1 // SPDX-License-Identifier: GPL-2.0-only 2 /* 3 * linux/mm/swapfile.c 4 * 5 * Copyright (C) 1991, 1992, 1993, 1994 Linus Torvalds 6 * Swap reorganised 29.12.95, Stephen Tweedie 7 */ 8 9 #include <linux/mm.h> 10 #include <linux/sched/mm.h> 11 #include <linux/sched/task.h> 12 #include <linux/hugetlb.h> 13 #include <linux/mman.h> 14 #include <linux/slab.h> 15 #include <linux/kernel_stat.h> 16 #include <linux/swap.h> 17 #include <linux/vmalloc.h> 18 #include <linux/pagemap.h> 19 #include <linux/namei.h> 20 #include <linux/shmem_fs.h> 21 #include <linux/blkdev.h> 22 #include <linux/random.h> 23 #include <linux/writeback.h> 24 #include <linux/proc_fs.h> 25 #include <linux/seq_file.h> 26 #include <linux/init.h> 27 #include <linux/ksm.h> 28 #include <linux/rmap.h> 29 #include <linux/security.h> 30 #include <linux/backing-dev.h> 31 #include <linux/mutex.h> 32 #include <linux/capability.h> 33 #include <linux/syscalls.h> 34 #include <linux/memcontrol.h> 35 #include <linux/poll.h> 36 #include <linux/oom.h> 37 #include <linux/frontswap.h> 38 #include <linux/swapfile.h> 39 #include <linux/export.h> 40 #include <linux/swap_slots.h> 41 #include <linux/sort.h> 42 43 #include <asm/pgtable.h> 44 #include <asm/tlbflush.h> 45 #include <linux/swapops.h> 46 #include <linux/swap_cgroup.h> 47 48 static bool swap_count_continued(struct swap_info_struct *, pgoff_t, 49 unsigned char); 50 static void free_swap_count_continuations(struct swap_info_struct *); 51 static sector_t map_swap_entry(swp_entry_t, struct block_device**); 52 53 DEFINE_SPINLOCK(swap_lock); 54 static unsigned int nr_swapfiles; 55 atomic_long_t nr_swap_pages; 56 /* 57 * Some modules use swappable objects and may try to swap them out under 58 * memory pressure (via the shrinker). Before doing so, they may wish to 59 * check to see if any swap space is available. 60 */ 61 EXPORT_SYMBOL_GPL(nr_swap_pages); 62 /* protected with swap_lock. reading in vm_swap_full() doesn't need lock */ 63 long total_swap_pages; 64 static int least_priority = -1; 65 66 static const char Bad_file[] = "Bad swap file entry "; 67 static const char Unused_file[] = "Unused swap file entry "; 68 static const char Bad_offset[] = "Bad swap offset entry "; 69 static const char Unused_offset[] = "Unused swap offset entry "; 70 71 /* 72 * all active swap_info_structs 73 * protected with swap_lock, and ordered by priority. 74 */ 75 PLIST_HEAD(swap_active_head); 76 77 /* 78 * all available (active, not full) swap_info_structs 79 * protected with swap_avail_lock, ordered by priority. 80 * This is used by get_swap_page() instead of swap_active_head 81 * because swap_active_head includes all swap_info_structs, 82 * but get_swap_page() doesn't need to look at full ones. 83 * This uses its own lock instead of swap_lock because when a 84 * swap_info_struct changes between not-full/full, it needs to 85 * add/remove itself to/from this list, but the swap_info_struct->lock 86 * is held and the locking order requires swap_lock to be taken 87 * before any swap_info_struct->lock. 88 */ 89 static struct plist_head *swap_avail_heads; 90 static DEFINE_SPINLOCK(swap_avail_lock); 91 92 struct swap_info_struct *swap_info[MAX_SWAPFILES]; 93 94 static DEFINE_MUTEX(swapon_mutex); 95 96 static DECLARE_WAIT_QUEUE_HEAD(proc_poll_wait); 97 /* Activity counter to indicate that a swapon or swapoff has occurred */ 98 static atomic_t proc_poll_event = ATOMIC_INIT(0); 99 100 atomic_t nr_rotate_swap = ATOMIC_INIT(0); 101 102 static struct swap_info_struct *swap_type_to_swap_info(int type) 103 { 104 if (type >= READ_ONCE(nr_swapfiles)) 105 return NULL; 106 107 smp_rmb(); /* Pairs with smp_wmb in alloc_swap_info. */ 108 return READ_ONCE(swap_info[type]); 109 } 110 111 static inline unsigned char swap_count(unsigned char ent) 112 { 113 return ent & ~SWAP_HAS_CACHE; /* may include COUNT_CONTINUED flag */ 114 } 115 116 /* Reclaim the swap entry anyway if possible */ 117 #define TTRS_ANYWAY 0x1 118 /* 119 * Reclaim the swap entry if there are no more mappings of the 120 * corresponding page 121 */ 122 #define TTRS_UNMAPPED 0x2 123 /* Reclaim the swap entry if swap is getting full*/ 124 #define TTRS_FULL 0x4 125 126 /* returns 1 if swap entry is freed */ 127 static int __try_to_reclaim_swap(struct swap_info_struct *si, 128 unsigned long offset, unsigned long flags) 129 { 130 swp_entry_t entry = swp_entry(si->type, offset); 131 struct page *page; 132 int ret = 0; 133 134 page = find_get_page(swap_address_space(entry), offset); 135 if (!page) 136 return 0; 137 /* 138 * When this function is called from scan_swap_map_slots() and it's 139 * called by vmscan.c at reclaiming pages. So, we hold a lock on a page, 140 * here. We have to use trylock for avoiding deadlock. This is a special 141 * case and you should use try_to_free_swap() with explicit lock_page() 142 * in usual operations. 143 */ 144 if (trylock_page(page)) { 145 if ((flags & TTRS_ANYWAY) || 146 ((flags & TTRS_UNMAPPED) && !page_mapped(page)) || 147 ((flags & TTRS_FULL) && mem_cgroup_swap_full(page))) 148 ret = try_to_free_swap(page); 149 unlock_page(page); 150 } 151 put_page(page); 152 return ret; 153 } 154 155 static inline struct swap_extent *first_se(struct swap_info_struct *sis) 156 { 157 struct rb_node *rb = rb_first(&sis->swap_extent_root); 158 return rb_entry(rb, struct swap_extent, rb_node); 159 } 160 161 static inline struct swap_extent *next_se(struct swap_extent *se) 162 { 163 struct rb_node *rb = rb_next(&se->rb_node); 164 return rb ? rb_entry(rb, struct swap_extent, rb_node) : NULL; 165 } 166 167 /* 168 * swapon tell device that all the old swap contents can be discarded, 169 * to allow the swap device to optimize its wear-levelling. 170 */ 171 static int discard_swap(struct swap_info_struct *si) 172 { 173 struct swap_extent *se; 174 sector_t start_block; 175 sector_t nr_blocks; 176 int err = 0; 177 178 /* Do not discard the swap header page! */ 179 se = first_se(si); 180 start_block = (se->start_block + 1) << (PAGE_SHIFT - 9); 181 nr_blocks = ((sector_t)se->nr_pages - 1) << (PAGE_SHIFT - 9); 182 if (nr_blocks) { 183 err = blkdev_issue_discard(si->bdev, start_block, 184 nr_blocks, GFP_KERNEL, 0); 185 if (err) 186 return err; 187 cond_resched(); 188 } 189 190 for (se = next_se(se); se; se = next_se(se)) { 191 start_block = se->start_block << (PAGE_SHIFT - 9); 192 nr_blocks = (sector_t)se->nr_pages << (PAGE_SHIFT - 9); 193 194 err = blkdev_issue_discard(si->bdev, start_block, 195 nr_blocks, GFP_KERNEL, 0); 196 if (err) 197 break; 198 199 cond_resched(); 200 } 201 return err; /* That will often be -EOPNOTSUPP */ 202 } 203 204 static struct swap_extent * 205 offset_to_swap_extent(struct swap_info_struct *sis, unsigned long offset) 206 { 207 struct swap_extent *se; 208 struct rb_node *rb; 209 210 rb = sis->swap_extent_root.rb_node; 211 while (rb) { 212 se = rb_entry(rb, struct swap_extent, rb_node); 213 if (offset < se->start_page) 214 rb = rb->rb_left; 215 else if (offset >= se->start_page + se->nr_pages) 216 rb = rb->rb_right; 217 else 218 return se; 219 } 220 /* It *must* be present */ 221 BUG(); 222 } 223 224 /* 225 * swap allocation tell device that a cluster of swap can now be discarded, 226 * to allow the swap device to optimize its wear-levelling. 227 */ 228 static void discard_swap_cluster(struct swap_info_struct *si, 229 pgoff_t start_page, pgoff_t nr_pages) 230 { 231 struct swap_extent *se = offset_to_swap_extent(si, start_page); 232 233 while (nr_pages) { 234 pgoff_t offset = start_page - se->start_page; 235 sector_t start_block = se->start_block + offset; 236 sector_t nr_blocks = se->nr_pages - offset; 237 238 if (nr_blocks > nr_pages) 239 nr_blocks = nr_pages; 240 start_page += nr_blocks; 241 nr_pages -= nr_blocks; 242 243 start_block <<= PAGE_SHIFT - 9; 244 nr_blocks <<= PAGE_SHIFT - 9; 245 if (blkdev_issue_discard(si->bdev, start_block, 246 nr_blocks, GFP_NOIO, 0)) 247 break; 248 249 se = next_se(se); 250 } 251 } 252 253 #ifdef CONFIG_THP_SWAP 254 #define SWAPFILE_CLUSTER HPAGE_PMD_NR 255 256 #define swap_entry_size(size) (size) 257 #else 258 #define SWAPFILE_CLUSTER 256 259 260 /* 261 * Define swap_entry_size() as constant to let compiler to optimize 262 * out some code if !CONFIG_THP_SWAP 263 */ 264 #define swap_entry_size(size) 1 265 #endif 266 #define LATENCY_LIMIT 256 267 268 static inline void cluster_set_flag(struct swap_cluster_info *info, 269 unsigned int flag) 270 { 271 info->flags = flag; 272 } 273 274 static inline unsigned int cluster_count(struct swap_cluster_info *info) 275 { 276 return info->data; 277 } 278 279 static inline void cluster_set_count(struct swap_cluster_info *info, 280 unsigned int c) 281 { 282 info->data = c; 283 } 284 285 static inline void cluster_set_count_flag(struct swap_cluster_info *info, 286 unsigned int c, unsigned int f) 287 { 288 info->flags = f; 289 info->data = c; 290 } 291 292 static inline unsigned int cluster_next(struct swap_cluster_info *info) 293 { 294 return info->data; 295 } 296 297 static inline void cluster_set_next(struct swap_cluster_info *info, 298 unsigned int n) 299 { 300 info->data = n; 301 } 302 303 static inline void cluster_set_next_flag(struct swap_cluster_info *info, 304 unsigned int n, unsigned int f) 305 { 306 info->flags = f; 307 info->data = n; 308 } 309 310 static inline bool cluster_is_free(struct swap_cluster_info *info) 311 { 312 return info->flags & CLUSTER_FLAG_FREE; 313 } 314 315 static inline bool cluster_is_null(struct swap_cluster_info *info) 316 { 317 return info->flags & CLUSTER_FLAG_NEXT_NULL; 318 } 319 320 static inline void cluster_set_null(struct swap_cluster_info *info) 321 { 322 info->flags = CLUSTER_FLAG_NEXT_NULL; 323 info->data = 0; 324 } 325 326 static inline bool cluster_is_huge(struct swap_cluster_info *info) 327 { 328 if (IS_ENABLED(CONFIG_THP_SWAP)) 329 return info->flags & CLUSTER_FLAG_HUGE; 330 return false; 331 } 332 333 static inline void cluster_clear_huge(struct swap_cluster_info *info) 334 { 335 info->flags &= ~CLUSTER_FLAG_HUGE; 336 } 337 338 static inline struct swap_cluster_info *lock_cluster(struct swap_info_struct *si, 339 unsigned long offset) 340 { 341 struct swap_cluster_info *ci; 342 343 ci = si->cluster_info; 344 if (ci) { 345 ci += offset / SWAPFILE_CLUSTER; 346 spin_lock(&ci->lock); 347 } 348 return ci; 349 } 350 351 static inline void unlock_cluster(struct swap_cluster_info *ci) 352 { 353 if (ci) 354 spin_unlock(&ci->lock); 355 } 356 357 /* 358 * Determine the locking method in use for this device. Return 359 * swap_cluster_info if SSD-style cluster-based locking is in place. 360 */ 361 static inline struct swap_cluster_info *lock_cluster_or_swap_info( 362 struct swap_info_struct *si, unsigned long offset) 363 { 364 struct swap_cluster_info *ci; 365 366 /* Try to use fine-grained SSD-style locking if available: */ 367 ci = lock_cluster(si, offset); 368 /* Otherwise, fall back to traditional, coarse locking: */ 369 if (!ci) 370 spin_lock(&si->lock); 371 372 return ci; 373 } 374 375 static inline void unlock_cluster_or_swap_info(struct swap_info_struct *si, 376 struct swap_cluster_info *ci) 377 { 378 if (ci) 379 unlock_cluster(ci); 380 else 381 spin_unlock(&si->lock); 382 } 383 384 static inline bool cluster_list_empty(struct swap_cluster_list *list) 385 { 386 return cluster_is_null(&list->head); 387 } 388 389 static inline unsigned int cluster_list_first(struct swap_cluster_list *list) 390 { 391 return cluster_next(&list->head); 392 } 393 394 static void cluster_list_init(struct swap_cluster_list *list) 395 { 396 cluster_set_null(&list->head); 397 cluster_set_null(&list->tail); 398 } 399 400 static void cluster_list_add_tail(struct swap_cluster_list *list, 401 struct swap_cluster_info *ci, 402 unsigned int idx) 403 { 404 if (cluster_list_empty(list)) { 405 cluster_set_next_flag(&list->head, idx, 0); 406 cluster_set_next_flag(&list->tail, idx, 0); 407 } else { 408 struct swap_cluster_info *ci_tail; 409 unsigned int tail = cluster_next(&list->tail); 410 411 /* 412 * Nested cluster lock, but both cluster locks are 413 * only acquired when we held swap_info_struct->lock 414 */ 415 ci_tail = ci + tail; 416 spin_lock_nested(&ci_tail->lock, SINGLE_DEPTH_NESTING); 417 cluster_set_next(ci_tail, idx); 418 spin_unlock(&ci_tail->lock); 419 cluster_set_next_flag(&list->tail, idx, 0); 420 } 421 } 422 423 static unsigned int cluster_list_del_first(struct swap_cluster_list *list, 424 struct swap_cluster_info *ci) 425 { 426 unsigned int idx; 427 428 idx = cluster_next(&list->head); 429 if (cluster_next(&list->tail) == idx) { 430 cluster_set_null(&list->head); 431 cluster_set_null(&list->tail); 432 } else 433 cluster_set_next_flag(&list->head, 434 cluster_next(&ci[idx]), 0); 435 436 return idx; 437 } 438 439 /* Add a cluster to discard list and schedule it to do discard */ 440 static void swap_cluster_schedule_discard(struct swap_info_struct *si, 441 unsigned int idx) 442 { 443 /* 444 * If scan_swap_map() can't find a free cluster, it will check 445 * si->swap_map directly. To make sure the discarding cluster isn't 446 * taken by scan_swap_map(), mark the swap entries bad (occupied). It 447 * will be cleared after discard 448 */ 449 memset(si->swap_map + idx * SWAPFILE_CLUSTER, 450 SWAP_MAP_BAD, SWAPFILE_CLUSTER); 451 452 cluster_list_add_tail(&si->discard_clusters, si->cluster_info, idx); 453 454 schedule_work(&si->discard_work); 455 } 456 457 static void __free_cluster(struct swap_info_struct *si, unsigned long idx) 458 { 459 struct swap_cluster_info *ci = si->cluster_info; 460 461 cluster_set_flag(ci + idx, CLUSTER_FLAG_FREE); 462 cluster_list_add_tail(&si->free_clusters, ci, idx); 463 } 464 465 /* 466 * Doing discard actually. After a cluster discard is finished, the cluster 467 * will be added to free cluster list. caller should hold si->lock. 468 */ 469 static void swap_do_scheduled_discard(struct swap_info_struct *si) 470 { 471 struct swap_cluster_info *info, *ci; 472 unsigned int idx; 473 474 info = si->cluster_info; 475 476 while (!cluster_list_empty(&si->discard_clusters)) { 477 idx = cluster_list_del_first(&si->discard_clusters, info); 478 spin_unlock(&si->lock); 479 480 discard_swap_cluster(si, idx * SWAPFILE_CLUSTER, 481 SWAPFILE_CLUSTER); 482 483 spin_lock(&si->lock); 484 ci = lock_cluster(si, idx * SWAPFILE_CLUSTER); 485 __free_cluster(si, idx); 486 memset(si->swap_map + idx * SWAPFILE_CLUSTER, 487 0, SWAPFILE_CLUSTER); 488 unlock_cluster(ci); 489 } 490 } 491 492 static void swap_discard_work(struct work_struct *work) 493 { 494 struct swap_info_struct *si; 495 496 si = container_of(work, struct swap_info_struct, discard_work); 497 498 spin_lock(&si->lock); 499 swap_do_scheduled_discard(si); 500 spin_unlock(&si->lock); 501 } 502 503 static void alloc_cluster(struct swap_info_struct *si, unsigned long idx) 504 { 505 struct swap_cluster_info *ci = si->cluster_info; 506 507 VM_BUG_ON(cluster_list_first(&si->free_clusters) != idx); 508 cluster_list_del_first(&si->free_clusters, ci); 509 cluster_set_count_flag(ci + idx, 0, 0); 510 } 511 512 static void free_cluster(struct swap_info_struct *si, unsigned long idx) 513 { 514 struct swap_cluster_info *ci = si->cluster_info + idx; 515 516 VM_BUG_ON(cluster_count(ci) != 0); 517 /* 518 * If the swap is discardable, prepare discard the cluster 519 * instead of free it immediately. The cluster will be freed 520 * after discard. 