xref: /openbmc/linux/mm/swapfile.c (revision b5f184fb)
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  *  linux/mm/swapfile.c
4  *
5  *  Copyright (C) 1991, 1992, 1993, 1994  Linus Torvalds
6  *  Swap reorganised 29.12.95, Stephen Tweedie
7  */
8 
9 #include <linux/mm.h>
10 #include <linux/sched/mm.h>
11 #include <linux/sched/task.h>
12 #include <linux/hugetlb.h>
13 #include <linux/mman.h>
14 #include <linux/slab.h>
15 #include <linux/kernel_stat.h>
16 #include <linux/swap.h>
17 #include <linux/vmalloc.h>
18 #include <linux/pagemap.h>
19 #include <linux/namei.h>
20 #include <linux/shmem_fs.h>
21 #include <linux/blkdev.h>
22 #include <linux/random.h>
23 #include <linux/writeback.h>
24 #include <linux/proc_fs.h>
25 #include <linux/seq_file.h>
26 #include <linux/init.h>
27 #include <linux/ksm.h>
28 #include <linux/rmap.h>
29 #include <linux/security.h>
30 #include <linux/backing-dev.h>
31 #include <linux/mutex.h>
32 #include <linux/capability.h>
33 #include <linux/syscalls.h>
34 #include <linux/memcontrol.h>
35 #include <linux/poll.h>
36 #include <linux/oom.h>
37 #include <linux/frontswap.h>
38 #include <linux/swapfile.h>
39 #include <linux/export.h>
40 #include <linux/swap_slots.h>
41 #include <linux/sort.h>
42 
43 #include <asm/tlbflush.h>
44 #include <linux/swapops.h>
45 #include <linux/swap_cgroup.h>
46 
47 static bool swap_count_continued(struct swap_info_struct *, pgoff_t,
48 				 unsigned char);
49 static void free_swap_count_continuations(struct swap_info_struct *);
50 
51 DEFINE_SPINLOCK(swap_lock);
52 static unsigned int nr_swapfiles;
53 atomic_long_t nr_swap_pages;
54 /*
55  * Some modules use swappable objects and may try to swap them out under
56  * memory pressure (via the shrinker). Before doing so, they may wish to
57  * check to see if any swap space is available.
58  */
59 EXPORT_SYMBOL_GPL(nr_swap_pages);
60 /* protected with swap_lock. reading in vm_swap_full() doesn't need lock */
61 long total_swap_pages;
62 static int least_priority = -1;
63 
64 static const char Bad_file[] = "Bad swap file entry ";
65 static const char Unused_file[] = "Unused swap file entry ";
66 static const char Bad_offset[] = "Bad swap offset entry ";
67 static const char Unused_offset[] = "Unused swap offset entry ";
68 
69 /*
70  * all active swap_info_structs
71  * protected with swap_lock, and ordered by priority.
72  */
73 PLIST_HEAD(swap_active_head);
74 
75 /*
76  * all available (active, not full) swap_info_structs
77  * protected with swap_avail_lock, ordered by priority.
78  * This is used by get_swap_page() instead of swap_active_head
79  * because swap_active_head includes all swap_info_structs,
80  * but get_swap_page() doesn't need to look at full ones.
81  * This uses its own lock instead of swap_lock because when a
82  * swap_info_struct changes between not-full/full, it needs to
83  * add/remove itself to/from this list, but the swap_info_struct->lock
84  * is held and the locking order requires swap_lock to be taken
85  * before any swap_info_struct->lock.
86  */
87 static struct plist_head *swap_avail_heads;
88 static DEFINE_SPINLOCK(swap_avail_lock);
89 
90 struct swap_info_struct *swap_info[MAX_SWAPFILES];
91 
92 static DEFINE_MUTEX(swapon_mutex);
93 
94 static DECLARE_WAIT_QUEUE_HEAD(proc_poll_wait);
95 /* Activity counter to indicate that a swapon or swapoff has occurred */
96 static atomic_t proc_poll_event = ATOMIC_INIT(0);
97 
98 atomic_t nr_rotate_swap = ATOMIC_INIT(0);
99 
100 static struct swap_info_struct *swap_type_to_swap_info(int type)
101 {
102 	if (type >= READ_ONCE(nr_swapfiles))
103 		return NULL;
104 
105 	smp_rmb();	/* Pairs with smp_wmb in alloc_swap_info. */
106 	return READ_ONCE(swap_info[type]);
107 }
108 
109 static inline unsigned char swap_count(unsigned char ent)
110 {
111 	return ent & ~SWAP_HAS_CACHE;	/* may include COUNT_CONTINUED flag */
112 }
113 
114 /* Reclaim the swap entry anyway if possible */
115 #define TTRS_ANYWAY		0x1
116 /*
117  * Reclaim the swap entry if there are no more mappings of the
118  * corresponding page
119  */
120 #define TTRS_UNMAPPED		0x2
121 /* Reclaim the swap entry if swap is getting full*/
122 #define TTRS_FULL		0x4
123 
124 /* returns 1 if swap entry is freed */
125 static int __try_to_reclaim_swap(struct swap_info_struct *si,
126 				 unsigned long offset, unsigned long flags)
127 {
128 	swp_entry_t entry = swp_entry(si->type, offset);
129 	struct page *page;
130 	int ret = 0;
131 
132 	page = find_get_page(swap_address_space(entry), offset);
133 	if (!page)
134 		return 0;
135 	/*
136 	 * When this function is called from scan_swap_map_slots() and it's
137 	 * called by vmscan.c at reclaiming pages. So, we hold a lock on a page,
138 	 * here. We have to use trylock for avoiding deadlock. This is a special
139 	 * case and you should use try_to_free_swap() with explicit lock_page()
140 	 * in usual operations.
141 	 */
142 	if (trylock_page(page)) {
143 		if ((flags & TTRS_ANYWAY) ||
144 		    ((flags & TTRS_UNMAPPED) && !page_mapped(page)) ||
145 		    ((flags & TTRS_FULL) && mem_cgroup_swap_full(page)))
146 			ret = try_to_free_swap(page);
147 		unlock_page(page);
148 	}
149 	put_page(page);
150 	return ret;
151 }
152 
153 static inline struct swap_extent *first_se(struct swap_info_struct *sis)
154 {
155 	struct rb_node *rb = rb_first(&sis->swap_extent_root);
156 	return rb_entry(rb, struct swap_extent, rb_node);
157 }
158 
159 static inline struct swap_extent *next_se(struct swap_extent *se)
160 {
161 	struct rb_node *rb = rb_next(&se->rb_node);
162 	return rb ? rb_entry(rb, struct swap_extent, rb_node) : NULL;
163 }
164 
165 /*
166  * swapon tell device that all the old swap contents can be discarded,
167  * to allow the swap device to optimize its wear-levelling.
168  */
169 static int discard_swap(struct swap_info_struct *si)
170 {
171 	struct swap_extent *se;
172 	sector_t start_block;
173 	sector_t nr_blocks;
174 	int err = 0;
175 
176 	/* Do not discard the swap header page! */
177 	se = first_se(si);
178 	start_block = (se->start_block + 1) << (PAGE_SHIFT - 9);
179 	nr_blocks = ((sector_t)se->nr_pages - 1) << (PAGE_SHIFT - 9);
180 	if (nr_blocks) {
181 		err = blkdev_issue_discard(si->bdev, start_block,
182 				nr_blocks, GFP_KERNEL, 0);
183 		if (err)
184 			return err;
185 		cond_resched();
186 	}
187 
188 	for (se = next_se(se); se; se = next_se(se)) {
189 		start_block = se->start_block << (PAGE_SHIFT - 9);
190 		nr_blocks = (sector_t)se->nr_pages << (PAGE_SHIFT - 9);
191 
192 		err = blkdev_issue_discard(si->bdev, start_block,
193 				nr_blocks, GFP_KERNEL, 0);
194 		if (err)
195 			break;
196 
197 		cond_resched();
198 	}
199 	return err;		/* That will often be -EOPNOTSUPP */
200 }
201 
202 static struct swap_extent *
203 offset_to_swap_extent(struct swap_info_struct *sis, unsigned long offset)
204 {
205 	struct swap_extent *se;
206 	struct rb_node *rb;
207 
208 	rb = sis->swap_extent_root.rb_node;
209 	while (rb) {
210 		se = rb_entry(rb, struct swap_extent, rb_node);
211 		if (offset < se->start_page)
212 			rb = rb->rb_left;
213 		else if (offset >= se->start_page + se->nr_pages)
214 			rb = rb->rb_right;
215 		else
216 			return se;
217 	}
218 	/* It *must* be present */
219 	BUG();
220 }
221 
222 /*
223  * swap allocation tell device that a cluster of swap can now be discarded,
224  * to allow the swap device to optimize its wear-levelling.
225  */
226 static void discard_swap_cluster(struct swap_info_struct *si,
227 				 pgoff_t start_page, pgoff_t nr_pages)
228 {
229 	struct swap_extent *se = offset_to_swap_extent(si, start_page);
230 
231 	while (nr_pages) {
232 		pgoff_t offset = start_page - se->start_page;
233 		sector_t start_block = se->start_block + offset;
234 		sector_t nr_blocks = se->nr_pages - offset;
235 
236 		if (nr_blocks > nr_pages)
237 			nr_blocks = nr_pages;
238 		start_page += nr_blocks;
239 		nr_pages -= nr_blocks;
240 
241 		start_block <<= PAGE_SHIFT - 9;
242 		nr_blocks <<= PAGE_SHIFT - 9;
243 		if (blkdev_issue_discard(si->bdev, start_block,
244 					nr_blocks, GFP_NOIO, 0))
245 			break;
246 
247 		se = next_se(se);
248 	}
249 }
250 
251 #ifdef CONFIG_THP_SWAP
252 #define SWAPFILE_CLUSTER	HPAGE_PMD_NR
253 
254 #define swap_entry_size(size)	(size)
255 #else
256 #define SWAPFILE_CLUSTER	256
257 
258 /*
259  * Define swap_entry_size() as constant to let compiler to optimize
260  * out some code if !CONFIG_THP_SWAP
261  */
262 #define swap_entry_size(size)	1
263 #endif
264 #define LATENCY_LIMIT		256
265 
266 static inline void cluster_set_flag(struct swap_cluster_info *info,
267 	unsigned int flag)
268 {
269 	info->flags = flag;
270 }
271 
272 static inline unsigned int cluster_count(struct swap_cluster_info *info)
273 {
274 	return info->data;
275 }
276 
277 static inline void cluster_set_count(struct swap_cluster_info *info,
278 				     unsigned int c)
279 {
280 	info->data = c;
281 }
282 
283 static inline void cluster_set_count_flag(struct swap_cluster_info *info,
284 					 unsigned int c, unsigned int f)
285 {
286 	info->flags = f;
287 	info->data = c;
288 }
289 
290 static inline unsigned int cluster_next(struct swap_cluster_info *info)
291 {
292 	return info->data;
293 }
294 
295 static inline void cluster_set_next(struct swap_cluster_info *info,
296 				    unsigned int n)
297 {
298 	info->data = n;
299 }
300 
301 static inline void cluster_set_next_flag(struct swap_cluster_info *info,
302 					 unsigned int n, unsigned int f)
303 {
304 	info->flags = f;
305 	info->data = n;
306 }
307 
308 static inline bool cluster_is_free(struct swap_cluster_info *info)
309 {
310 	return info->flags & CLUSTER_FLAG_FREE;
311 }
312 
313 static inline bool cluster_is_null(struct swap_cluster_info *info)
314 {
315 	return info->flags & CLUSTER_FLAG_NEXT_NULL;
316 }
317 
318 static inline void cluster_set_null(struct swap_cluster_info *info)
319 {
320 	info->flags = CLUSTER_FLAG_NEXT_NULL;
321 	info->data = 0;
322 }
323 
324 static inline bool cluster_is_huge(struct swap_cluster_info *info)
325 {
326 	if (IS_ENABLED(CONFIG_THP_SWAP))
327 		return info->flags & CLUSTER_FLAG_HUGE;
328 	return false;
329 }
330 
331 static inline void cluster_clear_huge(struct swap_cluster_info *info)
332 {
333 	info->flags &= ~CLUSTER_FLAG_HUGE;
334 }
335 
336 static inline struct swap_cluster_info *lock_cluster(struct swap_info_struct *si,
337 						     unsigned long offset)
338 {
339 	struct swap_cluster_info *ci;
340 
341 	ci = si->cluster_info;
342 	if (ci) {
343 		ci += offset / SWAPFILE_CLUSTER;
344 		spin_lock(&ci->lock);
345 	}
346 	return ci;
347 }
348 
349 static inline void unlock_cluster(struct swap_cluster_info *ci)
350 {
351 	if (ci)
352 		spin_unlock(&ci->lock);
353 }
354 
355 /*
356  * Determine the locking method in use for this device.  Return
357  * swap_cluster_info if SSD-style cluster-based locking is in place.
358  */
359 static inline struct swap_cluster_info *lock_cluster_or_swap_info(
360 		struct swap_info_struct *si, unsigned long offset)
361 {
362 	struct swap_cluster_info *ci;
363 
364 	/* Try to use fine-grained SSD-style locking if available: */
365 	ci = lock_cluster(si, offset);
366 	/* Otherwise, fall back to traditional, coarse locking: */
367 	if (!ci)
368 		spin_lock(&si->lock);
369 
370 	return ci;
371 }
372 
373 static inline void unlock_cluster_or_swap_info(struct swap_info_struct *si,
374 					       struct swap_cluster_info *ci)
375 {
376 	if (ci)
377 		unlock_cluster(ci);
378 	else
379 		spin_unlock(&si->lock);
380 }
381 
382 static inline bool cluster_list_empty(struct swap_cluster_list *list)
383 {
384 	return cluster_is_null(&list->head);
385 }
386 
387 static inline unsigned int cluster_list_first(struct swap_cluster_list *list)
388 {
389 	return cluster_next(&list->head);
390 }
391 
392 static void cluster_list_init(struct swap_cluster_list *list)
393 {
394 	cluster_set_null(&list->head);
395 	cluster_set_null(&list->tail);
396 }
397 
398 static void cluster_list_add_tail(struct swap_cluster_list *list,
399 				  struct swap_cluster_info *ci,
400 				  unsigned int idx)
401 {
402 	if (cluster_list_empty(list)) {
403 		cluster_set_next_flag(&list->head, idx, 0);
404 		cluster_set_next_flag(&list->tail, idx, 0);
405 	} else {
406 		struct swap_cluster_info *ci_tail;
407 		unsigned int tail = cluster_next(&list->tail);
408 
409 		/*
410 		 * Nested cluster lock, but both cluster locks are
411 		 * only acquired when we held swap_info_struct->lock
412 		 */
413 		ci_tail = ci + tail;
414 		spin_lock_nested(&ci_tail->lock, SINGLE_DEPTH_NESTING);
415 		cluster_set_next(ci_tail, idx);
416 		spin_unlock(&ci_tail->lock);
417 		cluster_set_next_flag(&list->tail, idx, 0);
418 	}
419 }
420 
421 static unsigned int cluster_list_del_first(struct swap_cluster_list *list,
422 					   struct swap_cluster_info *ci)
423 {
424 	unsigned int idx;
425 
426 	idx = cluster_next(&list->head);
427 	if (cluster_next(&list->tail) == idx) {
428 		cluster_set_null(&list->head);
429 		cluster_set_null(&list->tail);
430 	} else
431 		cluster_set_next_flag(&list->head,
432 				      cluster_next(&ci[idx]), 0);
433 
434 	return idx;
435 }
436 
437 /* Add a cluster to discard list and schedule it to do discard */
438 static void swap_cluster_schedule_discard(struct swap_info_struct *si,
439 		unsigned int idx)
440 {
441 	/*
442 	 * If scan_swap_map() can't find a free cluster, it will check
443 	 * si->swap_map directly. To make sure the discarding cluster isn't
444 	 * taken by scan_swap_map(), mark the swap entries bad (occupied). It
445 	 * will be cleared after discard
446 	 */
447 	memset(si->swap_map + idx * SWAPFILE_CLUSTER,
448 			SWAP_MAP_BAD, SWAPFILE_CLUSTER);
449 
450 	cluster_list_add_tail(&si->discard_clusters, si->cluster_info, idx);
451 
452 	schedule_work(&si->discard_work);
453 }
454 
455 static void __free_cluster(struct swap_info_struct *si, unsigned long idx)
456 {
457 	struct swap_cluster_info *ci = si->cluster_info;
458 
459 	cluster_set_flag(ci + idx, CLUSTER_FLAG_FREE);
460 	cluster_list_add_tail(&si->free_clusters, ci, idx);
461 }
462 
463 /*
464  * Doing discard actually. After a cluster discard is finished, the cluster
465  * will be added to free cluster list. caller should hold si->lock.
466 */
467 static void swap_do_scheduled_discard(struct swap_info_struct *si)
468 {
469 	struct swap_cluster_info *info, *ci;
470 	unsigned int idx;
471 
472 	info = si->cluster_info;
473 
474 	while (!cluster_list_empty(&si->discard_clusters)) {
475 		idx = cluster_list_del_first(&si->discard_clusters, info);
476 		spin_unlock(&si->lock);
477 
478 		discard_swap_cluster(si, idx * SWAPFILE_CLUSTER,
479 				SWAPFILE_CLUSTER);
480 
481 		spin_lock(&si->lock);
482 		ci = lock_cluster(si, idx * SWAPFILE_CLUSTER);
483 		__free_cluster(si, idx);
484 		memset(si->swap_map + idx * SWAPFILE_CLUSTER,
485 				0, SWAPFILE_CLUSTER);
486 		unlock_cluster(ci);
487 	}
488 }
489 
490 static void swap_discard_work(struct work_struct *work)
491 {
492 	struct swap_info_struct *si;
493 
494 	si = container_of(work, struct swap_info_struct, discard_work);
495 
496 	spin_lock(&si->lock);
497 	swap_do_scheduled_discard(si);
498 	spin_unlock(&si->lock);
499 }
500 
501 static void alloc_cluster(struct swap_info_struct *si, unsigned long idx)
502 {
503 	struct swap_cluster_info *ci = si->cluster_info;
504 
505 	VM_BUG_ON(cluster_list_first(&si->free_clusters) != idx);
506 	cluster_list_del_first(&si->free_clusters, ci);
507 	cluster_set_count_flag(ci + idx, 0, 0);
508 }
509 
510 static void free_cluster(struct swap_info_struct *si, unsigned long idx)
511 {
512 	struct swap_cluster_info *ci = si->cluster_info + idx;
513 
514 	VM_BUG_ON(cluster_count(ci) != 0);
515 	/*
516 	 * If the swap is discardable, prepare discard the cluster
517 	 * instead of free it immediately. The cluster will be freed
518 	 * after discard.
