1 /* 2 * linux/mm/swapfile.c 3 * 4 * Copyright (C) 1991, 1992, 1993, 1994 Linus Torvalds 5 * Swap reorganised 29.12.95, Stephen Tweedie 6 */ 7 8 #include <linux/mm.h> 9 #include <linux/sched/mm.h> 10 #include <linux/sched/task.h> 11 #include <linux/hugetlb.h> 12 #include <linux/mman.h> 13 #include <linux/slab.h> 14 #include <linux/kernel_stat.h> 15 #include <linux/swap.h> 16 #include <linux/vmalloc.h> 17 #include <linux/pagemap.h> 18 #include <linux/namei.h> 19 #include <linux/shmem_fs.h> 20 #include <linux/blkdev.h> 21 #include <linux/random.h> 22 #include <linux/writeback.h> 23 #include <linux/proc_fs.h> 24 #include <linux/seq_file.h> 25 #include <linux/init.h> 26 #include <linux/ksm.h> 27 #include <linux/rmap.h> 28 #include <linux/security.h> 29 #include <linux/backing-dev.h> 30 #include <linux/mutex.h> 31 #include <linux/capability.h> 32 #include <linux/syscalls.h> 33 #include <linux/memcontrol.h> 34 #include <linux/poll.h> 35 #include <linux/oom.h> 36 #include <linux/frontswap.h> 37 #include <linux/swapfile.h> 38 #include <linux/export.h> 39 #include <linux/swap_slots.h> 40 #include <linux/sort.h> 41 42 #include <asm/pgtable.h> 43 #include <asm/tlbflush.h> 44 #include <linux/swapops.h> 45 #include <linux/swap_cgroup.h> 46 47 static bool swap_count_continued(struct swap_info_struct *, pgoff_t, 48 unsigned char); 49 static void free_swap_count_continuations(struct swap_info_struct *); 50 static sector_t map_swap_entry(swp_entry_t, struct block_device**); 51 52 DEFINE_SPINLOCK(swap_lock); 53 static unsigned int nr_swapfiles; 54 atomic_long_t nr_swap_pages; 55 /* 56 * Some modules use swappable objects and may try to swap them out under 57 * memory pressure (via the shrinker). Before doing so, they may wish to 58 * check to see if any swap space is available. 59 */ 60 EXPORT_SYMBOL_GPL(nr_swap_pages); 61 /* protected with swap_lock. reading in vm_swap_full() doesn't need lock */ 62 long total_swap_pages; 63 static int least_priority = -1; 64 65 static const char Bad_file[] = "Bad swap file entry "; 66 static const char Unused_file[] = "Unused swap file entry "; 67 static const char Bad_offset[] = "Bad swap offset entry "; 68 static const char Unused_offset[] = "Unused swap offset entry "; 69 70 /* 71 * all active swap_info_structs 72 * protected with swap_lock, and ordered by priority. 73 */ 74 PLIST_HEAD(swap_active_head); 75 76 /* 77 * all available (active, not full) swap_info_structs 78 * protected with swap_avail_lock, ordered by priority. 79 * This is used by get_swap_page() instead of swap_active_head 80 * because swap_active_head includes all swap_info_structs, 81 * but get_swap_page() doesn't need to look at full ones. 82 * This uses its own lock instead of swap_lock because when a 83 * swap_info_struct changes between not-full/full, it needs to 84 * add/remove itself to/from this list, but the swap_info_struct->lock 85 * is held and the locking order requires swap_lock to be taken 86 * before any swap_info_struct->lock. 87 */ 88 static struct plist_head *swap_avail_heads; 89 static DEFINE_SPINLOCK(swap_avail_lock); 90 91 struct swap_info_struct *swap_info[MAX_SWAPFILES]; 92 93 static DEFINE_MUTEX(swapon_mutex); 94 95 static DECLARE_WAIT_QUEUE_HEAD(proc_poll_wait); 96 /* Activity counter to indicate that a swapon or swapoff has occurred */ 97 static atomic_t proc_poll_event = ATOMIC_INIT(0); 98 99 atomic_t nr_rotate_swap = ATOMIC_INIT(0); 100 101 static inline unsigned char swap_count(unsigned char ent) 102 { 103 return ent & ~SWAP_HAS_CACHE; /* may include COUNT_CONTINUED flag */ 104 } 105 106 /* Reclaim the swap entry anyway if possible */ 107 #define TTRS_ANYWAY 0x1 108 /* 109 * Reclaim the swap entry if there are no more mappings of the 110 * corresponding page 111 */ 112 #define TTRS_UNMAPPED 0x2 113 /* Reclaim the swap entry if swap is getting full*/ 114 #define TTRS_FULL 0x4 115 116 /* returns 1 if swap entry is freed */ 117 static int __try_to_reclaim_swap(struct swap_info_struct *si, 118 unsigned long offset, unsigned long flags) 119 { 120 swp_entry_t entry = swp_entry(si->type, offset); 121 struct page *page; 122 int ret = 0; 123 124 page = find_get_page(swap_address_space(entry), offset); 125 if (!page) 126 return 0; 127 /* 128 * When this function is called from scan_swap_map_slots() and it's 129 * called by vmscan.c at reclaiming pages. So, we hold a lock on a page, 130 * here. We have to use trylock for avoiding deadlock. This is a special 131 * case and you should use try_to_free_swap() with explicit lock_page() 132 * in usual operations. 133 */ 134 if (trylock_page(page)) { 135 if ((flags & TTRS_ANYWAY) || 136 ((flags & TTRS_UNMAPPED) && !page_mapped(page)) || 137 ((flags & TTRS_FULL) && mem_cgroup_swap_full(page))) 138 ret = try_to_free_swap(page); 139 unlock_page(page); 140 } 141 put_page(page); 142 return ret; 143 } 144 145 /* 146 * swapon tell device that all the old swap contents can be discarded, 147 * to allow the swap device to optimize its wear-levelling. 148 */ 149 static int discard_swap(struct swap_info_struct *si) 150 { 151 struct swap_extent *se; 152 sector_t start_block; 153 sector_t nr_blocks; 154 int err = 0; 155 156 /* Do not discard the swap header page! */ 157 se = &si->first_swap_extent; 158 start_block = (se->start_block + 1) << (PAGE_SHIFT - 9); 159 nr_blocks = ((sector_t)se->nr_pages - 1) << (PAGE_SHIFT - 9); 160 if (nr_blocks) { 161 err = blkdev_issue_discard(si->bdev, start_block, 162 nr_blocks, GFP_KERNEL, 0); 163 if (err) 164 return err; 165 cond_resched(); 166 } 167 168 list_for_each_entry(se, &si->first_swap_extent.list, list) { 169 start_block = se->start_block << (PAGE_SHIFT - 9); 170 nr_blocks = (sector_t)se->nr_pages << (PAGE_SHIFT - 9); 171 172 err = blkdev_issue_discard(si->bdev, start_block, 173 nr_blocks, GFP_KERNEL, 0); 174 if (err) 175 break; 176 177 cond_resched(); 178 } 179 return err; /* That will often be -EOPNOTSUPP */ 180 } 181 182 /* 183 * swap allocation tell device that a cluster of swap can now be discarded, 184 * to allow the swap device to optimize its wear-levelling. 185 */ 186 static void discard_swap_cluster(struct swap_info_struct *si, 187 pgoff_t start_page, pgoff_t nr_pages) 188 { 189 struct swap_extent *se = si->curr_swap_extent; 190 int found_extent = 0; 191 192 while (nr_pages) { 193 if (se->start_page <= start_page && 194 start_page < se->start_page + se->nr_pages) { 195 pgoff_t offset = start_page - se->start_page; 196 sector_t start_block = se->start_block + offset; 197 sector_t nr_blocks = se->nr_pages - offset; 198 199 if (nr_blocks > nr_pages) 200 nr_blocks = nr_pages; 201 start_page += nr_blocks; 202 nr_pages -= nr_blocks; 203 204 if (!found_extent++) 205 si->curr_swap_extent = se; 206 207 start_block <<= PAGE_SHIFT - 9; 208 nr_blocks <<= PAGE_SHIFT - 9; 209 if (blkdev_issue_discard(si->bdev, start_block, 210 nr_blocks, GFP_NOIO, 0)) 211 break; 212 } 213 214 se = list_next_entry(se, list); 215 } 216 } 217 218 #ifdef CONFIG_THP_SWAP 219 #define SWAPFILE_CLUSTER HPAGE_PMD_NR 220 221 #define swap_entry_size(size) (size) 222 #else 223 #define SWAPFILE_CLUSTER 256 224 225 /* 226 * Define swap_entry_size() as constant to let compiler to optimize 227 * out some code if !CONFIG_THP_SWAP 228 */ 229 #define swap_entry_size(size) 1 230 #endif 231 #define LATENCY_LIMIT 256 232 233 static inline void cluster_set_flag(struct swap_cluster_info *info, 234 unsigned int flag) 235 { 236 info->flags = flag; 237 } 238 239 static inline unsigned int cluster_count(struct swap_cluster_info *info) 240 { 241 return info->data; 242 } 243 244 static inline void cluster_set_count(struct swap_cluster_info *info, 245 unsigned int c) 246 { 247 info->data = c; 248 } 249 250 static inline void cluster_set_count_flag(struct swap_cluster_info *info, 251 unsigned int c, unsigned int f) 252 { 253 info->flags = f; 254 info->data = c; 255 } 256 257 static inline unsigned int cluster_next(struct swap_cluster_info *info) 258 { 259 return info->data; 260 } 261 262 static inline void cluster_set_next(struct swap_cluster_info *info, 263 unsigned int n) 264 { 265 info->data = n; 266 } 267 268 static inline void cluster_set_next_flag(struct swap_cluster_info *info, 269 unsigned int n, unsigned int f) 270 { 271 info->flags = f; 272 info->data = n; 273 } 274 275 static inline bool cluster_is_free(struct swap_cluster_info *info) 276 { 277 return info->flags & CLUSTER_FLAG_FREE; 278 } 279 280 static inline bool cluster_is_null(struct swap_cluster_info *info) 281 { 282 return info->flags & CLUSTER_FLAG_NEXT_NULL; 283 } 284 285 static inline void cluster_set_null(struct swap_cluster_info *info) 286 { 287 info->flags = CLUSTER_FLAG_NEXT_NULL; 288 info->data = 0; 289 } 290 291 static inline bool cluster_is_huge(struct swap_cluster_info *info) 292 { 293 if (IS_ENABLED(CONFIG_THP_SWAP)) 294 return info->flags & CLUSTER_FLAG_HUGE; 295 return false; 296 } 297 298 static inline void cluster_clear_huge(struct swap_cluster_info *info) 299 { 300 info->flags &= ~CLUSTER_FLAG_HUGE; 301 } 302 303 static inline struct swap_cluster_info *lock_cluster(struct swap_info_struct *si, 304 unsigned long offset) 305 { 306 struct swap_cluster_info *ci; 307 308 ci = si->cluster_info; 309 if (ci) { 310 ci += offset / SWAPFILE_CLUSTER; 311 spin_lock(&ci->lock); 312 } 313 return ci; 314 } 315 316 static inline void unlock_cluster(struct swap_cluster_info *ci) 317 { 318 if (ci) 319 spin_unlock(&ci->lock); 320 } 321 322 /* 323 * Determine the locking method in use for this device. Return 324 * swap_cluster_info if SSD-style cluster-based locking is in place. 