xref: /openbmc/linux/mm/swapfile.c (revision ab3a560a)
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  *  linux/mm/swapfile.c
4  *
5  *  Copyright (C) 1991, 1992, 1993, 1994  Linus Torvalds
6  *  Swap reorganised 29.12.95, Stephen Tweedie
7  */
8 
9 #include <linux/mm.h>
10 #include <linux/sched/mm.h>
11 #include <linux/sched/task.h>
12 #include <linux/hugetlb.h>
13 #include <linux/mman.h>
14 #include <linux/slab.h>
15 #include <linux/kernel_stat.h>
16 #include <linux/swap.h>
17 #include <linux/vmalloc.h>
18 #include <linux/pagemap.h>
19 #include <linux/namei.h>
20 #include <linux/shmem_fs.h>
21 #include <linux/blk-cgroup.h>
22 #include <linux/random.h>
23 #include <linux/writeback.h>
24 #include <linux/proc_fs.h>
25 #include <linux/seq_file.h>
26 #include <linux/init.h>
27 #include <linux/ksm.h>
28 #include <linux/rmap.h>
29 #include <linux/security.h>
30 #include <linux/backing-dev.h>
31 #include <linux/mutex.h>
32 #include <linux/capability.h>
33 #include <linux/syscalls.h>
34 #include <linux/memcontrol.h>
35 #include <linux/poll.h>
36 #include <linux/oom.h>
37 #include <linux/frontswap.h>
38 #include <linux/swapfile.h>
39 #include <linux/export.h>
40 #include <linux/swap_slots.h>
41 #include <linux/sort.h>
42 #include <linux/completion.h>
43 
44 #include <asm/tlbflush.h>
45 #include <linux/swapops.h>
46 #include <linux/swap_cgroup.h>
47 
48 static bool swap_count_continued(struct swap_info_struct *, pgoff_t,
49 				 unsigned char);
50 static void free_swap_count_continuations(struct swap_info_struct *);
51 
52 static DEFINE_SPINLOCK(swap_lock);
53 static unsigned int nr_swapfiles;
54 atomic_long_t nr_swap_pages;
55 /*
56  * Some modules use swappable objects and may try to swap them out under
57  * memory pressure (via the shrinker). Before doing so, they may wish to
58  * check to see if any swap space is available.
59  */
60 EXPORT_SYMBOL_GPL(nr_swap_pages);
61 /* protected with swap_lock. reading in vm_swap_full() doesn't need lock */
62 long total_swap_pages;
63 static int least_priority = -1;
64 
65 static const char Bad_file[] = "Bad swap file entry ";
66 static const char Unused_file[] = "Unused swap file entry ";
67 static const char Bad_offset[] = "Bad swap offset entry ";
68 static const char Unused_offset[] = "Unused swap offset entry ";
69 
70 /*
71  * all active swap_info_structs
72  * protected with swap_lock, and ordered by priority.
73  */
74 static PLIST_HEAD(swap_active_head);
75 
76 /*
77  * all available (active, not full) swap_info_structs
78  * protected with swap_avail_lock, ordered by priority.
79  * This is used by get_swap_page() instead of swap_active_head
80  * because swap_active_head includes all swap_info_structs,
81  * but get_swap_page() doesn't need to look at full ones.
82  * This uses its own lock instead of swap_lock because when a
83  * swap_info_struct changes between not-full/full, it needs to
84  * add/remove itself to/from this list, but the swap_info_struct->lock
85  * is held and the locking order requires swap_lock to be taken
86  * before any swap_info_struct->lock.
87  */
88 static struct plist_head *swap_avail_heads;
89 static DEFINE_SPINLOCK(swap_avail_lock);
90 
91 struct swap_info_struct *swap_info[MAX_SWAPFILES];
92 
93 static DEFINE_MUTEX(swapon_mutex);
94 
95 static DECLARE_WAIT_QUEUE_HEAD(proc_poll_wait);
96 /* Activity counter to indicate that a swapon or swapoff has occurred */
97 static atomic_t proc_poll_event = ATOMIC_INIT(0);
98 
99 atomic_t nr_rotate_swap = ATOMIC_INIT(0);
100 
101 static struct swap_info_struct *swap_type_to_swap_info(int type)
102 {
103 	if (type >= MAX_SWAPFILES)
104 		return NULL;
105 
106 	return READ_ONCE(swap_info[type]); /* rcu_dereference() */
107 }
108 
109 static inline unsigned char swap_count(unsigned char ent)
110 {
111 	return ent & ~SWAP_HAS_CACHE;	/* may include COUNT_CONTINUED flag */
112 }
113 
114 /* Reclaim the swap entry anyway if possible */
115 #define TTRS_ANYWAY		0x1
116 /*
117  * Reclaim the swap entry if there are no more mappings of the
118  * corresponding page
119  */
120 #define TTRS_UNMAPPED		0x2
121 /* Reclaim the swap entry if swap is getting full*/
122 #define TTRS_FULL		0x4
123 
124 /* returns 1 if swap entry is freed */
125 static int __try_to_reclaim_swap(struct swap_info_struct *si,
126 				 unsigned long offset, unsigned long flags)
127 {
128 	swp_entry_t entry = swp_entry(si->type, offset);
129 	struct page *page;
130 	int ret = 0;
131 
132 	page = find_get_page(swap_address_space(entry), offset);
133 	if (!page)
134 		return 0;
135 	/*
136 	 * When this function is called from scan_swap_map_slots() and it's
137 	 * called by vmscan.c at reclaiming pages. So, we hold a lock on a page,
138 	 * here. We have to use trylock for avoiding deadlock. This is a special
139 	 * case and you should use try_to_free_swap() with explicit lock_page()
140 	 * in usual operations.
141 	 */
142 	if (trylock_page(page)) {
143 		if ((flags & TTRS_ANYWAY) ||
144 		    ((flags & TTRS_UNMAPPED) && !page_mapped(page)) ||
145 		    ((flags & TTRS_FULL) && mem_cgroup_swap_full(page)))
146 			ret = try_to_free_swap(page);
147 		unlock_page(page);
148 	}
149 	put_page(page);
150 	return ret;
151 }
152 
153 static inline struct swap_extent *first_se(struct swap_info_struct *sis)
154 {
155 	struct rb_node *rb = rb_first(&sis->swap_extent_root);
156 	return rb_entry(rb, struct swap_extent, rb_node);
157 }
158 
159 static inline struct swap_extent *next_se(struct swap_extent *se)
160 {
161 	struct rb_node *rb = rb_next(&se->rb_node);
162 	return rb ? rb_entry(rb, struct swap_extent, rb_node) : NULL;
163 }
164 
165 /*
166  * swapon tell device that all the old swap contents can be discarded,
167  * to allow the swap device to optimize its wear-levelling.
168  */
169 static int discard_swap(struct swap_info_struct *si)
170 {
171 	struct swap_extent *se;
172 	sector_t start_block;
173 	sector_t nr_blocks;
174 	int err = 0;
175 
176 	/* Do not discard the swap header page! */
177 	se = first_se(si);
178 	start_block = (se->start_block + 1) << (PAGE_SHIFT - 9);
179 	nr_blocks = ((sector_t)se->nr_pages - 1) << (PAGE_SHIFT - 9);
180 	if (nr_blocks) {
181 		err = blkdev_issue_discard(si->bdev, start_block,
182 				nr_blocks, GFP_KERNEL, 0);
183 		if (err)
184 			return err;
185 		cond_resched();
186 	}
187 
188 	for (se = next_se(se); se; se = next_se(se)) {
189 		start_block = se->start_block << (PAGE_SHIFT - 9);
190 		nr_blocks = (sector_t)se->nr_pages << (PAGE_SHIFT - 9);
191 
192 		err = blkdev_issue_discard(si->bdev, start_block,
193 				nr_blocks, GFP_KERNEL, 0);
194 		if (err)
195 			break;
196 
197 		cond_resched();
198 	}
199 	return err;		/* That will often be -EOPNOTSUPP */
200 }
201 
202 static struct swap_extent *
203 offset_to_swap_extent(struct swap_info_struct *sis, unsigned long offset)
204 {
205 	struct swap_extent *se;
206 	struct rb_node *rb;
207 
208 	rb = sis->swap_extent_root.rb_node;
209 	while (rb) {
210 		se = rb_entry(rb, struct swap_extent, rb_node);
211 		if (offset < se->start_page)
212 			rb = rb->rb_left;
213 		else if (offset >= se->start_page + se->nr_pages)
214 			rb = rb->rb_right;
215 		else
216 			return se;
217 	}
218 	/* It *must* be present */
219 	BUG();
220 }
221 
222 sector_t swap_page_sector(struct page *page)
223 {
224 	struct swap_info_struct *sis = page_swap_info(page);
225 	struct swap_extent *se;
226 	sector_t sector;
227 	pgoff_t offset;
228 
229 	offset = __page_file_index(page);
230 	se = offset_to_swap_extent(sis, offset);
231 	sector = se->start_block + (offset - se->start_page);
232 	return sector << (PAGE_SHIFT - 9);
233 }
234 
235 /*
236  * swap allocation tell device that a cluster of swap can now be discarded,
237  * to allow the swap device to optimize its wear-levelling.
238  */
239 static void discard_swap_cluster(struct swap_info_struct *si,
240 				 pgoff_t start_page, pgoff_t nr_pages)
241 {
242 	struct swap_extent *se = offset_to_swap_extent(si, start_page);
243 
244 	while (nr_pages) {
245 		pgoff_t offset = start_page - se->start_page;
246 		sector_t start_block = se->start_block + offset;
247 		sector_t nr_blocks = se->nr_pages - offset;
248 
249 		if (nr_blocks > nr_pages)
250 			nr_blocks = nr_pages;
251 		start_page += nr_blocks;
252 		nr_pages -= nr_blocks;
253 
254 		start_block <<= PAGE_SHIFT - 9;
255 		nr_blocks <<= PAGE_SHIFT - 9;
256 		if (blkdev_issue_discard(si->bdev, start_block,
257 					nr_blocks, GFP_NOIO, 0))
258 			break;
259 
260 		se = next_se(se);
261 	}
262 }
263 
264 #ifdef CONFIG_THP_SWAP
265 #define SWAPFILE_CLUSTER	HPAGE_PMD_NR
266 
267 #define swap_entry_size(size)	(size)
268 #else
269 #define SWAPFILE_CLUSTER	256
270 
271 /*
272  * Define swap_entry_size() as constant to let compiler to optimize
273  * out some code if !CONFIG_THP_SWAP
274  */
275 #define swap_entry_size(size)	1
276 #endif
277 #define LATENCY_LIMIT		256
278 
279 static inline void cluster_set_flag(struct swap_cluster_info *info,
280 	unsigned int flag)
281 {
282 	info->flags = flag;
283 }
284 
285 static inline unsigned int cluster_count(struct swap_cluster_info *info)
286 {
287 	return info->data;
288 }
289 
290 static inline void cluster_set_count(struct swap_cluster_info *info,
291 				     unsigned int c)
292 {
293 	info->data = c;
294 }
295 
296 static inline void cluster_set_count_flag(struct swap_cluster_info *info,
297 					 unsigned int c, unsigned int f)
298 {
299 	info->flags = f;
300 	info->data = c;
301 }
302 
303 static inline unsigned int cluster_next(struct swap_cluster_info *info)
304 {
305 	return info->data;
306 }
307 
308 static inline void cluster_set_next(struct swap_cluster_info *info,
309 				    unsigned int n)
310 {
311 	info->data = n;
312 }
313 
314 static inline void cluster_set_next_flag(struct swap_cluster_info *info,
315 					 unsigned int n, unsigned int f)
316 {
317 	info->flags = f;
318 	info->data = n;
319 }
320 
321 static inline bool cluster_is_free(struct swap_cluster_info *info)
322 {
323 	return info->flags & CLUSTER_FLAG_FREE;
324 }
325 
326 static inline bool cluster_is_null(struct swap_cluster_info *info)
327 {
328 	return info->flags & CLUSTER_FLAG_NEXT_NULL;
329 }
330 
331 static inline void cluster_set_null(struct swap_cluster_info *info)
332 {
333 	info->flags = CLUSTER_FLAG_NEXT_NULL;
334 	info->data = 0;
335 }
336 
337 static inline bool cluster_is_huge(struct swap_cluster_info *info)
338 {
339 	if (IS_ENABLED(CONFIG_THP_SWAP))
340 		return info->flags & CLUSTER_FLAG_HUGE;
341 	return false;
342 }
343 
344 static inline void cluster_clear_huge(struct swap_cluster_info *info)
345 {
346 	info->flags &= ~CLUSTER_FLAG_HUGE;
347 }
348 
349 static inline struct swap_cluster_info *lock_cluster(struct swap_info_struct *si,
350 						     unsigned long offset)
351 {
352 	struct swap_cluster_info *ci;
353 
354 	ci = si->cluster_info;
355 	if (ci) {
356 		ci += offset / SWAPFILE_CLUSTER;
357 		spin_lock(&ci->lock);
358 	}
359 	return ci;
360 }
361 
362 static inline void unlock_cluster(struct swap_cluster_info *ci)
363 {
364 	if (ci)
365 		spin_unlock(&ci->lock);
366 }
367 
368 /*
369  * Determine the locking method in use for this device.  Return
370  * swap_cluster_info if SSD-style cluster-based locking is in place.
371  */
372 static inline struct swap_cluster_info *lock_cluster_or_swap_info(
373 		struct swap_info_struct *si, unsigned long offset)
374 {
375 	struct swap_cluster_info *ci;
376 
377 	/* Try to use fine-grained SSD-style locking if available: */
378 	ci = lock_cluster(si, offset);
379 	/* Otherwise, fall back to traditional, coarse locking: */
380 	if (!ci)
381 		spin_lock(&si->lock);
382 
383 	return ci;
384 }
385 
386 static inline void unlock_cluster_or_swap_info(struct swap_info_struct *si,
387 					       struct swap_cluster_info *ci)
388 {
389 	if (ci)
390 		unlock_cluster(ci);
391 	else
392 		spin_unlock(&si->lock);
393 }
394 
395 static inline bool cluster_list_empty(struct swap_cluster_list *list)
396 {
397 	return cluster_is_null(&list->head);
398 }
399 
400 static inline unsigned int cluster_list_first(struct swap_cluster_list *list)
401 {
402 	return cluster_next(&list->head);
403 }
404 
405 static void cluster_list_init(struct swap_cluster_list *list)
406 {
407 	cluster_set_null(&list->head);
408 	cluster_set_null(&list->tail);
409 }
410 
411 static void cluster_list_add_tail(struct swap_cluster_list *list,
412 				  struct swap_cluster_info *ci,
413 				  unsigned int idx)
414 {
415 	if (cluster_list_empty(list)) {
416 		cluster_set_next_flag(&list->head, idx, 0);
417 		cluster_set_next_flag(&list->tail, idx, 0);
418 	} else {
419 		struct swap_cluster_info *ci_tail;
420 		unsigned int tail = cluster_next(&list->tail);
421 
422 		/*
423 		 * Nested cluster lock, but both cluster locks are
424 		 * only acquired when we held swap_info_struct->lock
425 		 */
426 		ci_tail = ci + tail;
427 		spin_lock_nested(&ci_tail->lock, SINGLE_DEPTH_NESTING);
428 		cluster_set_next(ci_tail, idx);
429 		spin_unlock(&ci_tail->lock);
430 		cluster_set_next_flag(&list->tail, idx, 0);
431 	}
432 }
433 
434 static unsigned int cluster_list_del_first(struct swap_cluster_list *list,
435 					   struct swap_cluster_info *ci)
436 {
437 	unsigned int idx;
438 
439 	idx = cluster_next(&list->head);
440 	if (cluster_next(&list->tail) == idx) {
441 		cluster_set_null(&list->head);
442 		cluster_set_null(&list->tail);
443 	} else
444 		cluster_set_next_flag(&list->head,
445 				      cluster_next(&ci[idx]), 0);
446 
447 	return idx;
448 }
449 
450 /* Add a cluster to discard list and schedule it to do discard */
451 static void swap_cluster_schedule_discard(struct swap_info_struct *si,
452 		unsigned int idx)
453 {
454 	/*
455 	 * If scan_swap_map_slots() can't find a free cluster, it will check
456 	 * si->swap_map directly. To make sure the discarding cluster isn't
457 	 * taken by scan_swap_map_slots(), mark the swap entries bad (occupied).
458 	 * It will be cleared after discard
459 	 */
460 	memset(si->swap_map + idx * SWAPFILE_CLUSTER,
461 			SWAP_MAP_BAD, SWAPFILE_CLUSTER);
462 
463 	cluster_list_add_tail(&si->discard_clusters, si->cluster_info, idx);
464 
465 	schedule_work(&si->discard_work);
466 }
467 
468 static void __free_cluster(struct swap_info_struct *si, unsigned long idx)
469 {
470 	struct swap_cluster_info *ci = si->cluster_info;
471 
472 	cluster_set_flag(ci + idx, CLUSTER_FLAG_FREE);
473 	cluster_list_add_tail(&si->free_clusters, ci, idx);
474 }
475 
476 /*
477  * Doing discard actually. After a cluster discard is finished, the cluster
478  * will be added to free cluster list. caller should hold si->lock.
