		error = -EINVAL;
1982 		goto bad_swap;
1983 	}
1984 
1985 	if (p->bdev) {
1986 		if (blk_queue_nonrot(bdev_get_queue(p->bdev))) {
1987 			p->flags |= SWP_SOLIDSTATE;
1988 			p->cluster_next = 1 + (random32() % p->highest_bit);
1989 		}
1990 		if (discard_swap(p) == 0)
1991 			p->flags |= SWP_DISCARDABLE;
1992 	}
1993 
1994 	mutex_lock(&swapon_mutex);
1995 	spin_lock(&swap_lock);
1996 	if (swap_flags & SWAP_FLAG_PREFER)
1997 		p->prio =
1998 		  (swap_flags & SWAP_FLAG_PRIO_MASK) >> SWAP_FLAG_PRIO_SHIFT;
1999 	else
2000 		p->prio = --least_priority;
2001 	p->swap_map = swap_map;
2002 	p->flags |= SWP_WRITEOK;
2003 	nr_swap_pages += nr_good_pages;
2004 	total_swap_pages += nr_good_pages;
2005 
2006 	printk(KERN_INFO "Adding %uk swap on %s.  "
2007 			"Priority:%d extents:%d across:%lluk %s%s\n",
2008 		nr_good_pages<<(PAGE_SHIFT-10), name, p->prio,
2009 		nr_extents, (unsigned long long)span<<(PAGE_SHIFT-10),
2010 		(p->flags & SWP_SOLIDSTATE) ? "SS" : "",
2011 		(p->flags & SWP_DISCARDABLE) ? "D" : "");
2012 
2013 	/* insert swap space into swap_list: */
2014 	prev = -1;
2015 	for (i = swap_list.head; i >= 0; i = swap_info[i]->next) {
2016 		if (p->prio >= swap_info[i]->prio)
2017 			break;
2018 		prev = i;
2019 	}
2020 	p->next = i;
2021 	if (prev < 0)
2022 		swap_list.head = swap_list.next = type;
2023 	else
2024 		swap_info[prev]->next = type;
2025 	spin_unlock(&swap_lock);
2026 	mutex_unlock(&swapon_mutex);
2027 	error = 0;
2028 	goto out;
2029 bad_swap:
2030 	if (bdev) {
2031 		set_blocksize(bdev, p->old_block_size);
2032 		bd_release(bdev);
2033 	}
2034 	destroy_swap_extents(p);
2035 	swap_cgroup_swapoff(type);
2036 bad_swap_2:
2037 	spin_lock(&swap_lock);
2038 	p->swap_file = NULL;
2039 	p->flags = 0;
2040 	spin_unlock(&swap_lock);
2041 	vfree(swap_map);
2042 	if (swap_file)
2043 		filp_close(swap_file, NULL);
2044 out:
2045 	if (page && !IS_ERR(page)) {
2046 		kunmap(page);
2047 		page_cache_release(page);
2048 	}
2049 	if (name)
2050 		putname(name);
2051 	if (did_down) {
2052 		if (!error)
2053 			inode->i_flags |= S_SWAPFILE;
2054 		mutex_unlock(&inode->i_mutex);
2055 	}
2056 	return error;
2057 }
2058 
2059 void si_swapinfo(struct sysinfo *val)
2060 {
2061 	unsigned int type;
2062 	unsigned long nr_to_be_unused = 0;
2063 
2064 	spin_lock(&swap_lock);
2065 	for (type = 0; type < nr_swapfiles; type++) {
2066 		struct swap_info_struct *si = swap_info[type];
2067 
2068 		if ((si->flags & SWP_USED) && !(si->flags & SWP_WRITEOK))
2069 			nr_to_be_unused += si->inuse_pages;
2070 	}
2071 	val->freeswap = nr_swap_pages + nr_to_be_unused;
2072 	val->totalswap = total_swap_pages + nr_to_be_unused;
2073 	spin_unlock(&swap_lock);
2074 }
2075 
2076 /*
2077  * Verify that a swap entry is valid and increment its swap map count.
2078  *
2079  * Returns error code in following case.