325 */ 326 static inline struct swap_cluster_info *lock_cluster_or_swap_info( 327 struct swap_info_struct *si, unsigned long offset) 328 { 329 struct swap_cluster_info *ci; 330 331 /* Try to use fine-grained SSD-style locking if available: */ 332 ci = lock_cluster(si, offset); 333 /* Otherwise, fall back to traditional, coarse locking: */ 334 if (!ci) 335 spin_lock(&si->lock); 336 337 return ci; 338 } 339 340 static inline void unlock_cluster_or_swap_info(struct swap_info_struct *si, 341 struct swap_cluster_info *ci) 342 { 343 if (ci) 344 unlock_cluster(ci); 345 else 346 spin_unlock(&si->lock); 347 } 348 349 static inline bool cluster_list_empty(struct swap_cluster_list *list) 350 { 351 return cluster_is_null(&list->head); 352 } 353 354 static inline unsigned int cluster_list_first(struct swap_cluster_list *list) 355 { 356 return cluster_next(&list->head); 357 } 358 359 static void cluster_list_init(struct swap_cluster_list *list) 360 { 361 cluster_set_null(&list->head); 362 cluster_set_null(&list->tail); 363 } 364 365 static void cluster_list_add_tail(struct swap_cluster_list *list, 366 struct swap_cluster_info *ci, 367 unsigned int idx) 368 { 369 if (cluster_list_empty(list)) { 370 cluster_set_next_flag(&list->head, idx, 0); 371 cluster_set_next_flag(&list->tail, idx, 0); 372 } else { 373 struct swap_cluster_info *ci_tail; 374 unsigned int tail = cluster_next(&list->tail); 375 376 /* 377 * Nested cluster lock, but both cluster locks are 378 * only acquired when we held swap_info_struct->lock 379 */ 380 ci_tail = ci + tail; 381 spin_lock_nested(&ci_tail->lock, SINGLE_DEPTH_NESTING); 382 cluster_set_next(ci_tail, idx); 383 spin_unlock(&ci_tail->lock); 384 cluster_set_next_flag(&list->tail, idx, 0); 385 } 386 } 387 388 static unsigned int cluster_list_del_first(struct swap_cluster_list *list, 389 struct swap_cluster_info *ci) 390 { 391 unsigned int idx; 392 393 idx = cluster_next(&list->head); 394 if (cluster_next(&list->tail) == idx) { 395 cluster_set_null(&list->head); 396 cluster_set_null(&list->tail); 397 } else 398 cluster_set_next_flag(&list->head, 399 cluster_next(&ci[idx]), 0); 400 401 return idx; 402 } 403 404 /* Add a cluster to discard list and schedule it to do discard */ 405 static void swap_cluster_schedule_discard(struct swap_info_struct *si, 406 unsigned int idx) 407 { 408 /* 409 * If scan_swap_map() can't find a free cluster, it will check 410 * si->swap_map directly. To make sure the discarding cluster isn't 411 * taken by scan_swap_map(), mark the swap entries bad (occupied). It 412 * will be cleared after discard 413 */ 414 memset(si->swap_map + idx * SWAPFILE_CLUSTER, 415 SWAP_MAP_BAD, SWAPFILE_CLUSTER); 416 417 cluster_list_add_tail(&si->discard_clusters, si->cluster_info, idx); 418 419 schedule_work(&si->discard_work); 420 } 421 422 static void __free_cluster(struct swap_info_struct *si, unsigned long idx) 423 { 424 struct swap_cluster_info *ci = si->cluster_info; 425 426 cluster_set_flag(ci + idx, CLUSTER_FLAG_FREE); 427 cluster_list_add_tail(&si->free_clusters, ci, idx); 428 } 429 430 /* 431 * Doing discard actually. After a cluster discard is finished, the cluster 432 * will be added to free cluster list. caller should hold si->lock. 433 */ 434 static void swap_do_scheduled_discard(struct swap_info_struct *si) 435 { 436 struct swap_cluster_info *info, *ci; 437 unsigned int idx; 438 439 info = si->cluster_info; 440 441 while (!cluster_list_empty(&si->discard_clusters)) { 442 idx = cluster_list_del_first(&si->discard_clusters, info); 443 spin_unlock(&si->lock); 444 445 discard_swap_cluster(si, idx * SWAPFILE_CLUSTER, 446 SWAPFILE_CLUSTER); 447 448 spin_lock(&si->lock); 449 ci = lock_cluster(si, idx * SWAPFILE_CLUSTER); 450 __free_cluster(si, idx); 451 memset(si->swap_map + idx * SWAPFILE_CLUSTER, 452 0, SWAPFILE_CLUSTER); 453 unlock_cluster(ci); 454 } 455 } 456 457 static void swap_discard_work(struct work_struct *work) 458 { 459 struct swap_info_struct *si; 460 461 si = container_of(work, struct swap_info_struct, discard_work); 462 463 spin_lock(&si->lock); 464 swap_do_scheduled_discard(si); 465 spin_unlock(&si->lock); 466 } 467 468 static void alloc_cluster(struct swap_info_struct *si, unsigned long idx) 469 { 470 struct swap_cluster_info *ci = si->cluster_info; 471 472 VM_BUG_ON(cluster_list_first(&si->free_clusters) != idx); 473 cluster_list_del_first(&si->free_clusters, ci); 474 cluster_set_count_flag(ci + idx, 0, 0); 475 } 476 477 static void free_cluster(struct swap_info_struct *si, unsigned long idx) 478 { 479 struct swap_cluster_info *ci = si->cluster_info + idx; 480 481 VM_BUG_ON(cluster_count(ci) != 0); 482 /* 483 * If the swap is discardable, prepare discard the cluster 484 * instead of free it immediately. The cluster will be freed 485 * after discard. 486 */ 487 if ((si->flags & (SWP_WRITEOK | SWP_PAGE_DISCARD)) == 488 (SWP_WRITEOK | SWP_PAGE_DISCARD)) { 489 swap_cluster_schedule_discard(si, idx); 490 return; 491 } 492 493 __free_cluster(si, idx); 494 } 495 496 /* 497 * The cluster corresponding to page_nr will be used. The cluster will be 498 * removed from free cluster list and its usage counter will be increased. 499 */ 500 static void inc_cluster_info_page(struct swap_info_struct *p, 501 struct swap_cluster_info *cluster_info, unsigned long page_nr) 502 { 503 unsigned long idx = page_nr / SWAPFILE_CLUSTER; 504 505 if (!cluster_info) 506 return; 507 if (cluster_is_free(&cluster_info[idx])) 508 alloc_cluster(p, idx); 509 510 VM_BUG_ON(cluster_count(&cluster_info[idx]) >= SWAPFILE_CLUSTER); 511 cluster_set_count(&cluster_info[idx], 512 cluster_count(&cluster_info[idx]) + 1); 513 } 514 515 /* 516 * The cluster corresponding to page_nr decreases one usage. If the usage 517 * counter becomes 0, which means no page in the cluster is in using, we can 518 * optionally discard the cluster and add it to free cluster list. 519 */ 520 static void dec_cluster_info_page(struct swap_info_struct *p, 521 struct swap_cluster_info *cluster_info, unsigned long page_nr) 522 { 523 unsigned long idx = page_nr / SWAPFILE_CLUSTER; 524 525 if (!cluster_info) 526 return; 527 528 VM_BUG_ON(cluster_count(&cluster_info[idx]) == 0); 529 cluster_set_count(&cluster_info[idx], 530 cluster_count(&cluster_info[idx]) - 1); 531 532 if (cluster_count(&cluster_info[idx]) == 0) 533 free_cluster(p, idx); 534 } 535 536 /* 537 * It's possible scan_swap_map() uses a free cluster in the middle of free 538 * cluster list. Avoiding such abuse to avoid list corruption. 539 */ 540 static bool 541 scan_swap_map_ssd_cluster_conflict(struct swap_info_struct *si, 542 unsigned long offset) 543 { 544 struct percpu_cluster *percpu_cluster; 545 bool conflict; 546 547 offset /= SWAPFILE_CLUSTER; 548 conflict = !cluster_list_empty(&si->free_clusters) && 549 offset != cluster_list_first(&si->free_clusters) && 550 cluster_is_free(&si->cluster_info[offset]); 551 552 if (!conflict) 553 return false; 554 555 percpu_cluster = this_cpu_ptr(si->percpu_cluster); 556 cluster_set_null(&percpu_cluster->index); 557 return true; 558 } 559 560 /* 561 * Try to get a swap entry from current cpu's swap entry pool (a cluster). This 562 * might involve allocating a new cluster for current CPU too. 563 */ 564 static bool scan_swap_map_try_ssd_cluster(struct swap_info_struct *si, 565 unsigned long *offset, unsigned long *scan_base) 566 { 567 struct percpu_cluster *cluster; 568 struct swap_cluster_info *ci; 569 bool found_free; 570 unsigned long tmp, max; 571 572 new_cluster: 573 cluster = this_cpu_ptr(si->percpu_cluster); 574 if (cluster_is_null(&cluster->index)) { 575 if (!cluster_list_empty(&si->free_clusters)) { 576 cluster->index = si->free_clusters.head; 577 cluster->next = cluster_next(&cluster->index) * 578 SWAPFILE_CLUSTER; 579 } else if (!cluster_list_empty(&si->discard_clusters)) { 580 /* 581 * we don't have free cluster but have some clusters in 582 * discarding, do discard now and reclaim them 583 */ 584 swap_do_scheduled_discard(si); 585 *scan_base = *offset = si->cluster_next; 586 goto new_cluster; 587 } else 588 return false; 589 } 590 591 found_free = false; 592 593 /* 594 * Other CPUs can use our cluster if they can't find a free cluster, 595 * check if there is still free entry in the cluster 596 */ 597 tmp = cluster->next; 598 max = min_t(unsigned long, si->max, 599 (cluster_next(&cluster->index) + 1) * SWAPFILE_CLUSTER); 600 if (tmp >= max) { 601 cluster_set_null(&cluster->index); 602 goto new_cluster; 603 } 604 ci = lock_cluster(si, tmp); 605 while (tmp < max) { 606 if (!si->swap_map[tmp]) { 607 found_free = true; 608 break; 609 } 610 tmp++; 611 } 612 unlock_cluster(ci); 613 if (!found_free) { 614 cluster_set_null(&cluster->index); 615 goto new_cluster; 616 } 617 cluster->next = tmp + 1; 618 *offset = tmp; 619 *scan_base = tmp; 620 return found_free; 621 } 622 623 static void __del_from_avail_list(struct swap_info_struct *p) 624 { 625 int nid; 626 627 for_each_node(nid) 628 plist_del(&p->avail_lists[nid], &swap_avail_heads[nid]); 629 } 630 631 static void del_from_avail_list(struct swap_info_struct *p) 632 { 633 spin_lock(&swap_avail_lock); 634 __del_from_avail_list(p); 635 spin_unlock(&swap_avail_lock); 636 } 637 638 static void swap_range_alloc(struct swap_info_struct *si, unsigned long offset, 639 unsigned int nr_entries) 640 { 641 unsigned int end = offset + nr_entries - 1; 642 643 if (offset == si->lowest_bit) 644 si->lowest_bit += nr_entries; 645 if (end == si->highest_bit) 646 si->highest_bit -= nr_entries; 647 si->inuse_pages += nr_entries; 648 if (si->inuse_pages == si->pages) { 649 si->lowest_bit = si->max; 650 si->highest_bit = 0; 651 del_from_avail_list(si); 652 } 653 } 654 655 static void add_to_avail_list(struct swap_info_struct *p) 656 { 657 int nid; 658 659 spin_lock(&swap_avail_lock); 660 for_each_node(nid) { 661 WARN_ON(!plist_node_empty(&p->avail_lists[nid])); 662 plist_add(&p->avail_lists[nid], &swap_avail_heads[nid]); 663 } 664 spin_unlock(&swap_avail_lock); 665 } 666 667 static void swap_range_free(struct swap_info_struct *si, unsigned long offset, 668 unsigned int nr_entries) 669 { 670 unsigned long end = offset + nr_entries - 1; 671 void (*swap_slot_free_notify)(struct block_device *, unsigned long); 672 673 if (offset < si->lowest_bit) 674 si->lowest_bit = offset; 675 if (end > si->highest_bit) { 676 bool was_full = !si->highest_bit; 677 678 si->highest_bit = end; 679 if (was_full && (si->flags & SWP_WRITEOK)) 680 add_to_avail_list(si); 681 } 682 atomic_long_add(nr_entries, &nr_swap_pages); 683 si->inuse_pages -= nr_entries; 684 if (si->flags & SWP_BLKDEV) 685 swap_slot_free_notify = 686 si->bdev->bd_disk->fops->swap_slot_free_notify; 687 else 688 swap_slot_free_notify = NULL; 689 while (offset <= end) { 690 frontswap_invalidate_page(si->type, offset); 691 if (swap_slot_free_notify) 692 swap_slot_free_notify(si->bdev, offset); 693 offset++; 694 } 695 } 696 697 static int