479 */
480 static void swap_do_scheduled_discard(struct swap_info_struct *si)
481 {
482 	struct swap_cluster_info *info, *ci;
483 	unsigned int idx;
484 
485 	info = si->cluster_info;
486 
487 	while (!cluster_list_empty(&si->discard_clusters)) {
488 		idx = cluster_list_del_first(&si->discard_clusters, info);
489 		spin_unlock(&si->lock);
490 
491 		discard_swap_cluster(si, idx * SWAPFILE_CLUSTER,
492 				SWAPFILE_CLUSTER);
493 
494 		spin_lock(&si->lock);
495 		ci = lock_cluster(si, idx * SWAPFILE_CLUSTER);
496 		__free_cluster(si, idx);
497 		memset(si->swap_map + idx * SWAPFILE_CLUSTER,
498 				0, SWAPFILE_CLUSTER);
499 		unlock_cluster(ci);
500 	}
501 }
502 
503 static void swap_discard_work(struct work_struct *work)
504 {
505 	struct swap_info_struct *si;
506 
507 	si = container_of(work, struct swap_info_struct, discard_work);
508 
509 	spin_lock(&si->lock);
510 	swap_do_scheduled_discard(si);
511 	spin_unlock(&si->lock);
512 }
513 
514 static void swap_users_ref_free(struct percpu_ref *ref)
515 {
516 	struct swap_info_struct *si;
517 
518 	si = container_of(ref, struct swap_info_struct, users);
519 	complete(&si->comp);
520 }
521 
522 static void alloc_cluster(struct swap_info_struct *si, unsigned long idx)
523 {
524 	struct swap_cluster_info *ci = si->cluster_info;
525 
526 	VM_BUG_ON(cluster_list_first(&si->free_clusters) != idx);
527 	cluster_list_del_first(&si->free_clusters, ci);
528 	cluster_set_count_flag(ci + idx, 0, 0);
529 }
530 
531 static void free_cluster(struct swap_info_struct *si, unsigned long idx)
532 {
533 	struct swap_cluster_info *ci = si->cluster_info + idx;
534 
535 	VM_BUG_ON(cluster_count(ci) != 0);
536 	/*
537 	 * If the swap is discardable, prepare discard the cluster
538 	 * instead of free it immediately. The cluster will be freed
539 	 * after discard.
540 	 */
541 	if ((si->flags & (SWP_WRITEOK | SWP_PAGE_DISCARD)) ==
542 	    (SWP_WRITEOK | SWP_PAGE_DISCARD)) {
543 		swap_cluster_schedule_discard(si, idx);
544 		return;
545 	}
546 
547 	__free_cluster(si, idx);
548 }
549 
550 /*
551  * The cluster corresponding to page_nr will be used. The cluster will be
552  * removed from free cluster list and its usage counter will be increased.
553  */
554 static void inc_cluster_info_page(struct swap_info_struct *p,
555 	struct swap_cluster_info *cluster_info, unsigned long page_nr)
556 {
557 	unsigned long idx = page_nr / SWAPFILE_CLUSTER;
558 
559 	if (!cluster_info)
560 		return;
561 	if (cluster_is_free(&cluster_info[idx]))
562 		alloc_cluster(p, idx);
563 
564 	VM_BUG_ON(cluster_count(&cluster_info[idx]) >= SWAPFILE_CLUSTER);
565 	cluster_set_count(&cluster_info[idx],
566 		cluster_count(&cluster_info[idx]) + 1);
567 }
568 
569 /*
570  * The cluster corresponding to page_nr decreases one usage. If the usage
571  * counter becomes 0, which means no page in the cluster is in using, we can
572  * optionally discard the cluster and add it to free cluster list.
573  */
574 static void dec_cluster_info_page(struct swap_info_struct *p,
575 	struct swap_cluster_info *cluster_info, unsigned long page_nr)
576 {
577 	unsigned long idx = page_nr / SWAPFILE_CLUSTER;
578 
579 	if (!cluster_info)
580 		return;
581 
582 	VM_BUG_ON(cluster_count(&cluster_info[idx]) == 0);
583 	cluster_set_count(&cluster_info[idx],
584 		cluster_count(&cluster_info[idx]) - 1);
585 
586 	if (cluster_count(&cluster_info[idx]) == 0)
587 		free_cluster(p, idx);
588 }
589 
590 /*
591  * It's possible scan_swap_map_slots() uses a free cluster in the middle of free
592  * cluster list. Avoiding such abuse to avoid list corruption.
593  */
594 static bool
595 scan_swap_map_ssd_cluster_conflict(struct swap_info_struct *si,
596 	unsigned long offset)
597 {
598 	struct percpu_cluster *percpu_cluster;
599 	bool conflict;
600 
601 	offset /= SWAPFILE_CLUSTER;
602 	conflict = !cluster_list_empty(&si->free_clusters) &&
603 		offset != cluster_list_first(&si->free_clusters) &&
604 		cluster_is_free(&si->cluster_info[offset]);
605 
606 	if (!conflict)
607 		return false;
608 
609 	percpu_cluster = this_cpu_ptr(si->percpu_cluster);
610 	cluster_set_null(&percpu_cluster->index);
611 	return true;
612 }
613 
614 /*
615  * Try to get a swap entry from current cpu's swap entry pool (a cluster). This
616  * might involve allocating a new cluster for current CPU too.
617  */
618 static bool scan_swap_map_try_ssd_cluster(struct swap_info_struct *si,
619 	unsigned long *offset, unsigned long *scan_base)
620 {
621 	struct percpu_cluster *cluster;
622 	struct swap_cluster_info *ci;
623 	unsigned long tmp, max;
624 
625 new_cluster:
626 	cluster = this_cpu_ptr(si->percpu_cluster);
627 	if (cluster_is_null(&cluster->index)) {
628 		if (!cluster_list_empty(&si->free_clusters)) {
629 			cluster->index = si->free_clusters.head;
630 			cluster->next = cluster_next(&cluster->index) *
631 					SWAPFILE_CLUSTER;
632 		} else if (!cluster_list_empty(&si->discard_clusters)) {
633 			/*
634 			 * we don't have free cluster but have some clusters in
635 			 * discarding, do discard now and reclaim them, then
636 			 * reread cluster_next_cpu since we dropped si->lock
637 			 */
638 			swap_do_scheduled_discard(si);
639 			*scan_base = this_cpu_read(*si->cluster_next_cpu);
640 			*offset = *scan_base;
641 			goto new_cluster;
642 		} else
643 			return false;
644 	}
645 
646 	/*
647 	 * Other CPUs can use our cluster if they can't find a free cluster,
648 	 * check if there is still free entry in the cluster
649 	 */
650 	tmp = cluster->next;
651 	max = min_t(unsigned long, si->max,
652 		    (cluster_next(&cluster->index) + 1) * SWAPFILE_CLUSTER);
653 	if (tmp < max) {
654 		ci = lock_cluster(si, tmp);
655 		while (tmp < max) {
656 			if (!si->swap_map[tmp])
657 				break;
658 			tmp++;
659 		}
660 		unlock_cluster(ci);
661 	}
662 	if (tmp >= max) {
663 		cluster_set_null(&cluster->index);
664 		goto new_cluster;
665 	}
666 	cluster->next = tmp + 1;
667 	*offset = tmp;
668 	*scan_base = tmp;
669 	return true;
670 }
671 
672 static void __del_from_avail_list(struct swap_info_struct *p)
673 {
674 	int nid;
675 
676 	for_each_node(nid)
677 		plist_del(&p->avail_lists[nid], &swap_avail_heads[nid]);
678 }
679 
680 static void del_from_avail_list(struct swap_info_struct *p)
681 {
682 	spin_lock(&swap_avail_lock);
683 	__del_from_avail_list(p);
684 	spin_unlock(&swap_avail_lock);
685 }
686 
687 static void swap_range_alloc(struct swap_info_struct *si, unsigned long offset,
688 			     unsigned int nr_entries)
689 {
690 	unsigned int end = offset + nr_entries - 1;
691 
692 	if (offset == si->lowest_bit)
693 		si->lowest_bit += nr_entries;
694 	if (end == si->highest_bit)
695 		WRITE_ONCE(si->highest_bit, si->highest_bit - nr_entries);
696 	si->inuse_pages += nr_entries;
697 	if (si->inuse_pages == si->pages) {
698 		si->lowest_bit = si->max;
699 		si->highest_bit = 0;
700 		del_from_avail_list(si);
701 	}
702 }
703 
704 static void add_to_avail_list(struct swap_info_struct *p)
705 {
706 	int nid;
707 
708 	spin_lock(&swap_avail_lock);
709 	for_each_node(nid) {
710 		WARN_ON(!plist_node_empty(&p->avail_lists[nid]));
711 		plist_add(&p->avail_lists[nid], &swap_avail_heads[nid]);
712 	}
713 	spin_unlock(&swap_avail_lock);
714 }
715 
716 static void swap_range_free(struct swap_info_struct *si, unsigned long offset,
717 			    unsigned int nr_entries)
718 {
719 	unsigned long begin = offset;
720 	unsigned long end = offset + nr_entries - 1;
721 	void (*swap_slot_free_notify)(struct block_device *, unsigned long);
722 
723 	if (offset < si->lowest_bit)
724 		si->lowest_bit = offset;
725 	if (end > si->highest_bit) {
726 		bool was_full = !si->highest_bit;
727 
728 		WRITE_ONCE(si->highest_bit, end);
729 		if (was_full && (si->flags & SWP_WRITEOK))
730 			add_to_avail_list(si);
731 	}
732 	atomic_long_add(nr_entries, &nr_swap_pages);
733 	si->inuse_pages -= nr_entries;
734 	if (si->flags & SWP_BLKDEV)
735 		swap_slot_free_notify =
736 			si->bdev->bd_disk->fops->swap_slot_free_notify;
737 	else
738 		swap_slot_free_notify = NULL;
739 	while (offset <= end) {
740 		arch_swap_invalidate_page(si->type, offset);
741 		frontswap_invalidate_page(si->type, offset);
742 		if (swap_slot_free_notify)
743 			swap_slot_free_notify(si->bdev, offset);
744 		offset++;
745 	}
746 	clear_shadow_from_swap_cache(si->type, begin, end);
747 }
748 
749 static void set_cluster_next(struct swap_info_struct *si, unsigned long next)
750 {
751 	unsigned long prev;
752 
753 	if (!(si->flags & SWP_SOLIDSTATE)) {
754 		si->cluster_next = next;
755 		return;
756 	}
757 
758 	prev = this_cpu_read(*si->cluster_next_cpu);
759 	/*
760 	 * Cross the swap address space size aligned trunk, choose
761 	 * another trunk randomly to avoid lock contention on swap
762 	 * address space if possible.
763 	 */
764 	if ((prev >> SWAP_ADDRESS_SPACE_SHIFT) !=
765 	    (next >> SWAP_ADDRESS_SPACE_SHIFT)) {
766 		/* No free swap slots available */
767 		if (si->highest_bit <= si->lowest_bit)
768 			return;
769 		next = si->lowest_bit +
770 			prandom_u32_max(si->highest_bit - si->lowest_bit + 1);
771 		next = ALIGN_DOWN(next, SWAP_ADDRESS_SPACE_PAGES);
772 		next = max_t(unsigned int, next, si->lowest_bit);
773 	}
774 	this_cpu_write(*si->cluster_next_cpu, next);
775 }
776 
777 static int scan_swap_map_slots(struct swap_info_struct *si,
778 			       unsigned char usage, int nr,
779 			       swp_entry_t slots[])
780 {
781 	struct swap_cluster_info *ci;
782 	unsigned long offset;
783 	unsigned long scan_base;
784 	unsigned long last_in_cluster = 0;
785 	int latency_ration = LATENCY_LIMIT;
786 	int n_ret = 0;
787 	bool scanned_many = false;
788 
789 	/*
790 	 * We try to cluster swap pages by allocating them sequentially
791 	 * in swap.  Once we've allocated SWAPFILE_CLUSTER pages this
792 	 * way, however, we resort to first-free allocation, starting
793 	 * a new cluster.  This prevents us from scattering swap pages
794 	 * all over the entire swap partition, so that we reduce
795 	 * overall disk seek times between swap pages.  -- sct
796 	 * But we do now try to find an empty cluster.  -Andrea
797 	 * And we let swap pages go all over an SSD partition.  Hugh
798 	 */
799 
800 	si->flags += SWP_SCANNING;
801 	/*
802 	 * Use percpu scan base for SSD to reduce lock contention on
803 	 * cluster and swap cache.  For HDD, sequential access is more
804 	 * important.
805 	 */
806 	if (si->flags & SWP_SOLIDSTATE)
807 		scan_base = this_cpu_read(*si->cluster_next_cpu);
808 	else
809 		scan_base = si->cluster_next;
810 	offset = scan_base;
811 
812 	/* SSD algorithm */
813 	if (si->cluster_info) {
814 		if (!scan_swap_map_try_ssd_cluster(si, &offset, &scan_base))
815 			goto scan;
816 	} else if (unlikely(!si->cluster_nr--)) {
817 		if (si->pages - si->inuse_pages < SWAPFILE_CLUSTER) {
818 			si->cluster_nr = SWAPFILE_CLUSTER - 1;
819 			goto checks;
820 		}
821 
822 		spin_unlock(&si->lock);
823 
824 		/*
825 		 * If seek is expensive, start searching for new cluster from
826 		 * start of partition, to minimize the span of allocated swap.
827 		 * If seek is cheap, that is the SWP_SOLIDSTATE si->cluster_info
828 		 * case, just handled by scan_swap_map_try_ssd_cluster() above.
829 		 */
830 		scan_base = offset = si->lowest_bit;
831 		last_in_cluster = offset + SWAPFILE_CLUSTER - 1;
832 
833 		/* Locate the first empty (unaligned) cluster */
834 		for (; last_in_cluster <= si->highest_bit; offset++) {
835 			if (si->swap_map[offset])
836 				last_in_cluster = offset + SWAPFILE_CLUSTER;
837 			else if (offset == last_in_cluster) {
838 				spin_lock(&si->lock);
839 				offset -= SWAPFILE_CLUSTER - 1;
840 				si->cluster_next = offset;
841 				si->cluster_nr = SWAPFILE_CLUSTER - 1;
842 				goto checks;
843 			}
844 			if (unlikely(--latency_ration < 0)) {
845 				cond_resched();
846 				latency_ration = LATENCY_LIMIT;
847 			}
848 		}
849 
850 		offset = scan_base;
851 		spin_lock(&si->lock);
852 		si->cluster_nr = SWAPFILE_CLUSTER - 1;
853 	}
854 
855 checks:
856 	if (si->cluster_info) {
857 		while (scan_swap_map_ssd_cluster_conflict(si, offset)) {
858 		/* take a break if we already got some slots */
859 			if (n_ret)
860 				goto done;
861 			if (!scan_swap_map_try_ssd_cluster(si, &offset,
862 							&scan_base))
863 				goto scan;
864 		}
865 	}
866 	if (!(si->flags & SWP_WRITEOK))
867 		goto no_page;
868 	if (!si->highest_bit)
869 		goto no_page;
870 	if (offset > si->highest_bit)
871 		scan_base = offset = si->lowest_bit;
872 
873 	ci = lock_cluster(si, offset);
874 	/* reuse swap entry of cache-only swap if not busy. */
875 	if (vm_swap_full() && si->swap_map[offset] == SWAP_HAS_CACHE) {
876 		int swap_was_freed;
877 		unlock_cluster(ci);
878 		spin_unlock(&si->lock);
879 		swap_was_freed = __try_to_reclaim_swap(si, offset, TTRS_ANYWAY);
880 		spin_lock(&si->lock);
881 		/* entry was freed successfully, try to use this again */
882 		if (swap_was_freed)
883 			goto checks;
884 		goto scan; /* check next one */
885 	}
886 
887 	if (si->swap_map[offset]) {
888 		unlock_cluster(ci);
889 		if (!n_ret)
890 			goto scan;
891 		else
892 			goto done;
893 	}
894 	WRITE_ONCE(si->swap_map[offset], usage);
895 	inc_cluster_info_page(si, si->cluster_info, offset);
896 	unlock_cluster(ci);
897 
898 	swap_range_alloc(si, offset, 1);
899 	slots[n_ret++] = swp_entry(si->type, offset);
900 
901 	/* got enough slots or reach max slots? */
902 	if ((n_ret == nr) || (offset >= si->highest_bit))
903 		goto done;
904 
905 	/* search for next available slot */
906 
907 	/* time to take a break? */
908 	if (unlikely(--latency_ration < 0)) {
909 		if (n_ret)
910 			goto done;
911 		spin_unlock(&si->lock);
912 		cond_resched();
913 		spin_lock(&si->lock);
914 		latency_ration = LATENCY_LIMIT;
915 	}
916 
917 	/* try to get more slots in cluster */
918 	if (si->cluster_info) {
919 		if (scan_swap_map_try_ssd_cluster(si, &offset, &scan_base))
920 			goto checks;
921 	} else if (si->cluster_nr && !si->swap_map[++offset]) {
922 		/* non-ssd case, still more slots in cluster? */
923 		--si->cluster_nr;
924 		goto checks;
925 	}
926 
927 	/*
928 	 * Even if there's no free clusters available (fragmented),
929 	 * try to scan a little more quickly with lock held unless we
930 	 * have scanned too many slots already.