521 */ 522 if ((si->flags & (SWP_WRITEOK | SWP_PAGE_DISCARD)) == 523 (SWP_WRITEOK | SWP_PAGE_DISCARD)) { 524 swap_cluster_schedule_discard(si, idx); 525 return; 526 } 527 528 __free_cluster(si, idx); 529 } 530 531 /* 532 * The cluster corresponding to page_nr will be used. The cluster will be 533 * removed from free cluster list and its usage counter will be increased. 534 */ 535 static void inc_cluster_info_page(struct swap_info_struct *p, 536 struct swap_cluster_info *cluster_info, unsigned long page_nr) 537 { 538 unsigned long idx = page_nr / SWAPFILE_CLUSTER; 539 540 if (!cluster_info) 541 return; 542 if (cluster_is_free(&cluster_info[idx])) 543 alloc_cluster(p, idx); 544 545 VM_BUG_ON(cluster_count(&cluster_info[idx]) >= SWAPFILE_CLUSTER); 546 cluster_set_count(&cluster_info[idx], 547 cluster_count(&cluster_info[idx]) + 1); 548 } 549 550 /* 551 * The cluster corresponding to page_nr decreases one usage. If the usage 552 * counter becomes 0, which means no page in the cluster is in using, we can 553 * optionally discard the cluster and add it to free cluster list. 554 */ 555 static void dec_cluster_info_page(struct swap_info_struct *p, 556 struct swap_cluster_info *cluster_info, unsigned long page_nr) 557 { 558 unsigned long idx = page_nr / SWAPFILE_CLUSTER; 559 560 if (!cluster_info) 561 return; 562 563 VM_BUG_ON(cluster_count(&cluster_info[idx]) == 0); 564 cluster_set_count(&cluster_info[idx], 565 cluster_count(&cluster_info[idx]) - 1); 566 567 if (cluster_count(&cluster_info[idx]) == 0) 568 free_cluster(p, idx); 569 } 570 571 /* 572 * It's possible scan_swap_map() uses a free cluster in the middle of free 573 * cluster list. Avoiding such abuse to avoid list corruption. 574 */ 575 static bool 576 scan_swap_map_ssd_cluster_conflict(struct swap_info_struct *si, 577 unsigned long offset) 578 { 579 struct percpu_cluster *percpu_cluster; 580 bool conflict; 581 582 offset /= SWAPFILE_CLUSTER; 583 conflict = !cluster_list_empty(&si->free_clusters) && 584 offset != cluster_list_first(&si->free_clusters) && 585 cluster_is_free(&si->cluster_info[offset]); 586 587 if (!conflict) 588 return false; 589 590 percpu_cluster = this_cpu_ptr(si->percpu_cluster); 591 cluster_set_null(&percpu_cluster->index); 592 return true; 593 } 594 595 /* 596 * Try to get a swap entry from current cpu's swap entry pool (a cluster). This 597 * might involve allocating a new cluster for current CPU too. 598 */ 599 static bool scan_swap_map_try_ssd_cluster(struct swap_info_struct *si, 600 unsigned long *offset, unsigned long *scan_base) 601 { 602 struct percpu_cluster *cluster; 603 struct swap_cluster_info *ci; 604 bool found_free; 605 unsigned long tmp, max; 606 607 new_cluster: 608 cluster = this_cpu_ptr(si->percpu_cluster); 609 if (cluster_is_null(&cluster->index)) { 610 if (!cluster_list_empty(&si->free_clusters)) { 611 cluster->index = si->free_clusters.head; 612 cluster->next = cluster_next(&cluster->index) * 613 SWAPFILE_CLUSTER; 614 } else if (!cluster_list_empty(&si->discard_clusters)) { 615 /* 616 * we don't have free cluster but have some clusters in 617 * discarding, do discard now and reclaim them 618 */ 619 swap_do_scheduled_discard(si); 620 *scan_base = *offset = si->cluster_next; 621 goto new_cluster; 622 } else 623 return false; 624 } 625 626 found_free = false; 627 628 /* 629 * Other CPUs can use our cluster if they can't find a free cluster, 630 * check if there is still free entry in the cluster 631 */ 632 tmp = cluster->next; 633 max = min_t(unsigned long, si->max, 634 (cluster_next(&cluster->index) + 1) * SWAPFILE_CLUSTER); 635 if (tmp >= max) { 636 cluster_set_null(&cluster->index); 637 goto new_cluster; 638 } 639 ci = lock_cluster(si, tmp); 640 while (tmp < max) { 641 if (!si->swap_map[tmp]) { 642 found_free = true; 643 break; 644 } 645 tmp++; 646 } 647 unlock_cluster(ci); 648 if (!found_free) { 649 cluster_set_null(&cluster->index); 650 goto new_cluster; 651 } 652 cluster->next = tmp + 1; 653 *offset = tmp; 654 *scan_base = tmp; 655 return found_free; 656 } 657 658 static void __del_from_avail_list(struct swap_info_struct *p) 659 { 660 int nid; 661 662 for_each_node(nid) 663 plist_del(&p->avail_lists[nid], &swap_avail_heads[nid]); 664 } 665 666 static void del_from_avail_list(struct swap_info_struct *p) 667 { 668 spin_lock(&swap_avail_lock); 669 __del_from_avail_list(p); 670 spin_unlock(&swap_avail_lock); 671 } 672 673 static void swap_range_alloc(struct swap_info_struct *si, unsigned long offset, 674 unsigned int nr_entries) 675 { 676 unsigned int end = offset + nr_entries - 1; 677 678 if (offset == si->lowest_bit) 679 si->lowest_bit += nr_entries; 680 if (end == si->highest_bit) 681 si->highest_bit -= nr_entries; 682 si->inuse_pages += nr_entries; 683 if (si->inuse_pages == si->pages) { 684 si->lowest_bit = si->max; 685 si->highest_bit = 0; 686 del_from_avail_list(si); 687 } 688 } 689 690 static void add_to_avail_list(struct swap_info_struct *p) 691 { 692 int nid; 693 694 spin_lock(&swap_avail_lock); 695 for_each_node(nid) { 696 WARN_ON(!plist_node_empty(&p->avail_lists[nid])); 697 plist_add(&p->avail_lists[nid], &swap_avail_heads[nid]); 698 } 699 spin_unlock(&swap_avail_lock); 700 } 701 702 static void swap_range_free(struct swap_info_struct *si, unsigned long offset, 703 unsigned int nr_entries) 704 { 705 unsigned long end = offset + nr_entries - 1; 706 void (*swap_slot_free_notify)(struct block_device *, unsigned long); 707 708 if (offset < si->lowest_bit) 709 si->lowest_bit = offset; 710 if (end > si->highest_bit) { 711 bool was_full = !si->highest_bit; 712 713 si->highest_bit = end; 714 if (was_full && (si->flags & SWP_WRITEOK)) 715 add_to_avail_list(si); 716 } 717 atomic_long_add(nr_entries, &nr_swap_pages); 718 si->inuse_pages -= nr_entries; 719 if (si->flags & SWP_BLKDEV) 720 swap_slot_free_notify = 721 si->bdev->bd_disk->fops->swap_slot_free_notify; 722 else 723 swap_slot_free_notify = NULL; 724 while (offset <= end) { 725 frontswap_invalidate_page(si->type, offset); 726 if (swap_slot_free_notify) 727 swap_slot_free_notify(si->bdev, offset); 728 offset++; 729 } 730 } 731 732 static int scan_swap_map_slots(struct swap_info_struct *si, 733 unsigned char usage, int nr, 734 swp_entry_t slots[]) 735 { 736 struct swap_cluster_info *ci; 737 unsigned long offset; 738 unsigned long scan_base; 739 unsigned long last_in_cluster = 0; 740 int latency_ration = LATENCY_LIMIT; 741 int n_ret = 0; 742 743 if (nr > SWAP_BATCH) 744 nr = SWAP_BATCH; 745 746 /* 747 * We try to cluster swap pages by allocating them sequentially 748 * in swap. Once we've allocated SWAPFILE_CLUSTER pages this 749 * way, however, we resort to first-free allocation, starting 750 * a new cluster. This prevents us from scattering swap pages 751 * all over the entire swap partition, so that we reduce 752 * overall disk seek times between swap pages. -- sct 753 * But we do now try to find an empty cluster. -Andrea 754 * And we let swap pages go all over an SSD partition. Hugh 755 */ 756 757 si->flags += SWP_SCANNING; 758 scan_base = offset = si->cluster_next; 759 760 /* SSD algorithm */ 761 if (si->cluster_info) { 762 if (scan_swap_map_try_ssd_cluster(si, &offset, &scan_base)) 763 goto checks; 764 else 765 goto scan; 766 } 767 768 if (unlikely(!si->cluster_nr--)) { 769 if (si->pages - si->inuse_pages < SWAPFILE_CLUSTER) { 770 si->cluster_nr = SWAPFILE_CLUSTER - 1; 771 goto checks; 772 } 773 774 spin_unlock(&si->lock); 775 776 /* 777 * If seek is expensive, start searching for new cluster from 778 * start of partition, to minimize the span of allocated swap. 779 * If seek is cheap, that is the SWP_SOLIDSTATE si->cluster_info 780 * case, just handled by scan_swap_map_try_ssd_cluster() above. 781 */ 782 scan_base = offset = si->lowest_bit; 783 last_in_cluster = offset + SWAPFILE_CLUSTER - 1; 784 785 /* Locate the first empty (unaligned) cluster */ 786 for (; last_in_cluster <= si->highest_bit; offset++) { 787 if (si->swap_map[offset]) 788 last_in_cluster = offset + SWAPFILE_CLUSTER; 789 else if (offset == last_in_cluster) { 790 spin_lock(&si->lock); 791 offset -= SWAPFILE_CLUSTER - 1; 792 si->cluster_next = offset; 793 si->cluster_nr = SWAPFILE_CLUSTER - 1; 794 goto checks; 795 } 796 if (unlikely(--latency_ration < 0)) { 797 cond_resched(); 798 latency_ration = LATENCY_LIMIT; 799 } 800 } 801 802 offset = scan_base; 803 spin_lock(&si->lock); 804 si->cluster_nr = SWAPFILE_CLUSTER - 1; 805 } 806 807 checks: 808 if (si->cluster_info) { 809 while (scan_swap_map_ssd_cluster_conflict(si, offset)) { 810 /* take a break if we already got some slots */ 811 if (n_ret) 812 goto done; 813 if (!scan_swap_map_try_ssd_cluster(si, &offset, 814 &scan_base)) 815 goto scan; 816 } 817 } 818 if (!(si->flags & SWP_WRITEOK)) 819 goto no_page; 820 if (!si->highest_bit) 821 goto no_page; 822 if (offset > si->highest_bit) 823 scan_base = offset = si->lowest_bit; 824 825 ci = lock_cluster(si, offset); 826 /* reuse swap entry of cache-only swap if not busy. */ 827 if (vm_swap_full() && si->swap_map[offset] == SWAP_HAS_CACHE) { 828 int swap_was_freed; 829 unlock_cluster(ci); 830 spin_unlock(&si->lock); 831 swap_was_freed = __try_to_reclaim_swap(si, offset, TTRS_ANYWAY); 832 spin_lock(&si->lock); 833 /* entry was freed successfully, try to use this again */ 834 if (swap_was_freed) 835 goto checks; 836 goto scan; /* check next one */ 837 } 838 839 if (si->swap_map[offset]) { 840 unlock_cluster(ci); 841 if (!n_ret) 842 goto scan; 843 else 844 goto done; 845 } 846 si->swap_map[offset] = usage; 847 inc_cluster_info_page(si, si->cluster_info, offset); 848 unlock_cluster(ci); 849 850 swap_range_alloc(si, offset, 1); 851 si->cluster_next = offset + 1; 852 slots[n_ret++] = swp_entry(si->type, offset); 853 854 /* got enough slots or reach max slots? */ 855 if ((n_ret == nr) || (offset >= si->highest_bit)) 856 goto done; 857 858 /* search for next available slot */ 859 860 /* time to take a break? */ 861 if (unlikely(--latency_ration < 0)) { 862 if (n_ret) 863 goto done; 864 spin_unlock(&si->lock); 865 cond_resched(); 866 spin_lock(&si->lock); 867 latency_ration = LATENCY_LIMIT; 868 } 869 870 /* try to get more slots in cluster */ 871 if (si->cluster_info) { 872 if (scan_swap_map_try_ssd_cluster(si, &offset, &scan_base)) 873 goto checks; 874 else 875 goto done; 876 } 877 /* non-ssd case */ 878 ++offset; 879 880 /* non-ssd case, still more slots in cluster? */ 881 if (si->cluster_nr && !si->swap_map[offset]) { 882 --si->cluster_nr; 883 goto checks; 884 } 885 886 done: 887 si->flags -= SWP_SCANNING; 888 return n_ret; 889 890 scan: 891 spin_unlock(&si->lock); 892 while (++offset <= si->highest_bit) { 893 if (!si->swap_map[offset]) { 894 spin_lock(&si->lock); 895 goto checks; 896 } 897 if (vm_swap_full() && si->swap_map[offset] == SWAP_HAS_CACHE) { 898 spin_lock(&si->lock); 899 goto checks; 900 } 901 if (unlikely(--latency_ration < 0)) { 902 cond_resched(); 903 latency_ration = LATENCY_LIMIT; 904 } 905 } 906 offset = si->lowest_bit; 907 while (offset < scan_base) { 908 if (!si->swap_map[offset]) { 909 spin_lock(&si->lock); 910 goto checks; 911 } 912 if (vm_swap_full() && si->swap_map[offset] == SWAP_HAS_CACHE) { 913 spin_lock(&si->lock); 914 goto checks; 915 } 916 if (unlikely(--latency_ration < 0)) { 917 cond_resched(); 918 latency_ration = LATENCY_LIMIT; 919 } 920 offset++; 921 } 922 spin_lock(&si->lock); 923 924 no_page: 925 si->flags -= SWP_SCANNING; 926 return n_ret; 927 } 928 929 static int swap_alloc_cluster(struct swap_info_struct *si, swp_entry_t *slot) 930 { 931 unsigned long idx; 932 struct swap_cluster_info *ci; 933 unsigned long offset, i; 934 unsigned char *map; 935 936 /* 937 * Should not even be attempting cluster allocations when huge 938 * page swap is disabled. Warn and fail the allocation. 