scan_swap_map_slots(struct swap_info_struct *si, 698 unsigned char usage, int nr, 699 swp_entry_t slots[]) 700 { 701 struct swap_cluster_info *ci; 702 unsigned long offset; 703 unsigned long scan_base; 704 unsigned long last_in_cluster = 0; 705 int latency_ration = LATENCY_LIMIT; 706 int n_ret = 0; 707 708 if (nr > SWAP_BATCH) 709 nr = SWAP_BATCH; 710 711 /* 712 * We try to cluster swap pages by allocating them sequentially 713 * in swap. Once we've allocated SWAPFILE_CLUSTER pages this 714 * way, however, we resort to first-free allocation, starting 715 * a new cluster. This prevents us from scattering swap pages 716 * all over the entire swap partition, so that we reduce 717 * overall disk seek times between swap pages. -- sct 718 * But we do now try to find an empty cluster. -Andrea 719 * And we let swap pages go all over an SSD partition. Hugh 720 */ 721 722 si->flags += SWP_SCANNING; 723 scan_base = offset = si->cluster_next; 724 725 /* SSD algorithm */ 726 if (si->cluster_info) { 727 if (scan_swap_map_try_ssd_cluster(si, &offset, &scan_base)) 728 goto checks; 729 else 730 goto scan; 731 } 732 733 if (unlikely(!si->cluster_nr--)) { 734 if (si->pages - si->inuse_pages < SWAPFILE_CLUSTER) { 735 si->cluster_nr = SWAPFILE_CLUSTER - 1; 736 goto checks; 737 } 738 739 spin_unlock(&si->lock); 740 741 /* 742 * If seek is expensive, start searching for new cluster from 743 * start of partition, to minimize the span of allocated swap. 744 * If seek is cheap, that is the SWP_SOLIDSTATE si->cluster_info 745 * case, just handled by scan_swap_map_try_ssd_cluster() above. 746 */ 747 scan_base = offset = si->lowest_bit; 748 last_in_cluster = offset + SWAPFILE_CLUSTER - 1; 749 750 /* Locate the first empty (unaligned) cluster */ 751 for (; last_in_cluster <= si->highest_bit; offset++) { 752 if (si->swap_map[offset]) 753 last_in_cluster = offset + SWAPFILE_CLUSTER; 754 else if (offset == last_in_cluster) { 755 spin_lock(&si->lock); 756 offset -= SWAPFILE_CLUSTER - 1; 757 si->cluster_next = offset; 758 si->cluster_nr = SWAPFILE_CLUSTER - 1; 759 goto checks; 760 } 761 if (unlikely(--latency_ration < 0)) { 762 cond_resched(); 763 latency_ration = LATENCY_LIMIT; 764 } 765 } 766 767 offset = scan_base; 768 spin_lock(&si->lock); 769 si->cluster_nr = SWAPFILE_CLUSTER - 1; 770 } 771 772 checks: 773 if (si->cluster_info) { 774 while (scan_swap_map_ssd_cluster_conflict(si, offset)) { 775 /* take a break if we already got some slots */ 776 if (n_ret) 777 goto done; 778 if (!scan_swap_map_try_ssd_cluster(si, &offset, 779 &scan_base)) 780 goto scan; 781 } 782 } 783 if (!(si->flags & SWP_WRITEOK)) 784 goto no_page; 785 if (!si->highest_bit) 786 goto no_page; 787 if (offset > si->highest_bit) 788 scan_base = offset = si->lowest_bit; 789 790 ci = lock_cluster(si, offset); 791 /* reuse swap entry of cache-only swap if not busy. */ 792 if (vm_swap_full() && si->swap_map[offset] == SWAP_HAS_CACHE) { 793 int swap_was_freed; 794 unlock_cluster(ci); 795 spin_unlock(&si->lock); 796 swap_was_freed = __try_to_reclaim_swap(si, offset, TTRS_ANYWAY); 797 spin_lock(&si->lock); 798 /* entry was freed successfully, try to use this again */ 799 if (swap_was_freed) 800 goto checks; 801 goto scan; /* check next one */ 802 } 803 804 if (si->swap_map[offset]) { 805 unlock_cluster(ci); 806 if (!n_ret) 807 goto scan; 808 else 809 goto done; 810 } 811 si->swap_map[offset] = usage; 812 inc_cluster_info_page(si, si->cluster_info, offset); 813 unlock_cluster(ci); 814 815 swap_range_alloc(si, offset, 1); 816 si->cluster_next = offset + 1; 817 slots[n_ret++] = swp_entry(si->type, offset); 818 819 /* got enough slots or reach max slots? */ 820 if ((n_ret == nr) || (offset >= si->highest_bit)) 821 goto done; 822 823 /* search for next available slot */ 824 825 /* time to take a break? */ 826 if (unlikely(--latency_ration < 0)) { 827 if (n_ret) 828 goto done; 829 spin_unlock(&si->lock); 830 cond_resched(); 831 spin_lock(&si->lock); 832 latency_ration = LATENCY_LIMIT; 833 } 834 835 /* try to get more slots in cluster */ 836 if (si->cluster_info) { 837 if (scan_swap_map_try_ssd_cluster(si, &offset, &scan_base)) 838 goto checks; 839 else 840 goto done; 841 } 842 /* non-ssd case */ 843 ++offset; 844 845 /* non-ssd case, still more slots in cluster? */ 846 if (si->cluster_nr && !si->swap_map[offset]) { 847 --si->cluster_nr; 848 goto checks; 849 } 850 851 done: 852 si->flags -= SWP_SCANNING; 853 return n_ret; 854 855 scan: 856 spin_unlock(&si->lock); 857 while (++offset <= si->highest_bit) { 858 if (!si->swap_map[offset]) { 859 spin_lock(&si->lock); 860 goto checks; 861 } 862 if (vm_swap_full() && si->swap_map[offset] == SWAP_HAS_CACHE) { 863 spin_lock(&si->lock); 864 goto checks; 865 } 866 if (unlikely(--latency_ration < 0)) { 867 cond_resched(); 868 latency_ration = LATENCY_LIMIT; 869 } 870 } 871 offset = si->lowest_bit; 872 while (offset < scan_base) { 873 if (!si->swap_map[offset]) { 874 spin_lock(&si->lock); 875 goto checks; 876 } 877 if (vm_swap_full() && si->swap_map[offset] == SWAP_HAS_CACHE) { 878 spin_lock(&si->lock); 879 goto checks; 880 } 881 if (unlikely(--latency_ration < 0)) { 882 cond_resched(); 883 latency_ration = LATENCY_LIMIT; 884 } 885 offset++; 886 } 887 spin_lock(&si->lock); 888 889 no_page: 890 si->flags -= SWP_SCANNING; 891 return n_ret; 892 } 893 894 static int swap_alloc_cluster(struct swap_info_struct *si, swp_entry_t *slot) 895 { 896 unsigned long idx; 897 struct swap_cluster_info *ci; 898 unsigned long offset, i; 899 unsigned char *map; 900 901 /* 902 * Should not even be attempting cluster allocations when huge 903 * page swap is disabled. Warn and fail the allocation. 904 */ 905 if (!IS_ENABLED(CONFIG_THP_SWAP)) { 906 VM_WARN_ON_ONCE(1); 907 return 0; 908 } 909 910 if (cluster_list_empty(&si->free_clusters)) 911 return 0; 912 913 idx = cluster_list_first(&si->free_clusters); 914 offset = idx * SWAPFILE_CLUSTER; 915 ci = lock_cluster(si, offset); 916 alloc_cluster(si, idx); 917 cluster_set_count_flag(ci, SWAPFILE_CLUSTER, CLUSTER_FLAG_HUGE); 918 919 map = si->swap_map + offset; 920 for (i = 0; i < SWAPFILE_CLUSTER; i++) 921 map[i] = SWAP_HAS_CACHE; 922 unlock_cluster(ci); 923 swap_range_alloc(si, offset, SWAPFILE_CLUSTER); 924 *slot = swp_entry(si->type, offset); 925 926 return 1; 927 } 928 929 static void swap_free_cluster(struct swap_info_struct *si, unsigned long idx) 930 { 931 unsigned long offset = idx * SWAPFILE_CLUSTER; 932 struct swap_cluster_info *ci; 933 934 ci = lock_cluster(si, offset); 935 memset(si->swap_map + offset, 0, SWAPFILE_CLUSTER); 936 cluster_set_count_flag(ci, 0, 0); 937 free_cluster(si, idx); 938 unlock_cluster(ci); 939 swap_range_free(si, offset, SWAPFILE_CLUSTER); 940 } 941 942 static unsigned long scan_swap_map(struct swap_info_struct *si, 943 unsigned char usage) 944 { 945 swp_entry_t entry; 946 int n_ret; 947 948 n_ret = scan_swap_map_slots(si, usage, 1, &entry); 949 950 if (n_ret) 951 return swp_offset(entry); 952 else 953 return 0; 954 955 } 956 957 int get_swap_pages(int n_goal, swp_entry_t swp_entries[], int entry_size) 958 { 959 unsigned long size = swap_entry_size(entry_size); 960 struct swap_info_struct *si, *next; 961 long avail_pgs; 962 int n_ret = 0; 963 int node; 964 965 /* Only single cluster request supported */ 966 WARN_ON_ONCE(n_goal > 1 && size == SWAPFILE_CLUSTER); 967 968 avail_pgs = atomic_long_read(&nr_swap_pages) / size; 969 if (avail_pgs <= 0) 970 goto noswap; 971 972 if (n_goal > SWAP_BATCH) 973 n_goal = SWAP_BATCH; 974 975 if (n_goal > avail_pgs) 976 n_goal = avail_pgs; 977 978 atomic_long_sub(n_goal * size, &nr_swap_pages); 979 980 spin_lock(&swap_avail_lock); 981 982 start_over: 983 node = numa_node_id(); 984 plist_for_each_entry_safe(si, next, &swap_avail_heads[node], avail_lists[node]) { 985 /* requeue si to after same-priority siblings */ 986 plist_requeue(&si->avail_lists[node], &swap_avail_heads[node]); 987 spin_unlock(&swap_avail_lock); 988 spin_lock(&si->lock); 989 if (!si->highest_bit || !(si->flags & SWP_WRITEOK)) { 990 spin_lock(&swap_avail_lock); 991 if (plist_node_empty(&si->avail_lists[node])) { 992 spin_unlock(&si->lock); 993 goto nextsi; 994 } 995 WARN(!si->highest_bit, 996 "swap_info %d in list but !highest_bit\n", 997 si->type); 998 WARN(!(si->flags & SWP_WRITEOK), 999 "swap_info %d in list but !SWP_WRITEOK\n", 1000 si->type); 1001 __del_from_avail_list(si); 1002 spin_unlock(&si->lock); 1003 goto nextsi; 1004 } 1005 if (size == SWAPFILE_CLUSTER) { 1006 if (!(si->flags & SWP_FS)) 1007 n_ret = swap_alloc_cluster(si, swp_entries); 1008 } else 1009 n_ret = scan_swap_map_slots(si, SWAP_HAS_CACHE, 1010 n_goal, swp_entries); 1011 spin_unlock(&si->lock); 1012 if (n_ret || size == SWAPFILE_CLUSTER) 1013 goto check_out; 1014 pr_debug("scan_swap_map of si %d failed to find offset\n", 1015 si->type); 1016 1017 spin_lock(&swap_avail_lock); 1018 nextsi: 1019 /* 1020 * if we got here, it's likely that si was almost full before, 1021 * and since scan_swap_map() can drop the si->lock, multiple 1022 * callers probably all tried to get a page from the same si 1023 * and it filled up before we could get one; or, the si filled 1024 * up between us dropping swap_avail_lock and taking si->lock. 1025 * Since we dropped the swap_avail_lock, the swap_avail_head 1026 * list may have been modified; so if next is still in the 1027 * swap_avail_head list then try it, otherwise start over 1028 * if we have not gotten any slots. 1029 */ 1030 if (plist_node_empty(&next->avail_lists[node])) 1031 goto start_over; 1032 } 1033 1034 spin_unlock(&swap_avail_lock); 1035 1036 check_out: 1037 if (n_ret < n_goal) 1038 atomic_long_add((long)(n_goal - n_ret) * size, 1039 &nr_swap_pages); 1040 noswap: 1041 return n_ret; 1042 } 1043 1044 /* The only caller of this function is now suspend routine */ 1045 swp_entry_t get_swap_page_of_type(int type) 1046 { 1047 struct swap_info_struct *si; 1048 pgoff_t offset; 1049 1050 si = swap_info[type]; 1051 spin_lock(&si->lock); 1052 if (si && (si->flags & SWP_WRITEOK)) { 1053 atomic_long_dec(&nr_swap_pages); 1054 /* This is called for allocating swap entry, not cache */ 1055 offset = scan_swap_map(si, 1); 1056 if (offset) { 1057 spin_unlock(&si->lock); 1058 return swp_entry(type, offset); 1059 } 1060 atomic_long_inc(&nr_swap_pages); 1061 } 1062 spin_unlock(&si->lock); 1063 return (swp_entry_t) {0}; 1064 } 1065 1066 static struct swap_info_struct *__swap_info_get(swp_entry_t entry) 1067 { 1068 struct swap_info_struct *p; 1069 unsigned long offset, type; 1070 1071 if (!entry.val) 1072 goto out; 1073 type = swp_type(entry); 1074 if (type >= nr_swapfiles) 1075 goto bad_nofile; 1076 p = swap_info[type]; 1077 if (!