931 	 */
932 	if (!scanned_many) {
933 		unsigned long scan_limit;
934 
935 		if (offset < scan_base)
936 			scan_limit = scan_base;
937 		else
938 			scan_limit = si->highest_bit;
939 		for (; offset <= scan_limit && --latency_ration > 0;
940 		     offset++) {
941 			if (!si->swap_map[offset])
942 				goto checks;
943 		}
944 	}
945 
946 done:
947 	set_cluster_next(si, offset + 1);
948 	si->flags -= SWP_SCANNING;
949 	return n_ret;
950 
951 scan:
952 	spin_unlock(&si->lock);
953 	while (++offset <= READ_ONCE(si->highest_bit)) {
954 		if (data_race(!si->swap_map[offset])) {
955 			spin_lock(&si->lock);
956 			goto checks;
957 		}
958 		if (vm_swap_full() &&
959 		    READ_ONCE(si->swap_map[offset]) == SWAP_HAS_CACHE) {
960 			spin_lock(&si->lock);
961 			goto checks;
962 		}
963 		if (unlikely(--latency_ration < 0)) {
964 			cond_resched();
965 			latency_ration = LATENCY_LIMIT;
966 			scanned_many = true;
967 		}
968 	}
969 	offset = si->lowest_bit;
970 	while (offset < scan_base) {
971 		if (data_race(!si->swap_map[offset])) {
972 			spin_lock(&si->lock);
973 			goto checks;
974 		}
975 		if (vm_swap_full() &&
976 		    READ_ONCE(si->swap_map[offset]) == SWAP_HAS_CACHE) {
977 			spin_lock(&si->lock);
978 			goto checks;
979 		}
980 		if (unlikely(--latency_ration < 0)) {
981 			cond_resched();
982 			latency_ration = LATENCY_LIMIT;
983 			scanned_many = true;
984 		}
985 		offset++;
986 	}
987 	spin_lock(&si->lock);
988 
989 no_page:
990 	si->flags -= SWP_SCANNING;
991 	return n_ret;
992 }
993 
994 static int swap_alloc_cluster(struct swap_info_struct *si, swp_entry_t *slot)
995 {
996 	unsigned long idx;
997 	struct swap_cluster_info *ci;
998 	unsigned long offset;
999 
1000 	/*
1001 	 * Should not even be attempting cluster allocations when huge
1002 	 * page swap is disabled.  Warn and fail the allocation.
1003 	 */
1004 	if (!IS_ENABLED(CONFIG_THP_SWAP)) {
1005 		VM_WARN_ON_ONCE(1);
1006 		return 0;
1007 	}
1008 
1009 	if (cluster_list_empty(&si->free_clusters))
1010 		return 0;
1011 
1012 	idx = cluster_list_first(&si->free_clusters);
1013 	offset = idx * SWAPFILE_CLUSTER;
1014 	ci = lock_cluster(si, offset);
1015 	alloc_cluster(si, idx);
1016 	cluster_set_count_flag(ci, SWAPFILE_CLUSTER, CLUSTER_FLAG_HUGE);
1017 
1018 	memset(si->swap_map + offset, SWAP_HAS_CACHE, SWAPFILE_CLUSTER);
1019 	unlock_cluster(ci);
1020 	swap_range_alloc(si, offset, SWAPFILE_CLUSTER);
1021 	*slot = swp_entry(si->type, offset);
1022 
1023 	return 1;
1024 }
1025 
1026 static void swap_free_cluster(struct swap_info_struct *si, unsigned long idx)
1027 {
1028 	unsigned long offset = idx * SWAPFILE_CLUSTER;
1029 	struct swap_cluster_info *ci;
1030 
1031 	ci = lock_cluster(si, offset);
1032 	memset(si->swap_map + offset, 0, SWAPFILE_CLUSTER);
1033 	cluster_set_count_flag(ci, 0, 0);
1034 	free_cluster(si, idx);
1035 	unlock_cluster(ci);
1036 	swap_range_free(si, offset, SWAPFILE_CLUSTER);
1037 }
1038 
1039 int get_swap_pages(int n_goal, swp_entry_t swp_entries[], int entry_size)
1040 {
1041 	unsigned long size = swap_entry_size(entry_size);
1042 	struct swap_info_struct *si, *next;
1043 	long avail_pgs;
1044 	int n_ret = 0;
1045 	int node;
1046 
1047 	/* Only single cluster request supported */
1048 	WARN_ON_ONCE(n_goal > 1 && size == SWAPFILE_CLUSTER);
1049 
1050 	spin_lock(&swap_avail_lock);
1051 
1052 	avail_pgs = atomic_long_read(&nr_swap_pages) / size;
1053 	if (avail_pgs <= 0) {
1054 		spin_unlock(&swap_avail_lock);
1055 		goto noswap;
1056 	}
1057 
1058 	n_goal = min3((long)n_goal, (long)SWAP_BATCH, avail_pgs);
1059 
1060 	atomic_long_sub(n_goal * size, &nr_swap_pages);
1061 
1062 start_over:
1063 	node = numa_node_id();
1064 	plist_for_each_entry_safe(si, next, &swap_avail_heads[node], avail_lists[node]) {
1065 		/* requeue si to after same-priority siblings */
1066 		plist_requeue(&si->avail_lists[node], &swap_avail_heads[node]);
1067 		spin_unlock(&swap_avail_lock);
1068 		spin_lock(&si->lock);
1069 		if (!si->highest_bit || !(si->flags & SWP_WRITEOK)) {
1070 			spin_lock(&swap_avail_lock);
1071 			if (plist_node_empty(&si->avail_lists[node])) {
1072 				spin_unlock(&si->lock);
1073 				goto nextsi;
1074 			}
1075 			WARN(!si->highest_bit,
1076 			     "swap_info %d in list but !highest_bit\n",
1077 			     si->type);
1078 			WARN(!(si->flags & SWP_WRITEOK),
1079 			     "swap_info %d in list but !SWP_WRITEOK\n",
1080 			     si->type);
1081 			__del_from_avail_list(si);
1082 			spin_unlock(&si->lock);
1083 			goto nextsi;
1084 		}
1085 		if (size == SWAPFILE_CLUSTER) {
1086 			if (si->flags & SWP_BLKDEV)
1087 				n_ret = swap_alloc_cluster(si, swp_entries);
1088 		} else
1089 			n_ret = scan_swap_map_slots(si, SWAP_HAS_CACHE,
1090 						    n_goal, swp_entries);
1091 		spin_unlock(&si->lock);
1092 		if (n_ret || size == SWAPFILE_CLUSTER)
1093 			goto check_out;
1094 		pr_debug("scan_swap_map of si %d failed to find offset\n",
1095 			si->type);
1096 
1097 		spin_lock(&swap_avail_lock);
1098 nextsi:
1099 		/*
1100 		 * if we got here, it's likely that si was almost full before,
1101 		 * and since scan_swap_map_slots() can drop the si->lock,
1102 		 * multiple callers probably all tried to get a page from the
1103 		 * same si and it filled up before we could get one; or, the si
1104 		 * filled up between us dropping swap_avail_lock and taking
1105 		 * si->lock. Since we dropped the swap_avail_lock, the
1106 		 * swap_avail_head list may have been modified; so if next is
1107 		 * still in the swap_avail_head list then try it, otherwise
1108 		 * start over if we have not gotten any slots.
1109 		 */
1110 		if (plist_node_empty(&next->avail_lists[node]))
1111 			goto start_over;
1112 	}
1113 
1114 	spin_unlock(&swap_avail_lock);
1115 
1116 check_out:
1117 	if (n_ret < n_goal)
1118 		atomic_long_add((long)(n_goal - n_ret) * size,
1119 				&nr_swap_pages);
1120 noswap:
1121 	return n_ret;
1122 }
1123 
1124 static struct swap_info_struct *__swap_info_get(swp_entry_t entry)
1125 {
1126 	struct swap_info_struct *p;
1127 	unsigned long offset;
1128 
1129 	if (!entry.val)
1130 		goto out;
1131 	p = swp_swap_info(entry);
1132 	if (!p)
1133 		goto bad_nofile;
1134 	if (data_race(!(p->flags & SWP_USED)))
1135 		goto bad_device;
1136 	offset = swp_offset(entry);
1137 	if (offset >= p->max)
1138 		goto bad_offset;
1139 	return p;
1140 
1141 bad_offset:
1142 	pr_err("%s: %s%08lx\n", __func__, Bad_offset, entry.val);
1143 	goto out;
1144 bad_device:
1145 	pr_err("%s: %s%08lx\n", __func__, Unused_file, entry.val);
1146 	goto out;
1147 bad_nofile:
1148 	pr_err("%s: %s%08lx\n", __func__, Bad_file, entry.val);
1149 out:
1150 	return NULL;
1151 }
1152 
1153 static struct swap_info_struct *_swap_info_get(swp_entry_t entry)
1154 {
1155 	struct swap_info_struct *p;
1156 
1157 	p = __swap_info_get(entry);
1158 	if (!p)
1159 		goto out;
1160 	if (data_race(!p->swap_map[swp_offset(entry)]))
1161 		goto bad_free;
1162 	return p;
1163 
1164 bad_free:
1165 	pr_err("%s: %s%08lx\n", __func__, Unused_offset, entry.val);
1166 out:
1167 	return NULL;
1168 }
1169 
1170 static struct swap_info_struct *swap_info_get_cont(swp_entry_t entry,
1171 					struct swap_info_struct *q)
1172 {
1173 	struct swap_info_struct *p;
1174 
1175 	p = _swap_info_get(entry);
1176 
1177 	if (p != q) {
1178 		if (q != NULL)
1179 			spin_unlock(&q->lock);
1180 		if (p != NULL)
1181 			spin_lock(&p->lock);
1182 	}
1183 	return p;
1184 }
1185 
1186 static unsigned char __swap_entry_free_locked(struct swap_info_struct *p,
1187 					      unsigned long offset,
1188 					      unsigned char usage)
1189 {
1190 	unsigned char count;
1191 	unsigned char has_cache;
1192 
1193 	count = p->swap_map[offset];
1194 
1195 	has_cache = count & SWAP_HAS_CACHE;
1196 	count &= ~SWAP_HAS_CACHE;
1197 
1198 	if (usage == SWAP_HAS_CACHE) {
1199 		VM_BUG_ON(!has_cache);
1200 		has_cache = 0;
1201 	} else if (count == SWAP_MAP_SHMEM) {
1202 		/*
1203 		 * Or we could insist on shmem.c using a special
1204 		 * swap_shmem_free() and free_shmem_swap_and_cache()...
1205 		 */
1206 		count = 0;
1207 	} else if ((count & ~COUNT_CONTINUED) <= SWAP_MAP_MAX) {
1208 		if (count == COUNT_CONTINUED) {
1209 			if (swap_count_continued(p, offset, count))
1210 				count = SWAP_MAP_MAX | COUNT_CONTINUED;
1211 			else
1212 				count = SWAP_MAP_MAX;
1213 		} else
1214 			count--;
1215 	}
1216 
1217 	usage = count | has_cache;
1218 	if (usage)
1219 		WRITE_ONCE(p->swap_map[offset], usage);
1220 	else
1221 		WRITE_ONCE(p->swap_map[offset], SWAP_HAS_CACHE);
1222 
1223 	return usage;
1224 }
1225 
1226 /*
1227  * Check whether swap entry is valid in the swap device.  If so,
1228  * return pointer to swap_info_struct, and keep the swap entry valid
1229  * via preventing the swap device from being swapoff, until
1230  * put_swap_device() is called.  Otherwise return NULL.
1231  *
1232  * Notice that swapoff or swapoff+swapon can still happen before the
1233  * percpu_ref_tryget_live() in get_swap_device() or after the
1234  * percpu_ref_put() in put_swap_device() if there isn't any other way
1235  * to prevent swapoff, such as page lock, page table lock, etc.  The
1236  * caller must be prepared for that.  For example, the following
1237  * situation is possible.
1238  *
1239  *   CPU1				CPU2
1240  *   do_swap_page()
1241  *     ...				swapoff+swapon
1242  *     __read_swap_cache_async()
1243  *       swapcache_prepare()
1244  *         __swap_duplicate()
1245  *           // check swap_map
1246  *     // verify PTE not changed
1247  *
1248  * In __swap_duplicate(), the swap_map need to be checked before
1249  * changing partly because the specified swap entry may be for another
1250  * swap device which has been swapoff.  And in do_swap_page(), after
1251  * the page is read from the swap device, the PTE is verified not
1252  * changed with the page table locked to check whether the swap device
1253  * has been swapoff or swapoff+swapon.
1254  */
1255 struct swap_info_struct *get_swap_device(swp_entry_t entry)
1256 {
1257 	struct swap_info_struct *si;
1258 	unsigned long offset;
1259 
1260 	if (!entry.val)
1261 		goto out;
1262 	si = swp_swap_info(entry);
1263 	if (!si)
1264 		goto bad_nofile;
1265 	if (!percpu_ref_tryget_live(&si->users))
1266 		goto out;
1267 	/*
1268 	 * Guarantee the si->users are checked before accessing other
1269 	 * fields of swap_info_struct.
1270 	 *
1271 	 * Paired with the spin_unlock() after setup_swap_info() in
1272 	 * enable_swap_info().
1273 	 */
1274 	smp_rmb();
1275 	offset = swp_offset(entry);
1276 	if (offset >= si->max)
1277 		goto put_out;
1278 
1279 	return si;
1280 bad_nofile:
1281 	pr_err("%s: %s%08lx\n", __func__, Bad_file, entry.val);
1282 out:
1283 	return NULL;
1284 put_out:
1285 	percpu_ref_put(&si->users);
1286 	return NULL;
1287 }
1288 
1289 static unsigned char __swap_entry_free(struct swap_info_struct *p,
1290 				       swp_entry_t entry)
1291 {
1292 	struct swap_cluster_info *ci;
1293 	unsigned long offset = swp_offset(entry);
1294 	unsigned char usage;
1295 
1296 	ci = lock_cluster_or_swap_info(p, offset);
1297 	usage = __swap_entry_free_locked(p, offset, 1);
1298 	unlock_cluster_or_swap_info(p, ci);
1299 	if (!usage)
1300 		free_swap_slot(entry);
1301 
1302 	return usage;
1303 }
1304 
1305 static void swap_entry_free(struct swap_info_struct *p, swp_entry_t entry)
1306 {
1307 	struct swap_cluster_info *ci;
1308 	unsigned long offset = swp_offset(entry);
1309 	unsigned char count;
1310 
1311 	ci = lock_cluster(p, offset);
1312 	count = p->swap_map[offset];
1313 	VM_BUG_ON(count != SWAP_HAS_CACHE);
1314 	p->swap_map[offset] = 0;
1315 	dec_cluster_info_page(p, p->cluster_info, offset);
1316 	unlock_cluster(ci);
1317 
1318 	mem_cgroup_uncharge_swap(entry, 1);
1319 	swap_range_free(p, offset, 1);
1320 }
1321 
1322 /*
1323  * Caller has made sure that the swap device corresponding to entry
1324  * is still around or has not been recycled.
1325  */
1326 void swap_free(swp_entry_t entry)
1327 {
1328 	struct swap_info_struct *p;
1329 
1330 	p = _swap_info_get(entry);
1331 	if (p)
1332 		__swap_entry_free(p, entry);
1333 }
1334 
1335 /*
1336  * Called after dropping swapcache to decrease refcnt to swap entries.
1337  */
1338 void put_swap_page(struct page *page, swp_entry_t entry)
1339 {
1340 	unsigned long offset = swp_offset(entry);
1341 	unsigned long idx = offset / SWAPFILE_CLUSTER;
1342 	struct swap_cluster_info *ci;
1343 	struct swap_info_struct *si;
1344 	unsigned char *map;
1345 	unsigned int i, free_entries = 0;
1346 	unsigned char val;
1347 	int size = swap_entry_size(thp_nr_pages(page));
1348 
1349 	si = _swap_info_get(entry);
1350 	if (!si)
1351 		return;
1352 
1353 	ci = lock_cluster_or_swap_info(si, offset);
1354 	if (size == SWAPFILE_CLUSTER) {
1355 		VM_BUG_ON(!cluster_is_huge(ci));
1356 		map = si->swap_map + offset;
1357 		for (i = 0; i < SWAPFILE_CLUSTER; i++) {
1358 			val = map[i];
1359 			VM_BUG_ON(!(val & SWAP_HAS_CACHE));
1360 			if (val == SWAP_HAS_CACHE)
1361 				free_entries++;
1362 		}
1363 		cluster_clear_huge(ci);
1364 		if (free_entries == SWAPFILE_CLUSTER) {
1365 			unlock_cluster_or_swap_info(si, ci);
1366 			spin_lock(&si->lock);
1367 			mem_cgroup_uncharge_swap(entry, SWAPFILE_CLUSTER);
1368 			swap_free_cluster(si, idx);
1369 			spin_unlock(&si->lock);
1370 			return;
1371 		}
1372 	}
1373 	for (i = 0; i < size; i++, entry.val++) {
1374 		if (!__swap_entry_free_locked(si, offset + i, SWAP_HAS_CACHE)) {
1375 			unlock_cluster_or_swap_info(si, ci);
1376 			free_swap_slot(entry);
1377 			if (i == size - 1)
1378 				return;
1379 			lock_cluster_or_swap_info(si, offset);
1380 		}
1381 	}
1382 	unlock_cluster_or_swap_info(si, ci);
1383 }
1384 
1385 #ifdef CONFIG_THP_SWAP
1386 int split_swap_cluster(swp_entry_t entry)
1387 {
1388 	struct swap_info_struct *si;
1389 	struct swap_cluster_info *ci;
1390 	unsigned long offset = swp_offset(entry);
1391 
1392 	si = _swap_info_get(entry);
1393 	if (!si)
1394 		return -EBUSY;
1395 	ci = lock_cluster(si, offset);
1396 	cluster_clear_huge(ci);
1397 	unlock_cluster(ci);
1398 	return 0;
1399 }
1400 #endif
1401 
1402 static int swp_entry_cmp(const void *ent1, const void *ent2)
1403 {
1404 	const swp_entry_t *e1 = ent1, *e2 = ent2;
1405 
1406 	return (int)swp_type(*e1) - (int)swp_type(*e2);
1407 }
1408 
1409 void swapcache_free_entries(swp_entry_t *entries, int n)
1410 {
1411 	struct swap_info_struct *p, *prev;
1412 	int i;
1413 
1414 	if (n <= 0)
1415 		return;
1416 
1417 	prev = NULL;
1418 	p = NULL;
1419 
1420 	/*
1421 	 * Sort swap entries by swap device, so each lock is only taken once.