939 */ 940 if (!IS_ENABLED(CONFIG_THP_SWAP)) { 941 VM_WARN_ON_ONCE(1); 942 return 0; 943 } 944 945 if (cluster_list_empty(&si->free_clusters)) 946 return 0; 947 948 idx = cluster_list_first(&si->free_clusters); 949 offset = idx * SWAPFILE_CLUSTER; 950 ci = lock_cluster(si, offset); 951 alloc_cluster(si, idx); 952 cluster_set_count_flag(ci, SWAPFILE_CLUSTER, CLUSTER_FLAG_HUGE); 953 954 map = si->swap_map + offset; 955 for (i = 0; i < SWAPFILE_CLUSTER; i++) 956 map[i] = SWAP_HAS_CACHE; 957 unlock_cluster(ci); 958 swap_range_alloc(si, offset, SWAPFILE_CLUSTER); 959 *slot = swp_entry(si->type, offset); 960 961 return 1; 962 } 963 964 static void swap_free_cluster(struct swap_info_struct *si, unsigned long idx) 965 { 966 unsigned long offset = idx * SWAPFILE_CLUSTER; 967 struct swap_cluster_info *ci; 968 969 ci = lock_cluster(si, offset); 970 memset(si->swap_map + offset, 0, SWAPFILE_CLUSTER); 971 cluster_set_count_flag(ci, 0, 0); 972 free_cluster(si, idx); 973 unlock_cluster(ci); 974 swap_range_free(si, offset, SWAPFILE_CLUSTER); 975 } 976 977 static unsigned long scan_swap_map(struct swap_info_struct *si, 978 unsigned char usage) 979 { 980 swp_entry_t entry; 981 int n_ret; 982 983 n_ret = scan_swap_map_slots(si, usage, 1, &entry); 984 985 if (n_ret) 986 return swp_offset(entry); 987 else 988 return 0; 989 990 } 991 992 int get_swap_pages(int n_goal, swp_entry_t swp_entries[], int entry_size) 993 { 994 unsigned long size = swap_entry_size(entry_size); 995 struct swap_info_struct *si, *next; 996 long avail_pgs; 997 int n_ret = 0; 998 int node; 999 1000 /* Only single cluster request supported */ 1001 WARN_ON_ONCE(n_goal > 1 && size == SWAPFILE_CLUSTER); 1002 1003 avail_pgs = atomic_long_read(&nr_swap_pages) / size; 1004 if (avail_pgs <= 0) 1005 goto noswap; 1006 1007 if (n_goal > SWAP_BATCH) 1008 n_goal = SWAP_BATCH; 1009 1010 if (n_goal > avail_pgs) 1011 n_goal = avail_pgs; 1012 1013 atomic_long_sub(n_goal * size, &nr_swap_pages); 1014 1015 spin_lock(&swap_avail_lock); 1016 1017 start_over: 1018 node = numa_node_id(); 1019 plist_for_each_entry_safe(si, next, &swap_avail_heads[node], avail_lists[node]) { 1020 /* requeue si to after same-priority siblings */ 1021 plist_requeue(&si->avail_lists[node], &swap_avail_heads[node]); 1022 spin_unlock(&swap_avail_lock); 1023 spin_lock(&si->lock); 1024 if (!si->highest_bit || !(si->flags & SWP_WRITEOK)) { 1025 spin_lock(&swap_avail_lock); 1026 if (plist_node_empty(&si->avail_lists[node])) { 1027 spin_unlock(&si->lock); 1028 goto nextsi; 1029 } 1030 WARN(!si->highest_bit, 1031 "swap_info %d in list but !highest_bit\n", 1032 si->type); 1033 WARN(!(si->flags & SWP_WRITEOK), 1034 "swap_info %d in list but !SWP_WRITEOK\n", 1035 si->type); 1036 __del_from_avail_list(si); 1037 spin_unlock(&si->lock); 1038 goto nextsi; 1039 } 1040 if (size == SWAPFILE_CLUSTER) { 1041 if (!(si->flags & SWP_FS)) 1042 n_ret = swap_alloc_cluster(si, swp_entries); 1043 } else 1044 n_ret = scan_swap_map_slots(si, SWAP_HAS_CACHE, 1045 n_goal, swp_entries); 1046 spin_unlock(&si->lock); 1047 if (n_ret || size == SWAPFILE_CLUSTER) 1048 goto check_out; 1049 pr_debug("scan_swap_map of si %d failed to find offset\n", 1050 si->type); 1051 1052 spin_lock(&swap_avail_lock); 1053 nextsi: 1054 /* 1055 * if we got here, it's likely that si was almost full before, 1056 * and since scan_swap_map() can drop the si->lock, multiple 1057 * callers probably all tried to get a page from the same si 1058 * and it filled up before we could get one; or, the si filled 1059 * up between us dropping swap_avail_lock and taking si->lock. 1060 * Since we dropped the swap_avail_lock, the swap_avail_head 1061 * list may have been modified; so if next is still in the 1062 * swap_avail_head list then try it, otherwise start over 1063 * if we have not gotten any slots. 1064 */ 1065 if (plist_node_empty(&next->avail_lists[node])) 1066 goto start_over; 1067 } 1068 1069 spin_unlock(&swap_avail_lock); 1070 1071 check_out: 1072 if (n_ret < n_goal) 1073 atomic_long_add((long)(n_goal - n_ret) * size, 1074 &nr_swap_pages); 1075 noswap: 1076 return n_ret; 1077 } 1078 1079 /* The only caller of this function is now suspend routine */ 1080 swp_entry_t get_swap_page_of_type(int type) 1081 { 1082 struct swap_info_struct *si = swap_type_to_swap_info(type); 1083 pgoff_t offset; 1084 1085 if (!si) 1086 goto fail; 1087 1088 spin_lock(&si->lock); 1089 if (si->flags & SWP_WRITEOK) { 1090 atomic_long_dec(&nr_swap_pages); 1091 /* This is called for allocating swap entry, not cache */ 1092 offset = scan_swap_map(si, 1); 1093 if (offset) { 1094 spin_unlock(&si->lock); 1095 return swp_entry(type, offset); 1096 } 1097 atomic_long_inc(&nr_swap_pages); 1098 } 1099 spin_unlock(&si->lock); 1100 fail: 1101 return (swp_entry_t) {0}; 1102 } 1103 1104 static struct swap_info_struct *__swap_info_get(swp_entry_t entry) 1105 { 1106 struct swap_info_struct *p; 1107 unsigned long offset; 1108 1109 if (!entry.val) 1110 goto out; 1111 p = swp_swap_info(entry); 1112 if (!p) 1113 goto bad_nofile; 1114 if (!(p->flags & SWP_USED)) 1115 goto bad_device; 1116 offset = swp_offset(entry); 1117 if (offset >= p->max) 1118 goto bad_offset; 1119 return p; 1120 1121 bad_offset: 1122 pr_err("swap_info_get: %s%08lx\n", Bad_offset, entry.val); 1123 goto out; 1124 bad_device: 1125 pr_err("swap_info_get: %s%08lx\n", Unused_file, entry.val); 1126 goto out; 1127 bad_nofile: 1128 pr_err("swap_info_get: %s%08lx\n", Bad_file, entry.val); 1129 out: 1130 return NULL; 1131 } 1132 1133 static struct swap_info_struct *_swap_info_get(swp_entry_t entry) 1134 { 1135 struct swap_info_struct *p; 1136 1137 p = __swap_info_get(entry); 1138 if (!p) 1139 goto out; 1140 if (!p->swap_map[swp_offset(entry)]) 1141 goto bad_free; 1142 return p; 1143 1144 bad_free: 1145 pr_err("swap_info_get: %s%08lx\n", Unused_offset, entry.val); 1146 goto out; 1147 out: 1148 return NULL; 1149 } 1150 1151 static struct swap_info_struct *swap_info_get(swp_entry_t entry) 1152 { 1153 struct swap_info_struct *p; 1154 1155 p = _swap_info_get(entry); 1156 if (p) 1157 spin_lock(&p->lock); 1158 return p; 1159 } 1160 1161 static struct swap_info_struct *swap_info_get_cont(swp_entry_t entry, 1162 struct swap_info_struct *q) 1163 { 1164 struct swap_info_struct *p; 1165 1166 p = _swap_info_get(entry); 1167 1168 if (p != q) { 1169 if (q != NULL) 1170 spin_unlock(&q->lock); 1171 if (p != NULL) 1172 spin_lock(&p->lock); 1173 } 1174 return p; 1175 } 1176 1177 static unsigned char __swap_entry_free_locked(struct swap_info_struct *p, 1178 unsigned long offset, 1179 unsigned char usage) 1180 { 1181 unsigned char count; 1182 unsigned char has_cache; 1183 1184 count = p->swap_map[offset]; 1185 1186 has_cache = count & SWAP_HAS_CACHE; 1187 count &= ~SWAP_HAS_CACHE; 1188 1189 if (usage == SWAP_HAS_CACHE) { 1190 VM_BUG_ON(!has_cache); 1191 has_cache = 0; 1192 } else if (count == SWAP_MAP_SHMEM) { 1193 /* 1194 * Or we could insist on shmem.c using a special 1195 * swap_shmem_free() and free_shmem_swap_and_cache()... 1196 */ 1197 count = 0; 1198 } else if ((count & ~COUNT_CONTINUED) <= SWAP_MAP_MAX) { 1199 if (count == COUNT_CONTINUED) { 1200 if (swap_count_continued(p, offset, count)) 1201 count = SWAP_MAP_MAX | COUNT_CONTINUED; 1202 else 1203 count = SWAP_MAP_MAX; 1204 } else 1205 count--; 1206 } 1207 1208 usage = count | has_cache; 1209 p->swap_map[offset] = usage ? : SWAP_HAS_CACHE; 1210 1211 return usage; 1212 } 1213 1214 /* 1215 * Check whether swap entry is valid in the swap device. If so, 1216 * return pointer to swap_info_struct, and keep the swap entry valid 1217 * via preventing the swap device from being swapoff, until 1218 * put_swap_device() is called. Otherwise return NULL. 1219 * 1220 * The entirety of the RCU read critical section must come before the 1221 * return from or after the call to synchronize_rcu() in 1222 * enable_swap_info() or swapoff(). So if "si->flags & SWP_VALID" is 1223 * true, the si->map, si->cluster_info, etc. must be valid in the 1224 * critical section. 1225 * 1226 * Notice that swapoff or swapoff+swapon can still happen before the 1227 * rcu_read_lock() in get_swap_device() or after the rcu_read_unlock() 1228 * in put_swap_device() if there isn't any other way to prevent 1229 * swapoff, such as page lock, page table lock, etc. The caller must 1230 * be prepared for that. For example, the following situation is 1231 * possible. 1232 * 1233 * CPU1 CPU2 1234 * do_swap_page() 1235 * ... swapoff+swapon 1236 * __read_swap_cache_async() 1237 * swapcache_prepare() 1238 * __swap_duplicate() 1239 * // check swap_map 1240 * // verify PTE not changed 1241 * 1242 * In __swap_duplicate(), the swap_map need to be checked before 1243 * changing partly because the specified swap entry may be for another 1244 * swap device which has been swapoff. And in do_swap_page(), after 1245 * the page is read from the swap device, the PTE is verified not 1246 * changed with the page table locked to check whether the swap device 1247 * has been swapoff or swapoff+swapon. 1248 */ 1249 struct swap_info_struct *get_swap_device(swp_entry_t entry) 1250 { 1251 struct swap_info_struct *si; 1252 unsigned long offset; 1253 1254 if (!entry.val) 1255 goto out; 1256 si = swp_swap_info(entry); 1257 if (!si) 1258 goto bad_nofile; 1259 1260 rcu_read_lock(); 1261 if (!(si->flags & SWP_VALID)) 1262 goto unlock_out; 1263 offset = swp_offset(entry); 1264 if (offset >= si->max) 1265 goto unlock_out; 1266 1267 return si; 1268 bad_nofile: 1269 pr_err("%s: %s%08lx\n", __func__, Bad_file, entry.val); 1270 out: 1271 return NULL; 1272 unlock_out: 1273 rcu_read_unlock(); 1274 return NULL; 1275 } 1276 1277 static unsigned char __swap_entry_free(struct swap_info_struct *p, 1278 swp_entry_t entry, unsigned char usage) 1279 { 1280 struct swap_cluster_info *ci; 1281 unsigned long offset = swp_offset(entry); 1282 1283 ci = lock_cluster_or_swap_info(p, offset); 1284 usage = __swap_entry_free_locked(p, offset, usage); 1285 unlock_cluster_or_swap_info(p, ci); 1286 if (!usage) 1287 free_swap_slot(entry); 1288 1289 return usage; 1290 } 1291 1292 static void swap_entry_free(struct swap_info_struct *p, swp_entry_t entry) 1293 { 1294 struct swap_cluster_info *ci; 1295 unsigned long offset = swp_offset(entry); 1296 unsigned char count; 1297 1298 ci = lock_cluster(p, offset); 1299 count = p->swap_map[offset]; 1300 VM_BUG_ON(count != SWAP_HAS_CACHE); 1301 p->swap_map[offset] = 0; 1302 dec_cluster_info_page(p, p->cluster_info, offset); 1303 unlock_cluster(ci); 1304 1305 mem_cgroup_uncharge_swap(entry, 1); 1306 swap_range_free(p, offset, 1); 1307 } 1308 1309 /* 1310 * Caller has made sure that the swap device corresponding to entry 1311 * is still around or has not been recycled. 1312 */ 1313 void swap_free(swp_entry_t entry) 1314 { 1315 struct swap_info_struct *p; 1316 1317 p = _swap_info_get(entry); 1318 if (p) 1319 __swap_entry_free(p, entry, 1); 1320 } 1321 1322 /* 1323 * Called after dropping swapcache to decrease refcnt to swap entries. 1324 */ 1325 void put_swap_page(struct page *page, swp_entry_t entry) 1326 { 1327 unsigned long offset = swp_offset(entry); 1328 unsigned long idx = offset / SWAPFILE_CLUSTER; 1329 struct swap_cluster_info *ci; 1330 struct swap_info_struct *si; 1331 unsigned char *map; 1332 unsigned int i, free_entries = 0; 1333 unsigned char val; 1334 int size = swap_entry_size(hpage_nr_pages(page)); 1335 1336 si = _swap_info_get(entry); 1337 if (!si) 1338 return; 1339 1340 ci = lock_cluster_or_swap_info(si, offset); 1341 if (size == SWAPFILE_CLUSTER) { 1342 VM_BUG_ON(!cluster_is_huge(ci)); 1343 map = si->swap_map + offset; 1344 for (i = 0; i < SWAPFILE_CLUSTER; i++) { 1345 val = map[i]; 1346 VM_BUG_ON(!(val & SWAP_HAS_CACHE)); 1347 if (val == SWAP_HAS_CACHE) 1348 free_entries++; 1349 } 1350 cluster_clear_huge(ci); 1351 if (free_entries == SWAPFILE_CLUSTER) { 1352 unlock_cluster_or_swap_info(si, ci); 1353 spin_lock(&si->lock); 1354 mem_cgroup_uncharge_swap(entry, SWAPFILE_CLUSTER); 1355 swap_free_cluster(si, idx); 1356 spin_unlock(&si->lock); 1357 return; 1358 } 1359 } 1360 for (i = 0; i < size; i++, entry.val++) { 1361 if (!__swap_entry_free_locked(si, offset + i, SWAP_HAS_CACHE)) { 1362 unlock_cluster_or_swap_info(si, ci); 1363 free_swap_slot(entry); 1364 if (i == size - 1) 1365 return; 1366 lock_cluster_or_swap_info(si, offset); 1367 } 1368 } 1369 unlock_cluster_or_swap_info(si, ci); 1370 } 1371 1372 #ifdef CONFIG_THP_SWAP 1373 int split_swap_cluster(swp_entry_t entry) 1374 { 1375 struct swap_info_struct *si; 1376 struct swap_cluster_info *ci; 1377 unsigned long offset = swp_offset(entry); 1378 1379 si = _swap_info_get(entry); 1380 if (!si) 1381 return -EBUSY; 1382 ci = lock_cluster(si, offset); 1383 cluster_clear_huge(ci); 1384 unlock_cluster(ci); 1385 return 0; 1386 } 1387 #endif 1388 1389 static int swp_entry_cmp(const void *ent1, const void *ent2) 1390 { 1391 const swp_entry_t *e1 = ent1, *e2 = ent2; 1392 1393 return (int)swp_type(*e1) - (int)swp_type(*e2); 1394 } 1395 1396 void swapcache_free_entries(swp_entry_t *entries, int n) 1397 { 1398 struct swap_info_struct *p, *prev; 1399 int i; 1400 1401 if (n <= 0) 1402 return; 1403 1404 prev = NULL; 1405 p = NULL; 1406 1407 /* 1408 * Sort swap entries by swap device, so each lock is only taken once. 1409 * nr_swapfiles isn't absolutely correct, but the overhead of sort() is 1410 * so low that it isn't necessary to optimize further. 