2080  * - success -> 0
2081  * - swp_entry is invalid -> EINVAL
2082  * - swp_entry is migration entry -> EINVAL
2083  * - swap-cache reference is requested but there is already one. -> EEXIST
2084  * - swap-cache reference is requested but the entry is not used. -> ENOENT
2085  * - swap-mapped reference requested but needs continued swap count. -> ENOMEM
2086  */
2087 static int __swap_duplicate(swp_entry_t entry, unsigned char usage)
2088 {
2089 	struct swap_info_struct *p;
2090 	unsigned long offset, type;
2091 	unsigned char count;
2092 	unsigned char has_cache;
2093 	int err = -EINVAL;
2094 
2095 	if (non_swap_entry(entry))
2096 		goto out;
2097 
2098 	type = swp_type(entry);
2099 	if (type >= nr_swapfiles)
2100 		goto bad_file;
2101 	p = swap_info[type];
2102 	offset = swp_offset(entry);
2103 
2104 	spin_lock(&swap_lock);
2105 	if (unlikely(offset >= p->max))
2106 		goto unlock_out;
2107 
2108 	count = p->swap_map[offset];
2109 	has_cache = count & SWAP_HAS_CACHE;
2110 	count &= ~SWAP_HAS_CACHE;
2111 	err = 0;
2112 
2113 	if (usage == SWAP_HAS_CACHE) {
2114 
2115 		/* set SWAP_HAS_CACHE if there is no cache and entry is used */
2116 		if (!has_cache && count)
2117 			has_cache = SWAP_HAS_CACHE;
2118 		else if (has_cache)		/* someone else added cache */
2119 			err = -EEXIST;
2120 		else				/* no users remaining */
2121 			err = -ENOENT;
2122 
2123 	} else if (count || has_cache) {
2124 
2125 		if ((count & ~COUNT_CONTINUED) < SWAP_MAP_MAX)
2126 			count += usage;
2127 		else if ((count & ~COUNT_CONTINUED) > SWAP_MAP_MAX)
2128 			err = -EINVAL;
2129 		else if (swap_count_continued(p, offset, count))
2130 			count = COUNT_CONTINUED;
2131 		else
2132 			err = -ENOMEM;
2133 	} else
2134 		err = -ENOENT;			/* unused swap entry */
2135 
2136 	p->swap_map[offset] = count | has_cache;
2137 
2138 unlock_out:
2139 	spin_unlock(&swap_lock);
2140 out:
2141 	return err;
2142 
2143 bad_file:
2144 	printk(KERN_ERR "swap_dup: %s%08lx\n", Bad_file, entry.val);
2145 	goto out;
2146 }
2147 
2148 /*
2149  * Help swapoff by noting that swap entry belongs to shmem/tmpfs
2150  * (in which case its reference count is never incremented).
2151  */
2152 void swap_shmem_alloc(swp_entry_t entry)
2153 {
2154 	__swap_duplicate(entry, SWAP_MAP_SHMEM);
2155 }
2156 
2157 /*
2158  * increase reference count of swap entry by 1.
2159  */
2160 int swap_duplicate(swp_entry_t entry)
2161 {
2162 	int err = 0;
2163 
2164 	while (!err && __swap_duplicate(entry, 1) == -ENOMEM)
2165 		err = add_swap_count_continuation(entry, GFP_ATOMIC);
2166 	return err;
2167 }
2168 
2169 /*
2170  * @entry: swap entry for which we allocate swap cache.
2171  *
2172  * Called when allocating swap cache for existing swap entry,
2173  * This can return error codes. Returns 0 at success.
2174  * -EBUSY means there is a swap cache.
2175  * Note: return code is different from swap_duplicate().
2176  */
2177 int swapcache_prepare(swp_entry_t entry)
2178 {
2179 	return __swap_duplicate(entry, SWAP_HAS_CACHE);
2180 }
2181 
2182 /*
2183  * swap_lock prevents swap_map being freed. Don't grab an extra
2184  * reference on the swaphandle, it doesn't matter if it becomes unused.
2185  */
2186 int valid_swaphandles(swp_entry_t entry, unsigned long *offset)
2187 {
2188 	struct swap_info_struct *si;
2189 	int our_page_cluster = page_cluster;
2190 	pgoff_t target, toff;
2191 	pgoff_t base, end;
2192 	int nr_pages = 0;
2193 
2194 	if (!our_page_cluster)	/* no readahead */
2195 		return 0;
2196 
2197 	si = swap_info[swp_type(entry)];
2198 	target = swp_offset(entry);
2199 	base = (target >> our_page_cluster) << our_page_cluster;
2200 	end = base + (1 << our_page_cluster);
2201 	if (!base)		/* first page is swap header */
2202 		base++;
2203 
2204 	spin_lock(&swap_lock);
2205 	if (end > si->max)	/* don't go beyond end of map */
2206 		end = si->max;
2207 
2208 	/* Count contiguous allocated slots above our target */
2209 	for (toff = target; ++toff < end; nr_pages++) {
2210 		/* Don't read in free or bad pages */
2211 		if (!si->swap_map[toff])
2212 			break;
2213 		if (swap_count(si->swap_map[toff]) == SWAP_MAP_BAD)
2214 			break;
2215 	}
2216 	/* Count contiguous allocated slots below our target */
2217 	for (toff = target; --toff >= base; nr_pages++) {
2218 		/* Don't read in free or bad pages */
2219 		if (!si->swap_map[toff])
2220 			break;
2221 		if (swap_count(si->swap_map[toff]) == SWAP_MAP_BAD)
2222 			break;
2223 	}
2224 	spin_unlock(&swap_lock);
2225 
2226 	/*
2227 	 * Indicate starting offset, and return number of pages to get:
2228 	 * if only 1, say 0, since there's then no readahead to be done.