1422 	 * nr_swapfiles isn't absolutely correct, but the overhead of sort() is
1423 	 * so low that it isn't necessary to optimize further.
1424 	 */
1425 	if (nr_swapfiles > 1)
1426 		sort(entries, n, sizeof(entries[0]), swp_entry_cmp, NULL);
1427 	for (i = 0; i < n; ++i) {
1428 		p = swap_info_get_cont(entries[i], prev);
1429 		if (p)
1430 			swap_entry_free(p, entries[i]);
1431 		prev = p;
1432 	}
1433 	if (p)
1434 		spin_unlock(&p->lock);
1435 }
1436 
1437 /*
1438  * How many references to page are currently swapped out?
1439  * This does not give an exact answer when swap count is continued,
1440  * but does include the high COUNT_CONTINUED flag to allow for that.
1441  */
1442 int page_swapcount(struct page *page)
1443 {
1444 	int count = 0;
1445 	struct swap_info_struct *p;
1446 	struct swap_cluster_info *ci;
1447 	swp_entry_t entry;
1448 	unsigned long offset;
1449 
1450 	entry.val = page_private(page);
1451 	p = _swap_info_get(entry);
1452 	if (p) {
1453 		offset = swp_offset(entry);
1454 		ci = lock_cluster_or_swap_info(p, offset);
1455 		count = swap_count(p->swap_map[offset]);
1456 		unlock_cluster_or_swap_info(p, ci);
1457 	}
1458 	return count;
1459 }
1460 
1461 int __swap_count(swp_entry_t entry)
1462 {
1463 	struct swap_info_struct *si;
1464 	pgoff_t offset = swp_offset(entry);
1465 	int count = 0;
1466 
1467 	si = get_swap_device(entry);
1468 	if (si) {
1469 		count = swap_count(si->swap_map[offset]);
1470 		put_swap_device(si);
1471 	}
1472 	return count;
1473 }
1474 
1475 static int swap_swapcount(struct swap_info_struct *si, swp_entry_t entry)
1476 {
1477 	int count = 0;
1478 	pgoff_t offset = swp_offset(entry);
1479 	struct swap_cluster_info *ci;
1480 
1481 	ci = lock_cluster_or_swap_info(si, offset);
1482 	count = swap_count(si->swap_map[offset]);
1483 	unlock_cluster_or_swap_info(si, ci);
1484 	return count;
1485 }
1486 
1487 /*
1488  * How many references to @entry are currently swapped out?
1489  * This does not give an exact answer when swap count is continued,
1490  * but does include the high COUNT_CONTINUED flag to allow for that.
1491  */
1492 int __swp_swapcount(swp_entry_t entry)
1493 {
1494 	int count = 0;
1495 	struct swap_info_struct *si;
1496 
1497 	si = get_swap_device(entry);
1498 	if (si) {
1499 		count = swap_swapcount(si, entry);
1500 		put_swap_device(si);
1501 	}
1502 	return count;
1503 }
1504 
1505 /*
1506  * How many references to @entry are currently swapped out?
1507  * This considers COUNT_CONTINUED so it returns exact answer.
1508  */
1509 int swp_swapcount(swp_entry_t entry)
1510 {
1511 	int count, tmp_count, n;
1512 	struct swap_info_struct *p;
1513 	struct swap_cluster_info *ci;
1514 	struct page *page;
1515 	pgoff_t offset;
1516 	unsigned char *map;
1517 
1518 	p = _swap_info_get(entry);
1519 	if (!p)
1520 		return 0;
1521 
1522 	offset = swp_offset(entry);
1523 
1524 	ci = lock_cluster_or_swap_info(p, offset);
1525 
1526 	count = swap_count(p->swap_map[offset]);
1527 	if (!(count & COUNT_CONTINUED))
1528 		goto out;
1529 
1530 	count &= ~COUNT_CONTINUED;
1531 	n = SWAP_MAP_MAX + 1;
1532 
1533 	page = vmalloc_to_page(p->swap_map + offset);
1534 	offset &= ~PAGE_MASK;
1535 	VM_BUG_ON(page_private(page) != SWP_CONTINUED);
1536 
1537 	do {
1538 		page = list_next_entry(page, lru);
1539 		map = kmap_atomic(page);
1540 		tmp_count = map[offset];
1541 		kunmap_atomic(map);
1542 
1543 		count += (tmp_count & ~COUNT_CONTINUED) * n;
1544 		n *= (SWAP_CONT_MAX + 1);
1545 	} while (tmp_count & COUNT_CONTINUED);
1546 out:
1547 	unlock_cluster_or_swap_info(p, ci);
1548 	return count;
1549 }
1550 
1551 static bool swap_page_trans_huge_swapped(struct swap_info_struct *si,
1552 					 swp_entry_t entry)
1553 {
1554 	struct swap_cluster_info *ci;
1555 	unsigned char *map = si->swap_map;
1556 	unsigned long roffset = swp_offset(entry);
1557 	unsigned long offset = round_down(roffset, SWAPFILE_CLUSTER);
1558 	int i;
1559 	bool ret = false;
1560 
1561 	ci = lock_cluster_or_swap_info(si, offset);
1562 	if (!ci || !cluster_is_huge(ci)) {
1563 		if (swap_count(map[roffset]))
1564 			ret = true;
1565 		goto unlock_out;
1566 	}
1567 	for (i = 0; i < SWAPFILE_CLUSTER; i++) {
1568 		if (swap_count(map[offset + i])) {
1569 			ret = true;
1570 			break;
1571 		}
1572 	}
1573 unlock_out:
1574 	unlock_cluster_or_swap_info(si, ci);
1575 	return ret;
1576 }
1577 
1578 static bool page_swapped(struct page *page)
1579 {
1580 	swp_entry_t entry;
1581 	struct swap_info_struct *si;
1582 
1583 	if (!IS_ENABLED(CONFIG_THP_SWAP) || likely(!PageTransCompound(page)))
1584 		return page_swapcount(page) != 0;
1585 
1586 	page = compound_head(page);
1587 	entry.val = page_private(page);
1588 	si = _swap_info_get(entry);
1589 	if (si)
1590 		return swap_page_trans_huge_swapped(si, entry);
1591 	return false;
1592 }
1593 
1594 /*
1595  * If swap is getting full, or if there are no more mappings of this page,
1596  * then try_to_free_swap is called to free its swap space.
1597  */
1598 int try_to_free_swap(struct page *page)
1599 {
1600 	VM_BUG_ON_PAGE(!PageLocked(page), page);
1601 
1602 	if (!PageSwapCache(page))
1603 		return 0;
1604 	if (PageWriteback(page))
1605 		return 0;
1606 	if (page_swapped(page))
1607 		return 0;
1608 
1609 	/*
1610 	 * Once hibernation has begun to create its image of memory,
1611 	 * there's a danger that one of the calls to try_to_free_swap()
1612 	 * - most probably a call from __try_to_reclaim_swap() while
1613 	 * hibernation is allocating its own swap pages for the image,
1614 	 * but conceivably even a call from memory reclaim - will free
1615 	 * the swap from a page which has already been recorded in the
1616 	 * image as a clean swapcache page, and then reuse its swap for
1617 	 * another page of the image.  On waking from hibernation, the
1618 	 * original page might be freed under memory pressure, then
1619 	 * later read back in from swap, now with the wrong data.
1620 	 *
1621 	 * Hibernation suspends storage while it is writing the image
1622 	 * to disk so check that here.
1623 	 */
1624 	if (pm_suspended_storage())
1625 		return 0;
1626 
1627 	page = compound_head(page);
1628 	delete_from_swap_cache(page);
1629 	SetPageDirty(page);
1630 	return 1;
1631 }
1632 
1633 /*
1634  * Free the swap entry like above, but also try to
1635  * free the page cache entry if it is the last user.
1636  */
1637 int free_swap_and_cache(swp_entry_t entry)
1638 {
1639 	struct swap_info_struct *p;
1640 	unsigned char count;
1641 
1642 	if (non_swap_entry(entry))
1643 		return 1;
1644 
1645 	p = _swap_info_get(entry);
1646 	if (p) {
1647 		count = __swap_entry_free(p, entry);
1648 		if (count == SWAP_HAS_CACHE &&
1649 		    !swap_page_trans_huge_swapped(p, entry))
1650 			__try_to_reclaim_swap(p, swp_offset(entry),
1651 					      TTRS_UNMAPPED | TTRS_FULL);
1652 	}
1653 	return p != NULL;
1654 }
1655 
1656 #ifdef CONFIG_HIBERNATION
1657 
1658 swp_entry_t get_swap_page_of_type(int type)
1659 {
1660 	struct swap_info_struct *si = swap_type_to_swap_info(type);
1661 	swp_entry_t entry = {0};
1662 
1663 	if (!si)
1664 		goto fail;
1665 
1666 	/* This is called for allocating swap entry, not cache */
1667 	spin_lock(&si->lock);
1668 	if ((si->flags & SWP_WRITEOK) && scan_swap_map_slots(si, 1, 1, &entry))
1669 		atomic_long_dec(&nr_swap_pages);
1670 	spin_unlock(&si->lock);
1671 fail:
1672 	return entry;
1673 }
1674 
1675 /*
1676  * Find the swap type that corresponds to given device (if any).
1677  *
1678  * @offset - number of the PAGE_SIZE-sized block of the device, starting
1679  * from 0, in which the swap header is expected to be located.
1680  *
1681  * This is needed for the suspend to disk (aka swsusp).
1682  */
1683 int swap_type_of(dev_t device, sector_t offset)
1684 {
1685 	int type;
1686 
1687 	if (!device)
1688 		return -1;
1689 
1690 	spin_lock(&swap_lock);
1691 	for (type = 0; type < nr_swapfiles; type++) {
1692 		struct swap_info_struct *sis = swap_info[type];
1693 
1694 		if (!(sis->flags & SWP_WRITEOK))
1695 			continue;
1696 
1697 		if (device == sis->bdev->bd_dev) {
1698 			struct swap_extent *se = first_se(sis);
1699 
1700 			if (se->start_block == offset) {
1701 				spin_unlock(&swap_lock);
1702 				return type;
1703 			}
1704 		}
1705 	}
1706 	spin_unlock(&swap_lock);
1707 	return -ENODEV;
1708 }
1709 
1710 int find_first_swap(dev_t *device)
1711 {
1712 	int type;
1713 
1714 	spin_lock(&swap_lock);
1715 	for (type = 0; type < nr_swapfiles; type++) {
1716 		struct swap_info_struct *sis = swap_info[type];
1717 
1718 		if (!(sis->flags & SWP_WRITEOK))
1719 			continue;
1720 		*device = sis->bdev->bd_dev;
1721 		spin_unlock(&swap_lock);
1722 		return type;
1723 	}
1724 	spin_unlock(&swap_lock);
1725 	return -ENODEV;
1726 }
1727 
1728 /*
1729  * Get the (PAGE_SIZE) block corresponding to given offset on the swapdev
1730  * corresponding to given index in swap_info (swap type).
1731  */
1732 sector_t swapdev_block(int type, pgoff_t offset)
1733 {
1734 	struct swap_info_struct *si = swap_type_to_swap_info(type);
1735 	struct swap_extent *se;
1736 
1737 	if (!si || !(si->flags & SWP_WRITEOK))
1738 		return 0;
1739 	se = offset_to_swap_extent(si, offset);
1740 	return se->start_block + (offset - se->start_page);
1741 }
1742 
1743 /*
1744  * Return either the total number of swap pages of given type, or the number
1745  * of free pages of that type (depending on @free)
1746  *
1747  * This is needed for software suspend
1748  */
1749 unsigned int count_swap_pages(int type, int free)
1750 {
1751 	unsigned int n = 0;
1752 
1753 	spin_lock(&swap_lock);
1754 	if ((unsigned int)type < nr_swapfiles) {
1755 		struct swap_info_struct *sis = swap_info[type];
1756 
1757 		spin_lock(&sis->lock);
1758 		if (sis->flags & SWP_WRITEOK) {
1759 			n = sis->pages;
1760 			if (free)
1761 				n -= sis->inuse_pages;
1762 		}
1763 		spin_unlock(&sis->lock);
1764 	}
1765 	spin_unlock(&swap_lock);
1766 	return n;
1767 }
1768 #endif /* CONFIG_HIBERNATION */
1769 
1770 static inline int pte_same_as_swp(pte_t pte, pte_t swp_pte)
1771 {
1772 	return pte_same(pte_swp_clear_flags(pte), swp_pte);
1773 }
1774 
1775 /*
1776  * No need to decide whether this PTE shares the swap entry with others,
1777  * just let do_wp_page work it out if a write is requested later - to
1778  * force COW, vm_page_prot omits write permission from any private vma.
1779  */
1780 static int unuse_pte(struct vm_area_struct *vma, pmd_t *pmd,
1781 		unsigned long addr, swp_entry_t entry, struct page *page)
1782 {
1783 	struct page *swapcache;
1784 	spinlock_t *ptl;
1785 	pte_t *pte;
1786 	int ret = 1;
1787 
1788 	swapcache = page;
1789 	page = ksm_might_need_to_copy(page, vma, addr);
1790 	if (unlikely(!page))
1791 		return -ENOMEM;
1792 
1793 	pte = pte_offset_map_lock(vma->vm_mm, pmd, addr, &ptl);
1794 	if (unlikely(!pte_same_as_swp(*pte, swp_entry_to_pte(entry)))) {
1795 		ret = 0;
1796 		goto out;
1797 	}
1798 
1799 	dec_mm_counter(vma->vm_mm, MM_SWAPENTS);
1800 	inc_mm_counter(vma->vm_mm, MM_ANONPAGES);
1801 	get_page(page);
1802 	if (page == swapcache) {
1803 		page_add_anon_rmap(page, vma, addr, false);
1804 	} else { /* ksm created a completely new copy */
1805 		page_add_new_anon_rmap(page, vma, addr, false);
1806 		lru_cache_add_inactive_or_unevictable(page, vma);
1807 	}
1808 	set_pte_at(vma->vm_mm, addr, pte,
1809 		   pte_mkold(mk_pte(page, vma->vm_page_prot)));
1810 	swap_free(entry);
1811 out:
1812 	pte_unmap_unlock(pte, ptl);
1813 	if (page != swapcache) {
1814 		unlock_page(page);
1815 		put_page(page);
1816 	}
1817 	return ret;
1818 }
1819 
1820 static int unuse_pte_range(struct vm_area_struct *vma, pmd_t *pmd,
1821 			unsigned long addr, unsigned long end,
1822 			unsigned int type)
1823 {
1824 	struct page *page;
1825 	swp_entry_t entry;
1826 	pte_t *pte;
1827 	struct swap_info_struct *si;
1828 	unsigned long offset;
1829 	int ret = 0;
1830 	volatile unsigned char *swap_map;
1831 
1832 	si = swap_info[type];
1833 	pte = pte_offset_map(pmd, addr);
1834 	do {
1835 		if (!is_swap_pte(*pte))
1836 			continue;
1837 
1838 		entry = pte_to_swp_entry(*pte);
1839 		if (swp_type(entry) != type)
1840 			continue;
1841 
1842 		offset = swp_offset(entry);
1843 		pte_unmap(pte);
1844 		swap_map = &si->swap_map[offset];
1845 		page = lookup_swap_cache(entry, vma, addr);
1846 		if (!page) {
1847 			struct vm_fault vmf = {
1848 				.vma = vma,
1849 				.address = addr,
1850 				.real_address = addr,
1851 				.pmd = pmd,
1852 			};
1853 
1854 			page = swapin_readahead(entry, GFP_HIGHUSER_MOVABLE,
1855 						&vmf);
1856 		}
1857 		if (!page) {
1858 			if (*swap_map == 0 || *swap_map == SWAP_MAP_BAD)
1859 				goto try_next;
1860 			return -ENOMEM;
1861 		}
1862 
1863 		lock_page(page);
1864 		wait_on_page_writeback(page);
1865 		ret = unuse_pte(vma, pmd, addr, entry, page);
1866 		if (ret < 0) {
1867 			unlock_page(page);
1868 			put_page(page);
1869 			goto out;
1870 		}
1871 
1872 		try_to_free_swap(page);
1873 		unlock_page(page);
1874 		put_page(page);
1875 try_next:
1876 		pte = pte_offset_map(pmd, addr);
1877 	} while (pte++, addr += PAGE_SIZE, addr != end);
1878 	pte_unmap(pte - 1);
1879 
1880 	ret = 0;
1881 out:
1882 	return ret;
1883 }
1884 
1885 static inline int unuse_pmd_range(struct vm_area_struct *vma, pud_t *pud,
1886 				unsigned long addr, unsigned long end,
1887 				unsigned int type)
1888 {
1889 	pmd_t *pmd;
1890 	unsigned long next;
1891 	int ret;
1892 
1893 	pmd = pmd_offset(pud, addr);
1894 	do {
1895 		cond_resched();
1896 		next = pmd_addr_end(addr, end);
1897 		if (pmd_none_or_trans_huge_or_clear_bad(pmd))
1898 			continue;
1899 		ret = unuse_pte_range(vma, pmd, addr, next, type);
1900 		if (ret)
1901 			return ret;
1902 	} while (pmd++, addr = next, addr != end);
1903 	return 0;
1904 }
1905 
1906 static inline int unuse_pud_range(struct vm_area_struct *vma, p4d_t *p4d,
1907 				unsigned long addr, unsigned long end,
1908 				unsigned int type)
1909 {
1910 	pud_t *pud;
1911 	unsigned long next;
1912 	int ret;
1913 
1914 	pud = pud_offset(p4d, addr);
1915 	do {
1916 		next = pud_addr_end(addr, end);
1917 		if (pud_none_or_clear_bad(pud))
1918 			continue;
1919 		ret = unuse_pmd_range(vma, pud, addr, next, type);
1920 		if (ret)
1921 			return ret;
1922 	} while (pud++, addr = next, addr != end);
1923 	return 0;
1924 }
1925 
1926 static inline int unuse_p4d_range(struct vm_area_struct *vma, pgd_t *pgd,
1927 				unsigned long addr, unsigned long end,
1928 				unsigned int type)
1929 {
1930 	p4d_t *p4d;
1931 	unsigned long next;
1932 	int ret;
1933 
1934 	p4d = p4d_offset(pgd, addr);
1935 	do {
1936 		next = p4d_addr_end(addr, end);
1937 		if (p4d_none_or_clear_bad(p4d))
1938 			continue;
1939 		ret = unuse_pud_range(vma, p4d, addr, next, type);
1940 		if (ret)
1941 			return ret;
1942 	} while (p4d++, addr = next, addr != end);
1943 	return 0;
1944 }
1945 
1946 static int unuse_vma(struct vm_area_struct *vma, unsigned int type)
1947 {
1948 	pgd_t *pgd;
1949 	unsigned long addr, end, next;
1950 	int ret;
1951 
1952 	addr = vma->vm_start;
1953 	end = vma->vm_end;
1954 
1955 	pgd = pgd_offset(vma->vm_mm, addr);
1956 	do {
1957 		next = pgd_addr_end(addr, end);
1958 		if (pgd_none_or_clear_bad(pgd))
1959 			continue;
1960 		ret = unuse_p4d_range(vma, pgd, addr, next, type);
1961 		if (ret)
1962 			return ret;
1963 	} while (pgd++, addr = next, addr != end);
1964 	return 0;
1965 }
1966 
1967 static int unuse_mm(struct mm_struct *mm, unsigned int type)
1968 {
1969 	struct vm_area_struct *vma;
1970 	int ret = 0;
1971 
1972 	mmap_read_lock(mm);
1973 	for (vma = mm->mmap; vma; vma = vma->vm_next) {
1974 		if (vma->anon_vma) {
1975 			ret = unuse_vma(vma, type);
1976 			if (ret)
1977 				break;
1978 		}
1979 		cond_resched();
1980 	}
1981 	mmap_read_unlock(mm);
1982 	return ret;
1983 }
1984 
1985 /*
1986  * Scan swap_map (or frontswap_map if frontswap parameter is true)
1987  * from current position to next entry still in use. Return 0
1988  * if there are no inuse entries after prev till end of the map.