(p->flags & SWP_USED)) 1078 goto bad_device; 1079 offset = swp_offset(entry); 1080 if (offset >= p->max) 1081 goto bad_offset; 1082 return p; 1083 1084 bad_offset: 1085 pr_err("swap_info_get: %s%08lx\n", Bad_offset, entry.val); 1086 goto out; 1087 bad_device: 1088 pr_err("swap_info_get: %s%08lx\n", Unused_file, entry.val); 1089 goto out; 1090 bad_nofile: 1091 pr_err("swap_info_get: %s%08lx\n", Bad_file, entry.val); 1092 out: 1093 return NULL; 1094 } 1095 1096 static struct swap_info_struct *_swap_info_get(swp_entry_t entry) 1097 { 1098 struct swap_info_struct *p; 1099 1100 p = __swap_info_get(entry); 1101 if (!p) 1102 goto out; 1103 if (!p->swap_map[swp_offset(entry)]) 1104 goto bad_free; 1105 return p; 1106 1107 bad_free: 1108 pr_err("swap_info_get: %s%08lx\n", Unused_offset, entry.val); 1109 goto out; 1110 out: 1111 return NULL; 1112 } 1113 1114 static struct swap_info_struct *swap_info_get(swp_entry_t entry) 1115 { 1116 struct swap_info_struct *p; 1117 1118 p = _swap_info_get(entry); 1119 if (p) 1120 spin_lock(&p->lock); 1121 return p; 1122 } 1123 1124 static struct swap_info_struct *swap_info_get_cont(swp_entry_t entry, 1125 struct swap_info_struct *q) 1126 { 1127 struct swap_info_struct *p; 1128 1129 p = _swap_info_get(entry); 1130 1131 if (p != q) { 1132 if (q != NULL) 1133 spin_unlock(&q->lock); 1134 if (p != NULL) 1135 spin_lock(&p->lock); 1136 } 1137 return p; 1138 } 1139 1140 static unsigned char __swap_entry_free_locked(struct swap_info_struct *p, 1141 unsigned long offset, 1142 unsigned char usage) 1143 { 1144 unsigned char count; 1145 unsigned char has_cache; 1146 1147 count = p->swap_map[offset]; 1148 1149 has_cache = count & SWAP_HAS_CACHE; 1150 count &= ~SWAP_HAS_CACHE; 1151 1152 if (usage == SWAP_HAS_CACHE) { 1153 VM_BUG_ON(!has_cache); 1154 has_cache = 0; 1155 } else if (count == SWAP_MAP_SHMEM) { 1156 /* 1157 * Or we could insist on shmem.c using a special 1158 * swap_shmem_free() and free_shmem_swap_and_cache()... 1159 */ 1160 count = 0; 1161 } else if ((count & ~COUNT_CONTINUED) <= SWAP_MAP_MAX) { 1162 if (count == COUNT_CONTINUED) { 1163 if (swap_count_continued(p, offset, count)) 1164 count = SWAP_MAP_MAX | COUNT_CONTINUED; 1165 else 1166 count = SWAP_MAP_MAX; 1167 } else 1168 count--; 1169 } 1170 1171 usage = count | has_cache; 1172 p->swap_map[offset] = usage ? : SWAP_HAS_CACHE; 1173 1174 return usage; 1175 } 1176 1177 static unsigned char __swap_entry_free(struct swap_info_struct *p, 1178 swp_entry_t entry, unsigned char usage) 1179 { 1180 struct swap_cluster_info *ci; 1181 unsigned long offset = swp_offset(entry); 1182 1183 ci = lock_cluster_or_swap_info(p, offset); 1184 usage = __swap_entry_free_locked(p, offset, usage); 1185 unlock_cluster_or_swap_info(p, ci); 1186 if (!usage) 1187 free_swap_slot(entry); 1188 1189 return usage; 1190 } 1191 1192 static void swap_entry_free(struct swap_info_struct *p, swp_entry_t entry) 1193 { 1194 struct swap_cluster_info *ci; 1195 unsigned long offset = swp_offset(entry); 1196 unsigned char count; 1197 1198 ci = lock_cluster(p, offset); 1199 count = p->swap_map[offset]; 1200 VM_BUG_ON(count != SWAP_HAS_CACHE); 1201 p->swap_map[offset] = 0; 1202 dec_cluster_info_page(p, p->cluster_info, offset); 1203 unlock_cluster(ci); 1204 1205 mem_cgroup_uncharge_swap(entry, 1); 1206 swap_range_free(p, offset, 1); 1207 } 1208 1209 /* 1210 * Caller has made sure that the swap device corresponding to entry 1211 * is still around or has not been recycled. 1212 */ 1213 void swap_free(swp_entry_t entry) 1214 { 1215 struct swap_info_struct *p; 1216 1217 p = _swap_info_get(entry); 1218 if (p) 1219 __swap_entry_free(p, entry, 1); 1220 } 1221 1222 /* 1223 * Called after dropping swapcache to decrease refcnt to swap entries. 1224 */ 1225 void put_swap_page(struct page *page, swp_entry_t entry) 1226 { 1227 unsigned long offset = swp_offset(entry); 1228 unsigned long idx = offset / SWAPFILE_CLUSTER; 1229 struct swap_cluster_info *ci; 1230 struct swap_info_struct *si; 1231 unsigned char *map; 1232 unsigned int i, free_entries = 0; 1233 unsigned char val; 1234 int size = swap_entry_size(hpage_nr_pages(page)); 1235 1236 si = _swap_info_get(entry); 1237 if (!si) 1238 return; 1239 1240 ci = lock_cluster_or_swap_info(si, offset); 1241 if (size == SWAPFILE_CLUSTER) { 1242 VM_BUG_ON(!cluster_is_huge(ci)); 1243 map = si->swap_map + offset; 1244 for (i = 0; i < SWAPFILE_CLUSTER; i++) { 1245 val = map[i]; 1246 VM_BUG_ON(!(val & SWAP_HAS_CACHE)); 1247 if (val == SWAP_HAS_CACHE) 1248 free_entries++; 1249 } 1250 cluster_clear_huge(ci); 1251 if (free_entries == SWAPFILE_CLUSTER) { 1252 unlock_cluster_or_swap_info(si, ci); 1253 spin_lock(&si->lock); 1254 mem_cgroup_uncharge_swap(entry, SWAPFILE_CLUSTER); 1255 swap_free_cluster(si, idx); 1256 spin_unlock(&si->lock); 1257 return; 1258 } 1259 } 1260 for (i = 0; i < size; i++, entry.val++) { 1261 if (!__swap_entry_free_locked(si, offset + i, SWAP_HAS_CACHE)) { 1262 unlock_cluster_or_swap_info(si, ci); 1263 free_swap_slot(entry); 1264 if (i == size - 1) 1265 return; 1266 lock_cluster_or_swap_info(si, offset); 1267 } 1268 } 1269 unlock_cluster_or_swap_info(si, ci); 1270 } 1271 1272 #ifdef CONFIG_THP_SWAP 1273 int split_swap_cluster(swp_entry_t entry) 1274 { 1275 struct swap_info_struct *si; 1276 struct swap_cluster_info *ci; 1277 unsigned long offset = swp_offset(entry); 1278 1279 si = _swap_info_get(entry); 1280 if (!si) 1281 return -EBUSY; 1282 ci = lock_cluster(si, offset); 1283 cluster_clear_huge(ci); 1284 unlock_cluster(ci); 1285 return 0; 1286 } 1287 #endif 1288 1289 static int swp_entry_cmp(const void *ent1, const void *ent2) 1290 { 1291 const swp_entry_t *e1 = ent1, *e2 = ent2; 1292 1293 return (int)swp_type(*e1) - (int)swp_type(*e2); 1294 } 1295 1296 void swapcache_free_entries(swp_entry_t *entries, int n) 1297 { 1298 struct swap_info_struct *p, *prev; 1299 int i; 1300 1301 if (n <= 0) 1302 return; 1303 1304 prev = NULL; 1305 p = NULL; 1306 1307 /* 1308 * Sort swap entries by swap device, so each lock is only taken once. 1309 * nr_swapfiles isn't absolutely correct, but the overhead of sort() is 1310 * so low that it isn't necessary to optimize further. 1311 */ 1312 if (nr_swapfiles > 1) 1313 sort(entries, n, sizeof(entries[0]), swp_entry_cmp, NULL); 1314 for (i = 0; i < n; ++i) { 1315 p = swap_info_get_cont(entries[i], prev); 1316 if (p) 1317 swap_entry_free(p, entries[i]); 1318 prev = p; 1319 } 1320 if (p) 1321 spin_unlock(&p->lock); 1322 } 1323 1324 /* 1325 * How many references to page are currently swapped out? 1326 * This does not give an exact answer when swap count is continued, 1327 * but does include the high COUNT_CONTINUED flag to allow for that. 1328 */ 1329 int page_swapcount(struct page *page) 1330 { 1331 int count = 0; 1332 struct swap_info_struct *p; 1333 struct swap_cluster_info *ci; 1334 swp_entry_t entry; 1335 unsigned long offset; 1336 1337 entry.val = page_private(page); 1338 p = _swap_info_get(entry); 1339 if (p) { 1340 offset = swp_offset(entry); 1341 ci = lock_cluster_or_swap_info(p, offset); 1342 count = swap_count(p->swap_map[offset]); 1343 unlock_cluster_or_swap_info(p, ci); 1344 } 1345 return count; 1346 } 1347 1348 int __swap_count(struct swap_info_struct *si, swp_entry_t entry) 1349 { 1350 pgoff_t offset = swp_offset(entry); 1351 1352 return swap_count(si->swap_map[offset]); 1353 } 1354 1355 static int swap_swapcount(struct swap_info_struct *si, swp_entry_t entry) 1356 { 1357 int count = 0; 1358 pgoff_t offset = swp_offset(entry); 1359 struct swap_cluster_info *ci; 1360 1361 ci = lock_cluster_or_swap_info(si, offset); 1362 count = swap_count(si->swap_map[offset]); 1363 unlock_cluster_or_swap_info(si, ci); 1364 return count; 1365 } 1366 1367 /* 1368 * How many references to @entry are currently swapped out? 1369 * This does not give an exact answer when swap count is continued, 1370 * but does include the high COUNT_CONTINUED flag to allow for that. 1371 */ 1372 int __swp_swapcount(swp_entry_t entry) 1373 { 1374 int count = 0; 1375 struct swap_info_struct *si; 1376 1377 si = __swap_info_get(entry); 1378 if (si) 1379 count = swap_swapcount(si, entry); 1380 return count; 1381 } 1382 1383 /* 1384 * How many references to @entry are currently swapped out? 1385 * This considers COUNT_CONTINUED so it returns exact answer. 1386 */ 1387 int swp_swapcount(swp_entry_t entry) 1388 { 1389 int count, tmp_count, n; 1390 struct swap_info_struct *p; 1391 struct swap_cluster_info *ci; 1392 struct page *page; 1393 pgoff_t offset; 1394 unsigned char *map; 1395 1396 p = _swap_info_get(entry); 1397 if (!p) 1398 return 0; 1399 1400 offset = swp_offset(entry); 1401 1402 ci = lock_cluster_or_swap_info(p, offset); 1403 1404 count = swap_count(p->swap_map[offset]); 1405 if (!