2229 	 */
2230 	*offset = ++toff;
2231 	return nr_pages? ++nr_pages: 0;
2232 }
2233 
2234 /*
2235  * add_swap_count_continuation - called when a swap count is duplicated
2236  * beyond SWAP_MAP_MAX, it allocates a new page and links that to the entry's
2237  * page of the original vmalloc'ed swap_map, to hold the continuation count
2238  * (for that entry and for its neighbouring PAGE_SIZE swap entries).  Called
2239  * again when count is duplicated beyond SWAP_MAP_MAX * SWAP_CONT_MAX, etc.
2240  *
2241  * These continuation pages are seldom referenced: the common paths all work
2242  * on the original swap_map, only referring to a continuation page when the
2243  * low "digit" of a count is incremented or decremented through SWAP_MAP_MAX.
2244  *
2245  * add_swap_count_continuation(, GFP_ATOMIC) can be called while holding
2246  * page table locks; if it fails, add_swap_count_continuation(, GFP_KERNEL)
2247  * can be called after dropping locks.
2248  */
2249 int add_swap_count_continuation(swp_entry_t entry, gfp_t gfp_mask)
2250 {
2251 	struct swap_info_struct *si;
2252 	struct page *head;
2253 	struct page *page;
2254 	struct page *list_page;
2255 	pgoff_t offset;
2256 	unsigned char count;
2257 
2258 	/*
2259 	 * When debugging, it's easier to use __GFP_ZERO here; but it's better
2260 	 * for latency not to zero a page while GFP_ATOMIC and holding locks.
2261 	 */
2262 	page = alloc_page(gfp_mask | __GFP_HIGHMEM);
2263 
2264 	si = swap_info_get(entry);
2265 	if (!si) {
2266 		/*
2267 		 * An acceptable race has occurred since the failing
2268 		 * __swap_duplicate(): the swap entry has been freed,
2269 		 * perhaps even the whole swap_map cleared for swapoff.
2270 		 */
2271 		goto outer;
2272 	}
2273 
2274 	offset = swp_offset(entry);
2275 	count = si->swap_map[offset] & ~SWAP_HAS_CACHE;
2276 
2277 	if ((count & ~COUNT_CONTINUED) != SWAP_MAP_MAX) {
2278 		/*
2279 		 * The higher the swap count, the more likely it is that tasks
2280 		 * will race to add swap count continuation: we need to avoid
2281 		 * over-provisioning.
2282 		 */
2283 		goto out;
2284 	}
2285 
2286 	if (!page) {
2287 		spin_unlock(&swap_lock);
2288 		return -ENOMEM;
2289 	}
2290 
2291 	/*
2292 	 * We are fortunate that although vmalloc_to_page uses pte_offset_map,
2293 	 * no architecture is using highmem pages for kernel pagetables: so it
2294 	 * will not corrupt the GFP_ATOMIC caller's atomic pagetable kmaps.
2295 	 */
2296 	head = vmalloc_to_page(si->swap_map + offset);
2297 	offset &= ~PAGE_MASK;
2298 
2299 	/*
2300 	 * Page allocation does not initialize the page's lru field,
2301 	 * but it does always reset its private field.
2302 	 */
2303 	if (!page_private(head)) {
2304 		BUG_ON(count & COUNT_CONTINUED);
2305 		INIT_LIST_HEAD(&head->lru);
2306 		set_page_private(head, SWP_CONTINUED);
2307 		si->flags |= SWP_CONTINUED;
2308 	}
2309 
2310 	list_for_each_entry(list_page, &head->lru, lru) {
2311 		unsigned char *map;
2312 
2313 		/*
2314 		 * If the previous map said no continuation, but we've found
2315 		 * a continuation page, free our allocation and use this one.
2316 		 */
2317 		if (!(count & COUNT_CONTINUED))
2318 			goto out;
2319 
2320 		map = kmap_atomic(list_page, KM_USER0) + offset;
2321 		count = *map;
2322 		kunmap_atomic(map, KM_USER0);
2323 
2324 		/*
2325 		 * If this continuation count now has some space in it,
2326 		 * free our allocation and use this one.
2327 		 */
2328 		if ((count & ~COUNT_CONTINUED) != SWAP_CONT_MAX)
2329 			goto out;
2330 	}
2331 
2332 	list_add_tail(&page->lru, &head->lru);
2333 	page = NULL;			/* now it's attached, don't free it */
2334 out:
2335 	spin_unlock(&swap_lock);
2336 outer:
2337 	if (page)
2338 		__free_page(page);
2339 	return 0;
2340 }
2341 
2342 /*
2343  * swap_count_continued - when the original swap_map count is incremented
2344  * from SWAP_MAP_MAX, check if there is already a continuation page to carry
2345  * into, carry if so, or else fail until a new continuation page is allocated;
2346  * when the original swap_map count is decremented from 0 with continuation,
2347  * borrow from the continuation and report whether it still holds more.