1411 */ 1412 if (nr_swapfiles > 1) 1413 sort(entries, n, sizeof(entries[0]), swp_entry_cmp, NULL); 1414 for (i = 0; i < n; ++i) { 1415 p = swap_info_get_cont(entries[i], prev); 1416 if (p) 1417 swap_entry_free(p, entries[i]); 1418 prev = p; 1419 } 1420 if (p) 1421 spin_unlock(&p->lock); 1422 } 1423 1424 /* 1425 * How many references to page are currently swapped out? 1426 * This does not give an exact answer when swap count is continued, 1427 * but does include the high COUNT_CONTINUED flag to allow for that. 1428 */ 1429 int page_swapcount(struct page *page) 1430 { 1431 int count = 0; 1432 struct swap_info_struct *p; 1433 struct swap_cluster_info *ci; 1434 swp_entry_t entry; 1435 unsigned long offset; 1436 1437 entry.val = page_private(page); 1438 p = _swap_info_get(entry); 1439 if (p) { 1440 offset = swp_offset(entry); 1441 ci = lock_cluster_or_swap_info(p, offset); 1442 count = swap_count(p->swap_map[offset]); 1443 unlock_cluster_or_swap_info(p, ci); 1444 } 1445 return count; 1446 } 1447 1448 int __swap_count(swp_entry_t entry) 1449 { 1450 struct swap_info_struct *si; 1451 pgoff_t offset = swp_offset(entry); 1452 int count = 0; 1453 1454 si = get_swap_device(entry); 1455 if (si) { 1456 count = swap_count(si->swap_map[offset]); 1457 put_swap_device(si); 1458 } 1459 return count; 1460 } 1461 1462 static int swap_swapcount(struct swap_info_struct *si, swp_entry_t entry) 1463 { 1464 int count = 0; 1465 pgoff_t offset = swp_offset(entry); 1466 struct swap_cluster_info *ci; 1467 1468 ci = lock_cluster_or_swap_info(si, offset); 1469 count = swap_count(si->swap_map[offset]); 1470 unlock_cluster_or_swap_info(si, ci); 1471 return count; 1472 } 1473 1474 /* 1475 * How many references to @entry are currently swapped out? 1476 * This does not give an exact answer when swap count is continued, 1477 * but does include the high COUNT_CONTINUED flag to allow for that. 1478 */ 1479 int __swp_swapcount(swp_entry_t entry) 1480 { 1481 int count = 0; 1482 struct swap_info_struct *si; 1483 1484 si = get_swap_device(entry); 1485 if (si) { 1486 count = swap_swapcount(si, entry); 1487 put_swap_device(si); 1488 } 1489 return count; 1490 } 1491 1492 /* 1493 * How many references to @entry are currently swapped out? 1494 * This considers COUNT_CONTINUED so it returns exact answer. 1495 */ 1496 int swp_swapcount(swp_entry_t entry) 1497 { 1498 int count, tmp_count, n; 1499 struct swap_info_struct *p; 1500 struct swap_cluster_info *ci; 1501 struct page *page; 1502 pgoff_t offset; 1503 unsigned char *map; 1504 1505 p = _swap_info_get(entry); 1506 if (!p) 1507 return 0; 1508 1509 offset = swp_offset(entry); 1510 1511 ci = lock_cluster_or_swap_info(p, offset); 1512 1513 count = swap_count(p->swap_map[offset]); 1514 if (!(count & COUNT_CONTINUED)) 1515 goto out; 1516 1517 count &= ~COUNT_CONTINUED; 1518 n = SWAP_MAP_MAX + 1; 1519 1520 page = vmalloc_to_page(p->swap_map + offset); 1521 offset &= ~PAGE_MASK; 1522 VM_BUG_ON(page_private(page) != SWP_CONTINUED); 1523 1524 do { 1525 page = list_next_entry(page, lru); 1526 map = kmap_atomic(page); 1527 tmp_count = map[offset]; 1528 kunmap_atomic(map); 1529 1530 count += (tmp_count & ~COUNT_CONTINUED) * n; 1531 n *= (SWAP_CONT_MAX + 1); 1532 } while (tmp_count & COUNT_CONTINUED); 1533 out: 1534 unlock_cluster_or_swap_info(p, ci); 1535 return count; 1536 } 1537 1538 static bool swap_page_trans_huge_swapped(struct swap_info_struct *si, 1539 swp_entry_t entry) 1540 { 1541 struct swap_cluster_info *ci; 1542 unsigned char *map = si->swap_map; 1543 unsigned long roffset = swp_offset(entry); 1544 unsigned long offset = round_down(roffset, SWAPFILE_CLUSTER); 1545 int i; 1546 bool ret = false; 1547 1548 ci = lock_cluster_or_swap_info(si, offset); 1549 if (!ci || !cluster_is_huge(ci)) { 1550 if (swap_count(map[roffset])) 1551 ret = true; 1552 goto unlock_out; 1553 } 1554 for (i = 0; i < SWAPFILE_CLUSTER; i++) { 1555 if (swap_count(map[offset + i])) { 1556 ret = true; 1557 break; 1558 } 1559 } 1560 unlock_out: 1561 unlock_cluster_or_swap_info(si, ci); 1562 return ret; 1563 } 1564 1565 static bool page_swapped(struct page *page) 1566 { 1567 swp_entry_t entry; 1568 struct swap_info_struct *si; 1569 1570 if (!IS_ENABLED(CONFIG_THP_SWAP) || likely(!PageTransCompound(page))) 1571 return page_swapcount(page) != 0; 1572 1573 page = compound_head(page); 1574 entry.val = page_private(page); 1575 si = _swap_info_get(entry); 1576 if (si) 1577 return swap_page_trans_huge_swapped(si, entry); 1578 return false; 1579 } 1580 1581 static int page_trans_huge_map_swapcount(struct page *page, int *total_mapcount, 1582 int *total_swapcount) 1583 { 1584 int i, map_swapcount, _total_mapcount, _total_swapcount; 1585 unsigned long offset = 0; 1586 struct swap_info_struct *si; 1587 struct swap_cluster_info *ci = NULL; 1588 unsigned char *map = NULL; 1589 int mapcount, swapcount = 0; 1590 1591 /* hugetlbfs shouldn't call it */ 1592 VM_BUG_ON_PAGE(PageHuge(page), page); 1593 1594 if (!IS_ENABLED(CONFIG_THP_SWAP) || likely(!PageTransCompound(page))) { 1595 mapcount = page_trans_huge_mapcount(page, total_mapcount); 1596 if (PageSwapCache(page)) 1597 swapcount = page_swapcount(page); 1598 if (total_swapcount) 1599 *total_swapcount = swapcount; 1600 return mapcount + swapcount; 1601 } 1602 1603 page = compound_head(page); 1604 1605 _total_mapcount = _total_swapcount = map_swapcount = 0; 1606 if (PageSwapCache(page)) { 1607 swp_entry_t entry; 1608 1609 entry.val = page_private(page); 1610 si = _swap_info_get(entry); 1611 if (si) { 1612 map = si->swap_map; 1613 offset = swp_offset(entry); 1614 } 1615 } 1616 if (map) 1617 ci = lock_cluster(si, offset); 1618 for (i = 0; i < HPAGE_PMD_NR; i++) { 1619 mapcount = atomic_read(&page[i]._mapcount) + 1; 1620 _total_mapcount += mapcount; 1621 if (map) { 1622 swapcount = swap_count(map[offset + i]); 1623 _total_swapcount += swapcount; 1624 } 1625 map_swapcount = max(map_swapcount, mapcount + swapcount); 1626 } 1627 unlock_cluster(ci); 1628 if (PageDoubleMap(page)) { 1629 map_swapcount -= 1; 1630 _total_mapcount -= HPAGE_PMD_NR; 1631 } 1632 mapcount = compound_mapcount(page); 1633 map_swapcount += mapcount; 1634 _total_mapcount += mapcount; 1635 if (total_mapcount) 1636 *total_mapcount = _total_mapcount; 1637 if (total_swapcount) 1638 *total_swapcount = _total_swapcount; 1639 1640 return map_swapcount; 1641 } 1642 1643 /* 1644 * We can write to an anon page without COW if there are no other references 1645 * to it. And as a side-effect, free up its swap: because the old content 1646 * on disk will never be read, and seeking back there to write new content 1647 * later would only waste time away from clustering. 1648 * 1649 * NOTE: total_map_swapcount should not be relied upon by the caller if 1650 * reuse_swap_page() returns false, but it may be always overwritten 1651 * (see the other implementation for CONFIG_SWAP=n). 1652 */ 1653 bool reuse_swap_page(struct page *page, int *total_map_swapcount) 1654 { 1655 int count, total_mapcount, total_swapcount; 1656 1657 VM_BUG_ON_PAGE(!PageLocked(page), page); 1658 if (unlikely(PageKsm(page))) 1659 return false; 1660 count = page_trans_huge_map_swapcount(page, &total_mapcount, 1661 &total_swapcount); 1662 if (total_map_swapcount) 1663 *total_map_swapcount = total_mapcount + total_swapcount; 1664 if (count == 1 && PageSwapCache(page) && 1665 (likely(!PageTransCompound(page)) || 1666 /* The remaining swap count will be freed soon */ 1667 total_swapcount == page_swapcount(page))) { 1668 if (!PageWriteback(page)) { 1669 page = compound_head(page); 1670 delete_from_swap_cache(page); 1671 SetPageDirty(page); 1672 } else { 1673 swp_entry_t entry; 1674 struct swap_info_struct *p; 1675 1676 entry.val = page_private(page); 1677 p = swap_info_get(entry); 1678 if (p->flags & SWP_STABLE_WRITES) { 1679 spin_unlock(&p->lock); 1680 return false; 1681 } 1682 spin_unlock(&p->lock); 1683 } 1684 } 1685 1686 return count <= 1; 1687 } 1688 1689 /* 1690 * If swap is getting full, or if there are no more mappings of this page, 1691 * then try_to_free_swap is called to free its swap space. 1692 */ 1693 int try_to_free_swap(struct page *page) 1694 { 1695 VM_BUG_ON_PAGE(!PageLocked(page), page); 1696 1697 if (!PageSwapCache(page)) 1698 return 0; 1699 if (PageWriteback(page)) 1700 return 0; 1701 if (page_swapped(page)) 1702 return 0; 1703 1704 /* 1705 * Once hibernation has begun to create its image of memory, 1706 * there's a danger that one of the calls to try_to_free_swap() 1707 * - most probably a call from __try_to_reclaim_swap() while 1708 * hibernation is allocating its own swap pages for the image, 1709 * but conceivably even a call from memory reclaim - will free 1710 * the swap from a page which has already been recorded in the 1711 * image as a clean swapcache page, and then reuse its swap for 1712 * another page of the image. On waking from hibernation, the 1713 * original page might be freed under memory pressure, then 1714 * later read back in from swap, now with the wrong data. 1715 * 1716 * Hibernation suspends storage while it is writing the image 1717 * to disk so check that here. 1718 */ 1719 if (pm_suspended_storage()) 1720 return 0; 1721 1722 page = compound_head(page); 1723 delete_from_swap_cache(page); 1724 SetPageDirty(page); 1725 return 1; 1726 } 1727 1728 /* 1729 * Free the swap entry like above, but also try to 1730 * free the page cache entry if it is the last user. 1731 */ 1732 int free_swap_and_cache(swp_entry_t entry) 1733 { 1734 struct swap_info_struct *p; 1735 unsigned char count; 1736 1737 if (non_swap_entry(entry)) 1738 return 1; 1739 1740 p = _swap_info_get(entry); 1741 if (p) { 1742 count = __swap_entry_free(p, entry, 1); 1743 if (count == SWAP_HAS_CACHE && 1744 !swap_page_trans_huge_swapped(p, entry)) 1745 __try_to_reclaim_swap(p, swp_offset(entry), 1746 TTRS_UNMAPPED | TTRS_FULL); 1747 } 1748 return p != NULL; 1749 } 1750 1751 #ifdef CONFIG_HIBERNATION 1752 /* 1753 * Find the swap type that corresponds to given device (if any). 1754 * 1755 * @offset - number of the PAGE_SIZE-sized block of the device, starting 1756 * from 0, in which the swap header is expected to be located. 1757 * 1758 * This is needed for the suspend to disk (aka swsusp). 1759 */ 1760 int swap_type_of(dev_t device, sector_t offset, struct block_device **bdev_p) 1761 { 1762 struct block_device *bdev = NULL; 1763 int type; 1764 1765 if (device) 1766 bdev = bdget(device); 1767 1768 spin_lock(&swap_lock); 1769 for (type = 0; type < nr_swapfiles; type++) { 1770 struct swap_info_struct *sis = swap_info[type]; 1771 1772 if (!(sis->flags & SWP_WRITEOK)) 1773 continue; 1774 1775 if (!bdev) { 1776 if (bdev_p) 1777 *bdev_p = bdgrab(sis->bdev); 1778 1779 spin_unlock(&swap_lock); 1780 return type; 1781 } 1782 if (bdev == sis->bdev) { 1783 struct swap_extent *se = first_se(sis); 1784 1785 if (se->start_block == offset) { 1786 if (bdev_p) 1787 *bdev_p = bdgrab(sis->bdev); 1788 1789 spin_unlock(&swap_lock); 1790 bdput(bdev); 1791 return type; 1792 } 1793 } 1794 } 1795 spin_unlock(&swap_lock); 1796 if (bdev) 1797 bdput(bdev); 1798 1799 return -ENODEV; 1800 } 1801 1802 /* 1803 * Get the (PAGE_SIZE) block corresponding to given offset on the swapdev 1804 * corresponding to given index in swap_info (swap type). 1805 */ 1806 sector_t swapdev_block(int type, pgoff_t offset) 1807 { 1808 struct block_device *bdev; 1809 struct swap_info_struct *si = swap_type_to_swap_info(type); 1810 1811 if (!si || !(si->flags & SWP_WRITEOK)) 1812 return 0; 1813 return map_swap_entry(swp_entry(type, offset), &bdev); 1814 } 1815 1816 /* 1817 * Return either the total number of swap pages of given type, or the number 1818 * of free pages of that type (depending on @free) 1819 * 1820 * This is needed for software suspend 1821 */ 1822 unsigned int count_swap_pages(int type, int free) 1823 { 1824 unsigned int n = 0; 1825 1826 spin_lock(&swap_lock); 1827 if ((unsigned int)type < nr_swapfiles) { 1828 struct swap_info_struct *sis = swap_info[type]; 1829 1830 spin_lock(&sis->lock); 1831 if (sis->flags & SWP_WRITEOK) { 1832 n = sis->pages; 1833 if (free) 1834 n -= sis->inuse_pages; 1835 } 1836 spin_unlock(&sis->lock); 1837 } 1838 spin_unlock(&swap_lock); 1839 return n; 1840 } 1841 #endif /* CONFIG_HIBERNATION */ 1842 1843 static inline int pte_same_as_swp(pte_t pte, pte_t swp_pte) 1844 { 1845 return pte_same(pte_swp_clear_soft_dirty(pte), swp_pte); 1846 } 1847 1848 /* 1849 * No need to decide whether this PTE shares the swap entry with others, 1850 * just let do_wp_page work it out if a write is requested later - to 1851 * force COW, vm_page_prot omits write permission from any private vma. 1852 */ 1853 static int unuse_pte(struct vm_area_struct *vma, pmd_t *pmd, 1854 unsigned long addr, swp_entry_t entry, struct page *page) 1855 { 1856 struct page *swapcache; 1857 struct mem_cgroup *memcg; 1858 spinlock_t *ptl; 1859 pte_t *pte; 1860 int ret = 1; 1861 1862 swapcache = page; 1863 page = ksm_might_need_to_copy(page, vma, addr); 1864 if (unlikely(!page)) 1865 return -ENOMEM; 1866 1867 if (mem_cgroup_try_charge(page, vma->vm_mm, GFP_KERNEL, 1868 &memcg, false)) { 1869 ret = -ENOMEM; 1870 goto out_nolock; 1871 } 1872 1873 pte = pte_offset_map_lock(vma->vm_mm, pmd, addr, &ptl); 1874 if (unlikely(!pte_same_as_swp(*pte, swp_entry_to_pte(entry)))) { 1875 mem_cgroup_cancel_charge(page, memcg, false); 1876 ret = 0; 1877 goto out; 1878 } 1879 1880 dec_mm_counter(vma->vm_mm, MM_SWAPENTS); 1881 inc_mm_counter(vma->vm_mm, MM_ANONPAGES); 1882 get_page(page); 1883 set_pte_at(vma->vm_mm, addr, pte, 1884 pte_mkold(mk_pte(page, vma->vm_page_prot))); 1885 if (page == swapcache) { 1886 page_add_anon_rmap(page, vma, addr, false); 1887 mem_cgroup_commit_charge(page, memcg, true, false); 1888 } else { /* ksm created a completely new copy */ 1889 page_add_new_anon_rmap(page, vma, addr, false); 1890 mem_cgroup_commit_charge(page, memcg, false, false); 1891 lru_cache_add_active_or_unevictable(page, vma); 1892 } 1893 swap_free(entry); 1894 /* 1895 * Move the page to the active list so it is not 1896 * immediately swapped out again after swapon. 