519 	 */
520 	if ((si->flags & (SWP_WRITEOK | SWP_PAGE_DISCARD)) ==
521 	    (SWP_WRITEOK | SWP_PAGE_DISCARD)) {
522 		swap_cluster_schedule_discard(si, idx);
523 		return;
524 	}
525 
526 	__free_cluster(si, idx);
527 }
528 
529 /*
530  * The cluster corresponding to page_nr will be used. The cluster will be
531  * removed from free cluster list and its usage counter will be increased.
532  */
533 static void inc_cluster_info_page(struct swap_info_struct *p,
534 	struct swap_cluster_info *cluster_info, unsigned long page_nr)
535 {
536 	unsigned long idx = page_nr / SWAPFILE_CLUSTER;
537 
538 	if (!cluster_info)
539 		return;
540 	if (cluster_is_free(&cluster_info[idx]))
541 		alloc_cluster(p, idx);
542 
543 	VM_BUG_ON(cluster_count(&cluster_info[idx]) >= SWAPFILE_CLUSTER);
544 	cluster_set_count(&cluster_info[idx],
545 		cluster_count(&cluster_info[idx]) + 1);
546 }
547 
548 /*
549  * The cluster corresponding to page_nr decreases one usage. If the usage
550  * counter becomes 0, which means no page in the cluster is in using, we can
551  * optionally discard the cluster and add it to free cluster list.
552  */
553 static void dec_cluster_info_page(struct swap_info_struct *p,
554 	struct swap_cluster_info *cluster_info, unsigned long page_nr)
555 {
556 	unsigned long idx = page_nr / SWAPFILE_CLUSTER;
557 
558 	if (!cluster_info)
559 		return;
560 
561 	VM_BUG_ON(cluster_count(&cluster_info[idx]) == 0);
562 	cluster_set_count(&cluster_info[idx],
563 		cluster_count(&cluster_info[idx]) - 1);
564 
565 	if (cluster_count(&cluster_info[idx]) == 0)
566 		free_cluster(p, idx);
567 }
568 
569 /*
570  * It's possible scan_swap_map() uses a free cluster in the middle of free
571  * cluster list. Avoiding such abuse to avoid list corruption.
572  */
573 static bool
574 scan_swap_map_ssd_cluster_conflict(struct swap_info_struct *si,
575 	unsigned long offset)
576 {
577 	struct percpu_cluster *percpu_cluster;
578 	bool conflict;
579 
580 	offset /= SWAPFILE_CLUSTER;
581 	conflict = !cluster_list_empty(&si->free_clusters) &&
582 		offset != cluster_list_first(&si->free_clusters) &&
583 		cluster_is_free(&si->cluster_info[offset]);
584 
585 	if (!conflict)
586 		return false;
587 
588 	percpu_cluster = this_cpu_ptr(si->percpu_cluster);
589 	cluster_set_null(&percpu_cluster->index);
590 	return true;
591 }
592 
593 /*
594  * Try to get a swap entry from current cpu's swap entry pool (a cluster). This
595  * might involve allocating a new cluster for current CPU too.
596  */
597 static bool scan_swap_map_try_ssd_cluster(struct swap_info_struct *si,
598 	unsigned long *offset, unsigned long *scan_base)
599 {
600 	struct percpu_cluster *cluster;
601 	struct swap_cluster_info *ci;
602 	unsigned long tmp, max;
603 
604 new_cluster:
605 	cluster = this_cpu_ptr(si->percpu_cluster);
606 	if (cluster_is_null(&cluster->index)) {
607 		if (!cluster_list_empty(&si->free_clusters)) {
608 			cluster->index = si->free_clusters.head;
609 			cluster->next = cluster_next(&cluster->index) *
610 					SWAPFILE_CLUSTER;
611 		} else if (!cluster_list_empty(&si->discard_clusters)) {
612 			/*
613 			 * we don't have free cluster but have some clusters in
614 			 * discarding, do discard now and reclaim them, then
615 			 * reread cluster_next_cpu since we dropped si->lock
616 			 */
617 			swap_do_scheduled_discard(si);
618 			*scan_base = this_cpu_read(*si->cluster_next_cpu);
619 			*offset = *scan_base;
620 			goto new_cluster;
621 		} else
622 			return false;
623 	}
624 
625 	/*
626 	 * Other CPUs can use our cluster if they can't find a free cluster,
627 	 * check if there is still free entry in the cluster
628 	 */
629 	tmp = cluster->next;
630 	max = min_t(unsigned long, si->max,
631 		    (cluster_next(&cluster->index) + 1) * SWAPFILE_CLUSTER);
632 	if (tmp < max) {
633 		ci = lock_cluster(si, tmp);
634 		while (tmp < max) {
635 			if (!si->swap_map[tmp])
636 				break;
637 			tmp++;
638 		}
639 		unlock_cluster(ci);
640 	}
641 	if (tmp >= max) {
642 		cluster_set_null(&cluster->index);
643 		goto new_cluster;
644 	}
645 	cluster->next = tmp + 1;
646 	*offset = tmp;
647 	*scan_base = tmp;
648 	return true;
649 }
650 
651 static void __del_from_avail_list(struct swap_info_struct *p)
652 {
653 	int nid;
654 
655 	for_each_node(nid)
656 		plist_del(&p->avail_lists[nid], &swap_avail_heads[nid]);
657 }
658 
659 static void del_from_avail_list(struct swap_info_struct *p)
660 {
661 	spin_lock(&swap_avail_lock);
662 	__del_from_avail_list(p);
663 	spin_unlock(&swap_avail_lock);
664 }
665 
666 static void swap_range_alloc(struct swap_info_struct *si, unsigned long offset,
667 			     unsigned int nr_entries)
668 {
669 	unsigned int end = offset + nr_entries - 1;
670 
671 	if (offset == si->lowest_bit)
672 		si->lowest_bit += nr_entries;
673 	if (end == si->highest_bit)
674 		WRITE_ONCE(si->highest_bit, si->highest_bit - nr_entries);
675 	si->inuse_pages += nr_entries;
676 	if (si->inuse_pages == si->pages) {
677 		si->lowest_bit = si->max;
678 		si->highest_bit = 0;
679 		del_from_avail_list(si);
680 	}
681 }
682 
683 static void add_to_avail_list(struct swap_info_struct *p)
684 {
685 	int nid;
686 
687 	spin_lock(&swap_avail_lock);
688 	for_each_node(nid) {
689 		WARN_ON(!plist_node_empty(&p->avail_lists[nid]));
690 		plist_add(&p->avail_lists[nid], &swap_avail_heads[nid]);
691 	}
692 	spin_unlock(&swap_avail_lock);
693 }
694 
695 static void swap_range_free(struct swap_info_struct *si, unsigned long offset,
696 			    unsigned int nr_entries)
697 {
698 	unsigned long begin = offset;
699 	unsigned long end = offset + nr_entries - 1;
700 	void (*swap_slot_free_notify)(struct block_device *, unsigned long);
701 
702 	if (offset < si->lowest_bit)
703 		si->lowest_bit = offset;
704 	if (end > si->highest_bit) {
705 		bool was_full = !si->highest_bit;
706 
707 		WRITE_ONCE(si->highest_bit, end);
708 		if (was_full && (si->flags & SWP_WRITEOK))
709 			add_to_avail_list(si);
710 	}
711 	atomic_long_add(nr_entries, &nr_swap_pages);
712 	si->inuse_pages -= nr_entries;
713 	if (si->flags & SWP_BLKDEV)
714 		swap_slot_free_notify =
715 			si->bdev->bd_disk->fops->swap_slot_free_notify;
716 	else
717 		swap_slot_free_notify = NULL;
718 	while (offset <= end) {
719 		arch_swap_invalidate_page(si->type, offset);
720 		frontswap_invalidate_page(si->type, offset);
721 		if (swap_slot_free_notify)
722 			swap_slot_free_notify(si->bdev, offset);
723 		offset++;
724 	}
725 	clear_shadow_from_swap_cache(si->type, begin, end);
726 }
727 
728 static void set_cluster_next(struct swap_info_struct *si, unsigned long next)
729 {
730 	unsigned long prev;
731 
732 	if (!(si->flags & SWP_SOLIDSTATE)) {
733 		si->cluster_next = next;
734 		return;
735 	}
736 
737 	prev = this_cpu_read(*si->cluster_next_cpu);
738 	/*
739 	 * Cross the swap address space size aligned trunk, choose
740 	 * another trunk randomly to avoid lock contention on swap
741 	 * address space if possible.
742 	 */
743 	if ((prev >> SWAP_ADDRESS_SPACE_SHIFT) !=
744 	    (next >> SWAP_ADDRESS_SPACE_SHIFT)) {
745 		/* No free swap slots available */
746 		if (si->highest_bit <= si->lowest_bit)
747 			return;
748 		next = si->lowest_bit +
749 			prandom_u32_max(si->highest_bit - si->lowest_bit + 1);
750 		next = ALIGN_DOWN(next, SWAP_ADDRESS_SPACE_PAGES);
751 		next = max_t(unsigned int, next, si->lowest_bit);
752 	}
753 	this_cpu_write(*si->cluster_next_cpu, next);
754 }
755 
756 static int scan_swap_map_slots(struct swap_info_struct *si,
757 			       unsigned char usage, int nr,
758 			       swp_entry_t slots[])
759 {
760 	struct swap_cluster_info *ci;
761 	unsigned long offset;
762 	unsigned long scan_base;
763 	unsigned long last_in_cluster = 0;
764 	int latency_ration = LATENCY_LIMIT;
765 	int n_ret = 0;
766 	bool scanned_many = false;
767 
768 	/*
769 	 * We try to cluster swap pages by allocating them sequentially
770 	 * in swap.  Once we've allocated SWAPFILE_CLUSTER pages this
771 	 * way, however, we resort to first-free allocation, starting
772 	 * a new cluster.  This prevents us from scattering swap pages
773 	 * all over the entire swap partition, so that we reduce
774 	 * overall disk seek times between swap pages.  -- sct
775 	 * But we do now try to find an empty cluster.  -Andrea
776 	 * And we let swap pages go all over an SSD partition.  Hugh
777 	 */
778 
779 	si->flags += SWP_SCANNING;
780 	/*
781 	 * Use percpu scan base for SSD to reduce lock contention on
782 	 * cluster and swap cache.  For HDD, sequential access is more
783 	 * important.
784 	 */
785 	if (si->flags & SWP_SOLIDSTATE)
786 		scan_base = this_cpu_read(*si->cluster_next_cpu);
787 	else
788 		scan_base = si->cluster_next;
789 	offset = scan_base;
790 
791 	/* SSD algorithm */
792 	if (si->cluster_info) {
793 		if (!scan_swap_map_try_ssd_cluster(si, &offset, &scan_base))
794 			goto scan;
795 	} else if (unlikely(!si->cluster_nr--)) {
796 		if (si->pages - si->inuse_pages < SWAPFILE_CLUSTER) {
797 			si->cluster_nr = SWAPFILE_CLUSTER - 1;
798 			goto checks;
799 		}
800 
801 		spin_unlock(&si->lock);
802 
803 		/*
804 		 * If seek is expensive, start searching for new cluster from
805 		 * start of partition, to minimize the span of allocated swap.
806 		 * If seek is cheap, that is the SWP_SOLIDSTATE si->cluster_info
807 		 * case, just handled by scan_swap_map_try_ssd_cluster() above.
808 		 */
809 		scan_base = offset = si->lowest_bit;
810 		last_in_cluster = offset + SWAPFILE_CLUSTER - 1;
811 
812 		/* Locate the first empty (unaligned) cluster */
813 		for (; last_in_cluster <= si->highest_bit; offset++) {
814 			if (si->swap_map[offset])
815 				last_in_cluster = offset + SWAPFILE_CLUSTER;
816 			else if (offset == last_in_cluster) {
817 				spin_lock(&si->lock);
818 				offset -= SWAPFILE_CLUSTER - 1;
819 				si->cluster_next = offset;
820 				si->cluster_nr = SWAPFILE_CLUSTER - 1;
821 				goto checks;
822 			}
823 			if (unlikely(--latency_ration < 0)) {
824 				cond_resched();
825 				latency_ration = LATENCY_LIMIT;
826 			}
827 		}
828 
829 		offset = scan_base;
830 		spin_lock(&si->lock);
831 		si->cluster_nr = SWAPFILE_CLUSTER - 1;
832 	}
833 
834 checks:
835 	if (si->cluster_info) {
836 		while (scan_swap_map_ssd_cluster_conflict(si, offset)) {
837 		/* take a break if we already got some slots */
838 			if (n_ret)
839 				goto done;
840 			if (!scan_swap_map_try_ssd_cluster(si, &offset,
841 							&scan_base))
842 				goto scan;
843 		}
844 	}
845 	if (!(si->flags & SWP_WRITEOK))
846 		goto no_page;
847 	if (!si->highest_bit)
848 		goto no_page;
849 	if (offset > si->highest_bit)
850 		scan_base = offset = si->lowest_bit;
851 
852 	ci = lock_cluster(si, offset);
853 	/* reuse swap entry of cache-only swap if not busy. */
854 	if (vm_swap_full() && si->swap_map[offset] == SWAP_HAS_CACHE) {
855 		int swap_was_freed;
856 		unlock_cluster(ci);
857 		spin_unlock(&si->lock);
858 		swap_was_freed = __try_to_reclaim_swap(si, offset, TTRS_ANYWAY);
859 		spin_lock(&si->lock);
860 		/* entry was freed successfully, try to use this again */
861 		if (swap_was_freed)
862 			goto checks;
863 		goto scan; /* check next one */
864 	}
865 
866 	if (si->swap_map[offset]) {
867 		unlock_cluster(ci);
868 		if (!n_ret)
869 			goto scan;
870 		else
871 			goto done;
872 	}
873 	WRITE_ONCE(si->swap_map[offset], usage);
874 	inc_cluster_info_page(si, si->cluster_info, offset);
875 	unlock_cluster(ci);
876 
877 	swap_range_alloc(si, offset, 1);
878 	slots[n_ret++] = swp_entry(si->type, offset);
879 
880 	/* got enough slots or reach max slots? */
881 	if ((n_ret == nr) || (offset >= si->highest_bit))
882 		goto done;
883 
884 	/* search for next available slot */
885 
886 	/* time to take a break? */
887 	if (unlikely(--latency_ration < 0)) {
888 		if (n_ret)
889 			goto done;
890 		spin_unlock(&si->lock);
891 		cond_resched();
892 		spin_lock(&si->lock);
893 		latency_ration = LATENCY_LIMIT;
894 	}
895 
896 	/* try to get more slots in cluster */
897 	if (si->cluster_info) {
898 		if (scan_swap_map_try_ssd_cluster(si, &offset, &scan_base))
899 			goto checks;
900 	} else if (si->cluster_nr && !si->swap_map[++offset]) {
901 		/* non-ssd case, still more slots in cluster? */
902 		--si->cluster_nr;
903 		goto checks;
904 	}
905 
906 	/*
907 	 * Even if there's no free clusters available (fragmented),
908 	 * try to scan a little more quickly with lock held unless we
909 	 * have scanned too many slots already.
910 	 */
911 	if (!scanned_many) {
912 		unsigned long scan_limit;
913 
914 		if (offset < scan_base)
915 			scan_limit = scan_base;
916 		else
917 			scan_limit = si->highest_bit;
918 		for (; offset <= scan_limit && --latency_ration > 0;
919 		     offset++) {
920 			if (!si->swap_map[offset])
921 				goto checks;
922 		}
923 	}
924 
925 done:
926 	set_cluster_next(si, offset + 1);
927 	si->flags -= SWP_SCANNING;
928 	return n_ret;
929 
930 scan:
931 	spin_unlock(&si->lock);
932 	while (++offset <= READ_ONCE(si->highest_bit)) {
933 		if (data_race(!si->swap_map[offset])) {
934 			spin_lock(&si->lock);
935 			goto checks;
936 		}
937 		if (vm_swap_full() &&
938 		    READ_ONCE(si->swap_map[offset]) == SWAP_HAS_CACHE) {
939 			spin_lock(&si->lock);
940 			goto checks;
941 		}
942 		if (unlikely(--latency_ration < 0)) {
943 			cond_resched();
944 			latency_ration = LATENCY_LIMIT;
945 			scanned_many = true;
946 		}
947 	}
948 	offset = si->lowest_bit;
949 	while (offset < scan_base) {
950 		if (data_race(!si->swap_map[offset])) {
951 			spin_lock(&si->lock);
952 			goto checks;
953 		}
954 		if (vm_swap_full() &&
955 		    READ_ONCE(si->swap_map[offset]) == SWAP_HAS_CACHE) {
956 			spin_lock(&si->lock);
957 			goto checks;
958 		}
959 		if (unlikely(--latency_ration < 0)) {
960 			cond_resched();
961 			latency_ration = LATENCY_LIMIT;
962 			scanned_many = true;
963 		}
964 		offset++;
965 	}
966 	spin_lock(&si->lock);
967 
968 no_page:
969 	si->flags -= SWP_SCANNING;
970 	return n_ret;
971 }
972 
973 static int swap_alloc_cluster(struct swap_info_struct *si, swp_entry_t *slot)
974 {
975 	unsigned long idx;
976 	struct swap_cluster_info *ci;
977 	unsigned long offset;
978 
979 	/*
980 	 * Should not even be attempting cluster allocations when huge
981 	 * page swap is disabled.  Warn and fail the allocation.