1989  */
1990 static unsigned int find_next_to_unuse(struct swap_info_struct *si,
1991 					unsigned int prev)
1992 {
1993 	unsigned int i;
1994 	unsigned char count;
1995 
1996 	/*
1997 	 * No need for swap_lock here: we're just looking
1998 	 * for whether an entry is in use, not modifying it; false
1999 	 * hits are okay, and sys_swapoff() has already prevented new
2000 	 * allocations from this area (while holding swap_lock).
2001 	 */
2002 	for (i = prev + 1; i < si->max; i++) {
2003 		count = READ_ONCE(si->swap_map[i]);
2004 		if (count && swap_count(count) != SWAP_MAP_BAD)
2005 			break;
2006 		if ((i % LATENCY_LIMIT) == 0)
2007 			cond_resched();
2008 	}
2009 
2010 	if (i == si->max)
2011 		i = 0;
2012 
2013 	return i;
2014 }
2015 
2016 static int try_to_unuse(unsigned int type)
2017 {
2018 	struct mm_struct *prev_mm;
2019 	struct mm_struct *mm;
2020 	struct list_head *p;
2021 	int retval = 0;
2022 	struct swap_info_struct *si = swap_info[type];
2023 	struct page *page;
2024 	swp_entry_t entry;
2025 	unsigned int i;
2026 
2027 	if (!READ_ONCE(si->inuse_pages))
2028 		return 0;
2029 
2030 retry:
2031 	retval = shmem_unuse(type);
2032 	if (retval)
2033 		return retval;
2034 
2035 	prev_mm = &init_mm;
2036 	mmget(prev_mm);
2037 
2038 	spin_lock(&mmlist_lock);
2039 	p = &init_mm.mmlist;
2040 	while (READ_ONCE(si->inuse_pages) &&
2041 	       !signal_pending(current) &&
2042 	       (p = p->next) != &init_mm.mmlist) {
2043 
2044 		mm = list_entry(p, struct mm_struct, mmlist);
2045 		if (!mmget_not_zero(mm))
2046 			continue;
2047 		spin_unlock(&mmlist_lock);
2048 		mmput(prev_mm);
2049 		prev_mm = mm;
2050 		retval = unuse_mm(mm, type);
2051 		if (retval) {
2052 			mmput(prev_mm);
2053 			return retval;
2054 		}
2055 
2056 		/*
2057 		 * Make sure that we aren't completely killing
2058 		 * interactive performance.
2059 		 */
2060 		cond_resched();
2061 		spin_lock(&mmlist_lock);
2062 	}
2063 	spin_unlock(&mmlist_lock);
2064 
2065 	mmput(prev_mm);
2066 
2067 	i = 0;
2068 	while (READ_ONCE(si->inuse_pages) &&
2069 	       !signal_pending(current) &&
2070 	       (i = find_next_to_unuse(si, i)) != 0) {
2071 
2072 		entry = swp_entry(type, i);
2073 		page = find_get_page(swap_address_space(entry), i);
2074 		if (!page)
2075 			continue;
2076 
2077 		/*
2078 		 * It is conceivable that a racing task removed this page from
2079 		 * swap cache just before we acquired the page lock. The page
2080 		 * might even be back in swap cache on another swap area. But
2081 		 * that is okay, try_to_free_swap() only removes stale pages.
2082 		 */
2083 		lock_page(page);
2084 		wait_on_page_writeback(page);
2085 		try_to_free_swap(page);
2086 		unlock_page(page);
2087 		put_page(page);
2088 	}
2089 
2090 	/*
2091 	 * Lets check again to see if there are still swap entries in the map.
2092 	 * If yes, we would need to do retry the unuse logic again.
2093 	 * Under global memory pressure, swap entries can be reinserted back
2094 	 * into process space after the mmlist loop above passes over them.
2095 	 *
2096 	 * Limit the number of retries? No: when mmget_not_zero() above fails,
2097 	 * that mm is likely to be freeing swap from exit_mmap(), which proceeds
2098 	 * at its own independent pace; and even shmem_writepage() could have
2099 	 * been preempted after get_swap_page(), temporarily hiding that swap.
2100 	 * It's easy and robust (though cpu-intensive) just to keep retrying.
2101 	 */
2102 	if (READ_ONCE(si->inuse_pages)) {
2103 		if (!signal_pending(current))
2104 			goto retry;
2105 		return -EINTR;
2106 	}
2107 
2108 	return 0;
2109 }
2110 
2111 /*
2112  * After a successful try_to_unuse, if no swap is now in use, we know
2113  * we can empty the mmlist.  swap_lock must be held on entry and exit.
2114  * Note that mmlist_lock nests inside swap_lock, and an mm must be
2115  * added to the mmlist just after page_duplicate - before would be racy.
2116  */
2117 static void drain_mmlist(void)
2118 {
2119 	struct list_head *p, *next;
2120 	unsigned int type;
2121 
2122 	for (type = 0; type < nr_swapfiles; type++)
2123 		if (swap_info[type]->inuse_pages)
2124 			return;
2125 	spin_lock(&mmlist_lock);
2126 	list_for_each_safe(p, next, &init_mm.mmlist)
2127 		list_del_init(p);
2128 	spin_unlock(&mmlist_lock);
2129 }
2130 
2131 /*
2132  * Free all of a swapdev's extent information
2133  */
2134 static void destroy_swap_extents(struct swap_info_struct *sis)
2135 {
2136 	while (!RB_EMPTY_ROOT(&sis->swap_extent_root)) {
2137 		struct rb_node *rb = sis->swap_extent_root.rb_node;
2138 		struct swap_extent *se = rb_entry(rb, struct swap_extent, rb_node);
2139 
2140 		rb_erase(rb, &sis->swap_extent_root);
2141 		kfree(se);
2142 	}
2143 
2144 	if (sis->flags & SWP_ACTIVATED) {
2145 		struct file *swap_file = sis->swap_file;
2146 		struct address_space *mapping = swap_file->f_mapping;
2147 
2148 		sis->flags &= ~SWP_ACTIVATED;
2149 		if (mapping->a_ops->swap_deactivate)
2150 			mapping->a_ops->swap_deactivate(swap_file);
2151 	}
2152 }
2153 
2154 /*
2155  * Add a block range (and the corresponding page range) into this swapdev's
2156  * extent tree.
2157  *
2158  * This function rather assumes that it is called in ascending page order.
2159  */
2160 int
2161 add_swap_extent(struct swap_info_struct *sis, unsigned long start_page,
2162 		unsigned long nr_pages, sector_t start_block)
2163 {
2164 	struct rb_node **link = &sis->swap_extent_root.rb_node, *parent = NULL;
2165 	struct swap_extent *se;
2166 	struct swap_extent *new_se;
2167 
2168 	/*
2169 	 * place the new node at the right most since the
2170 	 * function is called in ascending page order.
2171 	 */
2172 	while (*link) {
2173 		parent = *link;
2174 		link = &parent->rb_right;
2175 	}
2176 
2177 	if (parent) {
2178 		se = rb_entry(parent, struct swap_extent, rb_node);
2179 		BUG_ON(se->start_page + se->nr_pages != start_page);
2180 		if (se->start_block + se->nr_pages == start_block) {
2181 			/* Merge it */
2182 			se->nr_pages += nr_pages;
2183 			return 0;
2184 		}
2185 	}
2186 
2187 	/* No merge, insert a new extent. */
2188 	new_se = kmalloc(sizeof(*se), GFP_KERNEL);
2189 	if (new_se == NULL)
2190 		return -ENOMEM;
2191 	new_se->start_page = start_page;
2192 	new_se->nr_pages = nr_pages;
2193 	new_se->start_block = start_block;
2194 
2195 	rb_link_node(&new_se->rb_node, parent, link);
2196 	rb_insert_color(&new_se->rb_node, &sis->swap_extent_root);
2197 	return 1;
2198 }
2199 EXPORT_SYMBOL_GPL(add_swap_extent);
2200 
2201 /*
2202  * A `swap extent' is a simple thing which maps a contiguous range of pages
2203  * onto a contiguous range of disk blocks.  An ordered list of swap extents
2204  * is built at swapon time and is then used at swap_writepage/swap_readpage
2205  * time for locating where on disk a page belongs.
2206  *
2207  * If the swapfile is an S_ISBLK block device, a single extent is installed.
2208  * This is done so that the main operating code can treat S_ISBLK and S_ISREG
2209  * swap files identically.
2210  *
2211  * Whether the swapdev is an S_ISREG file or an S_ISBLK blockdev, the swap
2212  * extent list operates in PAGE_SIZE disk blocks.  Both S_ISREG and S_ISBLK
2213  * swapfiles are handled *identically* after swapon time.
2214  *
2215  * For S_ISREG swapfiles, setup_swap_extents() will walk all the file's blocks
2216  * and will parse them into an ordered extent list, in PAGE_SIZE chunks.  If
2217  * some stray blocks are found which do not fall within the PAGE_SIZE alignment
2218  * requirements, they are simply tossed out - we will never use those blocks
2219  * for swapping.
2220  *
2221  * For all swap devices we set S_SWAPFILE across the life of the swapon.  This
2222  * prevents users from writing to the swap device, which will corrupt memory.
2223  *
2224  * The amount of disk space which a single swap extent represents varies.
2225  * Typically it is in the 1-4 megabyte range.  So we can have hundreds of
2226  * extents in the list.  To avoid much list walking, we cache the previous
2227  * search location in `curr_swap_extent', and start new searches from there.
2228  * This is extremely effective.  The average number of iterations in
2229  * map_swap_page() has been measured at about 0.3 per page.  - akpm.
2230  */
2231 static int setup_swap_extents(struct swap_info_struct *sis, sector_t *span)
2232 {
2233 	struct file *swap_file = sis->swap_file;
2234 	struct address_space *mapping = swap_file->f_mapping;
2235 	struct inode *inode = mapping->host;
2236 	int ret;
2237 
2238 	if (S_ISBLK(inode->i_mode)) {
2239 		ret = add_swap_extent(sis, 0, sis->max, 0);
2240 		*span = sis->pages;
2241 		return ret;
2242 	}
2243 
2244 	if (mapping->a_ops->swap_activate) {
2245 		ret = mapping->a_ops->swap_activate(sis, swap_file, span);
2246 		if (ret >= 0)
2247 			sis->flags |= SWP_ACTIVATED;
2248 		if (!ret) {
2249 			sis->flags |= SWP_FS_OPS;
2250 			ret = add_swap_extent(sis, 0, sis->max, 0);
2251 			*span = sis->pages;
2252 		}
2253 		return ret;
2254 	}
2255 
2256 	return generic_swapfile_activate(sis, swap_file, span);
2257 }
2258 
2259 static int swap_node(struct swap_info_struct *p)
2260 {
2261 	struct block_device *bdev;
2262 
2263 	if (p->bdev)
2264 		bdev = p->bdev;
2265 	else
2266 		bdev = p->swap_file->f_inode->i_sb->s_bdev;
2267 
2268 	return bdev ? bdev->bd_disk->node_id : NUMA_NO_NODE;
2269 }
2270 
2271 static void setup_swap_info(struct swap_info_struct *p, int prio,
2272 			    unsigned char *swap_map,
2273 			    struct swap_cluster_info *cluster_info)
2274 {
2275 	int i;
2276 
2277 	if (prio >= 0)
2278 		p->prio = prio;
2279 	else
2280 		p->prio = --least_priority;
2281 	/*
2282 	 * the plist prio is negated because plist ordering is
2283 	 * low-to-high, while swap ordering is high-to-low
2284 	 */
2285 	p->list.prio = -p->prio;
2286 	for_each_node(i) {
2287 		if (p->prio >= 0)
2288 			p->avail_lists[i].prio = -p->prio;
2289 		else {
2290 			if (swap_node(p) == i)
2291 				p->avail_lists[i].prio = 1;
2292 			else
2293 				p->avail_lists[i].prio = -p->prio;
2294 		}
2295 	}
2296 	p->swap_map = swap_map;
2297 	p->cluster_info = cluster_info;
2298 }
2299 
2300 static void _enable_swap_info(struct swap_info_struct *p)
2301 {
2302 	p->flags |= SWP_WRITEOK;
2303 	atomic_long_add(p->pages, &nr_swap_pages);
2304 	total_swap_pages += p->pages;
2305 
2306 	assert_spin_locked(&swap_lock);
2307 	/*
2308 	 * both lists are plists, and thus priority ordered.
2309 	 * swap_active_head needs to be priority ordered for swapoff(),
2310 	 * which on removal of any swap_info_struct with an auto-assigned
2311 	 * (i.e. negative) priority increments the auto-assigned priority
2312 	 * of any lower-priority swap_info_structs.
2313 	 * swap_avail_head needs to be priority ordered for get_swap_page(),
2314 	 * which allocates swap pages from the highest available priority
2315 	 * swap_info_struct.
2316 	 */
2317 	plist_add(&p->list, &swap_active_head);
2318 	add_to_avail_list(p);
2319 }
2320 
2321 static void enable_swap_info(struct swap_info_struct *p, int prio,
2322 				unsigned char *swap_map,
2323 				struct swap_cluster_info *cluster_info,
2324 				unsigned long *frontswap_map)
2325 {
2326 	if (IS_ENABLED(CONFIG_FRONTSWAP))
2327 		frontswap_init(p->type, frontswap_map);
2328 	spin_lock(&swap_lock);
2329 	spin_lock(&p->lock);
2330 	setup_swap_info(p, prio, swap_map, cluster_info);
2331 	spin_unlock(&p->lock);
2332 	spin_unlock(&swap_lock);
2333 	/*
2334 	 * Finished initializing swap device, now it's safe to reference it.