1897 */ 1898 activate_page(page); 1899 out: 1900 pte_unmap_unlock(pte, ptl); 1901 out_nolock: 1902 if (page != swapcache) { 1903 unlock_page(page); 1904 put_page(page); 1905 } 1906 return ret; 1907 } 1908 1909 static int unuse_pte_range(struct vm_area_struct *vma, pmd_t *pmd, 1910 unsigned long addr, unsigned long end, 1911 unsigned int type, bool frontswap, 1912 unsigned long *fs_pages_to_unuse) 1913 { 1914 struct page *page; 1915 swp_entry_t entry; 1916 pte_t *pte; 1917 struct swap_info_struct *si; 1918 unsigned long offset; 1919 int ret = 0; 1920 volatile unsigned char *swap_map; 1921 1922 si = swap_info[type]; 1923 pte = pte_offset_map(pmd, addr); 1924 do { 1925 struct vm_fault vmf; 1926 1927 if (!is_swap_pte(*pte)) 1928 continue; 1929 1930 entry = pte_to_swp_entry(*pte); 1931 if (swp_type(entry) != type) 1932 continue; 1933 1934 offset = swp_offset(entry); 1935 if (frontswap && !frontswap_test(si, offset)) 1936 continue; 1937 1938 pte_unmap(pte); 1939 swap_map = &si->swap_map[offset]; 1940 vmf.vma = vma; 1941 vmf.address = addr; 1942 vmf.pmd = pmd; 1943 page = swapin_readahead(entry, GFP_HIGHUSER_MOVABLE, &vmf); 1944 if (!page) { 1945 if (*swap_map == 0 || *swap_map == SWAP_MAP_BAD) 1946 goto try_next; 1947 return -ENOMEM; 1948 } 1949 1950 lock_page(page); 1951 wait_on_page_writeback(page); 1952 ret = unuse_pte(vma, pmd, addr, entry, page); 1953 if (ret < 0) { 1954 unlock_page(page); 1955 put_page(page); 1956 goto out; 1957 } 1958 1959 try_to_free_swap(page); 1960 unlock_page(page); 1961 put_page(page); 1962 1963 if (*fs_pages_to_unuse && !--(*fs_pages_to_unuse)) { 1964 ret = FRONTSWAP_PAGES_UNUSED; 1965 goto out; 1966 } 1967 try_next: 1968 pte = pte_offset_map(pmd, addr); 1969 } while (pte++, addr += PAGE_SIZE, addr != end); 1970 pte_unmap(pte - 1); 1971 1972 ret = 0; 1973 out: 1974 return ret; 1975 } 1976 1977 static inline int unuse_pmd_range(struct vm_area_struct *vma, pud_t *pud, 1978 unsigned long addr, unsigned long end, 1979 unsigned int type, bool frontswap, 1980 unsigned long *fs_pages_to_unuse) 1981 { 1982 pmd_t *pmd; 1983 unsigned long next; 1984 int ret; 1985 1986 pmd = pmd_offset(pud, addr); 1987 do { 1988 cond_resched(); 1989 next = pmd_addr_end(addr, end); 1990 if (pmd_none_or_trans_huge_or_clear_bad(pmd)) 1991 continue; 1992 ret = unuse_pte_range(vma, pmd, addr, next, type, 1993 frontswap, fs_pages_to_unuse); 1994 if (ret) 1995 return ret; 1996 } while (pmd++, addr = next, addr != end); 1997 return 0; 1998 } 1999 2000 static inline int unuse_pud_range(struct vm_area_struct *vma, p4d_t *p4d, 2001 unsigned long addr, unsigned long end, 2002 unsigned int type, bool frontswap, 2003 unsigned long *fs_pages_to_unuse) 2004 { 2005 pud_t *pud; 2006 unsigned long next; 2007 int ret; 2008 2009 pud = pud_offset(p4d, addr); 2010 do { 2011 next = pud_addr_end(addr, end); 2012 if (pud_none_or_clear_bad(pud)) 2013 continue; 2014 ret = unuse_pmd_range(vma, pud, addr, next, type, 2015 frontswap, fs_pages_to_unuse); 2016 if (ret) 2017 return ret; 2018 } while (pud++, addr = next, addr != end); 2019 return 0; 2020 } 2021 2022 static inline int unuse_p4d_range(struct vm_area_struct *vma, pgd_t *pgd, 2023 unsigned long addr, unsigned long end, 2024 unsigned int type, bool frontswap, 2025 unsigned long *fs_pages_to_unuse) 2026 { 2027 p4d_t *p4d; 2028 unsigned long next; 2029 int ret; 2030 2031 p4d = p4d_offset(pgd, addr); 2032 do { 2033 next = p4d_addr_end(addr, end); 2034 if (p4d_none_or_clear_bad(p4d)) 2035 continue; 2036 ret = unuse_pud_range(vma, p4d, addr, next, type, 2037 frontswap, fs_pages_to_unuse); 2038 if (ret) 2039 return ret; 2040 } while (p4d++, addr = next, addr != end); 2041 return 0; 2042 } 2043 2044 static int unuse_vma(struct vm_area_struct *vma, unsigned int type, 2045 bool frontswap, unsigned long *fs_pages_to_unuse) 2046 { 2047 pgd_t *pgd; 2048 unsigned long addr, end, next; 2049 int ret; 2050 2051 addr = vma->vm_start; 2052 end = vma->vm_end; 2053 2054 pgd = pgd_offset(vma->vm_mm, addr); 2055 do { 2056 next = pgd_addr_end(addr, end); 2057 if (pgd_none_or_clear_bad(pgd)) 2058 continue; 2059 ret = unuse_p4d_range(vma, pgd, addr, next, type, 2060 frontswap, fs_pages_to_unuse); 2061 if (ret) 2062 return ret; 2063 } while (pgd++, addr = next, addr != end); 2064 return 0; 2065 } 2066 2067 static int unuse_mm(struct mm_struct *mm, unsigned int type, 2068 bool frontswap, unsigned long *fs_pages_to_unuse) 2069 { 2070 struct vm_area_struct *vma; 2071 int ret = 0; 2072 2073 down_read(&mm->mmap_sem); 2074 for (vma = mm->mmap; vma; vma = vma->vm_next) { 2075 if (vma->anon_vma) { 2076 ret = unuse_vma(vma, type, frontswap, 2077 fs_pages_to_unuse); 2078 if (ret) 2079 break; 2080 } 2081 cond_resched(); 2082 } 2083 up_read(&mm->mmap_sem); 2084 return ret; 2085 } 2086 2087 /* 2088 * Scan swap_map (or frontswap_map if frontswap parameter is true) 2089 * from current position to next entry still in use. Return 0 2090 * if there are no inuse entries after prev till end of the map. 2091 */ 2092 static unsigned int find_next_to_unuse(struct swap_info_struct *si, 2093 unsigned int prev, bool frontswap) 2094 { 2095 unsigned int i; 2096 unsigned char count; 2097 2098 /* 2099 * No need for swap_lock here: we're just looking 2100 * for whether an entry is in use, not modifying it; false 2101 * hits are okay, and sys_swapoff() has already prevented new 2102 * allocations from this area (while holding swap_lock). 2103 */ 2104 for (i = prev + 1; i < si->max; i++) { 2105 count = READ_ONCE(si->swap_map[i]); 2106 if (count && swap_count(count) != SWAP_MAP_BAD) 2107 if (!frontswap || frontswap_test(si, i)) 2108 break; 2109 if ((i % LATENCY_LIMIT) == 0) 2110 cond_resched(); 2111 } 2112 2113 if (i == si->max) 2114 i = 0; 2115 2116 return i; 2117 } 2118 2119 /* 2120 * If the boolean frontswap is true, only unuse pages_to_unuse pages; 2121 * pages_to_unuse==0 means all pages; ignored if frontswap is false 2122 */ 2123 int try_to_unuse(unsigned int type, bool frontswap, 2124 unsigned long pages_to_unuse) 2125 { 2126 struct mm_struct *prev_mm; 2127 struct mm_struct *mm; 2128 struct list_head *p; 2129 int retval = 0; 2130 struct swap_info_struct *si = swap_info[type]; 2131 struct page *page; 2132 swp_entry_t entry; 2133 unsigned int i; 2134 2135 if (!si->inuse_pages) 2136 return 0; 2137 2138 if (!frontswap) 2139 pages_to_unuse = 0; 2140 2141 retry: 2142 retval = shmem_unuse(type, frontswap, &pages_to_unuse); 2143 if (retval) 2144 goto out; 2145 2146 prev_mm = &init_mm; 2147 mmget(prev_mm); 2148 2149 spin_lock(&mmlist_lock); 2150 p = &init_mm.mmlist; 2151 while (si->inuse_pages && 2152 !signal_pending(current) && 2153 (p = p->next) != &init_mm.mmlist) { 2154 2155 mm = list_entry(p, struct mm_struct, mmlist); 2156 if (!mmget_not_zero(mm)) 2157 continue; 2158 spin_unlock(&mmlist_lock); 2159 mmput(prev_mm); 2160 prev_mm = mm; 2161 retval = unuse_mm(mm, type, frontswap, &pages_to_unuse); 2162 2163 if (retval) { 2164 mmput(prev_mm); 2165 goto out; 2166 } 2167 2168 /* 2169 * Make sure that we aren't completely killing 2170 * interactive performance. 2171 */ 2172 cond_resched(); 2173 spin_lock(&mmlist_lock); 2174 } 2175 spin_unlock(&mmlist_lock); 2176 2177 mmput(prev_mm); 2178 2179 i = 0; 2180 while (si->inuse_pages && 2181 !signal_pending(current) && 2182 (i = find_next_to_unuse(si, i, frontswap)) != 0) { 2183 2184 entry = swp_entry(type, i); 2185 page = find_get_page(swap_address_space(entry), i); 2186 if (!page) 2187 continue; 2188 2189 /* 2190 * It is conceivable that a racing task removed this page from 2191 * swap cache just before we acquired the page lock. The page 2192 * might even be back in swap cache on another swap area. But 2193 * that is okay, try_to_free_swap() only removes stale pages. 2194 */ 2195 lock_page(page); 2196 wait_on_page_writeback(page); 2197 try_to_free_swap(page); 2198 unlock_page(page); 2199 put_page(page); 2200 2201 /* 2202 * For frontswap, we just need to unuse pages_to_unuse, if 2203 * it was specified. Need not check frontswap again here as 2204 * we already zeroed out pages_to_unuse if not frontswap. 2205 */ 2206 if (pages_to_unuse && --pages_to_unuse == 0) 2207 goto out; 2208 } 2209 2210 /* 2211 * Lets check again to see if there are still swap entries in the map. 2212 * If yes, we would need to do retry the unuse logic again. 2213 * Under global memory pressure, swap entries can be reinserted back 2214 * into process space after the mmlist loop above passes over them. 2215 * 2216 * Limit the number of retries? No: when mmget_not_zero() above fails, 2217 * that mm is likely to be freeing swap from exit_mmap(), which proceeds 2218 * at its own independent pace; and even shmem_writepage() could have 2219 * been preempted after get_swap_page(), temporarily hiding that swap. 2220 * It's easy and robust (though cpu-intensive) just to keep retrying. 2221 */ 2222 if (si->inuse_pages) { 2223 if (!signal_pending(current)) 2224 goto retry; 2225 retval = -EINTR; 2226 } 2227 out: 2228 return (retval == FRONTSWAP_PAGES_UNUSED) ? 0 : retval; 2229 } 2230 2231 /* 2232 * After a successful try_to_unuse, if no swap is now in use, we know 2233 * we can empty the mmlist. swap_lock must be held on entry and exit. 2234 * Note that mmlist_lock nests inside swap_lock, and an mm must be 2235 * added to the mmlist just after page_duplicate - before would be racy. 2236 */ 2237 static void drain_mmlist(void) 2238 { 2239 struct list_head *p, *next; 2240 unsigned int type; 2241 2242 for (type = 0; type < nr_swapfiles; type++) 2243 if (swap_info[type]->inuse_pages) 2244 return; 2245 spin_lock(&mmlist_lock); 2246 list_for_each_safe(p, next, &init_mm.mmlist) 2247 list_del_init(p); 2248 spin_unlock(&mmlist_lock); 2249 } 2250 2251 /* 2252 * Use this swapdev's extent info to locate the (PAGE_SIZE) block which 2253 * corresponds to page offset for the specified swap entry. 2254 * Note that the type of this function is sector_t, but it returns page offset 2255 * into the bdev, not sector offset. 2256 */ 2257 static sector_t map_swap_entry(swp_entry_t entry, struct block_device **bdev) 2258 { 2259 struct swap_info_struct *sis; 2260 struct swap_extent *se; 2261 pgoff_t offset; 2262 2263 sis = swp_swap_info(entry); 2264 *bdev = sis->bdev; 2265 2266 offset = swp_offset(entry); 2267 se = offset_to_swap_extent(sis, offset); 2268 return se->start_block + (offset - se->start_page); 2269 } 2270 2271 /* 2272 * Returns the page offset into bdev for the specified page's swap entry. 2273 */ 2274 sector_t map_swap_page(struct page *page, struct block_device **bdev) 2275 { 2276 swp_entry_t entry; 2277 entry.val = page_private(page); 2278 return map_swap_entry(entry, bdev); 2279 } 2280 2281 /* 2282 * Free all of a swapdev's extent information 2283 */ 2284 static void destroy_swap_extents(struct swap_info_struct *sis) 2285 { 2286 while (!RB_EMPTY_ROOT(&sis->swap_extent_root)) { 2287 struct rb_node *rb = sis->swap_extent_root.rb_node; 2288 struct swap_extent *se = rb_entry(rb, struct swap_extent, rb_node); 2289 2290 rb_erase(rb, &sis->swap_extent_root); 2291 kfree(se); 2292 } 2293 2294 if (sis->flags & SWP_ACTIVATED) { 2295 struct file *swap_file = sis->swap_file; 2296 struct address_space *mapping = swap_file->f_mapping; 2297 2298 sis->flags &= ~SWP_ACTIVATED; 2299 if (mapping->a_ops->swap_deactivate) 2300 mapping->a_ops->swap_deactivate(swap_file); 2301 } 2302 } 2303 2304 /* 2305 * Add a block range (and the corresponding page range) into this swapdev's 2306 * extent tree. 2307 * 2308 * This function rather assumes that it is called in ascending page order. 2309 */ 2310 int 2311 add_swap_extent(struct swap_info_struct *sis, unsigned long start_page, 2312 unsigned long nr_pages, sector_t start_block) 2313 { 2314 struct rb_node **link = &sis->swap_extent_root.rb_node, *parent = NULL; 2315 struct swap_extent *se; 2316 struct swap_extent *new_se; 2317 2318 /* 2319 * place the new node at the right most since the 2320 * function is called in ascending page order. 2321 */ 2322 while (*link) { 2323 parent = *link; 2324 link = &parent->rb_right; 2325 } 2326 2327 if (parent) { 2328 se = rb_entry(parent, struct swap_extent, rb_node); 2329 BUG_ON(se->start_page + se->nr_pages != start_page); 2330 if (se->start_block + se->nr_pages == start_block) { 2331 /* Merge it */ 2332 se->nr_pages += nr_pages; 2333 return 0; 2334 } 2335 } 2336 2337 /* No merge, insert a new extent. */ 2338 new_se = kmalloc(sizeof(*se), GFP_KERNEL); 2339 if (new_se == NULL) 2340 return -ENOMEM; 2341 new_se->start_page = start_page; 2342 new_se->nr_pages = nr_pages; 2343 new_se->start_block = start_block; 2344 2345 rb_link_node(&new_se->rb_node, parent, link); 2346 rb_insert_color(&new_se->rb_node, &sis->swap_extent_root); 2347 return 1; 2348 } 2349 EXPORT_SYMBOL_GPL(add_swap_extent); 2350 2351 /* 2352 * A `swap extent' is a simple thing which maps a contiguous range of pages 2353 * onto a contiguous range of disk blocks. An ordered list of swap extents 2354 * is built at swapon time and is then used at swap_writepage/swap_readpage 2355 * time for locating where on disk a page belongs. 2356 * 2357 * If the swapfile is an S_ISBLK block device, a single extent is installed. 2358 * This is done so that the main operating code can treat S_ISBLK and S_ISREG 2359 * swap files identically. 2360 * 2361 * Whether the swapdev is an S_ISREG file or an S_ISBLK blockdev, the swap 2362 * extent list operates in PAGE_SIZE disk blocks. Both S_ISREG and S_ISBLK 2363 * swapfiles are handled *identically* after swapon time. 2364 * 2365 * For S_ISREG swapfiles, setup_swap_extents() will walk all the file's blocks 2366 * and will parse them into an ordered extent list, in PAGE_SIZE chunks. If 2367 * some stray blocks are found which do not fall within the PAGE_SIZE alignment 2368 * requirements, they are simply tossed out - we will never use those blocks 2369 * for swapping. 2370 * 2371 * For all swap devices we set S_SWAPFILE across the life of the swapon. This 2372 * prevents users from writing to the swap device, which will corrupt memory. 