2348  * Called while __swap_duplicate() or swap_entry_free() holds swap_lock.
2349  */
2350 static bool swap_count_continued(struct swap_info_struct *si,
2351 				 pgoff_t offset, unsigned char count)
2352 {
2353 	struct page *head;
2354 	struct page *page;
2355 	unsigned char *map;
2356 
2357 	head = vmalloc_to_page(si->swap_map + offset);
2358 	if (page_private(head) != SWP_CONTINUED) {
2359 		BUG_ON(count & COUNT_CONTINUED);
2360 		return false;		/* need to add count continuation */
2361 	}
2362 
2363 	offset &= ~PAGE_MASK;
2364 	page = list_entry(head->lru.next, struct page, lru);
2365 	map = kmap_atomic(page, KM_USER0) + offset;
2366 
2367 	if (count == SWAP_MAP_MAX)	/* initial increment from swap_map */
2368 		goto init_map;		/* jump over SWAP_CONT_MAX checks */
2369 
2370 	if (count == (SWAP_MAP_MAX | COUNT_CONTINUED)) { /* incrementing */
2371 		/*
2372 		 * Think of how you add 1 to 999
2373 		 */
2374 		while (*map == (SWAP_CONT_MAX | COUNT_CONTINUED)) {
2375 			kunmap_atomic(map, KM_USER0);
2376 			page = list_entry(page->lru.next, struct page, lru);
2377 			BUG_ON(page == head);
2378 			map = kmap_atomic(page, KM_USER0) + offset;
2379 		}
2380 		if (*map == SWAP_CONT_MAX) {
2381 			kunmap_atomic(map, KM_USER0);
2382 			page = list_entry(page->lru.next, struct page, lru);
2383 			if (page == head)
2384 				return false;	/* add count continuation */
2385 			map = kmap_atomic(page, KM_USER0) + offset;
2386 init_map:		*map = 0;		/* we didn't zero the page */
2387 		}
2388 		*map += 1;
2389 		kunmap_atomic(map, KM_USER0);
2390 		page = list_entry(page->lru.prev, struct page, lru);
2391 		while (page != head) {
2392 			map = kmap_atomic(page, KM_USER0) + offset;
2393 			*map = COUNT_CONTINUED;
2394 			kunmap_atomic(map, KM_USER0);
2395 			page = list_entry(page->lru.prev, struct page, lru);
2396 		}
2397 		return true;			/* incremented */
2398 
2399 	} else {				/* decrementing */
2400 		/*
2401 		 * Think of how you subtract 1 from 1000
2402 		 */
2403 		BUG_ON(count != COUNT_CONTINUED);
2404 		while (*map == COUNT_CONTINUED) {
2405 			kunmap_atomic(map, KM_USER0);
2406 			page = list_entry(page->lru.next, struct page, lru);
2407 			BUG_ON(page == head);
2408 			map = kmap_atomic(page, KM_USER0) + offset;
2409 		}
2410 		BUG_ON(*map == 0);
2411 		*map -= 1;
2412 		if (*map == 0)
2413 			count = 0;
2414 		kunmap_atomic(map, KM_USER0);
2415 		page = list_entry(page->lru.prev, struct page, lru);
2416 		while (page != head) {
2417 			map = kmap_atomic(page, KM_USER0) + offset;
2418 			*map = SWAP_CONT_MAX | count;
2419 			count = COUNT_CONTINUED;
2420 			kunmap_atomic(map, KM_USER0);
2421 			page = list_entry(page->lru.prev, struct page, lru);
2422 		}
2423 		return count == COUNT_CONTINUED;
2424 	}
2425 }
2426 
2427 /*
2428  * free_swap_count_continuations - swapoff free all the continuation pages
2429  * appended to the swap_map, after swap_map is quiesced, before vfree'ing it.
2430  */
2431 static void free_swap_count_continuations(struct swap_info_struct *si)
2432 {
2433 	pgoff_t offset;
2434 
2435 	for (offset = 0; offset < si->max; offset += PAGE_SIZE) {
2436 		struct page *head;
2437 		head = vmalloc_to_page(si->swap_map + offset);
2438 		if (page_private(head)) {
2439 			struct list_head *this, *next;
2440 			list_for_each_safe(this, next, &head->lru) {
2441 				struct page *page;
2442 				page = list_entry(this, struct page, lru);
2443 				list_del(this);
2444 				__free_page(page);
2445 			}
2446 		}
2447 	}
2448 }
2449