2335 	 */
2336 	percpu_ref_resurrect(&p->users);
2337 	spin_lock(&swap_lock);
2338 	spin_lock(&p->lock);
2339 	_enable_swap_info(p);
2340 	spin_unlock(&p->lock);
2341 	spin_unlock(&swap_lock);
2342 }
2343 
2344 static void reinsert_swap_info(struct swap_info_struct *p)
2345 {
2346 	spin_lock(&swap_lock);
2347 	spin_lock(&p->lock);
2348 	setup_swap_info(p, p->prio, p->swap_map, p->cluster_info);
2349 	_enable_swap_info(p);
2350 	spin_unlock(&p->lock);
2351 	spin_unlock(&swap_lock);
2352 }
2353 
2354 bool has_usable_swap(void)
2355 {
2356 	bool ret = true;
2357 
2358 	spin_lock(&swap_lock);
2359 	if (plist_head_empty(&swap_active_head))
2360 		ret = false;
2361 	spin_unlock(&swap_lock);
2362 	return ret;
2363 }
2364 
2365 SYSCALL_DEFINE1(swapoff, const char __user *, specialfile)
2366 {
2367 	struct swap_info_struct *p = NULL;
2368 	unsigned char *swap_map;
2369 	struct swap_cluster_info *cluster_info;
2370 	unsigned long *frontswap_map;
2371 	struct file *swap_file, *victim;
2372 	struct address_space *mapping;
2373 	struct inode *inode;
2374 	struct filename *pathname;
2375 	int err, found = 0;
2376 	unsigned int old_block_size;
2377 
2378 	if (!capable(CAP_SYS_ADMIN))
2379 		return -EPERM;
2380 
2381 	BUG_ON(!current->mm);
2382 
2383 	pathname = getname(specialfile);
2384 	if (IS_ERR(pathname))
2385 		return PTR_ERR(pathname);
2386 
2387 	victim = file_open_name(pathname, O_RDWR|O_LARGEFILE, 0);
2388 	err = PTR_ERR(victim);
2389 	if (IS_ERR(victim))
2390 		goto out;
2391 
2392 	mapping = victim->f_mapping;
2393 	spin_lock(&swap_lock);
2394 	plist_for_each_entry(p, &swap_active_head, list) {
2395 		if (p->flags & SWP_WRITEOK) {
2396 			if (p->swap_file->f_mapping == mapping) {
2397 				found = 1;
2398 				break;
2399 			}
2400 		}
2401 	}
2402 	if (!found) {
2403 		err = -EINVAL;
2404 		spin_unlock(&swap_lock);
2405 		goto out_dput;
2406 	}
2407 	if (!security_vm_enough_memory_mm(current->mm, p->pages))
2408 		vm_unacct_memory(p->pages);
2409 	else {
2410 		err = -ENOMEM;
2411 		spin_unlock(&swap_lock);
2412 		goto out_dput;
2413 	}
2414 	del_from_avail_list(p);
2415 	spin_lock(&p->lock);
2416 	if (p->prio < 0) {
2417 		struct swap_info_struct *si = p;
2418 		int nid;
2419 
2420 		plist_for_each_entry_continue(si, &swap_active_head, list) {
2421 			si->prio++;
2422 			si->list.prio--;
2423 			for_each_node(nid) {
2424 				if (si->avail_lists[nid].prio != 1)
2425 					si->avail_lists[nid].prio--;
2426 			}
2427 		}
2428 		least_priority++;
2429 	}
2430 	plist_del(&p->list, &swap_active_head);
2431 	atomic_long_sub(p->pages, &nr_swap_pages);
2432 	total_swap_pages -= p->pages;
2433 	p->flags &= ~SWP_WRITEOK;
2434 	spin_unlock(&p->lock);
2435 	spin_unlock(&swap_lock);
2436 
2437 	disable_swap_slots_cache_lock();
2438 
2439 	set_current_oom_origin();
2440 	err = try_to_unuse(p->type);
2441 	clear_current_oom_origin();
2442 
2443 	if (err) {
2444 		/* re-insert swap space back into swap_list */
2445 		reinsert_swap_info(p);
2446 		reenable_swap_slots_cache_unlock();
2447 		goto out_dput;
2448 	}
2449 
2450 	reenable_swap_slots_cache_unlock();
2451 
2452 	/*
2453 	 * Wait for swap operations protected by get/put_swap_device()
2454 	 * to complete.
2455 	 *
2456 	 * We need synchronize_rcu() here to protect the accessing to
2457 	 * the swap cache data structure.
2458 	 */
2459 	percpu_ref_kill(&p->users);
2460 	synchronize_rcu();
2461 	wait_for_completion(&p->comp);
2462 
2463 	flush_work(&p->discard_work);
2464 
2465 	destroy_swap_extents(p);
2466 	if (p->flags & SWP_CONTINUED)
2467 		free_swap_count_continuations(p);
2468 
2469 	if (!p->bdev || !blk_queue_nonrot(bdev_get_queue(p->bdev)))
2470 		atomic_dec(&nr_rotate_swap);
2471 
2472 	mutex_lock(&swapon_mutex);
2473 	spin_lock(&swap_lock);
2474 	spin_lock(&p->lock);
2475 	drain_mmlist();
2476 
2477 	/* wait for anyone still in scan_swap_map_slots */
2478 	p->highest_bit = 0;		/* cuts scans short */
2479 	while (p->flags >= SWP_SCANNING) {
2480 		spin_unlock(&p->lock);
2481 		spin_unlock(&swap_lock);
2482 		schedule_timeout_uninterruptible(1);
2483 		spin_lock(&swap_lock);
2484 		spin_lock(&p->lock);
2485 	}
2486 
2487 	swap_file = p->swap_file;
2488 	old_block_size = p->old_block_size;
2489 	p->swap_file = NULL;
2490 	p->max = 0;
2491 	swap_map = p->swap_map;
2492 	p->swap_map = NULL;
2493 	cluster_info = p->cluster_info;
2494 	p->cluster_info = NULL;
2495 	frontswap_map = frontswap_map_get(p);
2496 	spin_unlock(&p->lock);
2497 	spin_unlock(&swap_lock);
2498 	arch_swap_invalidate_area(p->type);
2499 	frontswap_invalidate_area(p->type);
2500 	frontswap_map_set(p, NULL);
2501 	mutex_unlock(&swapon_mutex);
2502 	free_percpu(p->percpu_cluster);
2503 	p->percpu_cluster = NULL;
2504 	free_percpu(p->cluster_next_cpu);
2505 	p->cluster_next_cpu = NULL;
2506 	vfree(swap_map);
2507 	kvfree(cluster_info);
2508 	kvfree(frontswap_map);
2509 	/* Destroy swap account information */
2510 	swap_cgroup_swapoff(p->type);
2511 	exit_swap_address_space(p->type);
2512 
2513 	inode = mapping->host;
2514 	if (S_ISBLK(inode->i_mode)) {
2515 		struct block_device *bdev = I_BDEV(inode);
2516 
2517 		set_blocksize(bdev, old_block_size);
2518 		blkdev_put(bdev, FMODE_READ | FMODE_WRITE | FMODE_EXCL);
2519 	}
2520 
2521 	inode_lock(inode);
2522 	inode->i_flags &= ~S_SWAPFILE;
2523 	inode_unlock(inode);
2524 	filp_close(swap_file, NULL);
2525 
2526 	/*
2527 	 * Clear the SWP_USED flag after all resources are freed so that swapon
2528 	 * can reuse this swap_info in alloc_swap_info() safely.  It is ok to
2529 	 * not hold p->lock after we cleared its SWP_WRITEOK.
2530 	 */
2531 	spin_lock(&swap_lock);
2532 	p->flags = 0;
2533 	spin_unlock(&swap_lock);
2534 
2535 	err = 0;
2536 	atomic_inc(&proc_poll_event);
2537 	wake_up_interruptible(&proc_poll_wait);
2538 
2539 out_dput:
2540 	filp_close(victim, NULL);
2541 out:
2542 	putname(pathname);
2543 	return err;
2544 }
2545 
2546 #ifdef CONFIG_PROC_FS
2547 static __poll_t swaps_poll(struct file *file, poll_table *wait)
2548 {
2549 	struct seq_file *seq = file->private_data;
2550 
2551 	poll_wait(file, &proc_poll_wait, wait);
2552 
2553 	if (seq->poll_event != atomic_read(&proc_poll_event)) {
2554 		seq->poll_event = atomic_read(&proc_poll_event);
2555 		return EPOLLIN | EPOLLRDNORM | EPOLLERR | EPOLLPRI;
2556 	}
2557 
2558 	return EPOLLIN | EPOLLRDNORM;
2559 }
2560 
2561 /* iterator */
2562 static void *swap_start(struct seq_file *swap, loff_t *pos)
2563 {
2564 	struct swap_info_struct *si;
2565 	int type;
2566 	loff_t l = *pos;
2567 
2568 	mutex_lock(&swapon_mutex);
2569 
2570 	if (!l)
2571 		return SEQ_START_TOKEN;
2572 
2573 	for (type = 0; (si = swap_type_to_swap_info(type)); type++) {
2574 		if (!(si->flags & SWP_USED) || !si->swap_map)
2575 			continue;
2576 		if (!--l)
2577 			return si;
2578 	}
2579 
2580 	return NULL;
2581 }
2582 
2583 static void *swap_next(struct seq_file *swap, void *v, loff_t *pos)
2584 {
2585 	struct swap_info_struct *si = v;
2586 	int type;
2587 
2588 	if (v == SEQ_START_TOKEN)
2589 		type = 0;
2590 	else
2591 		type = si->type + 1;
2592 
2593 	++(*pos);
2594 	for (; (si = swap_type_to_swap_info(type)); type++) {
2595 		if (!(si->flags & SWP_USED) || !si->swap_map)
2596 			continue;
2597 		return si;
2598 	}
2599 
2600 	return NULL;
2601 }
2602 
2603 static void swap_stop(struct seq_file *swap, void *v)
2604 {
2605 	mutex_unlock(&swapon_mutex);
2606 }
2607 
2608 static int swap_show(struct seq_file *swap, void *v)
2609 {
2610 	struct swap_info_struct *si = v;
2611 	struct file *file;
2612 	int len;
2613 	unsigned long bytes, inuse;
2614 
2615 	if (si == SEQ_START_TOKEN) {
2616 		seq_puts(swap, "Filename\t\t\t\tType\t\tSize\t\tUsed\t\tPriority\n");
2617 		return 0;
2618 	}
2619 
2620 	bytes = si->pages << (PAGE_SHIFT - 10);
2621 	inuse = si->inuse_pages << (PAGE_SHIFT - 10);
2622 
2623 	file = si->swap_file;
2624 	len = seq_file_path(swap, file, " \t\n\\");
2625 	seq_printf(swap, "%*s%s\t%lu\t%s%lu\t%s%d\n",
2626 			len < 40 ? 40 - len : 1, " ",
2627 			S_ISBLK(file_inode(file)->i_mode) ?
2628 				"partition" : "file\t",
2629 			bytes, bytes < 10000000 ? "\t" : "",
2630 			inuse, inuse < 10000000 ? "\t" : "",
2631 			si->prio);
2632 	return 0;
2633 }
2634 
2635 static const struct seq_operations swaps_op = {
2636 	.start =	swap_start,
2637 	.next =		swap_next,
2638 	.stop =		swap_stop,
2639 	.show =		swap_show
2640 };
2641 
2642 static int swaps_open(struct inode *inode, struct file *file)
2643 {
2644 	struct seq_file *seq;
2645 	int ret;
2646 
2647 	ret = seq_open(file, &swaps_op);
2648 	if (ret)
2649 		return ret;
2650 
2651 	seq = file->private_data;
2652 	seq->poll_event = atomic_read(&proc_poll_event);
2653 	return 0;
2654 }
2655 
2656 static const struct proc_ops swaps_proc_ops = {
2657 	.proc_flags	= PROC_ENTRY_PERMANENT,
2658 	.proc_open	= swaps_open,
2659 	.proc_read	= seq_read,
2660 	.proc_lseek	= seq_lseek,
2661 	.proc_release	= seq_release,
2662 	.proc_poll	= swaps_poll,
2663 };
2664 
2665 static int __init procswaps_init(void)
2666 {
2667 	proc_create("swaps", 0, NULL, &swaps_proc_ops);
2668 	return 0;
2669 }
2670 __initcall(procswaps_init);
2671 #endif /* CONFIG_PROC_FS */
2672 
2673 #ifdef MAX_SWAPFILES_CHECK
2674 static int __init max_swapfiles_check(void)
2675 {
2676 	MAX_SWAPFILES_CHECK();
2677 	return 0;
2678 }
2679 late_initcall(max_swapfiles_check);
2680 #endif
2681 
2682 static struct swap_info_struct *alloc_swap_info(void)
2683 {
2684 	struct swap_info_struct *p;
2685 	struct swap_info_struct *defer = NULL;
2686 	unsigned int type;
2687 	int i;
2688 
2689 	p = kvzalloc(struct_size(p, avail_lists, nr_node_ids), GFP_KERNEL);
2690 	if (!p)
2691 		return ERR_PTR(-ENOMEM);
2692 
2693 	if (percpu_ref_init(&p->users, swap_users_ref_free,
2694 			    PERCPU_REF_INIT_DEAD, GFP_KERNEL)) {
2695 		kvfree(p);
2696 		return ERR_PTR(-ENOMEM);
2697 	}
2698 
2699 	spin_lock(&swap_lock);
2700 	for (type = 0; type < nr_swapfiles; type++) {
2701 		if (!(swap_info[type]->flags & SWP_USED))
2702 			break;
2703 	}
2704 	if (type >= MAX_SWAPFILES) {
2705 		spin_unlock(&swap_lock);
2706 		percpu_ref_exit(&p->users);
2707 		kvfree(p);
2708 		return ERR_PTR(-EPERM);
2709 	}
2710 	if (type >= nr_swapfiles) {
2711 		p->type = type;
2712 		/*
2713 		 * Publish the swap_info_struct after initializing it.
2714 		 * Note that kvzalloc() above zeroes all its fields.
2715 		 */
2716 		smp_store_release(&swap_info[type], p); /* rcu_assign_pointer() */
2717 		nr_swapfiles++;
2718 	} else {
2719 		defer = p;
2720 		p = swap_info[type];
2721 		/*
2722 		 * Do not memset this entry: a racing procfs swap_next()
2723 		 * would be relying on p->type to remain valid.
2724 		 */
2725 	}
2726 	p->swap_extent_root = RB_ROOT;
2727 	plist_node_init(&p->list, 0);
2728 	for_each_node(i)
2729 		plist_node_init(&p->avail_lists[i], 0);
2730 	p->flags = SWP_USED;
2731 	spin_unlock(&swap_lock);
2732 	if (defer) {
2733 		percpu_ref_exit(&defer->users);
2734 		kvfree(defer);
2735 	}
2736 	spin_lock_init(&p->lock);
2737 	spin_lock_init(&p->cont_lock);
2738 	init_completion(&p->comp);
2739 
2740 	return p;
2741 }
2742 
2743 static int claim_swapfile(struct swap_info_struct *p, struct inode *inode)
2744 {
2745 	int error;
2746 
2747 	if (S_ISBLK(inode->i_mode)) {
2748 		p->bdev = blkdev_get_by_dev(inode->i_rdev,
2749 				   FMODE_READ | FMODE_WRITE | FMODE_EXCL, p);
2750 		if (IS_ERR(p->bdev)) {
2751 			error = PTR_ERR(p->bdev);
2752 			p->bdev = NULL;
2753 			return error;
2754 		}
2755 		p->old_block_size = block_size(p->bdev);
2756 		error = set_blocksize(p->bdev, PAGE_SIZE);
2757 		if (error < 0)
2758 			return error;
2759 		/*
2760 		 * Zoned block devices contain zones that have a sequential
2761 		 * write only restriction.  Hence zoned block devices are not
2762 		 * suitable for swapping.  Disallow them here.
2763 		 */
2764 		if (blk_queue_is_zoned(p->bdev->bd_disk->queue))
2765 			return -EINVAL;
2766 		p->flags |= SWP_BLKDEV;
2767 	} else if (S_ISREG(inode->i_mode)) {
2768 		p->bdev = inode->i_sb->s_bdev;
2769 	}
2770 
2771 	return 0;
2772 }
2773 
2774 
2775 /*
2776  * Find out how many pages are allowed for a single swap device. There
2777  * are two limiting factors:
2778  * 1) the number of bits for the swap offset in the swp_entry_t type, and
2779  * 2) the number of bits in the swap pte, as defined by the different
2780  * architectures.
2781  *
2782  * In order to find the largest possible bit mask, a swap entry with
2783  * swap type 0 and swap offset ~0UL is created, encoded to a swap pte,
2784  * decoded to a swp_entry_t again, and finally the swap offset is
2785  * extracted.
2786  *
2787  * This will mask all the bits from the initial ~0UL mask that can't
2788  * be encoded in either the swp_entry_t or the architecture definition
2789  * of a swap pte.