2373 * 2374 * The amount of disk space which a single swap extent represents varies. 2375 * Typically it is in the 1-4 megabyte range. So we can have hundreds of 2376 * extents in the list. To avoid much list walking, we cache the previous 2377 * search location in `curr_swap_extent', and start new searches from there. 2378 * This is extremely effective. The average number of iterations in 2379 * map_swap_page() has been measured at about 0.3 per page. - akpm. 2380 */ 2381 static int setup_swap_extents(struct swap_info_struct *sis, sector_t *span) 2382 { 2383 struct file *swap_file = sis->swap_file; 2384 struct address_space *mapping = swap_file->f_mapping; 2385 struct inode *inode = mapping->host; 2386 int ret; 2387 2388 if (S_ISBLK(inode->i_mode)) { 2389 ret = add_swap_extent(sis, 0, sis->max, 0); 2390 *span = sis->pages; 2391 return ret; 2392 } 2393 2394 if (mapping->a_ops->swap_activate) { 2395 ret = mapping->a_ops->swap_activate(sis, swap_file, span); 2396 if (ret >= 0) 2397 sis->flags |= SWP_ACTIVATED; 2398 if (!ret) { 2399 sis->flags |= SWP_FS; 2400 ret = add_swap_extent(sis, 0, sis->max, 0); 2401 *span = sis->pages; 2402 } 2403 return ret; 2404 } 2405 2406 return generic_swapfile_activate(sis, swap_file, span); 2407 } 2408 2409 static int swap_node(struct swap_info_struct *p) 2410 { 2411 struct block_device *bdev; 2412 2413 if (p->bdev) 2414 bdev = p->bdev; 2415 else 2416 bdev = p->swap_file->f_inode->i_sb->s_bdev; 2417 2418 return bdev ? bdev->bd_disk->node_id : NUMA_NO_NODE; 2419 } 2420 2421 static void setup_swap_info(struct swap_info_struct *p, int prio, 2422 unsigned char *swap_map, 2423 struct swap_cluster_info *cluster_info) 2424 { 2425 int i; 2426 2427 if (prio >= 0) 2428 p->prio = prio; 2429 else 2430 p->prio = --least_priority; 2431 /* 2432 * the plist prio is negated because plist ordering is 2433 * low-to-high, while swap ordering is high-to-low 2434 */ 2435 p->list.prio = -p->prio; 2436 for_each_node(i) { 2437 if (p->prio >= 0) 2438 p->avail_lists[i].prio = -p->prio; 2439 else { 2440 if (swap_node(p) == i) 2441 p->avail_lists[i].prio = 1; 2442 else 2443 p->avail_lists[i].prio = -p->prio; 2444 } 2445 } 2446 p->swap_map = swap_map; 2447 p->cluster_info = cluster_info; 2448 } 2449 2450 static void _enable_swap_info(struct swap_info_struct *p) 2451 { 2452 p->flags |= SWP_WRITEOK | SWP_VALID; 2453 atomic_long_add(p->pages, &nr_swap_pages); 2454 total_swap_pages += p->pages; 2455 2456 assert_spin_locked(&swap_lock); 2457 /* 2458 * both lists are plists, and thus priority ordered. 2459 * swap_active_head needs to be priority ordered for swapoff(), 2460 * which on removal of any swap_info_struct with an auto-assigned 2461 * (i.e. negative) priority increments the auto-assigned priority 2462 * of any lower-priority swap_info_structs. 2463 * swap_avail_head needs to be priority ordered for get_swap_page(), 2464 * which allocates swap pages from the highest available priority 2465 * swap_info_struct. 2466 */ 2467 plist_add(&p->list, &swap_active_head); 2468 add_to_avail_list(p); 2469 } 2470 2471 static void enable_swap_info(struct swap_info_struct *p, int prio, 2472 unsigned char *swap_map, 2473 struct swap_cluster_info *cluster_info, 2474 unsigned long *frontswap_map) 2475 { 2476 frontswap_init(p->type, frontswap_map); 2477 spin_lock(&swap_lock); 2478 spin_lock(&p->lock); 2479 setup_swap_info(p, prio, swap_map, cluster_info); 2480 spin_unlock(&p->lock); 2481 spin_unlock(&swap_lock); 2482 /* 2483 * Guarantee swap_map, cluster_info, etc. fields are valid 2484 * between get/put_swap_device() if SWP_VALID bit is set 2485 */ 2486 synchronize_rcu(); 2487 spin_lock(&swap_lock); 2488 spin_lock(&p->lock); 2489 _enable_swap_info(p); 2490 spin_unlock(&p->lock); 2491 spin_unlock(&swap_lock); 2492 } 2493 2494 static void reinsert_swap_info(struct swap_info_struct *p) 2495 { 2496 spin_lock(&swap_lock); 2497 spin_lock(&p->lock); 2498 setup_swap_info(p, p->prio, p->swap_map, p->cluster_info); 2499 _enable_swap_info(p); 2500 spin_unlock(&p->lock); 2501 spin_unlock(&swap_lock); 2502 } 2503 2504 bool has_usable_swap(void) 2505 { 2506 bool ret = true; 2507 2508 spin_lock(&swap_lock); 2509 if (plist_head_empty(&swap_active_head)) 2510 ret = false; 2511 spin_unlock(&swap_lock); 2512 return ret; 2513 } 2514 2515 SYSCALL_DEFINE1(swapoff, const char __user *, specialfile) 2516 { 2517 struct swap_info_struct *p = NULL; 2518 unsigned char *swap_map; 2519 struct swap_cluster_info *cluster_info; 2520 unsigned long *frontswap_map; 2521 struct file *swap_file, *victim; 2522 struct address_space *mapping; 2523 struct inode *inode; 2524 struct filename *pathname; 2525 int err, found = 0; 2526 unsigned int old_block_size; 2527 2528 if (!capable(CAP_SYS_ADMIN)) 2529 return -EPERM; 2530 2531 BUG_ON(!current->mm); 2532 2533 pathname = getname(specialfile); 2534 if (IS_ERR(pathname)) 2535 return PTR_ERR(pathname); 2536 2537 victim = file_open_name(pathname, O_RDWR|O_LARGEFILE, 0); 2538 err = PTR_ERR(victim); 2539 if (IS_ERR(victim)) 2540 goto out; 2541 2542 mapping = victim->f_mapping; 2543 spin_lock(&swap_lock); 2544 plist_for_each_entry(p, &swap_active_head, list) { 2545 if (p->flags & SWP_WRITEOK) { 2546 if (p->swap_file->f_mapping == mapping) { 2547 found = 1; 2548 break; 2549 } 2550 } 2551 } 2552 if (!found) { 2553 err = -EINVAL; 2554 spin_unlock(&swap_lock); 2555 goto out_dput; 2556 } 2557 if (!security_vm_enough_memory_mm(current->mm, p->pages)) 2558 vm_unacct_memory(p->pages); 2559 else { 2560 err = -ENOMEM; 2561 spin_unlock(&swap_lock); 2562 goto out_dput; 2563 } 2564 del_from_avail_list(p); 2565 spin_lock(&p->lock); 2566 if (p->prio < 0) { 2567 struct swap_info_struct *si = p; 2568 int nid; 2569 2570 plist_for_each_entry_continue(si, &swap_active_head, list) { 2571 si->prio++; 2572 si->list.prio--; 2573 for_each_node(nid) { 2574 if (si->avail_lists[nid].prio != 1) 2575 si->avail_lists[nid].prio--; 2576 } 2577 } 2578 least_priority++; 2579 } 2580 plist_del(&p->list, &swap_active_head); 2581 atomic_long_sub(p->pages, &nr_swap_pages); 2582 total_swap_pages -= p->pages; 2583 p->flags &= ~SWP_WRITEOK; 2584 spin_unlock(&p->lock); 2585 spin_unlock(&swap_lock); 2586 2587 disable_swap_slots_cache_lock(); 2588 2589 set_current_oom_origin(); 2590 err = try_to_unuse(p->type, false, 0); /* force unuse all pages */ 2591 clear_current_oom_origin(); 2592 2593 if (err) { 2594 /* re-insert swap space back into swap_list */ 2595 reinsert_swap_info(p); 2596 reenable_swap_slots_cache_unlock(); 2597 goto out_dput; 2598 } 2599 2600 reenable_swap_slots_cache_unlock(); 2601 2602 spin_lock(&swap_lock); 2603 spin_lock(&p->lock); 2604 p->flags &= ~SWP_VALID; /* mark swap device as invalid */ 2605 spin_unlock(&p->lock); 2606 spin_unlock(&swap_lock); 2607 /* 2608 * wait for swap operations protected by get/put_swap_device() 2609 * to complete 2610 */ 2611 synchronize_rcu(); 2612 2613 flush_work(&p->discard_work); 2614 2615 destroy_swap_extents(p); 2616 if (p->flags & SWP_CONTINUED) 2617 free_swap_count_continuations(p); 2618 2619 if (!p->bdev || !blk_queue_nonrot(bdev_get_queue(p->bdev))) 2620 atomic_dec(&nr_rotate_swap); 2621 2622 mutex_lock(&swapon_mutex); 2623 spin_lock(&swap_lock); 2624 spin_lock(&p->lock); 2625 drain_mmlist(); 2626 2627 /* wait for anyone still in scan_swap_map */ 2628 p->highest_bit = 0; /* cuts scans short */ 2629 while (p->flags >= SWP_SCANNING) { 2630 spin_unlock(&p->lock); 2631 spin_unlock(&swap_lock); 2632 schedule_timeout_uninterruptible(1); 2633 spin_lock(&swap_lock); 2634 spin_lock(&p->lock); 2635 } 2636 2637 swap_file = p->swap_file; 2638 old_block_size = p->old_block_size; 2639 p->swap_file = NULL; 2640 p->max = 0; 2641 swap_map = p->swap_map; 2642 p->swap_map = NULL; 2643 cluster_info = p->cluster_info; 2644 p->cluster_info = NULL; 2645 frontswap_map = frontswap_map_get(p); 2646 spin_unlock(&p->lock); 2647 spin_unlock(&swap_lock); 2648 frontswap_invalidate_area(p->type); 2649 frontswap_map_set(p, NULL); 2650 mutex_unlock(&swapon_mutex); 2651 free_percpu(p->percpu_cluster); 2652 p->percpu_cluster = NULL; 2653 vfree(swap_map); 2654 kvfree(cluster_info); 2655 kvfree(frontswap_map); 2656 /* Destroy swap account information */ 2657 swap_cgroup_swapoff(p->type); 2658 exit_swap_address_space(p->type); 2659 2660 inode = mapping->host; 2661 if (S_ISBLK(inode->i_mode)) { 2662 struct block_device *bdev = I_BDEV(inode); 2663 2664 set_blocksize(bdev, old_block_size); 2665 blkdev_put(bdev, FMODE_READ | FMODE_WRITE | FMODE_EXCL); 2666 } 2667 2668 inode_lock(inode); 2669 inode->i_flags &= ~S_SWAPFILE; 2670 inode_unlock(inode); 2671 filp_close(swap_file, NULL); 2672 2673 /* 2674 * Clear the SWP_USED flag after all resources are freed so that swapon 2675 * can reuse this swap_info in alloc_swap_info() safely. It is ok to 2676 * not hold p->lock after we cleared its SWP_WRITEOK. 2677 */ 2678 spin_lock(&swap_lock); 2679 p->flags = 0; 2680 spin_unlock(&swap_lock); 2681 2682 err = 0; 2683 atomic_inc(&proc_poll_event); 2684 wake_up_interruptible(&proc_poll_wait); 2685 2686 out_dput: 2687 filp_close(victim, NULL); 2688 out: 2689 putname(pathname); 2690 return err; 2691 } 2692 2693 #ifdef CONFIG_PROC_FS 2694 static __poll_t swaps_poll(struct file *file, poll_table *wait) 2695 { 2696 struct seq_file *seq = file->private_data; 2697 2698 poll_wait(file, &proc_poll_wait, wait); 2699 2700 if (seq->poll_event != atomic_read(&proc_poll_event)) { 2701 seq->poll_event = atomic_read(&proc_poll_event); 2702 return EPOLLIN | EPOLLRDNORM | EPOLLERR | EPOLLPRI; 2703 } 2704 2705 return EPOLLIN | EPOLLRDNORM; 2706 } 2707 2708 /* iterator */ 2709 static void *swap_start(struct seq_file *swap, loff_t *pos) 2710 { 2711 struct swap_info_struct *si; 2712 int type; 2713 loff_t l = *pos; 2714 2715 mutex_lock(&swapon_mutex); 2716 2717 if (!l) 2718 return SEQ_START_TOKEN; 2719 2720 for (type = 0; (si = swap_type_to_swap_info(type)); type++) { 2721 if (!(si->flags & SWP_USED) || !si->swap_map) 2722 continue; 2723 if (!--l) 2724 return si; 2725 } 2726 2727 return NULL; 2728 } 2729 2730 static void *swap_next(struct seq_file *swap, void *v, loff_t *pos) 2731 { 2732 struct swap_info_struct *si = v; 2733 int type; 2734 2735 if (v == SEQ_START_TOKEN) 2736 type = 0; 2737 else 2738 type = si->type + 1; 2739 2740 ++(*pos); 2741 for (; (si = swap_type_to_swap_info(type)); type++) { 2742 if (!(si->flags & SWP_USED) || !si->swap_map) 2743 continue; 2744 return si; 2745 } 2746 2747 return NULL; 2748 } 2749 2750 static void swap_stop(struct seq_file *swap, void *v) 2751 { 2752 mutex_unlock(&swapon_mutex); 2753 } 2754 2755 static int swap_show(struct seq_file *swap, void *v) 2756 { 2757 struct swap_info_struct *si = v; 2758 struct file *file; 2759 int len; 2760 2761 if (si == SEQ_START_TOKEN) { 2762 seq_puts(swap,"Filename\t\t\t\tType\t\tSize\tUsed\tPriority\n"); 2763 return 0; 2764 } 2765 2766 file = si->swap_file; 2767 len = seq_file_path(swap, file, " \t\n\\"); 2768 seq_printf(swap, "%*s%s\t%u\t%u\t%d\n", 2769 len < 40 ? 40 - len : 1, " ", 2770 S_ISBLK(file_inode(file)->i_mode) ? 2771 "partition" : "file\t", 2772 si->pages << (PAGE_SHIFT - 10), 2773 si->inuse_pages << (PAGE_SHIFT - 10), 2774 si->prio); 2775 return 0; 2776 } 2777 2778 static const struct seq_operations swaps_op = { 2779 .start = swap_start, 2780 .next = swap_next, 2781 .stop = swap_stop, 2782 .show = swap_show 2783 }; 2784 2785 static int swaps_open(struct inode *inode, struct file *file) 2786 { 2787 struct seq_file *seq; 2788 int ret; 2789 2790 ret = seq_open(file, &swaps_op); 2791 if (ret) 2792 return ret; 2793 2794 seq = file->private_data; 2795 seq->poll_event = atomic_read(&proc_poll_event); 2796 return 0; 2797 } 2798 2799 static const struct proc_ops swaps_proc_ops = { 2800 .proc_open = swaps_open, 2801 .proc_read = seq_read, 2802 .proc_lseek = seq_lseek, 2803 .proc_release = seq_release, 2804 .proc_poll = swaps_poll, 2805 }; 2806 2807 static int __init procswaps_init(void) 2808 { 2809 proc_create("swaps", 0, NULL, &swaps_proc_ops); 2810 return 0; 2811 } 2812 __initcall(procswaps_init); 2813 #endif /* CONFIG_PROC_FS */ 2814 2815 #ifdef MAX_SWAPFILES_CHECK 2816 static int __init max_swapfiles_check(void) 2817 { 2818 MAX_SWAPFILES_CHECK(); 2819 return 0; 2820 } 2821 late_initcall(max_swapfiles_check); 2822 #endif 2823 2824 static struct swap_info_struct *alloc_swap_info(void) 2825 { 2826 struct swap_info_struct *p; 2827 unsigned int type; 2828 int i; 2829 2830 p = kvzalloc(struct_size(p, avail_lists, nr_node_ids), GFP_KERNEL); 2831 if (!p) 2832 return ERR_PTR(-ENOMEM); 2833 2834 spin_lock(&swap_lock); 2835 for (type = 0; type < nr_swapfiles; type++) { 2836 if (!(swap_info[type]->flags & SWP_USED)) 2837 break; 2838 } 2839 if (type >= MAX_SWAPFILES) { 2840 spin_unlock(&swap_lock); 2841 kvfree(p); 2842 return ERR_PTR(-EPERM); 2843 } 2844 if (type >= nr_swapfiles) { 2845 p->type = type; 2846 WRITE_ONCE(swap_info[type], p); 2847 /* 2848 * Write swap_info[type] before nr_swapfiles, in case a 2849 * racing procfs swap_start() or swap_next() is reading them. 2850 * (We never shrink nr_swapfiles, we never free this entry.) 2851 */ 2852 smp_wmb(); 2853 WRITE_ONCE(nr_swapfiles, nr_swapfiles + 1); 2854 } else { 2855 kvfree(p); 2856 p = swap_info[type]; 2857 /* 2858 * Do not memset this entry: a racing procfs swap_next() 2859 * would be relying on p->type to remain valid. 