982 	 */
983 	if (!IS_ENABLED(CONFIG_THP_SWAP)) {
984 		VM_WARN_ON_ONCE(1);
985 		return 0;
986 	}
987 
988 	if (cluster_list_empty(&si->free_clusters))
989 		return 0;
990 
991 	idx = cluster_list_first(&si->free_clusters);
992 	offset = idx * SWAPFILE_CLUSTER;
993 	ci = lock_cluster(si, offset);
994 	alloc_cluster(si, idx);
995 	cluster_set_count_flag(ci, SWAPFILE_CLUSTER, CLUSTER_FLAG_HUGE);
996 
997 	memset(si->swap_map + offset, SWAP_HAS_CACHE, SWAPFILE_CLUSTER);
998 	unlock_cluster(ci);
999 	swap_range_alloc(si, offset, SWAPFILE_CLUSTER);
1000 	*slot = swp_entry(si->type, offset);
1001 
1002 	return 1;
1003 }
1004 
1005 static void swap_free_cluster(struct swap_info_struct *si, unsigned long idx)
1006 {
1007 	unsigned long offset = idx * SWAPFILE_CLUSTER;
1008 	struct swap_cluster_info *ci;
1009 
1010 	ci = lock_cluster(si, offset);
1011 	memset(si->swap_map + offset, 0, SWAPFILE_CLUSTER);
1012 	cluster_set_count_flag(ci, 0, 0);
1013 	free_cluster(si, idx);
1014 	unlock_cluster(ci);
1015 	swap_range_free(si, offset, SWAPFILE_CLUSTER);
1016 }
1017 
1018 static unsigned long scan_swap_map(struct swap_info_struct *si,
1019 				   unsigned char usage)
1020 {
1021 	swp_entry_t entry;
1022 	int n_ret;
1023 
1024 	n_ret = scan_swap_map_slots(si, usage, 1, &entry);
1025 
1026 	if (n_ret)
1027 		return swp_offset(entry);
1028 	else
1029 		return 0;
1030 
1031 }
1032 
1033 int get_swap_pages(int n_goal, swp_entry_t swp_entries[], int entry_size)
1034 {
1035 	unsigned long size = swap_entry_size(entry_size);
1036 	struct swap_info_struct *si, *next;
1037 	long avail_pgs;
1038 	int n_ret = 0;
1039 	int node;
1040 
1041 	/* Only single cluster request supported */
1042 	WARN_ON_ONCE(n_goal > 1 && size == SWAPFILE_CLUSTER);
1043 
1044 	spin_lock(&swap_avail_lock);
1045 
1046 	avail_pgs = atomic_long_read(&nr_swap_pages) / size;
1047 	if (avail_pgs <= 0) {
1048 		spin_unlock(&swap_avail_lock);
1049 		goto noswap;
1050 	}
1051 
1052 	n_goal = min3((long)n_goal, (long)SWAP_BATCH, avail_pgs);
1053 
1054 	atomic_long_sub(n_goal * size, &nr_swap_pages);
1055 
1056 start_over:
1057 	node = numa_node_id();
1058 	plist_for_each_entry_safe(si, next, &swap_avail_heads[node], avail_lists[node]) {
1059 		/* requeue si to after same-priority siblings */
1060 		plist_requeue(&si->avail_lists[node], &swap_avail_heads[node]);
1061 		spin_unlock(&swap_avail_lock);
1062 		spin_lock(&si->lock);
1063 		if (!si->highest_bit || !(si->flags & SWP_WRITEOK)) {
1064 			spin_lock(&swap_avail_lock);
1065 			if (plist_node_empty(&si->avail_lists[node])) {
1066 				spin_unlock(&si->lock);
1067 				goto nextsi;
1068 			}
1069 			WARN(!si->highest_bit,
1070 			     "swap_info %d in list but !highest_bit\n",
1071 			     si->type);
1072 			WARN(!(si->flags & SWP_WRITEOK),
1073 			     "swap_info %d in list but !SWP_WRITEOK\n",
1074 			     si->type);
1075 			__del_from_avail_list(si);
1076 			spin_unlock(&si->lock);
1077 			goto nextsi;
1078 		}
1079 		if (size == SWAPFILE_CLUSTER) {
1080 			if (si->flags & SWP_BLKDEV)
1081 				n_ret = swap_alloc_cluster(si, swp_entries);
1082 		} else
1083 			n_ret = scan_swap_map_slots(si, SWAP_HAS_CACHE,
1084 						    n_goal, swp_entries);
1085 		spin_unlock(&si->lock);
1086 		if (n_ret || size == SWAPFILE_CLUSTER)
1087 			goto check_out;
1088 		pr_debug("scan_swap_map of si %d failed to find offset\n",
1089 			si->type);
1090 
1091 		spin_lock(&swap_avail_lock);
1092 nextsi:
1093 		/*
1094 		 * if we got here, it's likely that si was almost full before,
1095 		 * and since scan_swap_map() can drop the si->lock, multiple
1096 		 * callers probably all tried to get a page from the same si
1097 		 * and it filled up before we could get one; or, the si filled
1098 		 * up between us dropping swap_avail_lock and taking si->lock.
1099 		 * Since we dropped the swap_avail_lock, the swap_avail_head
1100 		 * list may have been modified; so if next is still in the
1101 		 * swap_avail_head list then try it, otherwise start over
1102 		 * if we have not gotten any slots.
1103 		 */
1104 		if (plist_node_empty(&next->avail_lists[node]))
1105 			goto start_over;
1106 	}
1107 
1108 	spin_unlock(&swap_avail_lock);
1109 
1110 check_out:
1111 	if (n_ret < n_goal)
1112 		atomic_long_add((long)(n_goal - n_ret) * size,
1113 				&nr_swap_pages);
1114 noswap:
1115 	return n_ret;
1116 }
1117 
1118 /* The only caller of this function is now suspend routine */
1119 swp_entry_t get_swap_page_of_type(int type)
1120 {
1121 	struct swap_info_struct *si = swap_type_to_swap_info(type);
1122 	pgoff_t offset;
1123 
1124 	if (!si)
1125 		goto fail;
1126 
1127 	spin_lock(&si->lock);
1128 	if (si->flags & SWP_WRITEOK) {
1129 		/* This is called for allocating swap entry, not cache */
1130 		offset = scan_swap_map(si, 1);
1131 		if (offset) {
1132 			atomic_long_dec(&nr_swap_pages);
1133 			spin_unlock(&si->lock);
1134 			return swp_entry(type, offset);
1135 		}
1136 	}
1137 	spin_unlock(&si->lock);
1138 fail:
1139 	return (swp_entry_t) {0};
1140 }
1141 
1142 static struct swap_info_struct *__swap_info_get(swp_entry_t entry)
1143 {
1144 	struct swap_info_struct *p;
1145 	unsigned long offset;
1146 
1147 	if (!entry.val)
1148 		goto out;
1149 	p = swp_swap_info(entry);
1150 	if (!p)
1151 		goto bad_nofile;
1152 	if (data_race(!(p->flags & SWP_USED)))
1153 		goto bad_device;
1154 	offset = swp_offset(entry);
1155 	if (offset >= p->max)
1156 		goto bad_offset;
1157 	return p;
1158 
1159 bad_offset:
1160 	pr_err("swap_info_get: %s%08lx\n", Bad_offset, entry.val);
1161 	goto out;
1162 bad_device:
1163 	pr_err("swap_info_get: %s%08lx\n", Unused_file, entry.val);
1164 	goto out;
1165 bad_nofile:
1166 	pr_err("swap_info_get: %s%08lx\n", Bad_file, entry.val);
1167 out:
1168 	return NULL;
1169 }
1170 
1171 static struct swap_info_struct *_swap_info_get(swp_entry_t entry)
1172 {
1173 	struct swap_info_struct *p;
1174 
1175 	p = __swap_info_get(entry);
1176 	if (!p)
1177 		goto out;
1178 	if (data_race(!p->swap_map[swp_offset(entry)]))
1179 		goto bad_free;
1180 	return p;
1181 
1182 bad_free:
1183 	pr_err("swap_info_get: %s%08lx\n", Unused_offset, entry.val);
1184 out:
1185 	return NULL;
1186 }
1187 
1188 static struct swap_info_struct *swap_info_get(swp_entry_t entry)
1189 {
1190 	struct swap_info_struct *p;
1191 
1192 	p = _swap_info_get(entry);
1193 	if (p)
1194 		spin_lock(&p->lock);
1195 	return p;
1196 }
1197 
1198 static struct swap_info_struct *swap_info_get_cont(swp_entry_t entry,
1199 					struct swap_info_struct *q)
1200 {
1201 	struct swap_info_struct *p;
1202 
1203 	p = _swap_info_get(entry);
1204 
1205 	if (p != q) {
1206 		if (q != NULL)
1207 			spin_unlock(&q->lock);
1208 		if (p != NULL)
1209 			spin_lock(&p->lock);
1210 	}
1211 	return p;
1212 }
1213 
1214 static unsigned char __swap_entry_free_locked(struct swap_info_struct *p,
1215 					      unsigned long offset,
1216 					      unsigned char usage)
1217 {
1218 	unsigned char count;
1219 	unsigned char has_cache;
1220 
1221 	count = p->swap_map[offset];
1222 
1223 	has_cache = count & SWAP_HAS_CACHE;
1224 	count &= ~SWAP_HAS_CACHE;
1225 
1226 	if (usage == SWAP_HAS_CACHE) {
1227 		VM_BUG_ON(!has_cache);
1228 		has_cache = 0;
1229 	} else if (count == SWAP_MAP_SHMEM) {
1230 		/*
1231 		 * Or we could insist on shmem.c using a special
1232 		 * swap_shmem_free() and free_shmem_swap_and_cache()...
1233 		 */
1234 		count = 0;
1235 	} else if ((count & ~COUNT_CONTINUED) <= SWAP_MAP_MAX) {
1236 		if (count == COUNT_CONTINUED) {
1237 			if (swap_count_continued(p, offset, count))
1238 				count = SWAP_MAP_MAX | COUNT_CONTINUED;
1239 			else
1240 				count = SWAP_MAP_MAX;
1241 		} else
1242 			count--;
1243 	}
1244 
1245 	usage = count | has_cache;
1246 	if (usage)
1247 		WRITE_ONCE(p->swap_map[offset], usage);
1248 	else
1249 		WRITE_ONCE(p->swap_map[offset], SWAP_HAS_CACHE);
1250 
1251 	return usage;
1252 }
1253 
1254 /*
1255  * Check whether swap entry is valid in the swap device.  If so,
1256  * return pointer to swap_info_struct, and keep the swap entry valid
1257  * via preventing the swap device from being swapoff, until
1258  * put_swap_device() is called.  Otherwise return NULL.
1259  *
1260  * The entirety of the RCU read critical section must come before the
1261  * return from or after the call to synchronize_rcu() in
1262  * enable_swap_info() or swapoff().  So if "si->flags & SWP_VALID" is
1263  * true, the si->map, si->cluster_info, etc. must be valid in the
1264  * critical section.
1265  *
1266  * Notice that swapoff or swapoff+swapon can still happen before the
1267  * rcu_read_lock() in get_swap_device() or after the rcu_read_unlock()
1268  * in put_swap_device() if there isn't any other way to prevent
1269  * swapoff, such as page lock, page table lock, etc.  The caller must
1270  * be prepared for that.  For example, the following situation is
1271  * possible.
1272  *
1273  *   CPU1				CPU2
1274  *   do_swap_page()
1275  *     ...				swapoff+swapon
1276  *     __read_swap_cache_async()
1277  *       swapcache_prepare()
1278  *         __swap_duplicate()
1279  *           // check swap_map
1280  *     // verify PTE not changed
1281  *
1282  * In __swap_duplicate(), the swap_map need to be checked before
1283  * changing partly because the specified swap entry may be for another
1284  * swap device which has been swapoff.  And in do_swap_page(), after
1285  * the page is read from the swap device, the PTE is verified not
1286  * changed with the page table locked to check whether the swap device
1287  * has been swapoff or swapoff+swapon.
1288  */
1289 struct swap_info_struct *get_swap_device(swp_entry_t entry)
1290 {
1291 	struct swap_info_struct *si;
1292 	unsigned long offset;
1293 
1294 	if (!entry.val)
1295 		goto out;
1296 	si = swp_swap_info(entry);
1297 	if (!si)
1298 		goto bad_nofile;
1299 
1300 	rcu_read_lock();
1301 	if (data_race(!(si->flags & SWP_VALID)))
1302 		goto unlock_out;
1303 	offset = swp_offset(entry);
1304 	if (offset >= si->max)
1305 		goto unlock_out;
1306 
1307 	return si;
1308 bad_nofile:
1309 	pr_err("%s: %s%08lx\n", __func__, Bad_file, entry.val);
1310 out:
1311 	return NULL;
1312 unlock_out:
1313 	rcu_read_unlock();
1314 	return NULL;
1315 }
1316 
1317 static unsigned char __swap_entry_free(struct swap_info_struct *p,
1318 				       swp_entry_t entry)
1319 {
1320 	struct swap_cluster_info *ci;
1321 	unsigned long offset = swp_offset(entry);
1322 	unsigned char usage;
1323 
1324 	ci = lock_cluster_or_swap_info(p, offset);
1325 	usage = __swap_entry_free_locked(p, offset, 1);
1326 	unlock_cluster_or_swap_info(p, ci);
1327 	if (!usage)
1328 		free_swap_slot(entry);
1329 
1330 	return usage;
1331 }
1332 
1333 static void swap_entry_free(struct swap_info_struct *p, swp_entry_t entry)
1334 {
1335 	struct swap_cluster_info *ci;
1336 	unsigned long offset = swp_offset(entry);
1337 	unsigned char count;
1338 
1339 	ci = lock_cluster(p, offset);
1340 	count = p->swap_map[offset];
1341 	VM_BUG_ON(count != SWAP_HAS_CACHE);
1342 	p->swap_map[offset] = 0;
1343 	dec_cluster_info_page(p, p->cluster_info, offset);
1344 	unlock_cluster(ci);
1345 
1346 	mem_cgroup_uncharge_swap(entry, 1);
1347 	swap_range_free(p, offset, 1);
1348 }
1349 
1350 /*
1351  * Caller has made sure that the swap device corresponding to entry
1352  * is still around or has not been recycled.
1353  */
1354 void swap_free(swp_entry_t entry)
1355 {
1356 	struct swap_info_struct *p;
1357 
1358 	p = _swap_info_get(entry);
1359 	if (p)
1360 		__swap_entry_free(p, entry);
1361 }
1362 
1363 /*
1364  * Called after dropping swapcache to decrease refcnt to swap entries.
1365  */
1366 void put_swap_page(struct page *page, swp_entry_t entry)
1367 {
1368 	unsigned long offset = swp_offset(entry);
1369 	unsigned long idx = offset / SWAPFILE_CLUSTER;
1370 	struct swap_cluster_info *ci;
1371 	struct swap_info_struct *si;
1372 	unsigned char *map;
1373 	unsigned int i, free_entries = 0;
1374 	unsigned char val;
1375 	int size = swap_entry_size(thp_nr_pages(page));
1376 
1377 	si = _swap_info_get(entry);
1378 	if (!si)
1379 		return;
1380 
1381 	ci = lock_cluster_or_swap_info(si, offset);
1382 	if (size == SWAPFILE_CLUSTER) {
1383 		VM_BUG_ON(!cluster_is_huge(ci));
1384 		map = si->swap_map + offset;
1385 		for (i = 0; i < SWAPFILE_CLUSTER; i++) {
1386 			val = map[i];
1387 			VM_BUG_ON(!(val & SWAP_HAS_CACHE));
1388 			if (val == SWAP_HAS_CACHE)
1389 				free_entries++;
1390 		}
1391 		cluster_clear_huge(ci);
1392 		if (free_entries == SWAPFILE_CLUSTER) {
1393 			unlock_cluster_or_swap_info(si, ci);
1394 			spin_lock(&si->lock);
1395 			mem_cgroup_uncharge_swap(entry, SWAPFILE_CLUSTER);
1396 			swap_free_cluster(si, idx);
1397 			spin_unlock(&si->lock);
1398 			return;
1399 		}
1400 	}
1401 	for (i = 0; i < size; i++, entry.val++) {
1402 		if (!__swap_entry_free_locked(si, offset + i, SWAP_HAS_CACHE)) {
1403 			unlock_cluster_or_swap_info(si, ci);
1404 			free_swap_slot(entry);
1405 			if (i == size - 1)
1406 				return;
1407 			lock_cluster_or_swap_info(si, offset);
1408 		}
1409 	}
1410 	unlock_cluster_or_swap_info(si, ci);
1411 }
1412 
1413 #ifdef CONFIG_THP_SWAP
1414 int split_swap_cluster(swp_entry_t entry)
1415 {
1416 	struct swap_info_struct *si;
1417 	struct swap_cluster_info *ci;
1418 	unsigned long offset = swp_offset(entry);
1419 
1420 	si = _swap_info_get(entry);
1421 	if (!si)
1422 		return -EBUSY;
1423 	ci = lock_cluster(si, offset);
1424 	cluster_clear_huge(ci);
1425 	unlock_cluster(ci);
1426 	return 0;
1427 }
1428 #endif
1429 
1430 static int swp_entry_cmp(const void *ent1, const void *ent2)
1431 {
1432 	const swp_entry_t *e1 = ent1, *e2 = ent2;
1433 
1434 	return (int)swp_type(*e1) - (int)swp_type(*e2);
1435 }
1436 
1437 void swapcache_free_entries(swp_entry_t *entries, int n)
1438 {
1439 	struct swap_info_struct *p, *prev;
1440 	int i;
1441 
1442 	if (n <= 0)
1443 		return;
1444 
1445 	prev = NULL;
1446 	p = NULL;
1447 
1448 	/*
1449 	 * Sort swap entries by swap device, so each lock is only taken once.
1450 	 * nr_swapfiles isn't absolutely correct, but the overhead of sort() is
1451 	 * so low that it isn't necessary to optimize further.
1452 	 */
1453 	if (nr_swapfiles > 1)
1454 		sort(entries, n, sizeof(entries[0]), swp_entry_cmp, NULL);
1455 	for (i = 0; i < n; ++i) {
1456 		p = swap_info_get_cont(entries[i], prev);
1457 		if (p)
1458 			swap_entry_free(p, entries[i]);
1459 		prev = p;
1460 	}
1461 	if (p)
1462 		spin_unlock(&p->lock);
1463 }
1464 
1465 /*
1466  * How many references to page are currently swapped out?