(count & COUNT_CONTINUED)) 1406 goto out; 1407 1408 count &= ~COUNT_CONTINUED; 1409 n = SWAP_MAP_MAX + 1; 1410 1411 page = vmalloc_to_page(p->swap_map + offset); 1412 offset &= ~PAGE_MASK; 1413 VM_BUG_ON(page_private(page) != SWP_CONTINUED); 1414 1415 do { 1416 page = list_next_entry(page, lru); 1417 map = kmap_atomic(page); 1418 tmp_count = map[offset]; 1419 kunmap_atomic(map); 1420 1421 count += (tmp_count & ~COUNT_CONTINUED) * n; 1422 n *= (SWAP_CONT_MAX + 1); 1423 } while (tmp_count & COUNT_CONTINUED); 1424 out: 1425 unlock_cluster_or_swap_info(p, ci); 1426 return count; 1427 } 1428 1429 static bool swap_page_trans_huge_swapped(struct swap_info_struct *si, 1430 swp_entry_t entry) 1431 { 1432 struct swap_cluster_info *ci; 1433 unsigned char *map = si->swap_map; 1434 unsigned long roffset = swp_offset(entry); 1435 unsigned long offset = round_down(roffset, SWAPFILE_CLUSTER); 1436 int i; 1437 bool ret = false; 1438 1439 ci = lock_cluster_or_swap_info(si, offset); 1440 if (!ci || !cluster_is_huge(ci)) { 1441 if (swap_count(map[roffset])) 1442 ret = true; 1443 goto unlock_out; 1444 } 1445 for (i = 0; i < SWAPFILE_CLUSTER; i++) { 1446 if (swap_count(map[offset + i])) { 1447 ret = true; 1448 break; 1449 } 1450 } 1451 unlock_out: 1452 unlock_cluster_or_swap_info(si, ci); 1453 return ret; 1454 } 1455 1456 static bool page_swapped(struct page *page) 1457 { 1458 swp_entry_t entry; 1459 struct swap_info_struct *si; 1460 1461 if (!IS_ENABLED(CONFIG_THP_SWAP) || likely(!PageTransCompound(page))) 1462 return page_swapcount(page) != 0; 1463 1464 page = compound_head(page); 1465 entry.val = page_private(page); 1466 si = _swap_info_get(entry); 1467 if (si) 1468 return swap_page_trans_huge_swapped(si, entry); 1469 return false; 1470 } 1471 1472 static int page_trans_huge_map_swapcount(struct page *page, int *total_mapcount, 1473 int *total_swapcount) 1474 { 1475 int i, map_swapcount, _total_mapcount, _total_swapcount; 1476 unsigned long offset = 0; 1477 struct swap_info_struct *si; 1478 struct swap_cluster_info *ci = NULL; 1479 unsigned char *map = NULL; 1480 int mapcount, swapcount = 0; 1481 1482 /* hugetlbfs shouldn't call it */ 1483 VM_BUG_ON_PAGE(PageHuge(page), page); 1484 1485 if (!IS_ENABLED(CONFIG_THP_SWAP) || likely(!PageTransCompound(page))) { 1486 mapcount = page_trans_huge_mapcount(page, total_mapcount); 1487 if (PageSwapCache(page)) 1488 swapcount = page_swapcount(page); 1489 if (total_swapcount) 1490 *total_swapcount = swapcount; 1491 return mapcount + swapcount; 1492 } 1493 1494 page = compound_head(page); 1495 1496 _total_mapcount = _total_swapcount = map_swapcount = 0; 1497 if (PageSwapCache(page)) { 1498 swp_entry_t entry; 1499 1500 entry.val = page_private(page); 1501 si = _swap_info_get(entry); 1502 if (si) { 1503 map = si->swap_map; 1504 offset = swp_offset(entry); 1505 } 1506 } 1507 if (map) 1508 ci = lock_cluster(si, offset); 1509 for (i = 0; i < HPAGE_PMD_NR; i++) { 1510 mapcount = atomic_read(&page[i]._mapcount) + 1; 1511 _total_mapcount += mapcount; 1512 if (map) { 1513 swapcount = swap_count(map[offset + i]); 1514 _total_swapcount += swapcount; 1515 } 1516 map_swapcount = max(map_swapcount, mapcount + swapcount); 1517 } 1518 unlock_cluster(ci); 1519 if (PageDoubleMap(page)) { 1520 map_swapcount -= 1; 1521 _total_mapcount -= HPAGE_PMD_NR; 1522 } 1523 mapcount = compound_mapcount(page); 1524 map_swapcount += mapcount; 1525 _total_mapcount += mapcount; 1526 if (total_mapcount) 1527 *total_mapcount = _total_mapcount; 1528 if (total_swapcount) 1529 *total_swapcount = _total_swapcount; 1530 1531 return map_swapcount; 1532 } 1533 1534 /* 1535 * We can write to an anon page without COW if there are no other references 1536 * to it. And as a side-effect, free up its swap: because the old content 1537 * on disk will never be read, and seeking back there to write new content 1538 * later would only waste time away from clustering. 1539 * 1540 * NOTE: total_map_swapcount should not be relied upon by the caller if 1541 * reuse_swap_page() returns false, but it may be always overwritten 1542 * (see the other implementation for CONFIG_SWAP=n). 1543 */ 1544 bool reuse_swap_page(struct page *page, int *total_map_swapcount) 1545 { 1546 int count, total_mapcount, total_swapcount; 1547 1548 VM_BUG_ON_PAGE(!PageLocked(page), page); 1549 if (unlikely(PageKsm(page))) 1550 return false; 1551 count = page_trans_huge_map_swapcount(page, &total_mapcount, 1552 &total_swapcount); 1553 if (total_map_swapcount) 1554 *total_map_swapcount = total_mapcount + total_swapcount; 1555 if (count == 1 && PageSwapCache(page) && 1556 (likely(!PageTransCompound(page)) || 1557 /* The remaining swap count will be freed soon */ 1558 total_swapcount == page_swapcount(page))) { 1559 if (!PageWriteback(page)) { 1560 page = compound_head(page); 1561 delete_from_swap_cache(page); 1562 SetPageDirty(page); 1563 } else { 1564 swp_entry_t entry; 1565 struct swap_info_struct *p; 1566 1567 entry.val = page_private(page); 1568 p = swap_info_get(entry); 1569 if (p->flags & SWP_STABLE_WRITES) { 1570 spin_unlock(&p->lock); 1571 return false; 1572 } 1573 spin_unlock(&p->lock); 1574 } 1575 } 1576 1577 return count <= 1; 1578 } 1579 1580 /* 1581 * If swap is getting full, or if there are no more mappings of this page, 1582 * then try_to_free_swap is called to free its swap space. 1583 */ 1584 int try_to_free_swap(struct page *page) 1585 { 1586 VM_BUG_ON_PAGE(!PageLocked(page), page); 1587 1588 if (!PageSwapCache(page)) 1589 return 0; 1590 if (PageWriteback(page)) 1591 return 0; 1592 if (page_swapped(page)) 1593 return 0; 1594 1595 /* 1596 * Once hibernation has begun to create its image of memory, 1597 * there's a danger that one of the calls to try_to_free_swap() 1598 * - most probably a call from __try_to_reclaim_swap() while 1599 * hibernation is allocating its own swap pages for the image, 1600 * but conceivably even a call from memory reclaim - will free 1601 * the swap from a page which has already been recorded in the 1602 * image as a clean swapcache page, and then reuse its swap for 1603 * another page of the image. On waking from hibernation, the 1604 * original page might be freed under memory pressure, then 1605 * later read back in from swap, now with the wrong data. 1606 * 1607 * Hibernation suspends storage while it is writing the image 1608 * to disk so check that here. 1609 */ 1610 if (pm_suspended_storage()) 1611 return 0; 1612 1613 page = compound_head(page); 1614 delete_from_swap_cache(page); 1615 SetPageDirty(page); 1616 return 1; 1617 } 1618 1619 /* 1620 * Free the swap entry like above, but also try to 1621 * free the page cache entry if it is the last user. 1622 */ 1623 int free_swap_and_cache(swp_entry_t entry) 1624 { 1625 struct swap_info_struct *p; 1626 unsigned char count; 1627 1628 if (non_swap_entry(entry)) 1629 return 1; 1630 1631 p = _swap_info_get(entry); 1632 if (p) { 1633 count = __swap_entry_free(p, entry, 1); 1634 if (count == SWAP_HAS_CACHE && 1635 !swap_page_trans_huge_swapped(p, entry)) 1636 __try_to_reclaim_swap(p, swp_offset(entry), 1637 TTRS_UNMAPPED | TTRS_FULL); 1638 } 1639 return p != NULL; 1640 } 1641 1642 #ifdef CONFIG_HIBERNATION 1643 /* 1644 * Find the swap type that corresponds to given device (if any). 1645 * 1646 * @offset - number of the PAGE_SIZE-sized block of the device, starting 1647 * from 0, in which the swap header is expected to be located. 1648 * 1649 * This is needed for the suspend to disk (aka swsusp). 1650 */ 1651 int swap_type_of(dev_t device, sector_t offset, struct block_device **bdev_p) 1652 { 1653 struct block_device *bdev = NULL; 1654 int type; 1655 1656 if (device) 1657 bdev = bdget(device); 1658 1659 spin_lock(&swap_lock); 1660 for (type = 0; type < nr_swapfiles; type++) { 1661 struct swap_info_struct *sis = swap_info[type]; 1662 1663 if (!(sis->flags & SWP_WRITEOK)) 1664 continue; 1665 1666 if (!bdev) { 1667 if (bdev_p) 1668 *bdev_p = bdgrab(sis->bdev); 1669 1670 spin_unlock(&swap_lock); 1671 return type; 1672 } 1673 if (bdev == sis->bdev) { 1674 struct swap_extent *se = &sis->first_swap_extent; 1675 1676 if (se->start_block == offset) { 1677 if (bdev_p) 1678 *bdev_p = bdgrab(sis->bdev); 1679 1680 spin_unlock(&swap_lock); 1681 bdput(bdev); 1682 return type; 1683 } 1684 } 1685 } 1686 spin_unlock(&swap_lock); 1687 if (bdev) 1688 bdput(bdev); 1689 1690 return -ENODEV; 1691 } 1692 1693 /* 1694 * Get the (PAGE_SIZE) block corresponding to given offset on the swapdev 1695 * corresponding to given index in swap_info (swap type). 1696 */ 1697 sector_t swapdev_block(int type, pgoff_t offset) 1698 { 1699 struct block_device *bdev; 1700 1701 if ((unsigned int)type >= nr_swapfiles) 1702 return 0; 1703 if (!(swap_info[type]->flags & SWP_WRITEOK)) 1704 return 0; 1705 return map_swap_entry(swp_entry(type, offset), &bdev); 1706 } 1707 1708 /* 1709 * Return either the total number of swap pages of given type, or the number 1710 * of free pages of that type (depending on @free) 1711 * 1712 * This is needed for software suspend 1713 */ 1714 unsigned int count_swap_pages(int type, int free) 1715 { 1716 unsigned int n = 0; 1717 1718 spin_lock(&swap_lock); 1719 if ((unsigned int)type < nr_swapfiles) { 1720 struct swap_info_struct *sis = swap_info[type]; 1721 1722 spin_lock(&sis->lock); 1723 if (sis->flags & SWP_WRITEOK) { 1724 n = sis->pages; 1725 if (free) 1726 n -= sis->inuse_pages; 1727 } 1728 spin_unlock(&sis->lock); 1729 } 1730 spin_unlock(&swap_lock); 1731 return n; 1732 } 1733 #endif /* CONFIG_HIBERNATION */ 1734 1735 static inline int pte_same_as_swp(pte_t pte, pte_t swp_pte) 1736 { 1737 return pte_same(pte_swp_clear_soft_dirty(pte), swp_pte); 1738 } 1739 1740 /* 1741 * No need to decide whether this PTE shares the swap entry with others, 1742 * just let do_wp_page work it out if a write is requested later - to 1743 * force COW, vm_page_prot omits write permission from any private vma. 1744 */ 1745 static int unuse_pte(struct vm_area_struct *vma, pmd_t *pmd, 1746 unsigned long addr, swp_entry_t entry, struct page *page) 1747 { 1748 struct page *swapcache; 1749 struct mem_cgroup *memcg; 1750 spinlock_t *ptl; 1751 pte_t *pte; 1752 int ret = 1; 1753 1754 swapcache = page; 1755 page = ksm_might_need_to_copy(page, vma, addr); 1756 if (unlikely(!page)) 1757 return -ENOMEM; 1758 1759 if (mem_cgroup_try_charge(page, vma->vm_mm, GFP_KERNEL, 1760 &memcg, false)) { 1761 ret = -ENOMEM; 1762 goto out_nolock; 1763 } 1764 1765 pte = pte_offset_map_lock(vma->vm_mm, pmd, addr, &ptl); 1766 if (unlikely(!pte_same_as_swp(*pte, swp_entry_to_pte(entry)))) { 1767 mem_cgroup_cancel_charge(page, memcg, false); 1768 ret = 0; 1769 goto out; 1770 } 1771 1772 dec_mm_counter(vma->vm_mm, MM_SWAPENTS); 1773 inc_mm_counter(vma->vm_mm, MM_ANONPAGES); 1774 get_page(page); 1775 set_pte_at(vma->vm_mm, addr, pte, 1776 pte_mkold(mk_pte(page, vma->vm_page_prot))); 1777 if (page == swapcache) { 1778 page_add_anon_rmap(page, vma, addr, false); 1779 mem_cgroup_commit_charge(page, memcg, true, false); 1780 } else { /* ksm created a completely new copy */ 1781 page_add_new_anon_rmap(page, vma, addr, false); 1782 mem_cgroup_commit_charge(page, memcg, false, false); 1783 lru_cache_add_active_or_unevictable(page, vma); 1784 } 1785 swap_free(entry); 1786 /* 1787 * Move the page to the active list so it is not 1788 * immediately swapped out again after swapon. 