2790  */
2791 unsigned long generic_max_swapfile_size(void)
2792 {
2793 	return swp_offset(pte_to_swp_entry(
2794 			swp_entry_to_pte(swp_entry(0, ~0UL)))) + 1;
2795 }
2796 
2797 /* Can be overridden by an architecture for additional checks. */
2798 __weak unsigned long max_swapfile_size(void)
2799 {
2800 	return generic_max_swapfile_size();
2801 }
2802 
2803 static unsigned long read_swap_header(struct swap_info_struct *p,
2804 					union swap_header *swap_header,
2805 					struct inode *inode)
2806 {
2807 	int i;
2808 	unsigned long maxpages;
2809 	unsigned long swapfilepages;
2810 	unsigned long last_page;
2811 
2812 	if (memcmp("SWAPSPACE2", swap_header->magic.magic, 10)) {
2813 		pr_err("Unable to find swap-space signature\n");
2814 		return 0;
2815 	}
2816 
2817 	/* swap partition endianness hack... */
2818 	if (swab32(swap_header->info.version) == 1) {
2819 		swab32s(&swap_header->info.version);
2820 		swab32s(&swap_header->info.last_page);
2821 		swab32s(&swap_header->info.nr_badpages);
2822 		if (swap_header->info.nr_badpages > MAX_SWAP_BADPAGES)
2823 			return 0;
2824 		for (i = 0; i < swap_header->info.nr_badpages; i++)
2825 			swab32s(&swap_header->info.badpages[i]);
2826 	}
2827 	/* Check the swap header's sub-version */
2828 	if (swap_header->info.version != 1) {
2829 		pr_warn("Unable to handle swap header version %d\n",
2830 			swap_header->info.version);
2831 		return 0;
2832 	}
2833 
2834 	p->lowest_bit  = 1;
2835 	p->cluster_next = 1;
2836 	p->cluster_nr = 0;
2837 
2838 	maxpages = max_swapfile_size();
2839 	last_page = swap_header->info.last_page;
2840 	if (!last_page) {
2841 		pr_warn("Empty swap-file\n");
2842 		return 0;
2843 	}
2844 	if (last_page > maxpages) {
2845 		pr_warn("Truncating oversized swap area, only using %luk out of %luk\n",
2846 			maxpages << (PAGE_SHIFT - 10),
2847 			last_page << (PAGE_SHIFT - 10));
2848 	}
2849 	if (maxpages > last_page) {
2850 		maxpages = last_page + 1;
2851 		/* p->max is an unsigned int: don't overflow it */
2852 		if ((unsigned int)maxpages == 0)
2853 			maxpages = UINT_MAX;
2854 	}
2855 	p->highest_bit = maxpages - 1;
2856 
2857 	if (!maxpages)
2858 		return 0;
2859 	swapfilepages = i_size_read(inode) >> PAGE_SHIFT;
2860 	if (swapfilepages && maxpages > swapfilepages) {
2861 		pr_warn("Swap area shorter than signature indicates\n");
2862 		return 0;
2863 	}
2864 	if (swap_header->info.nr_badpages && S_ISREG(inode->i_mode))
2865 		return 0;
2866 	if (swap_header->info.nr_badpages > MAX_SWAP_BADPAGES)
2867 		return 0;
2868 
2869 	return maxpages;
2870 }
2871 
2872 #define SWAP_CLUSTER_INFO_COLS						\
2873 	DIV_ROUND_UP(L1_CACHE_BYTES, sizeof(struct swap_cluster_info))
2874 #define SWAP_CLUSTER_SPACE_COLS						\
2875 	DIV_ROUND_UP(SWAP_ADDRESS_SPACE_PAGES, SWAPFILE_CLUSTER)
2876 #define SWAP_CLUSTER_COLS						\
2877 	max_t(unsigned int, SWAP_CLUSTER_INFO_COLS, SWAP_CLUSTER_SPACE_COLS)
2878 
2879 static int setup_swap_map_and_extents(struct swap_info_struct *p,
2880 					union swap_header *swap_header,
2881 					unsigned char *swap_map,
2882 					struct swap_cluster_info *cluster_info,
2883 					unsigned long maxpages,
2884 					sector_t *span)
2885 {
2886 	unsigned int j, k;
2887 	unsigned int nr_good_pages;
2888 	int nr_extents;
2889 	unsigned long nr_clusters = DIV_ROUND_UP(maxpages, SWAPFILE_CLUSTER);
2890 	unsigned long col = p->cluster_next / SWAPFILE_CLUSTER % SWAP_CLUSTER_COLS;
2891 	unsigned long i, idx;
2892 
2893 	nr_good_pages = maxpages - 1;	/* omit header page */
2894 
2895 	cluster_list_init(&p->free_clusters);
2896 	cluster_list_init(&p->discard_clusters);
2897 
2898 	for (i = 0; i < swap_header->info.nr_badpages; i++) {
2899 		unsigned int page_nr = swap_header->info.badpages[i];
2900 		if (page_nr == 0 || page_nr > swap_header->info.last_page)
2901 			return -EINVAL;
2902 		if (page_nr < maxpages) {
2903 			swap_map[page_nr] = SWAP_MAP_BAD;
2904 			nr_good_pages--;
2905 			/*
2906 			 * Haven't marked the cluster free yet, no list
2907 			 * operation involved
2908 			 */
2909 			inc_cluster_info_page(p, cluster_info, page_nr);
2910 		}
2911 	}
2912 
2913 	/* Haven't marked the cluster free yet, no list operation involved */
2914 	for (i = maxpages; i < round_up(maxpages, SWAPFILE_CLUSTER); i++)
2915 		inc_cluster_info_page(p, cluster_info, i);
2916 
2917 	if (nr_good_pages) {
2918 		swap_map[0] = SWAP_MAP_BAD;
2919 		/*
2920 		 * Not mark the cluster free yet, no list
2921 		 * operation involved
2922 		 */
2923 		inc_cluster_info_page(p, cluster_info, 0);
2924 		p->max = maxpages;
2925 		p->pages = nr_good_pages;
2926 		nr_extents = setup_swap_extents(p, span);
2927 		if (nr_extents < 0)
2928 			return nr_extents;
2929 		nr_good_pages = p->pages;
2930 	}
2931 	if (!nr_good_pages) {
2932 		pr_warn("Empty swap-file\n");
2933 		return -EINVAL;
2934 	}
2935 
2936 	if (!cluster_info)
2937 		return nr_extents;
2938 
2939 
2940 	/*
2941 	 * Reduce false cache line sharing between cluster_info and
2942 	 * sharing same address space.
2943 	 */
2944 	for (k = 0; k < SWAP_CLUSTER_COLS; k++) {
2945 		j = (k + col) % SWAP_CLUSTER_COLS;
2946 		for (i = 0; i < DIV_ROUND_UP(nr_clusters, SWAP_CLUSTER_COLS); i++) {
2947 			idx = i * SWAP_CLUSTER_COLS + j;
2948 			if (idx >= nr_clusters)
2949 				continue;
2950 			if (cluster_count(&cluster_info[idx]))
2951 				continue;
2952 			cluster_set_flag(&cluster_info[idx], CLUSTER_FLAG_FREE);
2953 			cluster_list_add_tail(&p->free_clusters, cluster_info,
2954 					      idx);
2955 		}
2956 	}
2957 	return nr_extents;
2958 }
2959 
2960 /*
2961  * Helper to sys_swapon determining if a given swap
2962  * backing device queue supports DISCARD operations.
2963  */
2964 static bool swap_discardable(struct swap_info_struct *si)
2965 {
2966 	struct request_queue *q = bdev_get_queue(si->bdev);
2967 
2968 	if (!blk_queue_discard(q))
2969 		return false;
2970 
2971 	return true;
2972 }
2973 
2974 SYSCALL_DEFINE2(swapon, const char __user *, specialfile, int, swap_flags)
2975 {
2976 	struct swap_info_struct *p;
2977 	struct filename *name;
2978 	struct file *swap_file = NULL;
2979 	struct address_space *mapping;
2980 	struct dentry *dentry;
2981 	int prio;
2982 	int error;
2983 	union swap_header *swap_header;
2984 	int nr_extents;
2985 	sector_t span;
2986 	unsigned long maxpages;
2987 	unsigned char *swap_map = NULL;
2988 	struct swap_cluster_info *cluster_info = NULL;
2989 	unsigned long *frontswap_map = NULL;
2990 	struct page *page = NULL;
2991 	struct inode *inode = NULL;
2992 	bool inced_nr_rotate_swap = false;
2993 
2994 	if (swap_flags & ~SWAP_FLAGS_VALID)
2995 		return -EINVAL;
2996 
2997 	if (!capable(CAP_SYS_ADMIN))
2998 		return -EPERM;
2999 
3000 	if (!swap_avail_heads)
3001 		return -ENOMEM;
3002 
3003 	p = alloc_swap_info();
3004 	if (IS_ERR(p))
3005 		return PTR_ERR(p);
3006 
3007 	INIT_WORK(&p->discard_work, swap_discard_work);
3008 
3009 	name = getname(specialfile);
3010 	if (IS_ERR(name)) {
3011 		error = PTR_ERR(name);
3012 		name = NULL;
3013 		goto bad_swap;
3014 	}
3015 	swap_file = file_open_name(name, O_RDWR|O_LARGEFILE, 0);
3016 	if (IS_ERR(swap_file)) {
3017 		error = PTR_ERR(swap_file);
3018 		swap_file = NULL;
3019 		goto bad_swap;
3020 	}
3021 
3022 	p->swap_file = swap_file;
3023 	mapping = swap_file->f_mapping;
3024 	dentry = swap_file->f_path.dentry;
3025 	inode = mapping->host;
3026 
3027 	error = claim_swapfile(p, inode);
3028 	if (unlikely(error))
3029 		goto bad_swap;
3030 
3031 	inode_lock(inode);
3032 	if (d_unlinked(dentry) || cant_mount(dentry)) {
3033 		error = -ENOENT;
3034 		goto bad_swap_unlock_inode;
3035 	}
3036 	if (IS_SWAPFILE(inode)) {
3037 		error = -EBUSY;
3038 		goto bad_swap_unlock_inode;
3039 	}
3040 
3041 	/*
3042 	 * Read the swap header.
3043 	 */
3044 	if (!mapping->a_ops->readpage) {
3045 		error = -EINVAL;
3046 		goto bad_swap_unlock_inode;
3047 	}
3048 	page = read_mapping_page(mapping, 0, swap_file);
3049 	if (IS_ERR(page)) {
3050 		error = PTR_ERR(page);
3051 		goto bad_swap_unlock_inode;
3052 	}
3053 	swap_header = kmap(page);
3054 
3055 	maxpages = read_swap_header(p, swap_header, inode);
3056 	if (unlikely(!maxpages)) {
3057 		error = -EINVAL;
3058 		goto bad_swap_unlock_inode;
3059 	}
3060 
3061 	/* OK, set up the swap map and apply the bad block list */
3062 	swap_map = vzalloc(maxpages);
3063 	if (!swap_map) {
3064 		error = -ENOMEM;
3065 		goto bad_swap_unlock_inode;
3066 	}
3067 
3068 	if (p->bdev && blk_queue_stable_writes(p->bdev->bd_disk->queue))
3069 		p->flags |= SWP_STABLE_WRITES;
3070 
3071 	if (p->bdev && p->bdev->bd_disk->fops->rw_page)
3072 		p->flags |= SWP_SYNCHRONOUS_IO;
3073 
3074 	if (p->bdev && blk_queue_nonrot(bdev_get_queue(p->bdev))) {
3075 		int cpu;
3076 		unsigned long ci, nr_cluster;
3077 
3078 		p->flags |= SWP_SOLIDSTATE;
3079 		p->cluster_next_cpu = alloc_percpu(unsigned int);
3080 		if (!p->cluster_next_cpu) {
3081 			error = -ENOMEM;
3082 			goto bad_swap_unlock_inode;
3083 		}
3084 		/*
3085 		 * select a random position to start with to help wear leveling
3086 		 * SSD
3087 		 */
3088 		for_each_possible_cpu(cpu) {
3089 			per_cpu(*p->cluster_next_cpu, cpu) =
3090 				1 + prandom_u32_max(p->highest_bit);
3091 		}
3092 		nr_cluster = DIV_ROUND_UP(maxpages, SWAPFILE_CLUSTER);
3093 
3094 		cluster_info = kvcalloc(nr_cluster, sizeof(*cluster_info),
3095 					GFP_KERNEL);
3096 		if (!cluster_info) {
3097 			error = -ENOMEM;
3098 			goto bad_swap_unlock_inode;
3099 		}
3100 
3101 		for (ci = 0; ci < nr_cluster; ci++)
3102 			spin_lock_init(&((cluster_info + ci)->lock));
3103 
3104 		p->percpu_cluster = alloc_percpu(struct percpu_cluster);
3105 		if (!p->percpu_cluster) {
3106 			error = -ENOMEM;
3107 			goto bad_swap_unlock_inode;
3108 		}
3109 		for_each_possible_cpu(cpu) {
3110 			struct percpu_cluster *cluster;
3111 			cluster = per_cpu_ptr(p->percpu_cluster, cpu);
3112 			cluster_set_null(&cluster->index);
3113 		}
3114 	} else {
3115 		atomic_inc(&nr_rotate_swap);
3116 		inced_nr_rotate_swap = true;
3117 	}
3118 
3119 	error = swap_cgroup_swapon(p->type, maxpages);
3120 	if (error)
3121 		goto bad_swap_unlock_inode;
3122 
3123 	nr_extents = setup_swap_map_and_extents(p, swap_header, swap_map,
3124 		cluster_info, maxpages, &span);
3125 	if (unlikely(nr_extents < 0)) {
3126 		error = nr_extents;
3127 		goto bad_swap_unlock_inode;
3128 	}
3129 	/* frontswap enabled? set up bit-per-page map for frontswap */
3130 	if (IS_ENABLED(CONFIG_FRONTSWAP))
3131 		frontswap_map = kvcalloc(BITS_TO_LONGS(maxpages),
3132 					 sizeof(long),
3133 					 GFP_KERNEL);
3134 
3135 	if (p->bdev && (swap_flags & SWAP_FLAG_DISCARD) && swap_discardable(p)) {
3136 		/*
3137 		 * When discard is enabled for swap with no particular
3138 		 * policy flagged, we set all swap discard flags here in
3139 		 * order to sustain backward compatibility with older
3140 		 * swapon(8) releases.
3141 		 */
3142 		p->flags |= (SWP_DISCARDABLE | SWP_AREA_DISCARD |
3143 			     SWP_PAGE_DISCARD);
3144 
3145 		/*
3146 		 * By flagging sys_swapon, a sysadmin can tell us to
3147 		 * either do single-time area discards only, or to just
3148 		 * perform discards for released swap page-clusters.
3149 		 * Now it's time to adjust the p->flags accordingly.
3150 		 */
3151 		if (swap_flags & SWAP_FLAG_DISCARD_ONCE)
3152 			p->flags &= ~SWP_PAGE_DISCARD;
3153 		else if (swap_flags & SWAP_FLAG_DISCARD_PAGES)
3154 			p->flags &= ~SWP_AREA_DISCARD;
3155 
3156 		/* issue a swapon-time discard if it's still required */
3157 		if (p->flags & SWP_AREA_DISCARD) {
3158 			int err = discard_swap(p);
3159 			if (unlikely(err))
3160 				pr_err("swapon: discard_swap(%p): %d\n",
3161 					p, err);
3162 		}
3163 	}
3164 
3165 	error = init_swap_address_space(p->type, maxpages);
3166 	if (error)
3167 		goto bad_swap_unlock_inode;
3168 
3169 	/*
3170 	 * Flush any pending IO and dirty mappings before we start using this
3171 	 * swap device.
3172 	 */
3173 	inode->i_flags |= S_SWAPFILE;
3174 	error = inode_drain_writes(inode);
3175 	if (error) {
3176 		inode->i_flags &= ~S_SWAPFILE;
3177 		goto free_swap_address_space;
3178 	}
3179 
3180 	mutex_lock(&swapon_mutex);
3181 	prio = -1;
3182 	if (swap_flags & SWAP_FLAG_PREFER)
3183 		prio =
3184 		  (swap_flags & SWAP_FLAG_PRIO_MASK) >> SWAP_FLAG_PRIO_SHIFT;
3185 	enable_swap_info(p, prio, swap_map, cluster_info, frontswap_map);
3186 
3187 	pr_info("Adding %uk swap on %s.  Priority:%d extents:%d across:%lluk %s%s%s%s%s\n",
3188 		p->pages<<(PAGE_SHIFT-10), name->name, p->prio,
3189 		nr_extents, (unsigned long long)span<<(PAGE_SHIFT-10),
3190 		(p->flags & SWP_SOLIDSTATE) ? "SS" : "",
3191 		(p->flags & SWP_DISCARDABLE) ? "D" : "",
3192 		(p->flags & SWP_AREA_DISCARD) ? "s" : "",
3193 		(p->flags & SWP_PAGE_DISCARD) ? "c" : "",
3194 		(frontswap_map) ? "FS" : "");
3195 
3196 	mutex_unlock(&swapon_mutex);
3197 	atomic_inc(&proc_poll_event);
3198 	wake_up_interruptible(&proc_poll_wait);
3199 
3200 	error = 0;
3201 	goto out;
3202 free_swap_address_space:
3203 	exit_swap_address_space(p->type);
3204 bad_swap_unlock_inode:
3205 	inode_unlock(inode);
3206 bad_swap:
3207 	free_percpu(p->percpu_cluster);
3208 	p->percpu_cluster = NULL;
3209 	free_percpu(p->cluster_next_cpu);
3210 	p->cluster_next_cpu = NULL;
3211 	if (inode && S_ISBLK(inode->i_mode) && p->bdev) {
3212 		set_blocksize(p->bdev, p->old_block_size);
3213 		blkdev_put(p->bdev, FMODE_READ | FMODE_WRITE | FMODE_EXCL);
3214 	}
3215 	inode = NULL;
3216 	destroy_swap_extents(p);
3217 	swap_cgroup_swapoff(p->type);
3218 	spin_lock(&swap_lock);
3219 	p->swap_file = NULL;
3220 	p->flags = 0;
3221 	spin_unlock(&swap_lock);
3222 	vfree(swap_map);
3223 	kvfree(cluster_info);
3224 	kvfree(frontswap_map);
3225 	if (inced_nr_rotate_swap)
3226 		atomic_dec(&nr_rotate_swap);
3227 	if (swap_file)
3228 		filp_close(swap_file, NULL);
3229 out:
3230 	if (page && !IS_ERR(page)) {
3231 		kunmap(page);
3232 		put_page(page);
3233 	}
3234 	if (name)
3235 		putname(name);
3236 	if (inode)
3237 		inode_unlock(inode);
3238 	if (!error)
3239 		enable_swap_slots_cache();
3240 	return error;
3241 }
3242 
3243 void si_swapinfo(struct sysinfo *val)
3244 {
3245 	unsigned int type;
3246 	unsigned long nr_to_be_unused = 0;
3247 
3248 	spin_lock(&swap_lock);
3249 	for (type = 0; type < nr_swapfiles; type++) {
3250 		struct swap_info_struct *si = swap_info[type];
3251 
3252 		if ((si->flags & SWP_USED) && !(si->flags & SWP_WRITEOK))
3253 			nr_to_be_unused += si->inuse_pages;
3254 	}
3255 	val->freeswap = atomic_long_read(&nr_swap_pages) + nr_to_be_unused;
3256 	val->totalswap = total_swap_pages + nr_to_be_unused;
3257 	spin_unlock(&swap_lock);
3258 }
3259 
3260 /*
3261  * Verify that a swap entry is valid and increment its swap map count.