1467  * This does not give an exact answer when swap count is continued,
1468  * but does include the high COUNT_CONTINUED flag to allow for that.
1469  */
1470 int page_swapcount(struct page *page)
1471 {
1472 	int count = 0;
1473 	struct swap_info_struct *p;
1474 	struct swap_cluster_info *ci;
1475 	swp_entry_t entry;
1476 	unsigned long offset;
1477 
1478 	entry.val = page_private(page);
1479 	p = _swap_info_get(entry);
1480 	if (p) {
1481 		offset = swp_offset(entry);
1482 		ci = lock_cluster_or_swap_info(p, offset);
1483 		count = swap_count(p->swap_map[offset]);
1484 		unlock_cluster_or_swap_info(p, ci);
1485 	}
1486 	return count;
1487 }
1488 
1489 int __swap_count(swp_entry_t entry)
1490 {
1491 	struct swap_info_struct *si;
1492 	pgoff_t offset = swp_offset(entry);
1493 	int count = 0;
1494 
1495 	si = get_swap_device(entry);
1496 	if (si) {
1497 		count = swap_count(si->swap_map[offset]);
1498 		put_swap_device(si);
1499 	}
1500 	return count;
1501 }
1502 
1503 static int swap_swapcount(struct swap_info_struct *si, swp_entry_t entry)
1504 {
1505 	int count = 0;
1506 	pgoff_t offset = swp_offset(entry);
1507 	struct swap_cluster_info *ci;
1508 
1509 	ci = lock_cluster_or_swap_info(si, offset);
1510 	count = swap_count(si->swap_map[offset]);
1511 	unlock_cluster_or_swap_info(si, ci);
1512 	return count;
1513 }
1514 
1515 /*
1516  * How many references to @entry are currently swapped out?
1517  * This does not give an exact answer when swap count is continued,
1518  * but does include the high COUNT_CONTINUED flag to allow for that.
1519  */
1520 int __swp_swapcount(swp_entry_t entry)
1521 {
1522 	int count = 0;
1523 	struct swap_info_struct *si;
1524 
1525 	si = get_swap_device(entry);
1526 	if (si) {
1527 		count = swap_swapcount(si, entry);
1528 		put_swap_device(si);
1529 	}
1530 	return count;
1531 }
1532 
1533 /*
1534  * How many references to @entry are currently swapped out?
1535  * This considers COUNT_CONTINUED so it returns exact answer.
1536  */
1537 int swp_swapcount(swp_entry_t entry)
1538 {
1539 	int count, tmp_count, n;
1540 	struct swap_info_struct *p;
1541 	struct swap_cluster_info *ci;
1542 	struct page *page;
1543 	pgoff_t offset;
1544 	unsigned char *map;
1545 
1546 	p = _swap_info_get(entry);
1547 	if (!p)
1548 		return 0;
1549 
1550 	offset = swp_offset(entry);
1551 
1552 	ci = lock_cluster_or_swap_info(p, offset);
1553 
1554 	count = swap_count(p->swap_map[offset]);
1555 	if (!(count & COUNT_CONTINUED))
1556 		goto out;
1557 
1558 	count &= ~COUNT_CONTINUED;
1559 	n = SWAP_MAP_MAX + 1;
1560 
1561 	page = vmalloc_to_page(p->swap_map + offset);
1562 	offset &= ~PAGE_MASK;
1563 	VM_BUG_ON(page_private(page) != SWP_CONTINUED);
1564 
1565 	do {
1566 		page = list_next_entry(page, lru);
1567 		map = kmap_atomic(page);
1568 		tmp_count = map[offset];
1569 		kunmap_atomic(map);
1570 
1571 		count += (tmp_count & ~COUNT_CONTINUED) * n;
1572 		n *= (SWAP_CONT_MAX + 1);
1573 	} while (tmp_count & COUNT_CONTINUED);
1574 out:
1575 	unlock_cluster_or_swap_info(p, ci);
1576 	return count;
1577 }
1578 
1579 static bool swap_page_trans_huge_swapped(struct swap_info_struct *si,
1580 					 swp_entry_t entry)
1581 {
1582 	struct swap_cluster_info *ci;
1583 	unsigned char *map = si->swap_map;
1584 	unsigned long roffset = swp_offset(entry);
1585 	unsigned long offset = round_down(roffset, SWAPFILE_CLUSTER);
1586 	int i;
1587 	bool ret = false;
1588 
1589 	ci = lock_cluster_or_swap_info(si, offset);
1590 	if (!ci || !cluster_is_huge(ci)) {
1591 		if (swap_count(map[roffset]))
1592 			ret = true;
1593 		goto unlock_out;
1594 	}
1595 	for (i = 0; i < SWAPFILE_CLUSTER; i++) {
1596 		if (swap_count(map[offset + i])) {
1597 			ret = true;
1598 			break;
1599 		}
1600 	}
1601 unlock_out:
1602 	unlock_cluster_or_swap_info(si, ci);
1603 	return ret;
1604 }
1605 
1606 static bool page_swapped(struct page *page)
1607 {
1608 	swp_entry_t entry;
1609 	struct swap_info_struct *si;
1610 
1611 	if (!IS_ENABLED(CONFIG_THP_SWAP) || likely(!PageTransCompound(page)))
1612 		return page_swapcount(page) != 0;
1613 
1614 	page = compound_head(page);
1615 	entry.val = page_private(page);
1616 	si = _swap_info_get(entry);
1617 	if (si)
1618 		return swap_page_trans_huge_swapped(si, entry);
1619 	return false;
1620 }
1621 
1622 static int page_trans_huge_map_swapcount(struct page *page, int *total_mapcount,
1623 					 int *total_swapcount)
1624 {
1625 	int i, map_swapcount, _total_mapcount, _total_swapcount;
1626 	unsigned long offset = 0;
1627 	struct swap_info_struct *si;
1628 	struct swap_cluster_info *ci = NULL;
1629 	unsigned char *map = NULL;
1630 	int mapcount, swapcount = 0;
1631 
1632 	/* hugetlbfs shouldn't call it */
1633 	VM_BUG_ON_PAGE(PageHuge(page), page);
1634 
1635 	if (!IS_ENABLED(CONFIG_THP_SWAP) || likely(!PageTransCompound(page))) {
1636 		mapcount = page_trans_huge_mapcount(page, total_mapcount);
1637 		if (PageSwapCache(page))
1638 			swapcount = page_swapcount(page);
1639 		if (total_swapcount)
1640 			*total_swapcount = swapcount;
1641 		return mapcount + swapcount;
1642 	}
1643 
1644 	page = compound_head(page);
1645 
1646 	_total_mapcount = _total_swapcount = map_swapcount = 0;
1647 	if (PageSwapCache(page)) {
1648 		swp_entry_t entry;
1649 
1650 		entry.val = page_private(page);
1651 		si = _swap_info_get(entry);
1652 		if (si) {
1653 			map = si->swap_map;
1654 			offset = swp_offset(entry);
1655 		}
1656 	}
1657 	if (map)
1658 		ci = lock_cluster(si, offset);
1659 	for (i = 0; i < HPAGE_PMD_NR; i++) {
1660 		mapcount = atomic_read(&page[i]._mapcount) + 1;
1661 		_total_mapcount += mapcount;
1662 		if (map) {
1663 			swapcount = swap_count(map[offset + i]);
1664 			_total_swapcount += swapcount;
1665 		}
1666 		map_swapcount = max(map_swapcount, mapcount + swapcount);
1667 	}
1668 	unlock_cluster(ci);
1669 	if (PageDoubleMap(page)) {
1670 		map_swapcount -= 1;
1671 		_total_mapcount -= HPAGE_PMD_NR;
1672 	}
1673 	mapcount = compound_mapcount(page);
1674 	map_swapcount += mapcount;
1675 	_total_mapcount += mapcount;
1676 	if (total_mapcount)
1677 		*total_mapcount = _total_mapcount;
1678 	if (total_swapcount)
1679 		*total_swapcount = _total_swapcount;
1680 
1681 	return map_swapcount;
1682 }
1683 
1684 /*
1685  * We can write to an anon page without COW if there are no other references
1686  * to it.  And as a side-effect, free up its swap: because the old content
1687  * on disk will never be read, and seeking back there to write new content
1688  * later would only waste time away from clustering.
1689  *
1690  * NOTE: total_map_swapcount should not be relied upon by the caller if
1691  * reuse_swap_page() returns false, but it may be always overwritten
1692  * (see the other implementation for CONFIG_SWAP=n).
1693  */
1694 bool reuse_swap_page(struct page *page, int *total_map_swapcount)
1695 {
1696 	int count, total_mapcount, total_swapcount;
1697 
1698 	VM_BUG_ON_PAGE(!PageLocked(page), page);
1699 	if (unlikely(PageKsm(page)))
1700 		return false;
1701 	count = page_trans_huge_map_swapcount(page, &total_mapcount,
1702 					      &total_swapcount);
1703 	if (total_map_swapcount)
1704 		*total_map_swapcount = total_mapcount + total_swapcount;
1705 	if (count == 1 && PageSwapCache(page) &&
1706 	    (likely(!PageTransCompound(page)) ||
1707 	     /* The remaining swap count will be freed soon */
1708 	     total_swapcount == page_swapcount(page))) {
1709 		if (!PageWriteback(page)) {
1710 			page = compound_head(page);
1711 			delete_from_swap_cache(page);
1712 			SetPageDirty(page);
1713 		} else {
1714 			swp_entry_t entry;
1715 			struct swap_info_struct *p;
1716 
1717 			entry.val = page_private(page);
1718 			p = swap_info_get(entry);
1719 			if (p->flags & SWP_STABLE_WRITES) {
1720 				spin_unlock(&p->lock);
1721 				return false;
1722 			}
1723 			spin_unlock(&p->lock);
1724 		}
1725 	}
1726 
1727 	return count <= 1;
1728 }
1729 
1730 /*
1731  * If swap is getting full, or if there are no more mappings of this page,
1732  * then try_to_free_swap is called to free its swap space.
1733  */
1734 int try_to_free_swap(struct page *page)
1735 {
1736 	VM_BUG_ON_PAGE(!PageLocked(page), page);
1737 
1738 	if (!PageSwapCache(page))
1739 		return 0;
1740 	if (PageWriteback(page))
1741 		return 0;
1742 	if (page_swapped(page))
1743 		return 0;
1744 
1745 	/*
1746 	 * Once hibernation has begun to create its image of memory,
1747 	 * there's a danger that one of the calls to try_to_free_swap()
1748 	 * - most probably a call from __try_to_reclaim_swap() while
1749 	 * hibernation is allocating its own swap pages for the image,
1750 	 * but conceivably even a call from memory reclaim - will free
1751 	 * the swap from a page which has already been recorded in the
1752 	 * image as a clean swapcache page, and then reuse its swap for
1753 	 * another page of the image.  On waking from hibernation, the
1754 	 * original page might be freed under memory pressure, then
1755 	 * later read back in from swap, now with the wrong data.
1756 	 *
1757 	 * Hibernation suspends storage while it is writing the image
1758 	 * to disk so check that here.
1759 	 */
1760 	if (pm_suspended_storage())
1761 		return 0;
1762 
1763 	page = compound_head(page);
1764 	delete_from_swap_cache(page);
1765 	SetPageDirty(page);
1766 	return 1;
1767 }
1768 
1769 /*
1770  * Free the swap entry like above, but also try to
1771  * free the page cache entry if it is the last user.
1772  */
1773 int free_swap_and_cache(swp_entry_t entry)
1774 {
1775 	struct swap_info_struct *p;
1776 	unsigned char count;
1777 
1778 	if (non_swap_entry(entry))
1779 		return 1;
1780 
1781 	p = _swap_info_get(entry);
1782 	if (p) {
1783 		count = __swap_entry_free(p, entry);
1784 		if (count == SWAP_HAS_CACHE &&
1785 		    !swap_page_trans_huge_swapped(p, entry))
1786 			__try_to_reclaim_swap(p, swp_offset(entry),
1787 					      TTRS_UNMAPPED | TTRS_FULL);
1788 	}
1789 	return p != NULL;
1790 }
1791 
1792 #ifdef CONFIG_HIBERNATION
1793 /*
1794  * Find the swap type that corresponds to given device (if any).
1795  *
1796  * @offset - number of the PAGE_SIZE-sized block of the device, starting
1797  * from 0, in which the swap header is expected to be located.
1798  *
1799  * This is needed for the suspend to disk (aka swsusp).
1800  */
1801 int swap_type_of(dev_t device, sector_t offset)
1802 {
1803 	int type;
1804 
1805 	if (!device)
1806 		return -1;
1807 
1808 	spin_lock(&swap_lock);
1809 	for (type = 0; type < nr_swapfiles; type++) {
1810 		struct swap_info_struct *sis = swap_info[type];
1811 
1812 		if (!(sis->flags & SWP_WRITEOK))
1813 			continue;
1814 
1815 		if (device == sis->bdev->bd_dev) {
1816 			struct swap_extent *se = first_se(sis);
1817 
1818 			if (se->start_block == offset) {
1819 				spin_unlock(&swap_lock);
1820 				return type;
1821 			}
1822 		}
1823 	}
1824 	spin_unlock(&swap_lock);
1825 	return -ENODEV;
1826 }
1827 
1828 int find_first_swap(dev_t *device)
1829 {
1830 	int type;
1831 
1832 	spin_lock(&swap_lock);
1833 	for (type = 0; type < nr_swapfiles; type++) {
1834 		struct swap_info_struct *sis = swap_info[type];
1835 
1836 		if (!(sis->flags & SWP_WRITEOK))
1837 			continue;
1838 		*device = sis->bdev->bd_dev;
1839 		spin_unlock(&swap_lock);
1840 		return type;
1841 	}
1842 	spin_unlock(&swap_lock);
1843 	return -ENODEV;
1844 }
1845 
1846 /*
1847  * Get the (PAGE_SIZE) block corresponding to given offset on the swapdev
1848  * corresponding to given index in swap_info (swap type).
1849  */
1850 sector_t swapdev_block(int type, pgoff_t offset)
1851 {
1852 	struct swap_info_struct *si = swap_type_to_swap_info(type);
1853 	struct swap_extent *se;
1854 
1855 	if (!si || !(si->flags & SWP_WRITEOK))
1856 		return 0;
1857 	se = offset_to_swap_extent(si, offset);
1858 	return se->start_block + (offset - se->start_page);
1859 }
1860 
1861 /*
1862  * Return either the total number of swap pages of given type, or the number
1863  * of free pages of that type (depending on @free)
1864  *
1865  * This is needed for software suspend
1866  */
1867 unsigned int count_swap_pages(int type, int free)
1868 {
1869 	unsigned int n = 0;
1870 
1871 	spin_lock(&swap_lock);
1872 	if ((unsigned int)type < nr_swapfiles) {
1873 		struct swap_info_struct *sis = swap_info[type];
1874 
1875 		spin_lock(&sis->lock);
1876 		if (sis->flags & SWP_WRITEOK) {
1877 			n = sis->pages;
1878 			if (free)
1879 				n -= sis->inuse_pages;
1880 		}
1881 		spin_unlock(&sis->lock);
1882 	}
1883 	spin_unlock(&swap_lock);
1884 	return n;
1885 }
1886 #endif /* CONFIG_HIBERNATION */
1887 
1888 static inline int pte_same_as_swp(pte_t pte, pte_t swp_pte)
1889 {
1890 	return pte_same(pte_swp_clear_soft_dirty(pte), swp_pte);
1891 }
1892 
1893 /*
1894  * No need to decide whether this PTE shares the swap entry with others,
1895  * just let do_wp_page work it out if a write is requested later - to
1896  * force COW, vm_page_prot omits write permission from any private vma.