2860 */ 2861 } 2862 p->swap_extent_root = RB_ROOT; 2863 plist_node_init(&p->list, 0); 2864 for_each_node(i) 2865 plist_node_init(&p->avail_lists[i], 0); 2866 p->flags = SWP_USED; 2867 spin_unlock(&swap_lock); 2868 spin_lock_init(&p->lock); 2869 spin_lock_init(&p->cont_lock); 2870 2871 return p; 2872 } 2873 2874 static int claim_swapfile(struct swap_info_struct *p, struct inode *inode) 2875 { 2876 int error; 2877 2878 if (S_ISBLK(inode->i_mode)) { 2879 p->bdev = bdgrab(I_BDEV(inode)); 2880 error = blkdev_get(p->bdev, 2881 FMODE_READ | FMODE_WRITE | FMODE_EXCL, p); 2882 if (error < 0) { 2883 p->bdev = NULL; 2884 return error; 2885 } 2886 p->old_block_size = block_size(p->bdev); 2887 error = set_blocksize(p->bdev, PAGE_SIZE); 2888 if (error < 0) 2889 return error; 2890 /* 2891 * Zoned block devices contain zones that have a sequential 2892 * write only restriction. Hence zoned block devices are not 2893 * suitable for swapping. Disallow them here. 2894 */ 2895 if (blk_queue_is_zoned(p->bdev->bd_queue)) 2896 return -EINVAL; 2897 p->flags |= SWP_BLKDEV; 2898 } else if (S_ISREG(inode->i_mode)) { 2899 p->bdev = inode->i_sb->s_bdev; 2900 } 2901 2902 inode_lock(inode); 2903 if (IS_SWAPFILE(inode)) 2904 return -EBUSY; 2905 2906 return 0; 2907 } 2908 2909 2910 /* 2911 * Find out how many pages are allowed for a single swap device. There 2912 * are two limiting factors: 2913 * 1) the number of bits for the swap offset in the swp_entry_t type, and 2914 * 2) the number of bits in the swap pte, as defined by the different 2915 * architectures. 2916 * 2917 * In order to find the largest possible bit mask, a swap entry with 2918 * swap type 0 and swap offset ~0UL is created, encoded to a swap pte, 2919 * decoded to a swp_entry_t again, and finally the swap offset is 2920 * extracted. 2921 * 2922 * This will mask all the bits from the initial ~0UL mask that can't 2923 * be encoded in either the swp_entry_t or the architecture definition 2924 * of a swap pte. 2925 */ 2926 unsigned long generic_max_swapfile_size(void) 2927 { 2928 return swp_offset(pte_to_swp_entry( 2929 swp_entry_to_pte(swp_entry(0, ~0UL)))) + 1; 2930 } 2931 2932 /* Can be overridden by an architecture for additional checks. */ 2933 __weak unsigned long max_swapfile_size(void) 2934 { 2935 return generic_max_swapfile_size(); 2936 } 2937 2938 static unsigned long read_swap_header(struct swap_info_struct *p, 2939 union swap_header *swap_header, 2940 struct inode *inode) 2941 { 2942 int i; 2943 unsigned long maxpages; 2944 unsigned long swapfilepages; 2945 unsigned long last_page; 2946 2947 if (memcmp("SWAPSPACE2", swap_header->magic.magic, 10)) { 2948 pr_err("Unable to find swap-space signature\n"); 2949 return 0; 2950 } 2951 2952 /* swap partition endianess hack... */ 2953 if (swab32(swap_header->info.version) == 1) { 2954 swab32s(&swap_header->info.version); 2955 swab32s(&swap_header->info.last_page); 2956 swab32s(&swap_header->info.nr_badpages); 2957 if (swap_header->info.nr_badpages > MAX_SWAP_BADPAGES) 2958 return 0; 2959 for (i = 0; i < swap_header->info.nr_badpages; i++) 2960 swab32s(&swap_header->info.badpages[i]); 2961 } 2962 /* Check the swap header's sub-version */ 2963 if (swap_header->info.version != 1) { 2964 pr_warn("Unable to handle swap header version %d\n", 2965 swap_header->info.version); 2966 return 0; 2967 } 2968 2969 p->lowest_bit = 1; 2970 p->cluster_next = 1; 2971 p->cluster_nr = 0; 2972 2973 maxpages = max_swapfile_size(); 2974 last_page = swap_header->info.last_page; 2975 if (!last_page) { 2976 pr_warn("Empty swap-file\n"); 2977 return 0; 2978 } 2979 if (last_page > maxpages) { 2980 pr_warn("Truncating oversized swap area, only using %luk out of %luk\n", 2981 maxpages << (PAGE_SHIFT - 10), 2982 last_page << (PAGE_SHIFT - 10)); 2983 } 2984 if (maxpages > last_page) { 2985 maxpages = last_page + 1; 2986 /* p->max is an unsigned int: don't overflow it */ 2987 if ((unsigned int)maxpages == 0) 2988 maxpages = UINT_MAX; 2989 } 2990 p->highest_bit = maxpages - 1; 2991 2992 if (!maxpages) 2993 return 0; 2994 swapfilepages = i_size_read(inode) >> PAGE_SHIFT; 2995 if (swapfilepages && maxpages > swapfilepages) { 2996 pr_warn("Swap area shorter than signature indicates\n"); 2997 return 0; 2998 } 2999 if (swap_header->info.nr_badpages && S_ISREG(inode->i_mode)) 3000 return 0; 3001 if (swap_header->info.nr_badpages > MAX_SWAP_BADPAGES) 3002 return 0; 3003 3004 return maxpages; 3005 } 3006 3007 #define SWAP_CLUSTER_INFO_COLS \ 3008 DIV_ROUND_UP(L1_CACHE_BYTES, sizeof(struct swap_cluster_info)) 3009 #define SWAP_CLUSTER_SPACE_COLS \ 3010 DIV_ROUND_UP(SWAP_ADDRESS_SPACE_PAGES, SWAPFILE_CLUSTER) 3011 #define SWAP_CLUSTER_COLS \ 3012 max_t(unsigned int, SWAP_CLUSTER_INFO_COLS, SWAP_CLUSTER_SPACE_COLS) 3013 3014 static int setup_swap_map_and_extents(struct swap_info_struct *p, 3015 union swap_header *swap_header, 3016 unsigned char *swap_map, 3017 struct swap_cluster_info *cluster_info, 3018 unsigned long maxpages, 3019 sector_t *span) 3020 { 3021 unsigned int j, k; 3022 unsigned int nr_good_pages; 3023 int nr_extents; 3024 unsigned long nr_clusters = DIV_ROUND_UP(maxpages, SWAPFILE_CLUSTER); 3025 unsigned long col = p->cluster_next / SWAPFILE_CLUSTER % SWAP_CLUSTER_COLS; 3026 unsigned long i, idx; 3027 3028 nr_good_pages = maxpages - 1; /* omit header page */ 3029 3030 cluster_list_init(&p->free_clusters); 3031 cluster_list_init(&p->discard_clusters); 3032 3033 for (i = 0; i < swap_header->info.nr_badpages; i++) { 3034 unsigned int page_nr = swap_header->info.badpages[i]; 3035 if (page_nr == 0 || page_nr > swap_header->info.last_page) 3036 return -EINVAL; 3037 if (page_nr < maxpages) { 3038 swap_map[page_nr] = SWAP_MAP_BAD; 3039 nr_good_pages--; 3040 /* 3041 * Haven't marked the cluster free yet, no list 3042 * operation involved 3043 */ 3044 inc_cluster_info_page(p, cluster_info, page_nr); 3045 } 3046 } 3047 3048 /* Haven't marked the cluster free yet, no list operation involved */ 3049 for (i = maxpages; i < round_up(maxpages, SWAPFILE_CLUSTER); i++) 3050 inc_cluster_info_page(p, cluster_info, i); 3051 3052 if (nr_good_pages) { 3053 swap_map[0] = SWAP_MAP_BAD; 3054 /* 3055 * Not mark the cluster free yet, no list 3056 * operation involved 3057 */ 3058 inc_cluster_info_page(p, cluster_info, 0); 3059 p->max = maxpages; 3060 p->pages = nr_good_pages; 3061 nr_extents = setup_swap_extents(p, span); 3062 if (nr_extents < 0) 3063 return nr_extents; 3064 nr_good_pages = p->pages; 3065 } 3066 if (!nr_good_pages) { 3067 pr_warn("Empty swap-file\n"); 3068 return -EINVAL; 3069 } 3070 3071 if (!cluster_info) 3072 return nr_extents; 3073 3074 3075 /* 3076 * Reduce false cache line sharing between cluster_info and 3077 * sharing same address space. 3078 */ 3079 for (k = 0; k < SWAP_CLUSTER_COLS; k++) { 3080 j = (k + col) % SWAP_CLUSTER_COLS; 3081 for (i = 0; i < DIV_ROUND_UP(nr_clusters, SWAP_CLUSTER_COLS); i++) { 3082 idx = i * SWAP_CLUSTER_COLS + j; 3083 if (idx >= nr_clusters) 3084 continue; 3085 if (cluster_count(&cluster_info[idx])) 3086 continue; 3087 cluster_set_flag(&cluster_info[idx], CLUSTER_FLAG_FREE); 3088 cluster_list_add_tail(&p->free_clusters, cluster_info, 3089 idx); 3090 } 3091 } 3092 return nr_extents; 3093 } 3094 3095 /* 3096 * Helper to sys_swapon determining if a given swap 3097 * backing device queue supports DISCARD operations. 3098 */ 3099 static bool swap_discardable(struct swap_info_struct *si) 3100 { 3101 struct request_queue *q = bdev_get_queue(si->bdev); 3102 3103 if (!q || !blk_queue_discard(q)) 3104 return false; 3105 3106 return true; 3107 } 3108 3109 SYSCALL_DEFINE2(swapon, const char __user *, specialfile, int, swap_flags) 3110 { 3111 struct swap_info_struct *p; 3112 struct filename *name; 3113 struct file *swap_file = NULL; 3114 struct address_space *mapping; 3115 int prio; 3116 int error; 3117 union swap_header *swap_header; 3118 int nr_extents; 3119 sector_t span; 3120 unsigned long maxpages; 3121 unsigned char *swap_map = NULL; 3122 struct swap_cluster_info *cluster_info = NULL; 3123 unsigned long *frontswap_map = NULL; 3124 struct page *page = NULL; 3125 struct inode *inode = NULL; 3126 bool inced_nr_rotate_swap = false; 3127 3128 if (swap_flags & ~SWAP_FLAGS_VALID) 3129 return -EINVAL; 3130 3131 if (!capable(CAP_SYS_ADMIN)) 3132 return -EPERM; 3133 3134 if (!swap_avail_heads) 3135 return -ENOMEM; 3136 3137 p = alloc_swap_info(); 3138 if (IS_ERR(p)) 3139 return PTR_ERR(p); 3140 3141 INIT_WORK(&p->discard_work, swap_discard_work); 3142 3143 name = getname(specialfile); 3144 if (IS_ERR(name)) { 3145 error = PTR_ERR(name); 3146 name = NULL; 3147 goto bad_swap; 3148 } 3149 swap_file = file_open_name(name, O_RDWR|O_LARGEFILE, 0); 3150 if (IS_ERR(swap_file)) { 3151 error = PTR_ERR(swap_file); 3152 swap_file = NULL; 3153 goto bad_swap; 3154 } 3155 3156 p->swap_file = swap_file; 3157 mapping = swap_file->f_mapping; 3158 inode = mapping->host; 3159 3160 /* will take i_rwsem; */ 3161 error = claim_swapfile(p, inode); 3162 if (unlikely(error)) 3163 goto bad_swap; 3164 3165 /* 3166 * Read the swap header. 3167 */ 3168 if (!mapping->a_ops->readpage) { 3169 error = -EINVAL; 3170 goto bad_swap; 3171 } 3172 page = read_mapping_page(mapping, 0, swap_file); 3173 if (IS_ERR(page)) { 3174 error = PTR_ERR(page); 3175 goto bad_swap; 3176 } 3177 swap_header = kmap(page); 3178 3179 maxpages = read_swap_header(p, swap_header, inode); 3180 if (unlikely(!maxpages)) { 3181 error = -EINVAL; 3182 goto bad_swap; 3183 } 3184 3185 /* OK, set up the swap map and apply the bad block list */ 3186 swap_map = vzalloc(maxpages); 3187 if (!swap_map) { 3188 error = -ENOMEM; 3189 goto bad_swap; 3190 } 3191 3192 if (bdi_cap_stable_pages_required(inode_to_bdi(inode))) 3193 p->flags |= SWP_STABLE_WRITES; 3194 3195 if (bdi_cap_synchronous_io(inode_to_bdi(inode))) 3196 p->flags |= SWP_SYNCHRONOUS_IO; 3197 3198 if (p->bdev && blk_queue_nonrot(bdev_get_queue(p->bdev))) { 3199 int cpu; 3200 unsigned long ci, nr_cluster; 3201 3202 p->flags |= SWP_SOLIDSTATE; 3203 /* 3204 * select a random position to start with to help wear leveling 3205 * SSD 3206 */ 3207 p->cluster_next = 1 + (prandom_u32() % p->highest_bit); 3208 nr_cluster = DIV_ROUND_UP(maxpages, SWAPFILE_CLUSTER); 3209 3210 cluster_info = kvcalloc(nr_cluster, sizeof(*cluster_info), 3211 GFP_KERNEL); 3212 if (!cluster_info) { 3213 error = -ENOMEM; 3214 goto bad_swap; 3215 } 3216 3217 for (ci = 0; ci < nr_cluster; ci++) 3218 spin_lock_init(&((cluster_info + ci)->lock)); 3219 3220 p->percpu_cluster = alloc_percpu(struct percpu_cluster); 3221 if (!p->percpu_cluster) { 3222 error = -ENOMEM; 3223 goto bad_swap; 3224 } 3225 for_each_possible_cpu(cpu) { 3226 struct percpu_cluster *cluster; 3227 cluster = per_cpu_ptr(p->percpu_cluster, cpu); 3228 cluster_set_null(&cluster->index); 3229 } 3230 } else { 3231 atomic_inc(&nr_rotate_swap); 3232 inced_nr_rotate_swap = true; 3233 } 3234 3235 error = swap_cgroup_swapon(p->type, maxpages); 3236 if (error) 3237 goto bad_swap; 3238 3239 nr_extents = setup_swap_map_and_extents(p, swap_header, swap_map, 3240 cluster_info, maxpages, &span); 3241 if (unlikely(nr_extents < 0)) { 3242 error = nr_extents; 3243 goto bad_swap; 3244 } 3245 /* frontswap enabled? set up bit-per-page map for frontswap */ 3246 if (IS_ENABLED(CONFIG_FRONTSWAP)) 3247 frontswap_map = kvcalloc(BITS_TO_LONGS(maxpages), 3248 sizeof(long), 3249 GFP_KERNEL); 3250 3251 if (p->bdev &&(swap_flags & SWAP_FLAG_DISCARD) && swap_discardable(p)) { 3252 /* 3253 * When discard is enabled for swap with no particular 3254 * policy flagged, we set all swap discard flags here in 3255 * order to sustain backward compatibility with older 3256 * swapon(8) releases. 3257 */ 3258 p->flags |= (SWP_DISCARDABLE | SWP_AREA_DISCARD | 3259 SWP_PAGE_DISCARD); 3260 3261 /* 3262 * By flagging sys_swapon, a sysadmin can tell us to 3263 * either do single-time area discards only, or to just 3264 * perform discards for released swap page-clusters. 3265 * Now it's time to adjust the p->flags accordingly. 3266 */ 3267 if (swap_flags & SWAP_FLAG_DISCARD_ONCE) 3268 p->flags &= ~SWP_PAGE_DISCARD; 3269 else if (swap_flags & SWAP_FLAG_DISCARD_PAGES) 3270 p->flags &= ~SWP_AREA_DISCARD; 3271 3272 /* issue a swapon-time discard if it's still required */ 3273 if (p->flags & SWP_AREA_DISCARD) { 3274 int err = discard_swap(p); 3275 if (unlikely(err)) 3276 pr_err("swapon: discard_swap(%p): %d\n", 3277 p, err); 3278 } 3279 } 3280 3281 error = init_swap_address_space(p->type, maxpages); 3282 if (error) 3283 goto bad_swap; 3284 3285 /* 3286 * Flush any pending IO and dirty mappings before we start using this 3287 * swap device. 3288 */ 3289 inode->i_flags |= S_SWAPFILE; 3290 error = inode_drain_writes(inode); 3291 if (error) { 3292 inode->i_flags &= ~S_SWAPFILE; 3293 goto bad_swap; 3294 } 3295 3296 mutex_lock(&swapon_mutex); 3297 prio = -1; 3298 if (swap_flags & SWAP_FLAG_PREFER) 3299 prio = 3300 (swap_flags & SWAP_FLAG_PRIO_MASK) >> SWAP_FLAG_PRIO_SHIFT; 3301 enable_swap_info(p, prio, swap_map, cluster_info, frontswap_map); 3302 3303 pr_info("Adding %uk swap on %s. Priority:%d extents:%d across:%lluk %s%s%s%s%s\n", 3304 p->pages<<(PAGE_SHIFT-10), name->name, p->prio, 3305 nr_extents, (unsigned long long)span<<(PAGE_SHIFT-10), 3306 (p->flags & SWP_SOLIDSTATE) ? "SS" : "", 3307 (p->flags & SWP_DISCARDABLE) ? "D" : "", 3308 (p->flags & SWP_AREA_DISCARD) ? "s" : "", 3309 (p->flags & SWP_PAGE_DISCARD) ? "c" : "", 3310 (frontswap_map) ? "FS" : ""); 3311 3312 mutex_unlock(&swapon_mutex); 3313 atomic_inc(&proc_poll_event); 3314 wake_up_interruptible(&proc_poll_wait); 3315 3316 error = 0; 3317 goto out; 3318 bad_swap: 3319 free_percpu(p->percpu_cluster); 3320 p->percpu_cluster = NULL; 3321 if (inode && S_ISBLK(inode->i_mode) && p->bdev) { 3322 set_blocksize(p->bdev, p->old_block_size); 3323 blkdev_put(p->bdev, FMODE_READ | FMODE_WRITE | FMODE_EXCL); 3324 } 3325 destroy_swap_extents(p); 3326 swap_cgroup_swapoff(p->type); 3327 spin_lock(&swap_lock); 3328 p->swap_file = NULL; 3329 p->flags = 0; 3330 spin_unlock(&swap_lock); 3331 vfree(swap_map); 3332 kvfree(cluster_info); 3333 kvfree(frontswap_map); 3334 if (inced_nr_rotate_swap) 3335 atomic_dec(&nr_rotate_swap); 3336 if (swap_file) { 3337 if (inode) { 3338 inode_unlock(inode); 3339 inode = NULL; 3340 } 3341 filp_close(swap_file, NULL); 3342 } 3343 out: 3344 if (page && !IS_ERR(page)) { 3345 kunmap(page); 3346 put_page(page); 3347 } 3348 if (name) 3349 putname(name); 3350 if (inode) 3351 inode_unlock(inode); 3352 if (!error) 3353 enable_swap_slots_cache(); 3354 return error; 3355 } 3356 3357 void si_swapinfo(struct sysinfo *val) 3358 { 3359 unsigned int type; 3360 unsigned long nr_to_be_unused = 0; 3361 3362 spin_lock(&swap_lock); 3363 for (type = 0; type < nr_swapfiles; type++) { 3364 struct swap_info_struct *si = swap_info[type]; 3365 3366 if ((si->flags & SWP_USED) && !