3262  *
3263  * Returns error code in following case.
3264  * - success -> 0
3265  * - swp_entry is invalid -> EINVAL
3266  * - swp_entry is migration entry -> EINVAL
3267  * - swap-cache reference is requested but there is already one. -> EEXIST
3268  * - swap-cache reference is requested but the entry is not used. -> ENOENT
3269  * - swap-mapped reference requested but needs continued swap count. -> ENOMEM
3270  */
3271 static int __swap_duplicate(swp_entry_t entry, unsigned char usage)
3272 {
3273 	struct swap_info_struct *p;
3274 	struct swap_cluster_info *ci;
3275 	unsigned long offset;
3276 	unsigned char count;
3277 	unsigned char has_cache;
3278 	int err;
3279 
3280 	p = get_swap_device(entry);
3281 	if (!p)
3282 		return -EINVAL;
3283 
3284 	offset = swp_offset(entry);
3285 	ci = lock_cluster_or_swap_info(p, offset);
3286 
3287 	count = p->swap_map[offset];
3288 
3289 	/*
3290 	 * swapin_readahead() doesn't check if a swap entry is valid, so the
3291 	 * swap entry could be SWAP_MAP_BAD. Check here with lock held.
3292 	 */
3293 	if (unlikely(swap_count(count) == SWAP_MAP_BAD)) {
3294 		err = -ENOENT;
3295 		goto unlock_out;
3296 	}
3297 
3298 	has_cache = count & SWAP_HAS_CACHE;
3299 	count &= ~SWAP_HAS_CACHE;
3300 	err = 0;
3301 
3302 	if (usage == SWAP_HAS_CACHE) {
3303 
3304 		/* set SWAP_HAS_CACHE if there is no cache and entry is used */
3305 		if (!has_cache && count)
3306 			has_cache = SWAP_HAS_CACHE;
3307 		else if (has_cache)		/* someone else added cache */
3308 			err = -EEXIST;
3309 		else				/* no users remaining */
3310 			err = -ENOENT;
3311 
3312 	} else if (count || has_cache) {
3313 
3314 		if ((count & ~COUNT_CONTINUED) < SWAP_MAP_MAX)
3315 			count += usage;
3316 		else if ((count & ~COUNT_CONTINUED) > SWAP_MAP_MAX)
3317 			err = -EINVAL;
3318 		else if (swap_count_continued(p, offset, count))
3319 			count = COUNT_CONTINUED;
3320 		else
3321 			err = -ENOMEM;
3322 	} else
3323 		err = -ENOENT;			/* unused swap entry */
3324 
3325 	WRITE_ONCE(p->swap_map[offset], count | has_cache);
3326 
3327 unlock_out:
3328 	unlock_cluster_or_swap_info(p, ci);
3329 	if (p)
3330 		put_swap_device(p);
3331 	return err;
3332 }
3333 
3334 /*
3335  * Help swapoff by noting that swap entry belongs to shmem/tmpfs
3336  * (in which case its reference count is never incremented).
3337  */
3338 void swap_shmem_alloc(swp_entry_t entry)
3339 {
3340 	__swap_duplicate(entry, SWAP_MAP_SHMEM);
3341 }
3342 
3343 /*
3344  * Increase reference count of swap entry by 1.
3345  * Returns 0 for success, or -ENOMEM if a swap_count_continuation is required
3346  * but could not be atomically allocated.  Returns 0, just as if it succeeded,
3347  * if __swap_duplicate() fails for another reason (-EINVAL or -ENOENT), which
3348  * might occur if a page table entry has got corrupted.
3349  */
3350 int swap_duplicate(swp_entry_t entry)
3351 {
3352 	int err = 0;
3353 
3354 	while (!err && __swap_duplicate(entry, 1) == -ENOMEM)
3355 		err = add_swap_count_continuation(entry, GFP_ATOMIC);
3356 	return err;
3357 }
3358 
3359 /*
3360  * @entry: swap entry for which we allocate swap cache.
3361  *
3362  * Called when allocating swap cache for existing swap entry,
3363  * This can return error codes. Returns 0 at success.
3364  * -EEXIST means there is a swap cache.
3365  * Note: return code is different from swap_duplicate().
3366  */
3367 int swapcache_prepare(swp_entry_t entry)
3368 {
3369 	return __swap_duplicate(entry, SWAP_HAS_CACHE);
3370 }
3371 
3372 struct swap_info_struct *swp_swap_info(swp_entry_t entry)
3373 {
3374 	return swap_type_to_swap_info(swp_type(entry));
3375 }
3376 
3377 struct swap_info_struct *page_swap_info(struct page *page)
3378 {
3379 	swp_entry_t entry = { .val = page_private(page) };
3380 	return swp_swap_info(entry);
3381 }
3382 
3383 /*
3384  * out-of-line methods to avoid include hell.
3385  */
3386 struct address_space *swapcache_mapping(struct folio *folio)
3387 {
3388 	return page_swap_info(&folio->page)->swap_file->f_mapping;
3389 }
3390 EXPORT_SYMBOL_GPL(swapcache_mapping);
3391 
3392 pgoff_t __page_file_index(struct page *page)
3393 {
3394 	swp_entry_t swap = { .val = page_private(page) };
3395 	return swp_offset(swap);
3396 }
3397 EXPORT_SYMBOL_GPL(__page_file_index);
3398 
3399 /*
3400  * add_swap_count_continuation - called when a swap count is duplicated
3401  * beyond SWAP_MAP_MAX, it allocates a new page and links that to the entry's
3402  * page of the original vmalloc'ed swap_map, to hold the continuation count
3403  * (for that entry and for its neighbouring PAGE_SIZE swap entries).  Called
3404  * again when count is duplicated beyond SWAP_MAP_MAX * SWAP_CONT_MAX, etc.
3405  *
3406  * These continuation pages are seldom referenced: the common paths all work
3407  * on the original swap_map, only referring to a continuation page when the
3408  * low "digit" of a count is incremented or decremented through SWAP_MAP_MAX.
3409  *
3410  * add_swap_count_continuation(, GFP_ATOMIC) can be called while holding
3411  * page table locks; if it fails, add_swap_count_continuation(, GFP_KERNEL)
3412  * can be called after dropping locks.
3413  */
3414 int add_swap_count_continuation(swp_entry_t entry, gfp_t gfp_mask)
3415 {
3416 	struct swap_info_struct *si;
3417 	struct swap_cluster_info *ci;
3418 	struct page *head;
3419 	struct page *page;
3420 	struct page *list_page;
3421 	pgoff_t offset;
3422 	unsigned char count;
3423 	int ret = 0;
3424 
3425 	/*
3426 	 * When debugging, it's easier to use __GFP_ZERO here; but it's better
3427 	 * for latency not to zero a page while GFP_ATOMIC and holding locks.
3428 	 */
3429 	page = alloc_page(gfp_mask | __GFP_HIGHMEM);
3430 
3431 	si = get_swap_device(entry);
3432 	if (!si) {
3433 		/*
3434 		 * An acceptable race has occurred since the failing
3435 		 * __swap_duplicate(): the swap device may be swapoff
3436 		 */
3437 		goto outer;
3438 	}
3439 	spin_lock(&si->lock);
3440 
3441 	offset = swp_offset(entry);
3442 
3443 	ci = lock_cluster(si, offset);
3444 
3445 	count = swap_count(si->swap_map[offset]);
3446 
3447 	if ((count & ~COUNT_CONTINUED) != SWAP_MAP_MAX) {
3448 		/*
3449 		 * The higher the swap count, the more likely it is that tasks
3450 		 * will race to add swap count continuation: we need to avoid
3451 		 * over-provisioning.
3452 		 */
3453 		goto out;
3454 	}
3455 
3456 	if (!page) {
3457 		ret = -ENOMEM;
3458 		goto out;
3459 	}
3460 
3461 	/*
3462 	 * We are fortunate that although vmalloc_to_page uses pte_offset_map,
3463 	 * no architecture is using highmem pages for kernel page tables: so it
3464 	 * will not corrupt the GFP_ATOMIC caller's atomic page table kmaps.
3465 	 */
3466 	head = vmalloc_to_page(si->swap_map + offset);
3467 	offset &= ~PAGE_MASK;
3468 
3469 	spin_lock(&si->cont_lock);
3470 	/*
3471 	 * Page allocation does not initialize the page's lru field,
3472 	 * but it does always reset its private field.
3473 	 */
3474 	if (!page_private(head)) {
3475 		BUG_ON(count & COUNT_CONTINUED);
3476 		INIT_LIST_HEAD(&head->lru);
3477 		set_page_private(head, SWP_CONTINUED);
3478 		si->flags |= SWP_CONTINUED;
3479 	}
3480 
3481 	list_for_each_entry(list_page, &head->lru, lru) {
3482 		unsigned char *map;
3483 
3484 		/*
3485 		 * If the previous map said no continuation, but we've found
3486 		 * a continuation page, free our allocation and use this one.
3487 		 */
3488 		if (!(count & COUNT_CONTINUED))
3489 			goto out_unlock_cont;
3490 
3491 		map = kmap_atomic(list_page) + offset;
3492 		count = *map;
3493 		kunmap_atomic(map);
3494 
3495 		/*
3496 		 * If this continuation count now has some space in it,
3497 		 * free our allocation and use this one.
3498 		 */
3499 		if ((count & ~COUNT_CONTINUED) != SWAP_CONT_MAX)
3500 			goto out_unlock_cont;
3501 	}
3502 
3503 	list_add_tail(&page->lru, &head->lru);
3504 	page = NULL;			/* now it's attached, don't free it */
3505 out_unlock_cont:
3506 	spin_unlock(&si->cont_lock);
3507 out:
3508 	unlock_cluster(ci);
3509 	spin_unlock(&si->lock);
3510 	put_swap_device(si);
3511 outer:
3512 	if (page)
3513 		__free_page(page);
3514 	return ret;
3515 }
3516 
3517 /*
3518  * swap_count_continued - when the original swap_map count is incremented
3519  * from SWAP_MAP_MAX, check if there is already a continuation page to carry
3520  * into, carry if so, or else fail until a new continuation page is allocated;
3521  * when the original swap_map count is decremented from 0 with continuation,
3522  * borrow from the continuation and report whether it still holds more.
3523  * Called while __swap_duplicate() or swap_entry_free() holds swap or cluster
3524  * lock.
3525  */
3526 static bool swap_count_continued(struct swap_info_struct *si,
3527 				 pgoff_t offset, unsigned char count)
3528 {
3529 	struct page *head;
3530 	struct page *page;
3531 	unsigned char *map;
3532 	bool ret;
3533 
3534 	head = vmalloc_to_page(si->swap_map + offset);
3535 	if (page_private(head) != SWP_CONTINUED) {
3536 		BUG_ON(count & COUNT_CONTINUED);
3537 		return false;		/* need to add count continuation */
3538 	}
3539 
3540 	spin_lock(&si->cont_lock);
3541 	offset &= ~PAGE_MASK;
3542 	page = list_next_entry(head, lru);
3543 	map = kmap_atomic(page) + offset;
3544 
3545 	if (count == SWAP_MAP_MAX)	/* initial increment from swap_map */
3546 		goto init_map;		/* jump over SWAP_CONT_MAX checks */
3547 
3548 	if (count == (SWAP_MAP_MAX | COUNT_CONTINUED)) { /* incrementing */
3549 		/*
3550 		 * Think of how you add 1 to 999
3551 		 */
3552 		while (*map == (SWAP_CONT_MAX | COUNT_CONTINUED)) {
3553 			kunmap_atomic(map);
3554 			page = list_next_entry(page, lru);
3555 			BUG_ON(page == head);
3556 			map = kmap_atomic(page) + offset;
3557 		}
3558 		if (*map == SWAP_CONT_MAX) {
3559 			kunmap_atomic(map);
3560 			page = list_next_entry(page, lru);
3561 			if (page == head) {
3562 				ret = false;	/* add count continuation */
3563 				goto out;
3564 			}
3565 			map = kmap_atomic(page) + offset;
3566 init_map:		*map = 0;		/* we didn't zero the page */
3567 		}
3568 		*map += 1;
3569 		kunmap_atomic(map);
3570 		while ((page = list_prev_entry(page, lru)) != head) {
3571 			map = kmap_atomic(page) + offset;
3572 			*map = COUNT_CONTINUED;
3573 			kunmap_atomic(map);
3574 		}
3575 		ret = true;			/* incremented */
3576 
3577 	} else {				/* decrementing */
3578 		/*
3579 		 * Think of how you subtract 1 from 1000
3580 		 */
3581 		BUG_ON(count != COUNT_CONTINUED);
3582 		while (*map == COUNT_CONTINUED) {
3583 			kunmap_atomic(map);
3584 			page = list_next_entry(page, lru);
3585 			BUG_ON(page == head);
3586 			map = kmap_atomic(page) + offset;
3587 		}
3588 		BUG_ON(*map == 0);
3589 		*map -= 1;
3590 		if (*map == 0)
3591 			count = 0;
3592 		kunmap_atomic(map);
3593 		while ((page = list_prev_entry(page, lru)) != head) {
3594 			map = kmap_atomic(page) + offset;
3595 			*map = SWAP_CONT_MAX | count;
3596 			count = COUNT_CONTINUED;
3597 			kunmap_atomic(map);
3598 		}
3599 		ret = count == COUNT_CONTINUED;
3600 	}
3601 out:
3602 	spin_unlock(&si->cont_lock);
3603 	return ret;
3604 }
3605 
3606 /*
3607  * free_swap_count_continuations - swapoff free all the continuation pages
3608  * appended to the swap_map, after swap_map is quiesced, before vfree'ing it.
3609  */
3610 static void free_swap_count_continuations(struct swap_info_struct *si)
3611 {
3612 	pgoff_t offset;
3613 
3614 	for (offset = 0; offset < si->max; offset += PAGE_SIZE) {
3615 		struct page *head;
3616 		head = vmalloc_to_page(si->swap_map + offset);
3617 		if (page_private(head)) {
3618 			struct page *page, *next;
3619 
3620 			list_for_each_entry_safe(page, next, &head->lru, lru) {
3621 				list_del(&page->lru);
3622 				__free_page(page);
3623 			}
3624 		}
3625 	}
3626 }
3627 
3628 #if defined(CONFIG_MEMCG) && defined(CONFIG_BLK_CGROUP)
3629 void __cgroup_throttle_swaprate(struct page *page, gfp_t gfp_mask)
3630 {
3631 	struct swap_info_struct *si, *next;
3632 	int nid = page_to_nid(page);
3633 
3634 	if (!(gfp_mask & __GFP_IO))
3635 		return;
3636 
3637 	if (!blk_cgroup_congested())
3638 		return;
3639 
3640 	/*
3641 	 * We've already scheduled a throttle, avoid taking the global swap
3642 	 * lock.
3643 	 */
3644 	if (current->throttle_queue)
3645 		return;
3646 
3647 	spin_lock(&swap_avail_lock);
3648 	plist_for_each_entry_safe(si, next, &swap_avail_heads[nid],
3649 				  avail_lists[nid]) {
3650 		if (si->bdev) {
3651 			blkcg_schedule_throttle(bdev_get_queue(si->bdev), true);
3652 			break;
3653 		}
3654 	}
3655 	spin_unlock(&swap_avail_lock);
3656 }
3657 #endif
3658 
3659 static int __init swapfile_init(void)
3660 {
3661 	int nid;
3662 
3663 	swap_avail_heads = kmalloc_array(nr_node_ids, sizeof(struct plist_head),
3664 					 GFP_KERNEL);
3665 	if (!swap_avail_heads) {
3666 		pr_emerg("Not enough memory for swap heads, swap is disabled\n");
3667 		return -ENOMEM;
3668 	}
3669 
3670 	for_each_node(nid)
3671 		plist_head_init(&swap_avail_heads[nid]);
3672 
3673 	return 0;
3674 }
3675 subsys_initcall(swapfile_init);
3676