1897  */
1898 static int unuse_pte(struct vm_area_struct *vma, pmd_t *pmd,
1899 		unsigned long addr, swp_entry_t entry, struct page *page)
1900 {
1901 	struct page *swapcache;
1902 	spinlock_t *ptl;
1903 	pte_t *pte;
1904 	int ret = 1;
1905 
1906 	swapcache = page;
1907 	page = ksm_might_need_to_copy(page, vma, addr);
1908 	if (unlikely(!page))
1909 		return -ENOMEM;
1910 
1911 	pte = pte_offset_map_lock(vma->vm_mm, pmd, addr, &ptl);
1912 	if (unlikely(!pte_same_as_swp(*pte, swp_entry_to_pte(entry)))) {
1913 		ret = 0;
1914 		goto out;
1915 	}
1916 
1917 	dec_mm_counter(vma->vm_mm, MM_SWAPENTS);
1918 	inc_mm_counter(vma->vm_mm, MM_ANONPAGES);
1919 	get_page(page);
1920 	set_pte_at(vma->vm_mm, addr, pte,
1921 		   pte_mkold(mk_pte(page, vma->vm_page_prot)));
1922 	if (page == swapcache) {
1923 		page_add_anon_rmap(page, vma, addr, false);
1924 	} else { /* ksm created a completely new copy */
1925 		page_add_new_anon_rmap(page, vma, addr, false);
1926 		lru_cache_add_inactive_or_unevictable(page, vma);
1927 	}
1928 	swap_free(entry);
1929 out:
1930 	pte_unmap_unlock(pte, ptl);
1931 	if (page != swapcache) {
1932 		unlock_page(page);
1933 		put_page(page);
1934 	}
1935 	return ret;
1936 }
1937 
1938 static int unuse_pte_range(struct vm_area_struct *vma, pmd_t *pmd,
1939 			unsigned long addr, unsigned long end,
1940 			unsigned int type, bool frontswap,
1941 			unsigned long *fs_pages_to_unuse)
1942 {
1943 	struct page *page;
1944 	swp_entry_t entry;
1945 	pte_t *pte;
1946 	struct swap_info_struct *si;
1947 	unsigned long offset;
1948 	int ret = 0;
1949 	volatile unsigned char *swap_map;
1950 
1951 	si = swap_info[type];
1952 	pte = pte_offset_map(pmd, addr);
1953 	do {
1954 		if (!is_swap_pte(*pte))
1955 			continue;
1956 
1957 		entry = pte_to_swp_entry(*pte);
1958 		if (swp_type(entry) != type)
1959 			continue;
1960 
1961 		offset = swp_offset(entry);
1962 		if (frontswap && !frontswap_test(si, offset))
1963 			continue;
1964 
1965 		pte_unmap(pte);
1966 		swap_map = &si->swap_map[offset];
1967 		page = lookup_swap_cache(entry, vma, addr);
1968 		if (!page) {
1969 			struct vm_fault vmf = {
1970 				.vma = vma,
1971 				.address = addr,
1972 				.pmd = pmd,
1973 			};
1974 
1975 			page = swapin_readahead(entry, GFP_HIGHUSER_MOVABLE,
1976 						&vmf);
1977 		}
1978 		if (!page) {
1979 			if (*swap_map == 0 || *swap_map == SWAP_MAP_BAD)
1980 				goto try_next;
1981 			return -ENOMEM;
1982 		}
1983 
1984 		lock_page(page);
1985 		wait_on_page_writeback(page);
1986 		ret = unuse_pte(vma, pmd, addr, entry, page);
1987 		if (ret < 0) {
1988 			unlock_page(page);
1989 			put_page(page);
1990 			goto out;
1991 		}
1992 
1993 		try_to_free_swap(page);
1994 		unlock_page(page);
1995 		put_page(page);
1996 
1997 		if (*fs_pages_to_unuse && !--(*fs_pages_to_unuse)) {
1998 			ret = FRONTSWAP_PAGES_UNUSED;
1999 			goto out;
2000 		}
2001 try_next:
2002 		pte = pte_offset_map(pmd, addr);
2003 	} while (pte++, addr += PAGE_SIZE, addr != end);
2004 	pte_unmap(pte - 1);
2005 
2006 	ret = 0;
2007 out:
2008 	return ret;
2009 }
2010 
2011 static inline int unuse_pmd_range(struct vm_area_struct *vma, pud_t *pud,
2012 				unsigned long addr, unsigned long end,
2013 				unsigned int type, bool frontswap,
2014 				unsigned long *fs_pages_to_unuse)
2015 {
2016 	pmd_t *pmd;
2017 	unsigned long next;
2018 	int ret;
2019 
2020 	pmd = pmd_offset(pud, addr);
2021 	do {
2022 		cond_resched();
2023 		next = pmd_addr_end(addr, end);
2024 		if (pmd_none_or_trans_huge_or_clear_bad(pmd))
2025 			continue;
2026 		ret = unuse_pte_range(vma, pmd, addr, next, type,
2027 				      frontswap, fs_pages_to_unuse);
2028 		if (ret)
2029 			return ret;
2030 	} while (pmd++, addr = next, addr != end);
2031 	return 0;
2032 }
2033 
2034 static inline int unuse_pud_range(struct vm_area_struct *vma, p4d_t *p4d,
2035 				unsigned long addr, unsigned long end,
2036 				unsigned int type, bool frontswap,
2037 				unsigned long *fs_pages_to_unuse)
2038 {
2039 	pud_t *pud;
2040 	unsigned long next;
2041 	int ret;
2042 
2043 	pud = pud_offset(p4d, addr);
2044 	do {
2045 		next = pud_addr_end(addr, end);
2046 		if (pud_none_or_clear_bad(pud))
2047 			continue;
2048 		ret = unuse_pmd_range(vma, pud, addr, next, type,
2049 				      frontswap, fs_pages_to_unuse);
2050 		if (ret)
2051 			return ret;
2052 	} while (pud++, addr = next, addr != end);
2053 	return 0;
2054 }
2055 
2056 static inline int unuse_p4d_range(struct vm_area_struct *vma, pgd_t *pgd,
2057 				unsigned long addr, unsigned long end,
2058 				unsigned int type, bool frontswap,
2059 				unsigned long *fs_pages_to_unuse)
2060 {
2061 	p4d_t *p4d;
2062 	unsigned long next;
2063 	int ret;
2064 
2065 	p4d = p4d_offset(pgd, addr);
2066 	do {
2067 		next = p4d_addr_end(addr, end);
2068 		if (p4d_none_or_clear_bad(p4d))
2069 			continue;
2070 		ret = unuse_pud_range(vma, p4d, addr, next, type,
2071 				      frontswap, fs_pages_to_unuse);
2072 		if (ret)
2073 			return ret;
2074 	} while (p4d++, addr = next, addr != end);
2075 	return 0;
2076 }
2077 
2078 static int unuse_vma(struct vm_area_struct *vma, unsigned int type,
2079 		     bool frontswap, unsigned long *fs_pages_to_unuse)
2080 {
2081 	pgd_t *pgd;
2082 	unsigned long addr, end, next;
2083 	int ret;
2084 
2085 	addr = vma->vm_start;
2086 	end = vma->vm_end;
2087 
2088 	pgd = pgd_offset(vma->vm_mm, addr);
2089 	do {
2090 		next = pgd_addr_end(addr, end);
2091 		if (pgd_none_or_clear_bad(pgd))
2092 			continue;
2093 		ret = unuse_p4d_range(vma, pgd, addr, next, type,
2094 				      frontswap, fs_pages_to_unuse);
2095 		if (ret)
2096 			return ret;
2097 	} while (pgd++, addr = next, addr != end);
2098 	return 0;
2099 }
2100 
2101 static int unuse_mm(struct mm_struct *mm, unsigned int type,
2102 		    bool frontswap, unsigned long *fs_pages_to_unuse)
2103 {
2104 	struct vm_area_struct *vma;
2105 	int ret = 0;
2106 
2107 	mmap_read_lock(mm);
2108 	for (vma = mm->mmap; vma; vma = vma->vm_next) {
2109 		if (vma->anon_vma) {
2110 			ret = unuse_vma(vma, type, frontswap,
2111 					fs_pages_to_unuse);
2112 			if (ret)
2113 				break;
2114 		}
2115 		cond_resched();
2116 	}
2117 	mmap_read_unlock(mm);
2118 	return ret;
2119 }
2120 
2121 /*
2122  * Scan swap_map (or frontswap_map if frontswap parameter is true)
2123  * from current position to next entry still in use. Return 0
2124  * if there are no inuse entries after prev till end of the map.
2125  */
2126 static unsigned int find_next_to_unuse(struct swap_info_struct *si,
2127 					unsigned int prev, bool frontswap)
2128 {
2129 	unsigned int i;
2130 	unsigned char count;
2131 
2132 	/*
2133 	 * No need for swap_lock here: we're just looking
2134 	 * for whether an entry is in use, not modifying it; false
2135 	 * hits are okay, and sys_swapoff() has already prevented new
2136 	 * allocations from this area (while holding swap_lock).
2137 	 */
2138 	for (i = prev + 1; i < si->max; i++) {
2139 		count = READ_ONCE(si->swap_map[i]);
2140 		if (count && swap_count(count) != SWAP_MAP_BAD)
2141 			if (!frontswap || frontswap_test(si, i))
2142 				break;
2143 		if ((i % LATENCY_LIMIT) == 0)
2144 			cond_resched();
2145 	}
2146 
2147 	if (i == si->max)
2148 		i = 0;
2149 
2150 	return i;
2151 }
2152 
2153 /*
2154  * If the boolean frontswap is true, only unuse pages_to_unuse pages;
2155  * pages_to_unuse==0 means all pages; ignored if frontswap is false
2156  */
2157 int try_to_unuse(unsigned int type, bool frontswap,
2158 		 unsigned long pages_to_unuse)
2159 {
2160 	struct mm_struct *prev_mm;
2161 	struct mm_struct *mm;
2162 	struct list_head *p;
2163 	int retval = 0;
2164 	struct swap_info_struct *si = swap_info[type];
2165 	struct page *page;
2166 	swp_entry_t entry;
2167 	unsigned int i;
2168 
2169 	if (!READ_ONCE(si->inuse_pages))
2170 		return 0;
2171 
2172 	if (!frontswap)
2173 		pages_to_unuse = 0;
2174 
2175 retry:
2176 	retval = shmem_unuse(type, frontswap, &pages_to_unuse);
2177 	if (retval)
2178 		goto out;
2179 
2180 	prev_mm = &init_mm;
2181 	mmget(prev_mm);
2182 
2183 	spin_lock(&mmlist_lock);
2184 	p = &init_mm.mmlist;
2185 	while (READ_ONCE(si->inuse_pages) &&
2186 	       !signal_pending(current) &&
2187 	       (p = p->next) != &init_mm.mmlist) {
2188 
2189 		mm = list_entry(p, struct mm_struct, mmlist);
2190 		if (!mmget_not_zero(mm))
2191 			continue;
2192 		spin_unlock(&mmlist_lock);
2193 		mmput(prev_mm);
2194 		prev_mm = mm;
2195 		retval = unuse_mm(mm, type, frontswap, &pages_to_unuse);
2196 
2197 		if (retval) {
2198 			mmput(prev_mm);
2199 			goto out;
2200 		}
2201 
2202 		/*
2203 		 * Make sure that we aren't completely killing
2204 		 * interactive performance.
2205 		 */
2206 		cond_resched();
2207 		spin_lock(&mmlist_lock);
2208 	}
2209 	spin_unlock(&mmlist_lock);
2210 
2211 	mmput(prev_mm);
2212 
2213 	i = 0;
2214 	while (READ_ONCE(si->inuse_pages) &&
2215 	       !signal_pending(current) &&
2216 	       (i = find_next_to_unuse(si, i, frontswap)) != 0) {
2217 
2218 		entry = swp_entry(type, i);
2219 		page = find_get_page(swap_address_space(entry), i);
2220 		if (!page)
2221 			continue;
2222 
2223 		/*
2224 		 * It is conceivable that a racing task removed this page from
2225 		 * swap cache just before we acquired the page lock. The page
2226 		 * might even be back in swap cache on another swap area. But
2227 		 * that is okay, try_to_free_swap() only removes stale pages.
2228 		 */
2229 		lock_page(page);
2230 		wait_on_page_writeback(page);
2231 		try_to_free_swap(page);
2232 		unlock_page(page);
2233 		put_page(page);
2234 
2235 		/*
2236 		 * For frontswap, we just need to unuse pages_to_unuse, if
2237 		 * it was specified. Need not check frontswap again here as
2238 		 * we already zeroed out pages_to_unuse if not frontswap.
2239 		 */
2240 		if (pages_to_unuse && --pages_to_unuse == 0)
2241 			goto out;
2242 	}
2243 
2244 	/*
2245 	 * Lets check again to see if there are still swap entries in the map.
2246 	 * If yes, we would need to do retry the unuse logic again.
2247 	 * Under global memory pressure, swap entries can be reinserted back
2248 	 * into process space after the mmlist loop above passes over them.
2249 	 *
2250 	 * Limit the number of retries? No: when mmget_not_zero() above fails,
2251 	 * that mm is likely to be freeing swap from exit_mmap(), which proceeds
2252 	 * at its own independent pace; and even shmem_writepage() could have
2253 	 * been preempted after get_swap_page(), temporarily hiding that swap.
2254 	 * It's easy and robust (though cpu-intensive) just to keep retrying.
2255 	 */
2256 	if (READ_ONCE(si->inuse_pages)) {
2257 		if (!signal_pending(current))
2258 			goto retry;
2259 		retval = -EINTR;
2260 	}
2261 out:
2262 	return (retval == FRONTSWAP_PAGES_UNUSED) ? 0 : retval;
2263 }
2264 
2265 /*
2266  * After a successful try_to_unuse, if no swap is now in use, we know
2267  * we can empty the mmlist.  swap_lock must be held on entry and exit.
2268  * Note that mmlist_lock nests inside swap_lock, and an mm must be
2269  * added to the mmlist just after page_duplicate - before would be racy.
2270  */
2271 static void drain_mmlist(void)
2272 {
2273 	struct list_head *p, *next;
2274 	unsigned int type;
2275 
2276 	for (type = 0; type < nr_swapfiles; type++)
2277 		if (swap_info[type]->inuse_pages)
2278 			return;
2279 	spin_lock(&mmlist_lock);
2280 	list_for_each_safe(p, next, &init_mm.mmlist)
2281 		list_del_init(p);
2282 	spin_unlock(&mmlist_lock);
2283 }
2284 
2285 /*
2286  * Free all of a swapdev's extent information
2287  */
2288 static void destroy_swap_extents(struct swap_info_struct *sis)
2289 {
2290 	while (!RB_EMPTY_ROOT(&sis->swap_extent_root)) {
2291 		struct rb_node *rb = sis->swap_extent_root.rb_node;
2292 		struct swap_extent *se = rb_entry(rb, struct swap_extent, rb_node);
2293 
2294 		rb_erase(rb, &sis->swap_extent_root);
2295 		kfree(se);
2296 	}
2297 
2298 	if (sis->flags & SWP_ACTIVATED) {
2299 		struct file *swap_file = sis->swap_file;
2300 		struct address_space *mapping = swap_file->f_mapping;
2301 
2302 		sis->flags &= ~SWP_ACTIVATED;
2303 		if (mapping->a_ops->swap_deactivate)
2304 			mapping->a_ops->swap_deactivate(swap_file);
2305 	}
2306 }
2307 
2308 /*
2309  * Add a block range (and the corresponding page range) into this swapdev's
2310  * extent tree.
2311  *
2312  * This function rather assumes that it is called in ascending page order.
2313  */
2314 int
2315 add_swap_extent(struct swap_info_struct *sis, unsigned long start_page,
2316 		unsigned long nr_pages, sector_t start_block)
2317 {
2318 	struct rb_node **link = &sis->swap_extent_root.rb_node, *parent = NULL;
2319 	struct swap_extent *se;
2320 	struct swap_extent *new_se;
2321 
2322 	/*
2323 	 * place the new node at the right most since the
2324 	 * function is called in ascending page order.
2325 	 */
2326 	while (*link) {
2327 		parent = *link;
2328 		link = &parent->rb_right;
2329 	}
2330 
2331 	if (parent) {
2332 		se = rb_entry(parent, struct swap_extent, rb_node);
2333 		BUG_ON(se->start_page + se->nr_pages != start_page);
2334 		if (se->start_block + se->nr_pages == start_block) {
2335 			/* Merge it */
2336 			se->nr_pages += nr_pages;
2337 			return 0;
2338 		}
2339 	}
2340 
2341 	/* No merge, insert a new extent. */
2342 	new_se = kmalloc(sizeof(*se), GFP_KERNEL);
2343 	if (new_se == NULL)
2344 		return -ENOMEM;
2345 	new_se->start_page = start_page;
2346 	new_se->nr_pages = nr_pages;
2347 	new_se->start_block = start_block;
2348 
2349 	rb_link_node(&new_se->rb_node, parent, link);
2350 	rb_insert_color(&new_se->rb_node, &sis->swap_extent_root);
2351 	return 1;
2352 }
2353 EXPORT_SYMBOL_GPL(add_swap_extent);
2354 
2355 /*
2356  * A `swap extent' is a simple thing which maps a contiguous range of pages
2357  * onto a contiguous range of disk blocks.  An ordered list of swap extents
2358  * is built at swapon time and is then used at swap_writepage/swap_readpage
2359  * time for locating where on disk a page belongs.
2360  *
2361  * If the swapfile is an S_ISBLK block device, a single extent is installed.
2362  * This is done so that the main operating code can treat S_ISBLK and S_ISREG
2363  * swap files identically.
2364  *
2365  * Whether the swapdev is an S_ISREG file or an S_ISBLK blockdev, the swap
2366  * extent list operates in PAGE_SIZE disk blocks.  Both S_ISREG and S_ISBLK
2367  * swapfiles are handled *identically* after swapon time.
2368  *
2369  * For S_ISREG swapfiles, setup_swap_extents() will walk all the file's blocks
2370  * and will parse them into an ordered extent list, in PAGE_SIZE chunks.  If
2371  * some stray blocks are found which do not fall within the PAGE_SIZE alignment
2372  * requirements, they are simply tossed out - we will never use those blocks
2373  * for swapping.
2374  *
2375  * For all swap devices we set S_SWAPFILE across the life of the swapon.  This
2376  * prevents users from writing to the swap device, which will corrupt memory.
2377  *
2378  * The amount of disk space which a single swap extent represents varies.
2379  * Typically it is in the 1-4 megabyte range.  So we can have hundreds of
2380  * extents in the list.  To avoid much list walking, we cache the previous
2381  * search location in `curr_swap_extent', and start new searches from there.
2382  * This is extremely effective.  The average number of iterations in
2383  * map_swap_page() has been measured at about 0.3 per page.  - akpm.
2384  */
2385 static int setup_swap_extents(struct swap_info_struct *sis, sector_t *span)
2386 {
2387 	struct file *swap_file = sis->swap_file;
2388 	struct address_space *mapping = swap_file->f_mapping;
2389 	struct inode *inode = mapping->host;
2390 	int ret;
2391 
2392 	if (S_ISBLK(inode->i_mode)) {
2393 		ret = add_swap_extent(sis, 0, sis->max, 0);
2394 		*span = sis->pages;
2395 		return ret;
2396 	}
2397 
2398 	if (mapping->a_ops->swap_activate) {
2399 		ret = mapping->a_ops->swap_activate(sis, swap_file, span);
2400 		if (ret >= 0)
2401 			sis->flags |= SWP_ACTIVATED;
2402 		if (!ret) {
2403 			sis->flags |= SWP_FS_OPS;
2404 			ret = add_swap_extent(sis, 0, sis->max, 0);
2405 			*span = sis->pages;
2406 		}
2407 		return ret;
2408 	}
2409 
2410 	return generic_swapfile_activate(sis, swap_file, span);
2411 }
2412 
2413 static int swap_node(struct swap_info_struct *p)
2414 {
2415 	struct block_device *bdev;
2416 
2417 	if (p->bdev)
2418 		bdev = p->bdev;
2419 	else
2420 		bdev = p->swap_file->f_inode->i_sb->s_bdev;
2421 
2422 	return bdev ? bdev->bd_disk->node_id : NUMA_NO_NODE;
2423 }
2424 
2425 static void setup_swap_info(struct swap_info_struct *p, int prio,
2426 			    unsigned char *swap_map,
2427 			    struct swap_cluster_info *cluster_info)
2428 {
2429 	int i;
2430 
2431 	if (prio >= 0)
2432 		p->prio = prio;
2433 	else
2434 		p->prio = --least_priority;
2435 	/*
2436 	 * the plist prio is negated because plist ordering is
2437 	 * low-to-high, while swap ordering is high-to-low
2438 	 */
2439 	p->list.prio = -p->prio;
2440 	for_each_node(i) {
2441 		if (p->prio >= 0)
2442 			p->avail_lists[i].prio = -p->prio;
2443 		else {
2444 			if (swap_node(p) == i)
2445 				p->avail_lists[i].prio = 1;
2446 			else
2447 				p->avail_lists[i].prio = -p->prio;
2448 		}
2449 	}
2450 	p->swap_map = swap_map;
2451 	p->cluster_info = cluster_info;
2452 }
2453 
2454 static void _enable_swap_info(struct swap_info_struct *p)
2455 {
2456 	p->flags |= SWP_WRITEOK | SWP_VALID;
2457 	atomic_long_add(p->pages, &nr_swap_pages);
2458 	total_swap_pages += p->pages;
2459 
2460 	assert_spin_locked(&swap_lock);
2461 	/*
2462 	 * both lists are plists, and thus priority ordered.