1789 */ 1790 activate_page(page); 1791 out: 1792 pte_unmap_unlock(pte, ptl); 1793 out_nolock: 1794 if (page != swapcache) { 1795 unlock_page(page); 1796 put_page(page); 1797 } 1798 return ret; 1799 } 1800 1801 static int unuse_pte_range(struct vm_area_struct *vma, pmd_t *pmd, 1802 unsigned long addr, unsigned long end, 1803 swp_entry_t entry, struct page *page) 1804 { 1805 pte_t swp_pte = swp_entry_to_pte(entry); 1806 pte_t *pte; 1807 int ret = 0; 1808 1809 /* 1810 * We don't actually need pte lock while scanning for swp_pte: since 1811 * we hold page lock and mmap_sem, swp_pte cannot be inserted into the 1812 * page table while we're scanning; though it could get zapped, and on 1813 * some architectures (e.g. x86_32 with PAE) we might catch a glimpse 1814 * of unmatched parts which look like swp_pte, so unuse_pte must 1815 * recheck under pte lock. Scanning without pte lock lets it be 1816 * preemptable whenever CONFIG_PREEMPT but not CONFIG_HIGHPTE. 1817 */ 1818 pte = pte_offset_map(pmd, addr); 1819 do { 1820 /* 1821 * swapoff spends a _lot_ of time in this loop! 1822 * Test inline before going to call unuse_pte. 1823 */ 1824 if (unlikely(pte_same_as_swp(*pte, swp_pte))) { 1825 pte_unmap(pte); 1826 ret = unuse_pte(vma, pmd, addr, entry, page); 1827 if (ret) 1828 goto out; 1829 pte = pte_offset_map(pmd, addr); 1830 } 1831 } while (pte++, addr += PAGE_SIZE, addr != end); 1832 pte_unmap(pte - 1); 1833 out: 1834 return ret; 1835 } 1836 1837 static inline int unuse_pmd_range(struct vm_area_struct *vma, pud_t *pud, 1838 unsigned long addr, unsigned long end, 1839 swp_entry_t entry, struct page *page) 1840 { 1841 pmd_t *pmd; 1842 unsigned long next; 1843 int ret; 1844 1845 pmd = pmd_offset(pud, addr); 1846 do { 1847 cond_resched(); 1848 next = pmd_addr_end(addr, end); 1849 if (pmd_none_or_trans_huge_or_clear_bad(pmd)) 1850 continue; 1851 ret = unuse_pte_range(vma, pmd, addr, next, entry, page); 1852 if (ret) 1853 return ret; 1854 } while (pmd++, addr = next, addr != end); 1855 return 0; 1856 } 1857 1858 static inline int unuse_pud_range(struct vm_area_struct *vma, p4d_t *p4d, 1859 unsigned long addr, unsigned long end, 1860 swp_entry_t entry, struct page *page) 1861 { 1862 pud_t *pud; 1863 unsigned long next; 1864 int ret; 1865 1866 pud = pud_offset(p4d, addr); 1867 do { 1868 next = pud_addr_end(addr, end); 1869 if (pud_none_or_clear_bad(pud)) 1870 continue; 1871 ret = unuse_pmd_range(vma, pud, addr, next, entry, page); 1872 if (ret) 1873 return ret; 1874 } while (pud++, addr = next, addr != end); 1875 return 0; 1876 } 1877 1878 static inline int unuse_p4d_range(struct vm_area_struct *vma, pgd_t *pgd, 1879 unsigned long addr, unsigned long end, 1880 swp_entry_t entry, struct page *page) 1881 { 1882 p4d_t *p4d; 1883 unsigned long next; 1884 int ret; 1885 1886 p4d = p4d_offset(pgd, addr); 1887 do { 1888 next = p4d_addr_end(addr, end); 1889 if (p4d_none_or_clear_bad(p4d)) 1890 continue; 1891 ret = unuse_pud_range(vma, p4d, addr, next, entry, page); 1892 if (ret) 1893 return ret; 1894 } while (p4d++, addr = next, addr != end); 1895 return 0; 1896 } 1897 1898 static int unuse_vma(struct vm_area_struct *vma, 1899 swp_entry_t entry, struct page *page) 1900 { 1901 pgd_t *pgd; 1902 unsigned long addr, end, next; 1903 int ret; 1904 1905 if (page_anon_vma(page)) { 1906 addr = page_address_in_vma(page, vma); 1907 if (addr == -EFAULT) 1908 return 0; 1909 else 1910 end = addr + PAGE_SIZE; 1911 } else { 1912 addr = vma->vm_start; 1913 end = vma->vm_end; 1914 } 1915 1916 pgd = pgd_offset(vma->vm_mm, addr); 1917 do { 1918 next = pgd_addr_end(addr, end); 1919 if (pgd_none_or_clear_bad(pgd)) 1920 continue; 1921 ret = unuse_p4d_range(vma, pgd, addr, next, entry, page); 1922 if (ret) 1923 return ret; 1924 } while (pgd++, addr = next, addr != end); 1925 return 0; 1926 } 1927 1928 static int unuse_mm(struct mm_struct *mm, 1929 swp_entry_t entry, struct page *page) 1930 { 1931 struct vm_area_struct *vma; 1932 int ret = 0; 1933 1934 if (!down_read_trylock(&mm->mmap_sem)) { 1935 /* 1936 * Activate page so shrink_inactive_list is unlikely to unmap 1937 * its ptes while lock is dropped, so swapoff can make progress. 1938 */ 1939 activate_page(page); 1940 unlock_page(page); 1941 down_read(&mm->mmap_sem); 1942 lock_page(page); 1943 } 1944 for (vma = mm->mmap; vma; vma = vma->vm_next) { 1945 if (vma->anon_vma && (ret = unuse_vma(vma, entry, page))) 1946 break; 1947 cond_resched(); 1948 } 1949 up_read(&mm->mmap_sem); 1950 return (ret < 0)? ret: 0; 1951 } 1952 1953 /* 1954 * Scan swap_map (or frontswap_map if frontswap parameter is true) 1955 * from current position to next entry still in use. 1956 * Recycle to start on reaching the end, returning 0 when empty. 1957 */ 1958 static unsigned int find_next_to_unuse(struct swap_info_struct *si, 1959 unsigned int prev, bool frontswap) 1960 { 1961 unsigned int max = si->max; 1962 unsigned int i = prev; 1963 unsigned char count; 1964 1965 /* 1966 * No need for swap_lock here: we're just looking 1967 * for whether an entry is in use, not modifying it; false 1968 * hits are okay, and sys_swapoff() has already prevented new 1969 * allocations from this area (while holding swap_lock). 1970 */ 1971 for (;;) { 1972 if (++i >= max) { 1973 if (!prev) { 1974 i = 0; 1975 break; 1976 } 1977 /* 1978 * No entries in use at top of swap_map, 1979 * loop back to start and recheck there. 1980 */ 1981 max = prev + 1; 1982 prev = 0; 1983 i = 1; 1984 } 1985 count = READ_ONCE(si->swap_map[i]); 1986 if (count && swap_count(count) != SWAP_MAP_BAD) 1987 if (!frontswap || frontswap_test(si, i)) 1988 break; 1989 if ((i % LATENCY_LIMIT) == 0) 1990 cond_resched(); 1991 } 1992 return i; 1993 } 1994 1995 /* 1996 * We completely avoid races by reading each swap page in advance, 1997 * and then search for the process using it. All the necessary 1998 * page table adjustments can then be made atomically. 1999 * 2000 * if the boolean frontswap is true, only unuse pages_to_unuse pages; 2001 * pages_to_unuse==0 means all pages; ignored if frontswap is false 2002 */ 2003 int try_to_unuse(unsigned int type, bool frontswap, 2004 unsigned long pages_to_unuse) 2005 { 2006 struct swap_info_struct *si = swap_info[type]; 2007 struct mm_struct *start_mm; 2008 volatile unsigned char *swap_map; /* swap_map is accessed without 2009 * locking. Mark it as volatile 2010 * to prevent compiler doing 2011 * something odd. 2012 */ 2013 unsigned char swcount; 2014 struct page *page; 2015 swp_entry_t entry; 2016 unsigned int i = 0; 2017 int retval = 0; 2018 2019 /* 2020 * When searching mms for an entry, a good strategy is to 2021 * start at the first mm we freed the previous entry from 2022 * (though actually we don't notice whether we or coincidence 2023 * freed the entry). Initialize this start_mm with a hold. 2024 * 2025 * A simpler strategy would be to start at the last mm we 2026 * freed the previous entry from; but that would take less 2027 * advantage of mmlist ordering, which clusters forked mms 2028 * together, child after parent. If we race with dup_mmap(), we 2029 * prefer to resolve parent before child, lest we miss entries 2030 * duplicated after we scanned child: using last mm would invert 2031 * that. 2032 */ 2033 start_mm = &init_mm; 2034 mmget(&init_mm); 2035 2036 /* 2037 * Keep on scanning until all entries have gone. Usually, 2038 * one pass through swap_map is enough, but not necessarily: 2039 * there are races when an instance of an entry might be missed. 2040 */ 2041 while ((i = find_next_to_unuse(si, i, frontswap)) != 0) { 2042 if (signal_pending(current)) { 2043 retval = -EINTR; 2044 break; 2045 } 2046 2047 /* 2048 * Get a page for the entry, using the existing swap 2049 * cache page if there is one. Otherwise, get a clean 2050 * page and read the swap into it. 2051 */ 2052 swap_map = &si->swap_map[i]; 2053 entry = swp_entry(type, i); 2054 page = read_swap_cache_async(entry, 2055 GFP_HIGHUSER_MOVABLE, NULL, 0, false); 2056 if (!page) { 2057 /* 2058 * Either swap_duplicate() failed because entry 2059 * has been freed independently, and will not be 2060 * reused since sys_swapoff() already disabled 2061 * allocation from here, or alloc_page() failed. 2062 */ 2063 swcount = *swap_map; 2064 /* 2065 * We don't hold lock here, so the swap entry could be 2066 * SWAP_MAP_BAD (when the cluster is discarding). 2067 * Instead of fail out, We can just skip the swap 2068 * entry because swapoff will wait for discarding 2069 * finish anyway. 2070 */ 2071 if (!swcount || swcount == SWAP_MAP_BAD) 2072 continue; 2073 retval = -ENOMEM; 2074 break; 2075 } 2076 2077 /* 2078 * Don't hold on to start_mm if it looks like exiting. 2079 */ 2080 if (atomic_read(&start_mm->mm_users) == 1) { 2081 mmput(start_mm); 2082 start_mm = &init_mm; 2083 mmget(&init_mm); 2084 } 2085 2086 /* 2087 * Wait for and lock page. When do_swap_page races with 2088 * try_to_unuse, do_swap_page can handle the fault much 2089 * faster than try_to_unuse can locate the entry. This 2090 * apparently redundant "wait_on_page_locked" lets try_to_unuse 2091 * defer to do_swap_page in such a case - in some tests, 2092 * do_swap_page and try_to_unuse repeatedly compete. 2093 */ 2094 wait_on_page_locked(page); 2095 wait_on_page_writeback(page); 2096 lock_page(page); 2097 wait_on_page_writeback(page); 2098 2099 /* 2100 * Remove all references to entry. 