(si->flags & SWP_WRITEOK)) 3367 nr_to_be_unused += si->inuse_pages; 3368 } 3369 val->freeswap = atomic_long_read(&nr_swap_pages) + nr_to_be_unused; 3370 val->totalswap = total_swap_pages + nr_to_be_unused; 3371 spin_unlock(&swap_lock); 3372 } 3373 3374 /* 3375 * Verify that a swap entry is valid and increment its swap map count. 3376 * 3377 * Returns error code in following case. 3378 * - success -> 0 3379 * - swp_entry is invalid -> EINVAL 3380 * - swp_entry is migration entry -> EINVAL 3381 * - swap-cache reference is requested but there is already one. -> EEXIST 3382 * - swap-cache reference is requested but the entry is not used. -> ENOENT 3383 * - swap-mapped reference requested but needs continued swap count. -> ENOMEM 3384 */ 3385 static int __swap_duplicate(swp_entry_t entry, unsigned char usage) 3386 { 3387 struct swap_info_struct *p; 3388 struct swap_cluster_info *ci; 3389 unsigned long offset; 3390 unsigned char count; 3391 unsigned char has_cache; 3392 int err = -EINVAL; 3393 3394 p = get_swap_device(entry); 3395 if (!p) 3396 goto out; 3397 3398 offset = swp_offset(entry); 3399 ci = lock_cluster_or_swap_info(p, offset); 3400 3401 count = p->swap_map[offset]; 3402 3403 /* 3404 * swapin_readahead() doesn't check if a swap entry is valid, so the 3405 * swap entry could be SWAP_MAP_BAD. Check here with lock held. 3406 */ 3407 if (unlikely(swap_count(count) == SWAP_MAP_BAD)) { 3408 err = -ENOENT; 3409 goto unlock_out; 3410 } 3411 3412 has_cache = count & SWAP_HAS_CACHE; 3413 count &= ~SWAP_HAS_CACHE; 3414 err = 0; 3415 3416 if (usage == SWAP_HAS_CACHE) { 3417 3418 /* set SWAP_HAS_CACHE if there is no cache and entry is used */ 3419 if (!has_cache && count) 3420 has_cache = SWAP_HAS_CACHE; 3421 else if (has_cache) /* someone else added cache */ 3422 err = -EEXIST; 3423 else /* no users remaining */ 3424 err = -ENOENT; 3425 3426 } else if (count || has_cache) { 3427 3428 if ((count & ~COUNT_CONTINUED) < SWAP_MAP_MAX) 3429 count += usage; 3430 else if ((count & ~COUNT_CONTINUED) > SWAP_MAP_MAX) 3431 err = -EINVAL; 3432 else if (swap_count_continued(p, offset, count)) 3433 count = COUNT_CONTINUED; 3434 else 3435 err = -ENOMEM; 3436 } else 3437 err = -ENOENT; /* unused swap entry */ 3438 3439 p->swap_map[offset] = count | has_cache; 3440 3441 unlock_out: 3442 unlock_cluster_or_swap_info(p, ci); 3443 out: 3444 if (p) 3445 put_swap_device(p); 3446 return err; 3447 } 3448 3449 /* 3450 * Help swapoff by noting that swap entry belongs to shmem/tmpfs 3451 * (in which case its reference count is never incremented). 3452 */ 3453 void swap_shmem_alloc(swp_entry_t entry) 3454 { 3455 __swap_duplicate(entry, SWAP_MAP_SHMEM); 3456 } 3457 3458 /* 3459 * Increase reference count of swap entry by 1. 3460 * Returns 0 for success, or -ENOMEM if a swap_count_continuation is required 3461 * but could not be atomically allocated. Returns 0, just as if it succeeded, 3462 * if __swap_duplicate() fails for another reason (-EINVAL or -ENOENT), which 3463 * might occur if a page table entry has got corrupted. 3464 */ 3465 int swap_duplicate(swp_entry_t entry) 3466 { 3467 int err = 0; 3468 3469 while (!err && __swap_duplicate(entry, 1) == -ENOMEM) 3470 err = add_swap_count_continuation(entry, GFP_ATOMIC); 3471 return err; 3472 } 3473 3474 /* 3475 * @entry: swap entry for which we allocate swap cache. 3476 * 3477 * Called when allocating swap cache for existing swap entry, 3478 * This can return error codes. Returns 0 at success. 3479 * -EBUSY means there is a swap cache. 3480 * Note: return code is different from swap_duplicate(). 3481 */ 3482 int swapcache_prepare(swp_entry_t entry) 3483 { 3484 return __swap_duplicate(entry, SWAP_HAS_CACHE); 3485 } 3486 3487 struct swap_info_struct *swp_swap_info(swp_entry_t entry) 3488 { 3489 return swap_type_to_swap_info(swp_type(entry)); 3490 } 3491 3492 struct swap_info_struct *page_swap_info(struct page *page) 3493 { 3494 swp_entry_t entry = { .val = page_private(page) }; 3495 return swp_swap_info(entry); 3496 } 3497 3498 /* 3499 * out-of-line __page_file_ methods to avoid include hell. 3500 */ 3501 struct address_space *__page_file_mapping(struct page *page) 3502 { 3503 return page_swap_info(page)->swap_file->f_mapping; 3504 } 3505 EXPORT_SYMBOL_GPL(__page_file_mapping); 3506 3507 pgoff_t __page_file_index(struct page *page) 3508 { 3509 swp_entry_t swap = { .val = page_private(page) }; 3510 return swp_offset(swap); 3511 } 3512 EXPORT_SYMBOL_GPL(__page_file_index); 3513 3514 /* 3515 * add_swap_count_continuation - called when a swap count is duplicated 3516 * beyond SWAP_MAP_MAX, it allocates a new page and links that to the entry's 3517 * page of the original vmalloc'ed swap_map, to hold the continuation count 3518 * (for that entry and for its neighbouring PAGE_SIZE swap entries). Called 3519 * again when count is duplicated beyond SWAP_MAP_MAX * SWAP_CONT_MAX, etc. 3520 * 3521 * These continuation pages are seldom referenced: the common paths all work 3522 * on the original swap_map, only referring to a continuation page when the 3523 * low "digit" of a count is incremented or decremented through SWAP_MAP_MAX. 3524 * 3525 * add_swap_count_continuation(, GFP_ATOMIC) can be called while holding 3526 * page table locks; if it fails, add_swap_count_continuation(, GFP_KERNEL) 3527 * can be called after dropping locks. 3528 */ 3529 int add_swap_count_continuation(swp_entry_t entry, gfp_t gfp_mask) 3530 { 3531 struct swap_info_struct *si; 3532 struct swap_cluster_info *ci; 3533 struct page *head; 3534 struct page *page; 3535 struct page *list_page; 3536 pgoff_t offset; 3537 unsigned char count; 3538 int ret = 0; 3539 3540 /* 3541 * When debugging, it's easier to use __GFP_ZERO here; but it's better 3542 * for latency not to zero a page while GFP_ATOMIC and holding locks. 3543 */ 3544 page = alloc_page(gfp_mask | __GFP_HIGHMEM); 3545 3546 si = get_swap_device(entry); 3547 if (!si) { 3548 /* 3549 * An acceptable race has occurred since the failing 3550 * __swap_duplicate(): the swap device may be swapoff 3551 */ 3552 goto outer; 3553 } 3554 spin_lock(&si->lock); 3555 3556 offset = swp_offset(entry); 3557 3558 ci = lock_cluster(si, offset); 3559 3560 count = si->swap_map[offset] & ~SWAP_HAS_CACHE; 3561 3562 if ((count & ~COUNT_CONTINUED) != SWAP_MAP_MAX) { 3563 /* 3564 * The higher the swap count, the more likely it is that tasks 3565 * will race to add swap count continuation: we need to avoid 3566 * over-provisioning. 3567 */ 3568 goto out; 3569 } 3570 3571 if (!page) { 3572 ret = -ENOMEM; 3573 goto out; 3574 } 3575 3576 /* 3577 * We are fortunate that although vmalloc_to_page uses pte_offset_map, 3578 * no architecture is using highmem pages for kernel page tables: so it 3579 * will not corrupt the GFP_ATOMIC caller's atomic page table kmaps. 3580 */ 3581 head = vmalloc_to_page(si->swap_map + offset); 3582 offset &= ~PAGE_MASK; 3583 3584 spin_lock(&si->cont_lock); 3585 /* 3586 * Page allocation does not initialize the page's lru field, 3587 * but it does always reset its private field. 3588 */ 3589 if (!page_private(head)) { 3590 BUG_ON(count & COUNT_CONTINUED); 3591 INIT_LIST_HEAD(&head->lru); 3592 set_page_private(head, SWP_CONTINUED); 3593 si->flags |= SWP_CONTINUED; 3594 } 3595 3596 list_for_each_entry(list_page, &head->lru, lru) { 3597 unsigned char *map; 3598 3599 /* 3600 * If the previous map said no continuation, but we've found 3601 * a continuation page, free our allocation and use this one. 3602 */ 3603 if (!(count & COUNT_CONTINUED)) 3604 goto out_unlock_cont; 3605 3606 map = kmap_atomic(list_page) + offset; 3607 count = *map; 3608 kunmap_atomic(map); 3609 3610 /* 3611 * If this continuation count now has some space in it, 3612 * free our allocation and use this one. 3613 */ 3614 if ((count & ~COUNT_CONTINUED) != SWAP_CONT_MAX) 3615 goto out_unlock_cont; 3616 } 3617 3618 list_add_tail(&page->lru, &head->lru); 3619 page = NULL; /* now it's attached, don't free it */ 3620 out_unlock_cont: 3621 spin_unlock(&si->cont_lock); 3622 out: 3623 unlock_cluster(ci); 3624 spin_unlock(&si->lock); 3625 put_swap_device(si); 3626 outer: 3627 if (page) 3628 __free_page(page); 3629 return ret; 3630 } 3631 3632 /* 3633 * swap_count_continued - when the original swap_map count is incremented 3634 * from SWAP_MAP_MAX, check if there is already a continuation page to carry 3635 * into, carry if so, or else fail until a new continuation page is allocated; 3636 * when the original swap_map count is decremented from 0 with continuation, 3637 * borrow from the continuation and report whether it still holds more. 3638 * Called while __swap_duplicate() or swap_entry_free() holds swap or cluster 3639 * lock. 3640 */ 3641 static bool swap_count_continued(struct swap_info_struct *si, 3642 pgoff_t offset, unsigned char count) 3643 { 3644 struct page *head; 3645 struct page *page; 3646 unsigned char *map; 3647 bool ret; 3648 3649 head = vmalloc_to_page(si->swap_map + offset); 3650 if (page_private(head) != SWP_CONTINUED) { 3651 BUG_ON(count & COUNT_CONTINUED); 3652 return false; /* need to add count continuation */ 3653 } 3654 3655 spin_lock(&si->cont_lock); 3656 offset &= ~PAGE_MASK; 3657 page = list_entry(head->lru.next, struct page, lru); 3658 map = kmap_atomic(page) + offset; 3659 3660 if (count == SWAP_MAP_MAX) /* initial increment from swap_map */ 3661 goto init_map; /* jump over SWAP_CONT_MAX checks */ 3662 3663 if (count == (SWAP_MAP_MAX | COUNT_CONTINUED)) { /* incrementing */ 3664 /* 3665 * Think of how you add 1 to 999 3666 */ 3667 while (*map == (SWAP_CONT_MAX | COUNT_CONTINUED)) { 3668 kunmap_atomic(map); 3669 page = list_entry(page->lru.next, struct page, lru); 3670 BUG_ON(page == head); 3671 map = kmap_atomic(page) + offset; 3672 } 3673 if (*map == SWAP_CONT_MAX) { 3674 kunmap_atomic(map); 3675 page = list_entry(page->lru.next, struct page, lru); 3676 if (page == head) { 3677 ret = false; /* add count continuation */ 3678 goto out; 3679 } 3680 map = kmap_atomic(page) + offset; 3681 init_map: *map = 0; /* we didn't zero the page */ 3682 } 3683 *map += 1; 3684 kunmap_atomic(map); 3685 page = list_entry(page->lru.prev, struct page, lru); 3686 while (page != head) { 3687 map = kmap_atomic(page) + offset; 3688 *map = COUNT_CONTINUED; 3689 kunmap_atomic(map); 3690 page = list_entry(page->lru.prev, struct page, lru); 3691 } 3692 ret = true; /* incremented */ 3693 3694 } else { /* decrementing */ 3695 /* 3696 * Think of how you subtract 1 from 1000 3697 */ 3698 BUG_ON(count != COUNT_CONTINUED); 3699 while (*map == COUNT_CONTINUED) { 3700 kunmap_atomic(map); 3701 page = list_entry(page->lru.next, struct page, lru); 3702 BUG_ON(page == head); 3703 map = kmap_atomic(page) + offset; 3704 } 3705 BUG_ON(*map == 0); 3706 *map -= 1; 3707 if (*map == 0) 3708 count = 0; 3709 kunmap_atomic(map); 3710 page = list_entry(page->lru.prev, struct page, lru); 3711 while (page != head) { 3712 map = kmap_atomic(page) + offset; 3713 *map = SWAP_CONT_MAX | count; 3714 count = COUNT_CONTINUED; 3715 kunmap_atomic(map); 3716 page = list_entry(page->lru.prev, struct page, lru); 3717 } 3718 ret = count == COUNT_CONTINUED; 3719 } 3720 out: 3721 spin_unlock(&si->cont_lock); 3722 return ret; 3723 } 3724 3725 /* 3726 * free_swap_count_continuations - swapoff free all the continuation pages 3727 * appended to the swap_map, after swap_map is quiesced, before vfree'ing it. 3728 */ 3729 static void free_swap_count_continuations(struct swap_info_struct *si) 3730 { 3731 pgoff_t offset; 3732 3733 for (offset = 0; offset < si->max; offset += PAGE_SIZE) { 3734 struct page *head; 3735 head = vmalloc_to_page(si->swap_map + offset); 3736 if (page_private(head)) { 3737 struct page *page, *next; 3738 3739 list_for_each_entry_safe(page, next, &head->lru, lru) { 3740 list_del(&page->lru); 3741 __free_page(page); 3742 } 3743 } 3744 } 3745 } 3746 3747 #if defined(CONFIG_MEMCG) && defined(CONFIG_BLK_CGROUP) 3748 void mem_cgroup_throttle_swaprate(struct mem_cgroup *memcg, int node, 3749 gfp_t gfp_mask) 3750 { 3751 struct swap_info_struct *si, *next; 3752 if (!(gfp_mask & __GFP_IO) || !memcg) 3753 return; 3754 3755 if (!blk_cgroup_congested()) 3756 return; 3757 3758 /* 3759 * We've already scheduled a throttle, avoid taking the global swap 3760 * lock. 3761 */ 3762 if (current->throttle_queue) 3763 return; 3764 3765 spin_lock(&swap_avail_lock); 3766 plist_for_each_entry_safe(si, next, &swap_avail_heads[node], 3767 avail_lists[node]) { 3768 if (si->bdev) { 3769 blkcg_schedule_throttle(bdev_get_queue(si->bdev), 3770 true); 3771 break; 3772 } 3773 } 3774 spin_unlock(&swap_avail_lock); 3775 } 3776 #endif 3777 3778 static int __init swapfile_init(void) 3779 { 3780 int nid; 3781 3782 swap_avail_heads = kmalloc_array(nr_node_ids, sizeof(struct plist_head), 3783 GFP_KERNEL); 3784 if (!swap_avail_heads) { 3785 pr_emerg("Not enough memory for swap heads, swap is disabled\n"); 3786 return -ENOMEM; 3787 } 3788 3789 for_each_node(nid) 3790 plist_head_init(&swap_avail_heads[nid]); 3791 3792 return 0; 3793 } 3794 subsys_initcall(swapfile_init); 3795