2463 	 * swap_active_head needs to be priority ordered for swapoff(),
2464 	 * which on removal of any swap_info_struct with an auto-assigned
2465 	 * (i.e. negative) priority increments the auto-assigned priority
2466 	 * of any lower-priority swap_info_structs.
2467 	 * swap_avail_head needs to be priority ordered for get_swap_page(),
2468 	 * which allocates swap pages from the highest available priority
2469 	 * swap_info_struct.
2470 	 */
2471 	plist_add(&p->list, &swap_active_head);
2472 	add_to_avail_list(p);
2473 }
2474 
2475 static void enable_swap_info(struct swap_info_struct *p, int prio,
2476 				unsigned char *swap_map,
2477 				struct swap_cluster_info *cluster_info,
2478 				unsigned long *frontswap_map)
2479 {
2480 	frontswap_init(p->type, frontswap_map);
2481 	spin_lock(&swap_lock);
2482 	spin_lock(&p->lock);
2483 	setup_swap_info(p, prio, swap_map, cluster_info);
2484 	spin_unlock(&p->lock);
2485 	spin_unlock(&swap_lock);
2486 	/*
2487 	 * Guarantee swap_map, cluster_info, etc. fields are valid
2488 	 * between get/put_swap_device() if SWP_VALID bit is set
2489 	 */
2490 	synchronize_rcu();
2491 	spin_lock(&swap_lock);
2492 	spin_lock(&p->lock);
2493 	_enable_swap_info(p);
2494 	spin_unlock(&p->lock);
2495 	spin_unlock(&swap_lock);
2496 }
2497 
2498 static void reinsert_swap_info(struct swap_info_struct *p)
2499 {
2500 	spin_lock(&swap_lock);
2501 	spin_lock(&p->lock);
2502 	setup_swap_info(p, p->prio, p->swap_map, p->cluster_info);
2503 	_enable_swap_info(p);
2504 	spin_unlock(&p->lock);
2505 	spin_unlock(&swap_lock);
2506 }
2507 
2508 bool has_usable_swap(void)
2509 {
2510 	bool ret = true;
2511 
2512 	spin_lock(&swap_lock);
2513 	if (plist_head_empty(&swap_active_head))
2514 		ret = false;
2515 	spin_unlock(&swap_lock);
2516 	return ret;
2517 }
2518 
2519 SYSCALL_DEFINE1(swapoff, const char __user *, specialfile)
2520 {
2521 	struct swap_info_struct *p = NULL;
2522 	unsigned char *swap_map;
2523 	struct swap_cluster_info *cluster_info;
2524 	unsigned long *frontswap_map;
2525 	struct file *swap_file, *victim;
2526 	struct address_space *mapping;
2527 	struct inode *inode;
2528 	struct filename *pathname;
2529 	int err, found = 0;
2530 	unsigned int old_block_size;
2531 
2532 	if (!capable(CAP_SYS_ADMIN))
2533 		return -EPERM;
2534 
2535 	BUG_ON(!current->mm);
2536 
2537 	pathname = getname(specialfile);
2538 	if (IS_ERR(pathname))
2539 		return PTR_ERR(pathname);
2540 
2541 	victim = file_open_name(pathname, O_RDWR|O_LARGEFILE, 0);
2542 	err = PTR_ERR(victim);
2543 	if (IS_ERR(victim))
2544 		goto out;
2545 
2546 	mapping = victim->f_mapping;
2547 	spin_lock(&swap_lock);
2548 	plist_for_each_entry(p, &swap_active_head, list) {
2549 		if (p->flags & SWP_WRITEOK) {
2550 			if (p->swap_file->f_mapping == mapping) {
2551 				found = 1;
2552 				break;
2553 			}
2554 		}
2555 	}
2556 	if (!found) {
2557 		err = -EINVAL;
2558 		spin_unlock(&swap_lock);
2559 		goto out_dput;
2560 	}
2561 	if (!security_vm_enough_memory_mm(current->mm, p->pages))
2562 		vm_unacct_memory(p->pages);
2563 	else {
2564 		err = -ENOMEM;
2565 		spin_unlock(&swap_lock);
2566 		goto out_dput;
2567 	}
2568 	del_from_avail_list(p);
2569 	spin_lock(&p->lock);
2570 	if (p->prio < 0) {
2571 		struct swap_info_struct *si = p;
2572 		int nid;
2573 
2574 		plist_for_each_entry_continue(si, &swap_active_head, list) {
2575 			si->prio++;
2576 			si->list.prio--;
2577 			for_each_node(nid) {
2578 				if (si->avail_lists[nid].prio != 1)
2579 					si->avail_lists[nid].prio--;
2580 			}
2581 		}
2582 		least_priority++;
2583 	}
2584 	plist_del(&p->list, &swap_active_head);
2585 	atomic_long_sub(p->pages, &nr_swap_pages);
2586 	total_swap_pages -= p->pages;
2587 	p->flags &= ~SWP_WRITEOK;
2588 	spin_unlock(&p->lock);
2589 	spin_unlock(&swap_lock);
2590 
2591 	disable_swap_slots_cache_lock();
2592 
2593 	set_current_oom_origin();
2594 	err = try_to_unuse(p->type, false, 0); /* force unuse all pages */
2595 	clear_current_oom_origin();
2596 
2597 	if (err) {
2598 		/* re-insert swap space back into swap_list */
2599 		reinsert_swap_info(p);
2600 		reenable_swap_slots_cache_unlock();
2601 		goto out_dput;
2602 	}
2603 
2604 	reenable_swap_slots_cache_unlock();
2605 
2606 	spin_lock(&swap_lock);
2607 	spin_lock(&p->lock);
2608 	p->flags &= ~SWP_VALID;		/* mark swap device as invalid */
2609 	spin_unlock(&p->lock);
2610 	spin_unlock(&swap_lock);
2611 	/*
2612 	 * wait for swap operations protected by get/put_swap_device()
2613 	 * to complete
2614 	 */
2615 	synchronize_rcu();
2616 
2617 	flush_work(&p->discard_work);
2618 
2619 	destroy_swap_extents(p);
2620 	if (p->flags & SWP_CONTINUED)
2621 		free_swap_count_continuations(p);
2622 
2623 	if (!p->bdev || !blk_queue_nonrot(bdev_get_queue(p->bdev)))
2624 		atomic_dec(&nr_rotate_swap);
2625 
2626 	mutex_lock(&swapon_mutex);
2627 	spin_lock(&swap_lock);
2628 	spin_lock(&p->lock);
2629 	drain_mmlist();
2630 
2631 	/* wait for anyone still in scan_swap_map */
2632 	p->highest_bit = 0;		/* cuts scans short */
2633 	while (p->flags >= SWP_SCANNING) {
2634 		spin_unlock(&p->lock);
2635 		spin_unlock(&swap_lock);
2636 		schedule_timeout_uninterruptible(1);
2637 		spin_lock(&swap_lock);
2638 		spin_lock(&p->lock);
2639 	}
2640 
2641 	swap_file = p->swap_file;
2642 	old_block_size = p->old_block_size;
2643 	p->swap_file = NULL;
2644 	p->max = 0;
2645 	swap_map = p->swap_map;
2646 	p->swap_map = NULL;
2647 	cluster_info = p->cluster_info;
2648 	p->cluster_info = NULL;
2649 	frontswap_map = frontswap_map_get(p);
2650 	spin_unlock(&p->lock);
2651 	spin_unlock(&swap_lock);
2652 	arch_swap_invalidate_area(p->type);
2653 	frontswap_invalidate_area(p->type);
2654 	frontswap_map_set(p, NULL);
2655 	mutex_unlock(&swapon_mutex);
2656 	free_percpu(p->percpu_cluster);
2657 	p->percpu_cluster = NULL;
2658 	free_percpu(p->cluster_next_cpu);
2659 	p->cluster_next_cpu = NULL;
2660 	vfree(swap_map);
2661 	kvfree(cluster_info);
2662 	kvfree(frontswap_map);
2663 	/* Destroy swap account information */
2664 	swap_cgroup_swapoff(p->type);
2665 	exit_swap_address_space(p->type);
2666 
2667 	inode = mapping->host;
2668 	if (S_ISBLK(inode->i_mode)) {
2669 		struct block_device *bdev = I_BDEV(inode);
2670 
2671 		set_blocksize(bdev, old_block_size);
2672 		blkdev_put(bdev, FMODE_READ | FMODE_WRITE | FMODE_EXCL);
2673 	}
2674 
2675 	inode_lock(inode);
2676 	inode->i_flags &= ~S_SWAPFILE;
2677 	inode_unlock(inode);
2678 	filp_close(swap_file, NULL);
2679 
2680 	/*
2681 	 * Clear the SWP_USED flag after all resources are freed so that swapon
2682 	 * can reuse this swap_info in alloc_swap_info() safely.  It is ok to
2683 	 * not hold p->lock after we cleared its SWP_WRITEOK.
2684 	 */
2685 	spin_lock(&swap_lock);
2686 	p->flags = 0;
2687 	spin_unlock(&swap_lock);
2688 
2689 	err = 0;
2690 	atomic_inc(&proc_poll_event);
2691 	wake_up_interruptible(&proc_poll_wait);
2692 
2693 out_dput:
2694 	filp_close(victim, NULL);
2695 out:
2696 	putname(pathname);
2697 	return err;
2698 }
2699 
2700 #ifdef CONFIG_PROC_FS
2701 static __poll_t swaps_poll(struct file *file, poll_table *wait)
2702 {
2703 	struct seq_file *seq = file->private_data;
2704 
2705 	poll_wait(file, &proc_poll_wait, wait);
2706 
2707 	if (seq->poll_event != atomic_read(&proc_poll_event)) {
2708 		seq->poll_event = atomic_read(&proc_poll_event);
2709 		return EPOLLIN | EPOLLRDNORM | EPOLLERR | EPOLLPRI;
2710 	}
2711 
2712 	return EPOLLIN | EPOLLRDNORM;
2713 }
2714 
2715 /* iterator */
2716 static void *swap_start(struct seq_file *swap, loff_t *pos)
2717 {
2718 	struct swap_info_struct *si;
2719 	int type;
2720 	loff_t l = *pos;
2721 
2722 	mutex_lock(&swapon_mutex);
2723 
2724 	if (!l)
2725 		return SEQ_START_TOKEN;
2726 
2727 	for (type = 0; (si = swap_type_to_swap_info(type)); type++) {
2728 		if (!(si->flags & SWP_USED) || !si->swap_map)
2729 			continue;
2730 		if (!--l)
2731 			return si;
2732 	}
2733 
2734 	return NULL;
2735 }
2736 
2737 static void *swap_next(struct seq_file *swap, void *v, loff_t *pos)
2738 {
2739 	struct swap_info_struct *si = v;
2740 	int type;
2741 
2742 	if (v == SEQ_START_TOKEN)
2743 		type = 0;
2744 	else
2745 		type = si->type + 1;
2746 
2747 	++(*pos);
2748 	for (; (si = swap_type_to_swap_info(type)); type++) {
2749 		if (!(si->flags & SWP_USED) || !si->swap_map)
2750 			continue;
2751 		return si;
2752 	}
2753 
2754 	return NULL;
2755 }
2756 
2757 static void swap_stop(struct seq_file *swap, void *v)
2758 {
2759 	mutex_unlock(&swapon_mutex);
2760 }
2761 
2762 static int swap_show(struct seq_file *swap, void *v)
2763 {
2764 	struct swap_info_struct *si = v;
2765 	struct file *file;
2766 	int len;
2767 	unsigned int bytes, inuse;
2768 
2769 	if (si == SEQ_START_TOKEN) {
2770 		seq_puts(swap,"Filename\t\t\t\tType\t\tSize\t\tUsed\t\tPriority\n");
2771 		return 0;
2772 	}
2773 
2774 	bytes = si->pages << (PAGE_SHIFT - 10);
2775 	inuse = si->inuse_pages << (PAGE_SHIFT - 10);
2776 
2777 	file = si->swap_file;
2778 	len = seq_file_path(swap, file, " \t\n\\");
2779 	seq_printf(swap, "%*s%s\t%u\t%s%u\t%s%d\n",
2780 			len < 40 ? 40 - len : 1, " ",
2781 			S_ISBLK(file_inode(file)->i_mode) ?
2782 				"partition" : "file\t",
2783 			bytes, bytes < 10000000 ? "\t" : "",
2784 			inuse, inuse < 10000000 ? "\t" : "",
2785 			si->prio);
2786 	return 0;
2787 }
2788 
2789 static const struct seq_operations swaps_op = {
2790 	.start =	swap_start,
2791 	.next =		swap_next,
2792 	.stop =		swap_stop,
2793 	.show =		swap_show
2794 };
2795 
2796 static int swaps_open(struct inode *inode, struct file *file)
2797 {
2798 	struct seq_file *seq;
2799 	int ret;
2800 
2801 	ret = seq_open(file, &swaps_op);
2802 	if (ret)
2803 		return ret;
2804 
2805 	seq = file->private_data;
2806 	seq->poll_event = atomic_read(&proc_poll_event);
2807 	return 0;
2808 }
2809 
2810 static const struct proc_ops swaps_proc_ops = {
2811 	.proc_flags	= PROC_ENTRY_PERMANENT,
2812 	.proc_open	= swaps_open,
2813 	.proc_read	= seq_read,
2814 	.proc_lseek	= seq_lseek,
2815 	.proc_release	= seq_release,
2816 	.proc_poll	= swaps_poll,
2817 };
2818 
2819 static int __init procswaps_init(void)
2820 {
2821 	proc_create("swaps", 0, NULL, &swaps_proc_ops);
2822 	return 0;
2823 }
2824 __initcall(procswaps_init);
2825 #endif /* CONFIG_PROC_FS */
2826 
2827 #ifdef MAX_SWAPFILES_CHECK
2828 static int __init max_swapfiles_check(void)
2829 {
2830 	MAX_SWAPFILES_CHECK();
2831 	return 0;
2832 }
2833 late_initcall(max_swapfiles_check);
2834 #endif
2835 
2836 static struct swap_info_struct *alloc_swap_info(void)
2837 {
2838 	struct swap_info_struct *p;
2839 	struct swap_info_struct *defer = NULL;
2840 	unsigned int type;
2841 	int i;
2842 
2843 	p = kvzalloc(struct_size(p, avail_lists, nr_node_ids), GFP_KERNEL);
2844 	if (!p)
2845 		return ERR_PTR(-ENOMEM);
2846 
2847 	spin_lock(&swap_lock);
2848 	for (type = 0; type < nr_swapfiles; type++) {
2849 		if (!(swap_info[type]->flags & SWP_USED))
2850 			break;
2851 	}
2852 	if (type >= MAX_SWAPFILES) {
2853 		spin_unlock(&swap_lock);
2854 		kvfree(p);
2855 		return ERR_PTR(-EPERM);
2856 	}
2857 	if (type >= nr_swapfiles) {
2858 		p->type = type;
2859 		WRITE_ONCE(swap_info[type], p);
2860 		/*
2861 		 * Write swap_info[type] before nr_swapfiles, in case a
2862 		 * racing procfs swap_start() or swap_next() is reading them.
2863 		 * (We never shrink nr_swapfiles, we never free this entry.)
2864 		 */
2865 		smp_wmb();
2866 		WRITE_ONCE(nr_swapfiles, nr_swapfiles + 1);
2867 	} else {
2868 		defer = p;
2869 		p = swap_info[type];
2870 		/*
2871 		 * Do not memset this entry: a racing procfs swap_next()
2872 		 * would be relying on p->type to remain valid.
2873 		 */
2874 	}
2875 	p->swap_extent_root = RB_ROOT;
2876 	plist_node_init(&p->list, 0);
2877 	for_each_node(i)
2878 		plist_node_init(&p->avail_lists[i], 0);
2879 	p->flags = SWP_USED;
2880 	spin_unlock(&swap_lock);
2881 	kvfree(defer);
2882 	spin_lock_init(&p->lock);
2883 	spin_lock_init(&p->cont_lock);
2884 
2885 	return p;
2886 }
2887 
2888 static int claim_swapfile(struct swap_info_struct *p, struct inode *inode)
2889 {
2890 	int error;
2891 
2892 	if (S_ISBLK(inode->i_mode)) {
2893 		p->bdev = blkdev_get_by_dev(inode->i_rdev,
2894 				   FMODE_READ | FMODE_WRITE | FMODE_EXCL, p);
2895 		if (IS_ERR(p->bdev)) {
2896 			error = PTR_ERR(p->bdev);
2897 			p->bdev = NULL;
2898 			return error;
2899 		}
2900 		p->old_block_size = block_size(p->bdev);
2901 		error = set_blocksize(p->bdev, PAGE_SIZE);
2902 		if (error < 0)
2903 			return error;
2904 		/*
2905 		 * Zoned block devices contain zones that have a sequential
2906 		 * write only restriction.  Hence zoned block devices are not
2907 		 * suitable for swapping.  Disallow them here.