2101 */ 2102 swcount = *swap_map; 2103 if (swap_count(swcount) == SWAP_MAP_SHMEM) { 2104 retval = shmem_unuse(entry, page); 2105 /* page has already been unlocked and released */ 2106 if (retval < 0) 2107 break; 2108 continue; 2109 } 2110 if (swap_count(swcount) && start_mm != &init_mm) 2111 retval = unuse_mm(start_mm, entry, page); 2112 2113 if (swap_count(*swap_map)) { 2114 int set_start_mm = (*swap_map >= swcount); 2115 struct list_head *p = &start_mm->mmlist; 2116 struct mm_struct *new_start_mm = start_mm; 2117 struct mm_struct *prev_mm = start_mm; 2118 struct mm_struct *mm; 2119 2120 mmget(new_start_mm); 2121 mmget(prev_mm); 2122 spin_lock(&mmlist_lock); 2123 while (swap_count(*swap_map) && !retval && 2124 (p = p->next) != &start_mm->mmlist) { 2125 mm = list_entry(p, struct mm_struct, mmlist); 2126 if (!mmget_not_zero(mm)) 2127 continue; 2128 spin_unlock(&mmlist_lock); 2129 mmput(prev_mm); 2130 prev_mm = mm; 2131 2132 cond_resched(); 2133 2134 swcount = *swap_map; 2135 if (!swap_count(swcount)) /* any usage ? */ 2136 ; 2137 else if (mm == &init_mm) 2138 set_start_mm = 1; 2139 else 2140 retval = unuse_mm(mm, entry, page); 2141 2142 if (set_start_mm && *swap_map < swcount) { 2143 mmput(new_start_mm); 2144 mmget(mm); 2145 new_start_mm = mm; 2146 set_start_mm = 0; 2147 } 2148 spin_lock(&mmlist_lock); 2149 } 2150 spin_unlock(&mmlist_lock); 2151 mmput(prev_mm); 2152 mmput(start_mm); 2153 start_mm = new_start_mm; 2154 } 2155 if (retval) { 2156 unlock_page(page); 2157 put_page(page); 2158 break; 2159 } 2160 2161 /* 2162 * If a reference remains (rare), we would like to leave 2163 * the page in the swap cache; but try_to_unmap could 2164 * then re-duplicate the entry once we drop page lock, 2165 * so we might loop indefinitely; also, that page could 2166 * not be swapped out to other storage meanwhile. So: 2167 * delete from cache even if there's another reference, 2168 * after ensuring that the data has been saved to disk - 2169 * since if the reference remains (rarer), it will be 2170 * read from disk into another page. Splitting into two 2171 * pages would be incorrect if swap supported "shared 2172 * private" pages, but they are handled by tmpfs files. 2173 * 2174 * Given how unuse_vma() targets one particular offset 2175 * in an anon_vma, once the anon_vma has been determined, 2176 * this splitting happens to be just what is needed to 2177 * handle where KSM pages have been swapped out: re-reading 2178 * is unnecessarily slow, but we can fix that later on. 2179 */ 2180 if (swap_count(*swap_map) && 2181 PageDirty(page) && PageSwapCache(page)) { 2182 struct writeback_control wbc = { 2183 .sync_mode = WB_SYNC_NONE, 2184 }; 2185 2186 swap_writepage(compound_head(page), &wbc); 2187 lock_page(page); 2188 wait_on_page_writeback(page); 2189 } 2190 2191 /* 2192 * It is conceivable that a racing task removed this page from 2193 * swap cache just before we acquired the page lock at the top, 2194 * or while we dropped it in unuse_mm(). The page might even 2195 * be back in swap cache on another swap area: that we must not 2196 * delete, since it may not have been written out to swap yet. 2197 */ 2198 if (PageSwapCache(page) && 2199 likely(page_private(page) == entry.val) && 2200 (!PageTransCompound(page) || 2201 !swap_page_trans_huge_swapped(si, entry))) 2202 delete_from_swap_cache(compound_head(page)); 2203 2204 /* 2205 * So we could skip searching mms once swap count went 2206 * to 1, we did not mark any present ptes as dirty: must 2207 * mark page dirty so shrink_page_list will preserve it. 2208 */ 2209 SetPageDirty(page); 2210 unlock_page(page); 2211 put_page(page); 2212 2213 /* 2214 * Make sure that we aren't completely killing 2215 * interactive performance. 2216 */ 2217 cond_resched(); 2218 if (frontswap && pages_to_unuse > 0) { 2219 if (!--pages_to_unuse) 2220 break; 2221 } 2222 } 2223 2224 mmput(start_mm); 2225 return retval; 2226 } 2227 2228 /* 2229 * After a successful try_to_unuse, if no swap is now in use, we know 2230 * we can empty the mmlist. swap_lock must be held on entry and exit. 2231 * Note that mmlist_lock nests inside swap_lock, and an mm must be 2232 * added to the mmlist just after page_duplicate - before would be racy. 2233 */ 2234 static void drain_mmlist(void) 2235 { 2236 struct list_head *p, *next; 2237 unsigned int type; 2238 2239 for (type = 0; type < nr_swapfiles; type++) 2240 if (swap_info[type]->inuse_pages) 2241 return; 2242 spin_lock(&mmlist_lock); 2243 list_for_each_safe(p, next, &init_mm.mmlist) 2244 list_del_init(p); 2245 spin_unlock(&mmlist_lock); 2246 } 2247 2248 /* 2249 * Use this swapdev's extent info to locate the (PAGE_SIZE) block which 2250 * corresponds to page offset for the specified swap entry. 2251 * Note that the type of this function is sector_t, but it returns page offset 2252 * into the bdev, not sector offset. 2253 */ 2254 static sector_t map_swap_entry(swp_entry_t entry, struct block_device **bdev) 2255 { 2256 struct swap_info_struct *sis; 2257 struct swap_extent *start_se; 2258 struct swap_extent *se; 2259 pgoff_t offset; 2260 2261 sis = swap_info[swp_type(entry)]; 2262 *bdev = sis->bdev; 2263 2264 offset = swp_offset(entry); 2265 start_se = sis->curr_swap_extent; 2266 se = start_se; 2267 2268 for ( ; ; ) { 2269 if (se->start_page <= offset && 2270 offset < (se->start_page + se->nr_pages)) { 2271 return se->start_block + (offset - se->start_page); 2272 } 2273 se = list_next_entry(se, list); 2274 sis->curr_swap_extent = se; 2275 BUG_ON(se == start_se); /* It *must* be present */ 2276 } 2277 } 2278 2279 /* 2280 * Returns the page offset into bdev for the specified page's swap entry. 2281 */ 2282 sector_t map_swap_page(struct page *page, struct block_device **bdev) 2283 { 2284 swp_entry_t entry; 2285 entry.val = page_private(page); 2286 return map_swap_entry(entry, bdev); 2287 } 2288 2289 /* 2290 * Free all of a swapdev's extent information 2291 */ 2292 static void destroy_swap_extents(struct swap_info_struct *sis) 2293 { 2294 while (!list_empty(&sis->first_swap_extent.list)) { 2295 struct swap_extent *se; 2296 2297 se = list_first_entry(&sis->first_swap_extent.list, 2298 struct swap_extent, list); 2299 list_del(&se->list); 2300 kfree(se); 2301 } 2302 2303 if (sis->flags & SWP_ACTIVATED) { 2304 struct file *swap_file = sis->swap_file; 2305 struct address_space *mapping = swap_file->f_mapping; 2306 2307 sis->flags &= ~SWP_ACTIVATED; 2308 if (mapping->a_ops->swap_deactivate) 2309 mapping->a_ops->swap_deactivate(swap_file); 2310 } 2311 } 2312 2313 /* 2314 * Add a block range (and the corresponding page range) into this swapdev's 2315 * extent list. The extent list is kept sorted in page order. 2316 * 2317 * This function rather assumes that it is called in ascending page order. 2318 */ 2319 int 2320 add_swap_extent(struct swap_info_struct *sis, unsigned long start_page, 2321 unsigned long nr_pages, sector_t start_block) 2322 { 2323 struct swap_extent *se; 2324 struct swap_extent *new_se; 2325 struct list_head *lh; 2326 2327 if (start_page == 0) { 2328 se = &sis->first_swap_extent; 2329 sis->curr_swap_extent = se; 2330 se->start_page = 0; 2331 se->nr_pages = nr_pages; 2332 se->start_block = start_block; 2333 return 1; 2334 } else { 2335 lh = sis->first_swap_extent.list.prev; /* Highest extent */ 2336 se = list_entry(lh, struct swap_extent, list); 2337 BUG_ON(se->start_page + se->nr_pages != start_page); 2338 if (se->start_block + se->nr_pages == start_block) { 2339 /* Merge it */ 2340 se->nr_pages += nr_pages; 2341 return 0; 2342 } 2343 } 2344 2345 /* 2346 * No merge. Insert a new extent, preserving ordering. 2347 */ 2348 new_se = kmalloc(sizeof(*se), GFP_KERNEL); 2349 if (new_se == NULL) 2350 return -ENOMEM; 2351 new_se->start_page = start_page; 2352 new_se->nr_pages = nr_pages; 2353 new_se->start_block = start_block; 2354 2355 list_add_tail(&new_se->list, &sis->first_swap_extent.list); 2356 return 1; 2357 } 2358 EXPORT_SYMBOL_GPL(add_swap_extent); 2359 2360 /* 2361 * A `swap extent' is a simple thing which maps a contiguous range of pages 2362 * onto a contiguous range of disk blocks. An ordered list of swap extents 2363 * is built at swapon time and is then used at swap_writepage/swap_readpage 2364 * time for locating where on disk a page belongs. 2365 * 2366 * If the swapfile is an S_ISBLK block device, a single extent is installed. 2367 * This is done so that the main operating code can treat S_ISBLK and S_ISREG 2368 * swap files identically. 2369 * 2370 * Whether the swapdev is an S_ISREG file or an S_ISBLK blockdev, the swap 2371 * extent list operates in PAGE_SIZE disk blocks. Both S_ISREG and S_ISBLK 2372 * swapfiles are handled *identically* after swapon time. 2373 * 2374 * For S_ISREG swapfiles, setup_swap_extents() will walk all the file's blocks 2375 * and will parse them into an ordered extent list, in PAGE_SIZE chunks. If 2376 * some stray blocks are found which do not fall within the PAGE_SIZE alignment 2377 * requirements, they are simply tossed out - we will never use those blocks 2378 * for swapping. 2379 * 2380 * For S_ISREG swapfiles we set S_SWAPFILE across the life of the swapon. This 2381 * prevents root from shooting her foot off by ftruncating an in-use swapfile, 2382 * which will scribble on the fs. 2383 * 2384 * The amount of disk space which a single swap extent represents varies. 2385 * Typically it is in the 1-4 megabyte range. So we can have hundreds of 2386 * extents in the list. To avoid much list walking, we cache the previous 2387 * search location in `curr_swap_extent', and start new searches from there. 2388 * This is extremely effective. The average number of iterations in 2389 * map_swap_page() has been measured at about 0.3 per page. - akpm. 2390 */ 2391 static int setup_swap_extents(struct swap_info_struct *sis, sector_t *span) 2392 { 2393 struct file *swap_file = sis->swap_file; 2394 struct address_space *mapping = swap_file->f_mapping; 2395 struct inode *inode = mapping->host; 2396 int ret; 2397 2398 if (S_ISBLK(inode->i_mode)) { 2399 ret = add_swap_extent(sis, 0, sis->max, 0); 2400 *span = sis->pages; 2401 return ret; 2402 } 2403 2404 if (mapping->a_ops->swap_activate) { 2405 ret = mapping->a_ops->swap_activate(sis, swap_file, span); 2406 if (ret >= 0) 2407 sis->flags |= SWP_ACTIVATED; 2408 if (!ret) { 2409 sis->flags |= SWP_FS; 2410 ret = add_swap_extent(sis, 0, sis->max, 0); 2411 *span = sis->pages; 2412 } 2413 return ret; 2414 } 2415 2416 return generic_swapfile_activate(sis, swap_file, span); 2417 } 2418 2419 static int swap_node(struct swap_info_struct *p) 2420 { 2421 struct block_device *bdev; 2422 2423 if (p->bdev) 2424 bdev = p->bdev; 2425 else 2426 bdev = p->swap_file->f_inode->i_sb->s_bdev; 2427 2428 return bdev ? bdev->bd_disk->node_id : NUMA_NO_NODE; 2429 } 2430 2431 static void _enable_swap_info(struct swap_info_struct *p, int prio, 2432 unsigned char *swap_map, 2433 struct swap_cluster_info *cluster_info) 2434 { 2435 int i; 2436 2437 if (prio >= 0) 2438 p->prio = prio; 2439 else 2440 p->prio = --least_priority; 2441 /* 2442 * the plist prio is negated because plist ordering is 2443 * low-to-high, while swap ordering is high-to-low 2444 */ 2445 p->list.prio = -p->prio; 2446 for_each_node(i) { 2447 if (p->prio >= 0) 2448 p->avail_lists[i].prio = -p->prio; 2449 else { 2450 if (swap_node(p) == i) 2451 p->avail_lists[i].prio = 1; 2452 else 2453 p->avail_lists[i].prio = -p->prio; 2454 } 2455 } 2456 p->swap_map = swap_map; 2457 p->cluster_info = cluster_info; 2458 p->flags |= SWP_WRITEOK; 2459 atomic_long_add(p->pages, &nr_swap_pages); 2460 total_swap_pages += p->pages; 2461 2462 assert_spin_locked(&swap_lock); 2463 /* 2464 * both lists are plists, and thus priority ordered. 