2908 		 */
2909 		if (blk_queue_is_zoned(p->bdev->bd_disk->queue))
2910 			return -EINVAL;
2911 		p->flags |= SWP_BLKDEV;
2912 	} else if (S_ISREG(inode->i_mode)) {
2913 		p->bdev = inode->i_sb->s_bdev;
2914 	}
2915 
2916 	return 0;
2917 }
2918 
2919 
2920 /*
2921  * Find out how many pages are allowed for a single swap device. There
2922  * are two limiting factors:
2923  * 1) the number of bits for the swap offset in the swp_entry_t type, and
2924  * 2) the number of bits in the swap pte, as defined by the different
2925  * architectures.
2926  *
2927  * In order to find the largest possible bit mask, a swap entry with
2928  * swap type 0 and swap offset ~0UL is created, encoded to a swap pte,
2929  * decoded to a swp_entry_t again, and finally the swap offset is
2930  * extracted.
2931  *
2932  * This will mask all the bits from the initial ~0UL mask that can't
2933  * be encoded in either the swp_entry_t or the architecture definition
2934  * of a swap pte.
2935  */
2936 unsigned long generic_max_swapfile_size(void)
2937 {
2938 	return swp_offset(pte_to_swp_entry(
2939 			swp_entry_to_pte(swp_entry(0, ~0UL)))) + 1;
2940 }
2941 
2942 /* Can be overridden by an architecture for additional checks. */
2943 __weak unsigned long max_swapfile_size(void)
2944 {
2945 	return generic_max_swapfile_size();
2946 }
2947 
2948 static unsigned long read_swap_header(struct swap_info_struct *p,
2949 					union swap_header *swap_header,
2950 					struct inode *inode)
2951 {
2952 	int i;
2953 	unsigned long maxpages;
2954 	unsigned long swapfilepages;
2955 	unsigned long last_page;
2956 
2957 	if (memcmp("SWAPSPACE2", swap_header->magic.magic, 10)) {
2958 		pr_err("Unable to find swap-space signature\n");
2959 		return 0;
2960 	}
2961 
2962 	/* swap partition endianess hack... */
2963 	if (swab32(swap_header->info.version) == 1) {
2964 		swab32s(&swap_header->info.version);
2965 		swab32s(&swap_header->info.last_page);
2966 		swab32s(&swap_header->info.nr_badpages);
2967 		if (swap_header->info.nr_badpages > MAX_SWAP_BADPAGES)
2968 			return 0;
2969 		for (i = 0; i < swap_header->info.nr_badpages; i++)
2970 			swab32s(&swap_header->info.badpages[i]);
2971 	}
2972 	/* Check the swap header's sub-version */
2973 	if (swap_header->info.version != 1) {
2974 		pr_warn("Unable to handle swap header version %d\n",
2975 			swap_header->info.version);
2976 		return 0;
2977 	}
2978 
2979 	p->lowest_bit  = 1;
2980 	p->cluster_next = 1;
2981 	p->cluster_nr = 0;
2982 
2983 	maxpages = max_swapfile_size();
2984 	last_page = swap_header->info.last_page;
2985 	if (!last_page) {
2986 		pr_warn("Empty swap-file\n");
2987 		return 0;
2988 	}
2989 	if (last_page > maxpages) {
2990 		pr_warn("Truncating oversized swap area, only using %luk out of %luk\n",
2991 			maxpages << (PAGE_SHIFT - 10),
2992 			last_page << (PAGE_SHIFT - 10));
2993 	}
2994 	if (maxpages > last_page) {
2995 		maxpages = last_page + 1;
2996 		/* p->max is an unsigned int: don't overflow it */
2997 		if ((unsigned int)maxpages == 0)
2998 			maxpages = UINT_MAX;
2999 	}
3000 	p->highest_bit = maxpages - 1;
3001 
3002 	if (!maxpages)
3003 		return 0;
3004 	swapfilepages = i_size_read(inode) >> PAGE_SHIFT;
3005 	if (swapfilepages && maxpages > swapfilepages) {
3006 		pr_warn("Swap area shorter than signature indicates\n");
3007 		return 0;
3008 	}
3009 	if (swap_header->info.nr_badpages && S_ISREG(inode->i_mode))
3010 		return 0;
3011 	if (swap_header->info.nr_badpages > MAX_SWAP_BADPAGES)
3012 		return 0;
3013 
3014 	return maxpages;
3015 }
3016 
3017 #define SWAP_CLUSTER_INFO_COLS						\
3018 	DIV_ROUND_UP(L1_CACHE_BYTES, sizeof(struct swap_cluster_info))
3019 #define SWAP_CLUSTER_SPACE_COLS						\
3020 	DIV_ROUND_UP(SWAP_ADDRESS_SPACE_PAGES, SWAPFILE_CLUSTER)
3021 #define SWAP_CLUSTER_COLS						\
3022 	max_t(unsigned int, SWAP_CLUSTER_INFO_COLS, SWAP_CLUSTER_SPACE_COLS)
3023 
3024 static int setup_swap_map_and_extents(struct swap_info_struct *p,
3025 					union swap_header *swap_header,
3026 					unsigned char *swap_map,
3027 					struct swap_cluster_info *cluster_info,
3028 					unsigned long maxpages,
3029 					sector_t *span)
3030 {
3031 	unsigned int j, k;
3032 	unsigned int nr_good_pages;
3033 	int nr_extents;
3034 	unsigned long nr_clusters = DIV_ROUND_UP(maxpages, SWAPFILE_CLUSTER);
3035 	unsigned long col = p->cluster_next / SWAPFILE_CLUSTER % SWAP_CLUSTER_COLS;
3036 	unsigned long i, idx;
3037 
3038 	nr_good_pages = maxpages - 1;	/* omit header page */
3039 
3040 	cluster_list_init(&p->free_clusters);
3041 	cluster_list_init(&p->discard_clusters);
3042 
3043 	for (i = 0; i < swap_header->info.nr_badpages; i++) {
3044 		unsigned int page_nr = swap_header->info.badpages[i];
3045 		if (page_nr == 0 || page_nr > swap_header->info.last_page)
3046 			return -EINVAL;
3047 		if (page_nr < maxpages) {
3048 			swap_map[page_nr] = SWAP_MAP_BAD;
3049 			nr_good_pages--;
3050 			/*
3051 			 * Haven't marked the cluster free yet, no list
3052 			 * operation involved
3053 			 */
3054 			inc_cluster_info_page(p, cluster_info, page_nr);
3055 		}
3056 	}
3057 
3058 	/* Haven't marked the cluster free yet, no list operation involved */
3059 	for (i = maxpages; i < round_up(maxpages, SWAPFILE_CLUSTER); i++)
3060 		inc_cluster_info_page(p, cluster_info, i);
3061 
3062 	if (nr_good_pages) {
3063 		swap_map[0] = SWAP_MAP_BAD;
3064 		/*
3065 		 * Not mark the cluster free yet, no list
3066 		 * operation involved
3067 		 */
3068 		inc_cluster_info_page(p, cluster_info, 0);
3069 		p->max = maxpages;
3070 		p->pages = nr_good_pages;
3071 		nr_extents = setup_swap_extents(p, span);
3072 		if (nr_extents < 0)
3073 			return nr_extents;
3074 		nr_good_pages = p->pages;
3075 	}
3076 	if (!nr_good_pages) {
3077 		pr_warn("Empty swap-file\n");
3078 		return -EINVAL;
3079 	}
3080 
3081 	if (!cluster_info)
3082 		return nr_extents;
3083 
3084 
3085 	/*
3086 	 * Reduce false cache line sharing between cluster_info and
3087 	 * sharing same address space.
3088 	 */
3089 	for (k = 0; k < SWAP_CLUSTER_COLS; k++) {
3090 		j = (k + col) % SWAP_CLUSTER_COLS;
3091 		for (i = 0; i < DIV_ROUND_UP(nr_clusters, SWAP_CLUSTER_COLS); i++) {
3092 			idx = i * SWAP_CLUSTER_COLS + j;
3093 			if (idx >= nr_clusters)
3094 				continue;
3095 			if (cluster_count(&cluster_info[idx]))
3096 				continue;
3097 			cluster_set_flag(&cluster_info[idx], CLUSTER_FLAG_FREE);
3098 			cluster_list_add_tail(&p->free_clusters, cluster_info,
3099 					      idx);
3100 		}
3101 	}
3102 	return nr_extents;
3103 }
3104 
3105 /*
3106  * Helper to sys_swapon determining if a given swap
3107  * backing device queue supports DISCARD operations.
3108  */
3109 static bool swap_discardable(struct swap_info_struct *si)
3110 {
3111 	struct request_queue *q = bdev_get_queue(si->bdev);
3112 
3113 	if (!q || !blk_queue_discard(q))
3114 		return false;
3115 
3116 	return true;
3117 }
3118 
3119 SYSCALL_DEFINE2(swapon, const char __user *, specialfile, int, swap_flags)
3120 {
3121 	struct swap_info_struct *p;
3122 	struct filename *name;
3123 	struct file *swap_file = NULL;
3124 	struct address_space *mapping;
3125 	int prio;
3126 	int error;
3127 	union swap_header *swap_header;
3128 	int nr_extents;
3129 	sector_t span;
3130 	unsigned long maxpages;
3131 	unsigned char *swap_map = NULL;
3132 	struct swap_cluster_info *cluster_info = NULL;
3133 	unsigned long *frontswap_map = NULL;
3134 	struct page *page = NULL;
3135 	struct inode *inode = NULL;
3136 	bool inced_nr_rotate_swap = false;
3137 
3138 	if (swap_flags & ~SWAP_FLAGS_VALID)
3139 		return -EINVAL;
3140 
3141 	if (!capable(CAP_SYS_ADMIN))
3142 		return -EPERM;
3143 
3144 	if (!swap_avail_heads)
3145 		return -ENOMEM;
3146 
3147 	p = alloc_swap_info();
3148 	if (IS_ERR(p))
3149 		return PTR_ERR(p);
3150 
3151 	INIT_WORK(&p->discard_work, swap_discard_work);
3152 
3153 	name = getname(specialfile);
3154 	if (IS_ERR(name)) {
3155 		error = PTR_ERR(name);
3156 		name = NULL;
3157 		goto bad_swap;
3158 	}
3159 	swap_file = file_open_name(name, O_RDWR|O_LARGEFILE, 0);
3160 	if (IS_ERR(swap_file)) {
3161 		error = PTR_ERR(swap_file);
3162 		swap_file = NULL;
3163 		goto bad_swap;
3164 	}
3165 
3166 	p->swap_file = swap_file;
3167 	mapping = swap_file->f_mapping;
3168 	inode = mapping->host;
3169 
3170 	error = claim_swapfile(p, inode);
3171 	if (unlikely(error))
3172 		goto bad_swap;
3173 
3174 	inode_lock(inode);
3175 	if (IS_SWAPFILE(inode)) {
3176 		error = -EBUSY;
3177 		goto bad_swap_unlock_inode;
3178 	}
3179 
3180 	/*
3181 	 * Read the swap header.
3182 	 */
3183 	if (!mapping->a_ops->readpage) {
3184 		error = -EINVAL;
3185 		goto bad_swap_unlock_inode;
3186 	}
3187 	page = read_mapping_page(mapping, 0, swap_file);
3188 	if (IS_ERR(page)) {
3189 		error = PTR_ERR(page);
3190 		goto bad_swap_unlock_inode;
3191 	}
3192 	swap_header = kmap(page);
3193 
3194 	maxpages = read_swap_header(p, swap_header, inode);
3195 	if (unlikely(!maxpages)) {
3196 		error = -EINVAL;
3197 		goto bad_swap_unlock_inode;
3198 	}
3199 
3200 	/* OK, set up the swap map and apply the bad block list */
3201 	swap_map = vzalloc(maxpages);
3202 	if (!swap_map) {
3203 		error = -ENOMEM;
3204 		goto bad_swap_unlock_inode;
3205 	}
3206 
3207 	if (p->bdev && blk_queue_stable_writes(p->bdev->bd_disk->queue))
3208 		p->flags |= SWP_STABLE_WRITES;
3209 
3210 	if (p->bdev && p->bdev->bd_disk->fops->rw_page)
3211 		p->flags |= SWP_SYNCHRONOUS_IO;
3212 
3213 	if (p->bdev && blk_queue_nonrot(bdev_get_queue(p->bdev))) {
3214 		int cpu;
3215 		unsigned long ci, nr_cluster;
3216 
3217 		p->flags |= SWP_SOLIDSTATE;
3218 		p->cluster_next_cpu = alloc_percpu(unsigned int);
3219 		if (!p->cluster_next_cpu) {
3220 			error = -ENOMEM;
3221 			goto bad_swap_unlock_inode;
3222 		}
3223 		/*
3224 		 * select a random position to start with to help wear leveling
3225 		 * SSD
3226 		 */
3227 		for_each_possible_cpu(cpu) {
3228 			per_cpu(*p->cluster_next_cpu, cpu) =
3229 				1 + prandom_u32_max(p->highest_bit);
3230 		}
3231 		nr_cluster = DIV_ROUND_UP(maxpages, SWAPFILE_CLUSTER);
3232 
3233 		cluster_info = kvcalloc(nr_cluster, sizeof(*cluster_info),
3234 					GFP_KERNEL);
3235 		if (!cluster_info) {
3236 			error = -ENOMEM;
3237 			goto bad_swap_unlock_inode;
3238 		}
3239 
3240 		for (ci = 0; ci < nr_cluster; ci++)
3241 			spin_lock_init(&((cluster_info + ci)->lock));
3242 
3243 		p->percpu_cluster = alloc_percpu(struct percpu_cluster);
3244 		if (!p->percpu_cluster) {
3245 			error = -ENOMEM;
3246 			goto bad_swap_unlock_inode;
3247 		}
3248 		for_each_possible_cpu(cpu) {
3249 			struct percpu_cluster *cluster;
3250 			cluster = per_cpu_ptr(p->percpu_cluster, cpu);
3251 			cluster_set_null(&cluster->index);
3252 		}
3253 	} else {
3254 		atomic_inc(&nr_rotate_swap);
3255 		inced_nr_rotate_swap = true;
3256 	}
3257 
3258 	error = swap_cgroup_swapon(p->type, maxpages);
3259 	if (error)
3260 		goto bad_swap_unlock_inode;
3261 
3262 	nr_extents = setup_swap_map_and_extents(p, swap_header, swap_map,
3263 		cluster_info, maxpages, &span);
3264 	if (unlikely(nr_extents < 0)) {
3265 		error = nr_extents;
3266 		goto bad_swap_unlock_inode;
3267 	}
3268 	/* frontswap enabled? set up bit-per-page map for frontswap */
3269 	if (IS_ENABLED(CONFIG_FRONTSWAP))
3270 		frontswap_map = kvcalloc(BITS_TO_LONGS(maxpages),
3271 					 sizeof(long),
3272 					 GFP_KERNEL);
3273 
3274 	if (p->bdev &&(swap_flags & SWAP_FLAG_DISCARD) && swap_discardable(p)) {
3275 		/*
3276 		 * When discard is enabled for swap with no particular
3277 		 * policy flagged, we set all swap discard flags here in
3278 		 * order to sustain backward compatibility with older
3279 		 * swapon(8) releases.
3280 		 */
3281 		p->flags |= (SWP_DISCARDABLE | SWP_AREA_DISCARD |
3282 			     SWP_PAGE_DISCARD);
3283 
3284 		/*
3285 		 * By flagging sys_swapon, a sysadmin can tell us to
3286 		 * either do single-time area discards only, or to just
3287 		 * perform discards for released swap page-clusters.
3288 		 * Now it's time to adjust the p->flags accordingly.
3289 		 */
3290 		if (swap_flags & SWAP_FLAG_DISCARD_ONCE)
3291 			p->flags &= ~SWP_PAGE_DISCARD;
3292 		else if (swap_flags & SWAP_FLAG_DISCARD_PAGES)
3293 			p->flags &= ~SWP_AREA_DISCARD;
3294 
3295 		/* issue a swapon-time discard if it's still required */
3296 		if (p->flags & SWP_AREA_DISCARD) {
3297 			int err = discard_swap(p);
3298 			if (unlikely(err))
3299 				pr_err("swapon: discard_swap(%p): %d\n",
3300 					p, err);
3301 		}
3302 	}
3303 
3304 	error = init_swap_address_space(p->type, maxpages);
3305 	if (error)
3306 		goto bad_swap_unlock_inode;
3307 
3308 	/*
3309 	 * Flush any pending IO and dirty mappings before we start using this
3310 	 * swap device.
3311 	 */
3312 	inode->i_flags |= S_SWAPFILE;
3313 	error = inode_drain_writes(inode);
3314 	if (error) {
3315 		inode->i_flags &= ~S_SWAPFILE;
3316 		goto free_swap_address_space;
3317 	}
3318 
3319 	mutex_lock(&swapon_mutex);
3320 	prio = -1;
3321 	if (swap_flags & SWAP_FLAG_PREFER)
3322 		prio =
3323 		  (swap_flags & SWAP_FLAG_PRIO_MASK) >> SWAP_FLAG_PRIO_SHIFT;
3324 	enable_swap_info(p, prio, swap_map, cluster_info, frontswap_map);
3325 
3326 	pr_info("Adding %uk swap on %s.  Priority:%d extents:%d across:%lluk %s%s%s%s%s\n",
3327 		p->pages<<(PAGE_SHIFT-10), name->name, p->prio,
3328 		nr_extents, (unsigned long long)span<<(PAGE_SHIFT-10),
3329 		(p->flags & SWP_SOLIDSTATE) ? "SS" : "",
3330 		(p->flags & SWP_DISCARDABLE) ? "D" : "",
3331 		(p->flags & SWP_AREA_DISCARD) ? "s" : "",
3332 		(p->flags & SWP_PAGE_DISCARD) ? "c" : "",
3333 		(frontswap_map) ? "FS" : "");
3334 
3335 	mutex_unlock(&swapon_mutex);
3336 	atomic_inc(&proc_poll_event);
3337 	wake_up_interruptible(&proc_poll_wait);
3338 
3339 	error = 0;
3340 	goto out;
3341 free_swap_address_space:
3342 	exit_swap_address_space(p->type);
3343 bad_swap_unlock_inode:
3344 	inode_unlock(inode);
3345 bad_swap:
3346 	free_percpu(p->percpu_cluster);
3347 	p->percpu_cluster = NULL;
3348 	free_percpu(p->cluster_next_cpu);
3349 	p->cluster_next_cpu = NULL;
3350 	if (inode && S_ISBLK(inode->i_mode) && p->bdev) {
3351 		set_blocksize(p->bdev, p->old_block_size);
3352 		blkdev_put(p->bdev, FMODE_READ | FMODE_WRITE | FMODE_EXCL);
3353 	}
3354 	inode = NULL;
3355 	destroy_swap_extents(p);
3356 	swap_cgroup_swapoff(p->type);
3357 	spin_lock(&swap_lock);
3358 	p->swap_file = NULL;
3359 	p->flags = 0;
3360 	spin_unlock(&swap_lock);
3361 	vfree(swap_map);
3362 	kvfree(cluster_info);
3363 	kvfree(frontswap_map);
3364 	if (inced_nr_rotate_swap)
3365 		atomic_dec(&nr_rotate_swap);
3366 	if (swap_file)
3367 		filp_close(swap_file, NULL);
3368 out:
3369 	if (page && !IS_ERR(page)) {
3370 		kunmap(page);
3371 		put_page(page);
3372 	}
3373 	if (name)
3374 		putname(name);
3375 	if (inode)
3376 		inode_unlock(inode);
3377 	if (!error)
3378 		enable_swap_slots_cache();
3379 	return error;
3380 }
3381 
3382 void si_swapinfo(struct sysinfo *val)
3383 {
3384 	unsigned int type;
3385 	unsigned long nr_to_be_unused = 0;
3386 
3387 	spin_lock(&swap_lock);
3388 	for (type = 0; type < nr_swapfiles; type++) {
3389 		struct swap_info_struct *si = swap_info[type];
3390 
3391 		if ((si->flags & SWP_USED) && !(si->flags & SWP_WRITEOK))
3392 			nr_to_be_unused += si->inuse_pages;
3393 	}
3394 	val->freeswap = atomic_long_read(&nr_swap_pages) + nr_to_be_unused;
3395 	val->totalswap = total_swap_pages + nr_to_be_unused;
3396 	spin_unlock(&swap_lock);
3397 }
3398 
3399 /*
3400  * Verify that a swap entry is valid and increment its swap map count.
3401  *
3402  * Returns error code in following case.
3403  * - success -> 0
3404  * - swp_entry is invalid -> EINVAL
3405  * - swp_entry is migration entry -> EINVAL
3406  * - swap-cache reference is requested but there is already one. -> EEXIST
3407  * - swap-cache reference is requested but the entry is not used. -> ENOENT
3408  * - swap-mapped reference requested but needs continued swap count. -> ENOMEM
3409  */
3410 static int __swap_duplicate(swp_entry_t entry, unsigned char usage)
3411 {
3412 	struct swap_info_struct *p;
3413 	struct swap_cluster_info *ci;
3414 	unsigned long offset;
3415 	unsigned char count;
3416 	unsigned char has_cache;
3417 	int err;
3418 
3419 	p = get_swap_device(entry);
3420 	if (!p)
3421 		return -EINVAL;
3422 
3423 	offset = swp_offset(entry);
3424 	ci = lock_cluster_or_swap_info(p, offset);
3425 
3426 	count = p->swap_map[offset];
3427 
3428 	/*
3429 	 * swapin_readahead() doesn't check if a swap entry is valid, so the
3430 	 * swap entry could be SWAP_MAP_BAD. Check here with lock held.
3431 	 */
3432 	if (unlikely(swap_count(count) == SWAP_MAP_BAD)) {
3433 		err = -ENOENT;
3434 		goto unlock_out;
3435 	}
3436 
3437 	has_cache = count & SWAP_HAS_CACHE;
3438 	count &= ~SWAP_HAS_CACHE;
3439 	err = 0;
3440 
3441 	if (usage == SWAP_HAS_CACHE) {
3442 
3443 		/* set SWAP_HAS_CACHE if there is no cache and entry is used */
3444 		if (!has_cache && count)
3445 			has_cache = SWAP_HAS_CACHE;
3446 		else if (has_cache)		/* someone else added cache */
3447 			err = -EEXIST;
3448 		else				/* no users remaining */
3449 			err = -ENOENT;
3450 
3451 	} else if (count || has_cache) {
3452 
3453 		if ((count & ~COUNT_CONTINUED) < SWAP_MAP_MAX)
3454 			count += usage;
3455 		else if ((count & ~COUNT_CONTINUED) > SWAP_MAP_MAX)
3456 			err = -EINVAL;
3457 		else if (swap_count_continued(p, offset, count))
3458 			count = COUNT_CONTINUED;
3459 		else
3460 			err = -ENOMEM;
3461 	} else
3462 		err = -ENOENT;			/* unused swap entry */
3463 
3464 	WRITE_ONCE(p->swap_map[offset], count | has_cache);
3465 
3466 unlock_out:
3467 	unlock_cluster_or_swap_info(p, ci);
3468 	if (p)
3469 		put_swap_device(p);
3470 	return err;
3471 }
3472 
3473 /*
3474  * Help swapoff by noting that swap entry belongs to shmem/tmpfs
3475  * (in which case its reference count is never incremented).
3476  */
3477 void swap_shmem_alloc(swp_entry_t entry)
3478 {
3479 	__swap_duplicate(entry, SWAP_MAP_SHMEM);
3480 }
3481 
3482 /*
3483  * Increase reference count of swap entry by 1.
3484  * Returns 0 for success, or -ENOMEM if a swap_count_continuation is required
3485  * but could not be atomically allocated.  Returns 0, just as if it succeeded,
3486  * if __swap_duplicate() fails for another reason (-EINVAL or -ENOENT), which
3487  * might occur if a page table entry has got corrupted.
3488  */
3489 int swap_duplicate(swp_entry_t entry)
3490 {
3491 	int err = 0;
3492 
3493 	while (!err && __swap_duplicate(entry, 1) == -ENOMEM)
3494 		err = add_swap_count_continuation(entry, GFP_ATOMIC);
3495 	return err;
3496 }
3497 
3498 /*
3499  * @entry: swap entry for which we allocate swap cache.
3500  *
3501  * Called when allocating swap cache for existing swap entry,
3502  * This can return error codes. Returns 0 at success.
3503  * -EEXIST means there is a swap cache.
3504  * Note: return code is different from swap_duplicate().
3505  */
3506 int swapcache_prepare(swp_entry_t entry)
3507 {
3508 	return __swap_duplicate(entry, SWAP_HAS_CACHE);
3509 }
3510 
3511 struct swap_info_struct *swp_swap_info(swp_entry_t entry)
3512 {
3513 	return swap_type_to_swap_info(swp_type(entry));
3514 }
3515 
3516 struct swap_info_struct *page_swap_info(struct page *page)
3517 {
3518 	swp_entry_t entry = { .val = page_private(page) };
3519 	return swp_swap_info(entry);
3520 }
3521 
3522 /*
3523  * out-of-line __page_file_ methods to avoid include hell.
3524  */
3525 struct address_space *__page_file_mapping(struct page *page)
3526 {
3527 	return page_swap_info(page)->swap_file->f_mapping;
3528 }
3529 EXPORT_SYMBOL_GPL(__page_file_mapping);
3530 
3531 pgoff_t __page_file_index(struct page *page)
3532 {
3533 	swp_entry_t swap = { .val = page_private(page) };
3534 	return swp_offset(swap);
3535 }
3536 EXPORT_SYMBOL_GPL(__page_file_index);
3537 
3538 /*
3539  * add_swap_count_continuation - called when a swap count is duplicated
3540  * beyond SWAP_MAP_MAX, it allocates a new page and links that to the entry's
3541  * page of the original vmalloc'ed swap_map, to hold the continuation count
3542  * (for that entry and for its neighbouring PAGE_SIZE swap entries).  Called
3543  * again when count is duplicated beyond SWAP_MAP_MAX * SWAP_CONT_MAX, etc.
3544  *
3545  * These continuation pages are seldom referenced: the common paths all work
3546  * on the original swap_map, only referring to a continuation page when the
3547  * low "digit" of a count is incremented or decremented through SWAP_MAP_MAX.
3548  *
3549  * add_swap_count_continuation(, GFP_ATOMIC) can be called while holding
3550  * page table locks; if it fails, add_swap_count_continuation(, GFP_KERNEL)
3551  * can be called after dropping locks.
3552  */
3553 int add_swap_count_continuation(swp_entry_t entry, gfp_t gfp_mask)
3554 {
3555 	struct swap_info_struct *si;
3556 	struct swap_cluster_info *ci;
3557 	struct page *head;
3558 	struct page *page;
3559 	struct page *list_page;
3560 	pgoff_t offset;
3561 	unsigned char count;
3562 	int ret = 0;
3563 
3564 	/*
3565 	 * When debugging, it's easier to use __GFP_ZERO here; but it's better
3566 	 * for latency not to zero a page while GFP_ATOMIC and holding locks.
3567 	 */
3568 	page = alloc_page(gfp_mask | __GFP_HIGHMEM);
3569 
3570 	si = get_swap_device(entry);
3571 	if (!si) {
3572 		/*
3573 		 * An acceptable race has occurred since the failing
3574 		 * __swap_duplicate(): the swap device may be swapoff
3575 		 */
3576 		goto outer;
3577 	}
3578 	spin_lock(&si->lock);
3579 
3580 	offset = swp_offset(entry);
3581 
3582 	ci = lock_cluster(si, offset);
3583 
3584 	count = swap_count(si->swap_map[offset]);
3585 
3586 	if ((count & ~COUNT_CONTINUED) != SWAP_MAP_MAX) {
3587 		/*
3588 		 * The higher the swap count, the more likely it is that tasks
3589 		 * will race to add swap count continuation: we need to avoid
3590 		 * over-provisioning.
3591 		 */
3592 		goto out;
3593 	}
3594 
3595 	if (!page) {
3596 		ret = -ENOMEM;
3597 		goto out;
3598 	}
3599 
3600 	/*
3601 	 * We are fortunate that although vmalloc_to_page uses pte_offset_map,
3602 	 * no architecture is using highmem pages for kernel page tables: so it
3603 	 * will not corrupt the GFP_ATOMIC caller's atomic page table kmaps.
3604 	 */
3605 	head = vmalloc_to_page(si->swap_map + offset);
3606 	offset &= ~PAGE_MASK;
3607 
3608 	spin_lock(&si->cont_lock);
3609 	/*
3610 	 * Page allocation does not initialize the page's lru field,
3611 	 * but it does always reset its private field.
3612 	 */
3613 	if (!page_private(head)) {
3614 		BUG_ON(count & COUNT_CONTINUED);
3615 		INIT_LIST_HEAD(&head->lru);
3616 		set_page_private(head, SWP_CONTINUED);
3617 		si->flags |= SWP_CONTINUED;
3618 	}
3619 
3620 	list_for_each_entry(list_page, &head->lru, lru) {
3621 		unsigned char *map;
3622 
3623 		/*
3624 		 * If the previous map said no continuation, but we've found
3625 		 * a continuation page, free our allocation and use this one.
3626 		 */
3627 		if (!(count & COUNT_CONTINUED))
3628 			goto out_unlock_cont;
3629 
3630 		map = kmap_atomic(list_page) + offset;
3631 		count = *map;
3632 		kunmap_atomic(map);
3633 
3634 		/*
3635 		 * If this continuation count now has some space in it,
3636 		 * free our allocation and use this one.
3637 		 */
3638 		if ((count & ~COUNT_CONTINUED) != SWAP_CONT_MAX)
3639 			goto out_unlock_cont;
3640 	}
3641 
3642 	list_add_tail(&page->lru, &head->lru);
3643 	page = NULL;			/* now it's attached, don't free it */
3644 out_unlock_cont:
3645 	spin_unlock(&si->cont_lock);
3646 out:
3647 	unlock_cluster(ci);
3648 	spin_unlock(&si->lock);
3649 	put_swap_device(si);
3650 outer:
3651 	if (page)
3652 		__free_page(page);
3653 	return ret;
3654 }
3655 
3656 /*
3657  * swap_count_continued - when the original swap_map count is incremented
3658  * from SWAP_MAP_MAX, check if there is already a continuation page to carry
3659  * into, carry if so, or else fail until a new continuation page is allocated;
3660  * when the original swap_map count is decremented from 0 with continuation,
3661  * borrow from the continuation and report whether it still holds more.
3662  * Called while __swap_duplicate() or swap_entry_free() holds swap or cluster
3663  * lock.
3664  */
3665 static bool swap_count_continued(struct swap_info_struct *si,
3666 				 pgoff_t offset, unsigned char count)
3667 {
3668 	struct page *head;
3669 	struct page *page;
3670 	unsigned char *map;
3671 	bool ret;
3672 
3673 	head = vmalloc_to_page(si->swap_map + offset);
3674 	if (page_private(head) != SWP_CONTINUED) {
3675 		BUG_ON(count & COUNT_CONTINUED);
3676 		return false;		/* need to add count continuation */
3677 	}
3678 
3679 	spin_lock(&si->cont_lock);
3680 	offset &= ~PAGE_MASK;
3681 	page = list_next_entry(head, lru);
3682 	map = kmap_atomic(page) + offset;
3683 
3684 	if (count == SWAP_MAP_MAX)	/* initial increment from swap_map */
3685 		goto init_map;		/* jump over SWAP_CONT_MAX checks */
3686 
3687 	if (count == (SWAP_MAP_MAX | COUNT_CONTINUED)) { /* incrementing */
3688 		/*
3689 		 * Think of how you add 1 to 999
3690 		 */
3691 		while (*map == (SWAP_CONT_MAX | COUNT_CONTINUED)) {
3692 			kunmap_atomic(map);
3693 			page = list_next_entry(page, lru);
3694 			BUG_ON(page == head);
3695 			map = kmap_atomic(page) + offset;
3696 		}
3697 		if (*map == SWAP_CONT_MAX) {
3698 			kunmap_atomic(map);
3699 			page = list_next_entry(page, lru);
3700 			if (page == head) {
3701 				ret = false;	/* add count continuation */
3702 				goto out;
3703 			}
3704 			map = kmap_atomic(page) + offset;
3705 init_map:		*map = 0;		/* we didn't zero the page */
3706 		}
3707 		*map += 1;
3708 		kunmap_atomic(map);
3709 		while ((page = list_prev_entry(page, lru)) != head) {
3710 			map = kmap_atomic(page) + offset;
3711 			*map = COUNT_CONTINUED;
3712 			kunmap_atomic(map);
3713 		}
3714 		ret = true;			/* incremented */
3715 
3716 	} else {				/* decrementing */
3717 		/*
3718 		 * Think of how you subtract 1 from 1000
3719 		 */
3720 		BUG_ON(count != COUNT_CONTINUED);
3721 		while (*map == COUNT_CONTINUED) {
3722 			kunmap_atomic(map);
3723 			page = list_next_entry(page, lru);
3724 			BUG_ON(page == head);
3725 			map = kmap_atomic(page) + offset;
3726 		}
3727 		BUG_ON(*map == 0);
3728 		*map -= 1;
3729 		if (*map == 0)
3730 			count = 0;
3731 		kunmap_atomic(map);
3732 		while ((page = list_prev_entry(page, lru)) != head) {
3733 			map = kmap_atomic(page) + offset;
3734 			*map = SWAP_CONT_MAX | count;
3735 			count = COUNT_CONTINUED;
3736 			kunmap_atomic(map);
3737 		}
3738 		ret = count == COUNT_CONTINUED;
3739 	}
3740 out:
3741 	spin_unlock(&si->cont_lock);
3742 	return ret;
3743 }
3744 
3745 /*
3746  * free_swap_count_continuations - swapoff free all the continuation pages
3747  * appended to the swap_map, after swap_map is quiesced, before vfree'ing it.
3748  */
3749 static void free_swap_count_continuations(struct swap_info_struct *si)
3750 {
3751 	pgoff_t offset;
3752 
3753 	for (offset = 0; offset < si->max; offset += PAGE_SIZE) {
3754 		struct page *head;
3755 		head = vmalloc_to_page(si->swap_map + offset);
3756 		if (page_private(head)) {
3757 			struct page *page, *next;
3758 
3759 			list_for_each_entry_safe(page, next, &head->lru, lru) {
3760 				list_del(&page->lru);
3761 				__free_page(page);
3762 			}
3763 		}
3764 	}
3765 }
3766 
3767 #if defined(CONFIG_MEMCG) && defined(CONFIG_BLK_CGROUP)
3768 void cgroup_throttle_swaprate(struct page *page, gfp_t gfp_mask)
3769 {
3770 	struct swap_info_struct *si, *next;
3771 	int nid = page_to_nid(page);
3772 
3773 	if (!(gfp_mask & __GFP_IO))
3774 		return;
3775 
3776 	if (!blk_cgroup_congested())
3777 		return;
3778 
3779 	/*
3780 	 * We've already scheduled a throttle, avoid taking the global swap
3781 	 * lock.
3782 	 */
3783 	if (current->throttle_queue)
3784 		return;
3785 
3786 	spin_lock(&swap_avail_lock);
3787 	plist_for_each_entry_safe(si, next, &swap_avail_heads[nid],
3788 				  avail_lists[nid]) {
3789 		if (si->bdev) {
3790 			blkcg_schedule_throttle(bdev_get_queue(si->bdev), true);
3791 			break;
3792 		}
3793 	}
3794 	spin_unlock(&swap_avail_lock);
3795 }
3796 #endif
3797 
3798 static int __init swapfile_init(void)
3799 {
3800 	int nid;
3801 
3802 	swap_avail_heads = kmalloc_array(nr_node_ids, sizeof(struct plist_head),
3803 					 GFP_KERNEL);
3804 	if (!swap_avail_heads) {
3805 		pr_emerg("Not enough memory for swap heads, swap is disabled\n");
3806 		return -ENOMEM;
3807 	}
3808 
3809 	for_each_node(nid)
3810 		plist_head_init(&swap_avail_heads[nid]);
3811 
3812 	return 0;
3813 }
3814 subsys_initcall(swapfile_init);
3815