2465 * swap_active_head needs to be priority ordered for swapoff(), 2466 * which on removal of any swap_info_struct with an auto-assigned 2467 * (i.e. negative) priority increments the auto-assigned priority 2468 * of any lower-priority swap_info_structs. 2469 * swap_avail_head needs to be priority ordered for get_swap_page(), 2470 * which allocates swap pages from the highest available priority 2471 * swap_info_struct. 2472 */ 2473 plist_add(&p->list, &swap_active_head); 2474 add_to_avail_list(p); 2475 } 2476 2477 static void enable_swap_info(struct swap_info_struct *p, int prio, 2478 unsigned char *swap_map, 2479 struct swap_cluster_info *cluster_info, 2480 unsigned long *frontswap_map) 2481 { 2482 frontswap_init(p->type, frontswap_map); 2483 spin_lock(&swap_lock); 2484 spin_lock(&p->lock); 2485 _enable_swap_info(p, prio, swap_map, cluster_info); 2486 spin_unlock(&p->lock); 2487 spin_unlock(&swap_lock); 2488 } 2489 2490 static void reinsert_swap_info(struct swap_info_struct *p) 2491 { 2492 spin_lock(&swap_lock); 2493 spin_lock(&p->lock); 2494 _enable_swap_info(p, p->prio, p->swap_map, p->cluster_info); 2495 spin_unlock(&p->lock); 2496 spin_unlock(&swap_lock); 2497 } 2498 2499 bool has_usable_swap(void) 2500 { 2501 bool ret = true; 2502 2503 spin_lock(&swap_lock); 2504 if (plist_head_empty(&swap_active_head)) 2505 ret = false; 2506 spin_unlock(&swap_lock); 2507 return ret; 2508 } 2509 2510 SYSCALL_DEFINE1(swapoff, const char __user *, specialfile) 2511 { 2512 struct swap_info_struct *p = NULL; 2513 unsigned char *swap_map; 2514 struct swap_cluster_info *cluster_info; 2515 unsigned long *frontswap_map; 2516 struct file *swap_file, *victim; 2517 struct address_space *mapping; 2518 struct inode *inode; 2519 struct filename *pathname; 2520 int err, found = 0; 2521 unsigned int old_block_size; 2522 2523 if (!capable(CAP_SYS_ADMIN)) 2524 return -EPERM; 2525 2526 BUG_ON(!current->mm); 2527 2528 pathname = getname(specialfile); 2529 if (IS_ERR(pathname)) 2530 return PTR_ERR(pathname); 2531 2532 victim = file_open_name(pathname, O_RDWR|O_LARGEFILE, 0); 2533 err = PTR_ERR(victim); 2534 if (IS_ERR(victim)) 2535 goto out; 2536 2537 mapping = victim->f_mapping; 2538 spin_lock(&swap_lock); 2539 plist_for_each_entry(p, &swap_active_head, list) { 2540 if (p->flags & SWP_WRITEOK) { 2541 if (p->swap_file->f_mapping == mapping) { 2542 found = 1; 2543 break; 2544 } 2545 } 2546 } 2547 if (!found) { 2548 err = -EINVAL; 2549 spin_unlock(&swap_lock); 2550 goto out_dput; 2551 } 2552 if (!security_vm_enough_memory_mm(current->mm, p->pages)) 2553 vm_unacct_memory(p->pages); 2554 else { 2555 err = -ENOMEM; 2556 spin_unlock(&swap_lock); 2557 goto out_dput; 2558 } 2559 del_from_avail_list(p); 2560 spin_lock(&p->lock); 2561 if (p->prio < 0) { 2562 struct swap_info_struct *si = p; 2563 int nid; 2564 2565 plist_for_each_entry_continue(si, &swap_active_head, list) { 2566 si->prio++; 2567 si->list.prio--; 2568 for_each_node(nid) { 2569 if (si->avail_lists[nid].prio != 1) 2570 si->avail_lists[nid].prio--; 2571 } 2572 } 2573 least_priority++; 2574 } 2575 plist_del(&p->list, &swap_active_head); 2576 atomic_long_sub(p->pages, &nr_swap_pages); 2577 total_swap_pages -= p->pages; 2578 p->flags &= ~SWP_WRITEOK; 2579 spin_unlock(&p->lock); 2580 spin_unlock(&swap_lock); 2581 2582 disable_swap_slots_cache_lock(); 2583 2584 set_current_oom_origin(); 2585 err = try_to_unuse(p->type, false, 0); /* force unuse all pages */ 2586 clear_current_oom_origin(); 2587 2588 if (err) { 2589 /* re-insert swap space back into swap_list */ 2590 reinsert_swap_info(p); 2591 reenable_swap_slots_cache_unlock(); 2592 goto out_dput; 2593 } 2594 2595 reenable_swap_slots_cache_unlock(); 2596 2597 flush_work(&p->discard_work); 2598 2599 destroy_swap_extents(p); 2600 if (p->flags & SWP_CONTINUED) 2601 free_swap_count_continuations(p); 2602 2603 if (!p->bdev || !blk_queue_nonrot(bdev_get_queue(p->bdev))) 2604 atomic_dec(&nr_rotate_swap); 2605 2606 mutex_lock(&swapon_mutex); 2607 spin_lock(&swap_lock); 2608 spin_lock(&p->lock); 2609 drain_mmlist(); 2610 2611 /* wait for anyone still in scan_swap_map */ 2612 p->highest_bit = 0; /* cuts scans short */ 2613 while (p->flags >= SWP_SCANNING) { 2614 spin_unlock(&p->lock); 2615 spin_unlock(&swap_lock); 2616 schedule_timeout_uninterruptible(1); 2617 spin_lock(&swap_lock); 2618 spin_lock(&p->lock); 2619 } 2620 2621 swap_file = p->swap_file; 2622 old_block_size = p->old_block_size; 2623 p->swap_file = NULL; 2624 p->max = 0; 2625 swap_map = p->swap_map; 2626 p->swap_map = NULL; 2627 cluster_info = p->cluster_info; 2628 p->cluster_info = NULL; 2629 frontswap_map = frontswap_map_get(p); 2630 spin_unlock(&p->lock); 2631 spin_unlock(&swap_lock); 2632 frontswap_invalidate_area(p->type); 2633 frontswap_map_set(p, NULL); 2634 mutex_unlock(&swapon_mutex); 2635 free_percpu(p->percpu_cluster); 2636 p->percpu_cluster = NULL; 2637 vfree(swap_map); 2638 kvfree(cluster_info); 2639 kvfree(frontswap_map); 2640 /* Destroy swap account information */ 2641 swap_cgroup_swapoff(p->type); 2642 exit_swap_address_space(p->type); 2643 2644 inode = mapping->host; 2645 if (S_ISBLK(inode->i_mode)) { 2646 struct block_device *bdev = I_BDEV(inode); 2647 set_blocksize(bdev, old_block_size); 2648 blkdev_put(bdev, FMODE_READ | FMODE_WRITE | FMODE_EXCL); 2649 } else { 2650 inode_lock(inode); 2651 inode->i_flags &= ~S_SWAPFILE; 2652 inode_unlock(inode); 2653 } 2654 filp_close(swap_file, NULL); 2655 2656 /* 2657 * Clear the SWP_USED flag after all resources are freed so that swapon 2658 * can reuse this swap_info in alloc_swap_info() safely. It is ok to 2659 * not hold p->lock after we cleared its SWP_WRITEOK. 2660 */ 2661 spin_lock(&swap_lock); 2662 p->flags = 0; 2663 spin_unlock(&swap_lock); 2664 2665 err = 0; 2666 atomic_inc(&proc_poll_event); 2667 wake_up_interruptible(&proc_poll_wait); 2668 2669 out_dput: 2670 filp_close(victim, NULL); 2671 out: 2672 putname(pathname); 2673 return err; 2674 } 2675 2676 #ifdef CONFIG_PROC_FS 2677 static __poll_t swaps_poll(struct file *file, poll_table *wait) 2678 { 2679 struct seq_file *seq = file->private_data; 2680 2681 poll_wait(file, &proc_poll_wait, wait); 2682 2683 if (seq->poll_event != atomic_read(&proc_poll_event)) { 2684 seq->poll_event = atomic_read(&proc_poll_event); 2685 return EPOLLIN | EPOLLRDNORM | EPOLLERR | EPOLLPRI; 2686 } 2687 2688 return EPOLLIN | EPOLLRDNORM; 2689 } 2690 2691 /* iterator */ 2692 static void *swap_start(struct seq_file *swap, loff_t *pos) 2693 { 2694 struct swap_info_struct *si; 2695 int type; 2696 loff_t l = *pos; 2697 2698 mutex_lock(&swapon_mutex); 2699 2700 if (!l) 2701 return SEQ_START_TOKEN; 2702 2703 for (type = 0; type < nr_swapfiles; type++) { 2704 smp_rmb(); /* read nr_swapfiles before swap_info[type] */ 2705 si = swap_info[type]; 2706 if (!(si->flags & SWP_USED) || !si->swap_map) 2707 continue; 2708 if (!--l) 2709 return si; 2710 } 2711 2712 return NULL; 2713 } 2714 2715 static void *swap_next(struct seq_file *swap, void *v, loff_t *pos) 2716 { 2717 struct swap_info_struct *si = v; 2718 int type; 2719 2720 if (v == SEQ_START_TOKEN) 2721 type = 0; 2722 else 2723 type = si->type + 1; 2724 2725 for (; type < nr_swapfiles; type++) { 2726 smp_rmb(); /* read nr_swapfiles before swap_info[type] */ 2727 si = swap_info[type]; 2728 if (!(si->flags & SWP_USED) || !si->swap_map) 2729 continue; 2730 ++*pos; 2731 return si; 2732 } 2733 2734 return NULL; 2735 } 2736 2737 static void swap_stop(struct seq_file *swap, void *v) 2738 { 2739 mutex_unlock(&swapon_mutex); 2740 } 2741 2742 static int swap_show(struct seq_file *swap, void *v) 2743 { 2744 struct swap_info_struct *si = v; 2745 struct file *file; 2746 int len; 2747 2748 if (si == SEQ_START_TOKEN) { 2749 seq_puts(swap,"Filename\t\t\t\tType\t\tSize\tUsed\tPriority\n"); 2750 return 0; 2751 } 2752 2753 file = si->swap_file; 2754 len = seq_file_path(swap, file, " \t\n\\"); 2755 seq_printf(swap, "%*s%s\t%u\t%u\t%d\n", 2756 len < 40 ? 40 - len : 1, " ", 2757 S_ISBLK(file_inode(file)->i_mode) ? 2758 "partition" : "file\t", 2759 si->pages << (PAGE_SHIFT - 10), 2760 si->inuse_pages << (PAGE_SHIFT - 10), 2761 si->prio); 2762 return 0; 2763 } 2764 2765 static const struct seq_operations swaps_op = { 2766 .start = swap_start, 2767 .next = swap_next, 2768 .stop = swap_stop, 2769 .show = swap_show 2770 }; 2771 2772 static int swaps_open(struct inode *inode, struct file *file) 2773 { 2774 struct seq_file *seq; 2775 int ret; 2776 2777 ret = seq_open(file, &swaps_op); 2778 if (ret) 2779 return ret; 2780 2781 seq = file->private_data; 2782 seq->poll_event = atomic_read(&proc_poll_event); 2783 return 0; 2784 } 2785 2786 static const struct file_operations proc_swaps_operations = { 2787 .open = swaps_open, 2788 .read = seq_read, 2789 .llseek = seq_lseek, 2790 .release = seq_release, 2791 .poll = swaps_poll, 2792 }; 2793 2794 static int __init procswaps_init(void) 2795 { 2796 proc_create("swaps", 0, NULL, &proc_swaps_operations); 2797 return 0; 2798 } 2799 __initcall(procswaps_init); 2800 #endif /* CONFIG_PROC_FS */ 2801 2802 #ifdef MAX_SWAPFILES_CHECK 2803 static int __init max_swapfiles_check(void) 2804 { 2805 MAX_SWAPFILES_CHECK(); 2806 return 0; 2807 } 2808 late_initcall(max_swapfiles_check); 2809 #endif 2810 2811 static struct swap_info_struct *alloc_swap_info(void) 2812 { 2813 struct swap_info_struct *p; 2814 unsigned int type; 2815 int i; 2816 int size = sizeof(*p) + nr_node_ids * sizeof(struct plist_node); 2817 2818 p = kvzalloc(size, GFP_KERNEL); 2819 if (!p) 2820 return ERR_PTR(-ENOMEM); 2821 2822 spin_lock(&swap_lock); 2823 for (type = 0; type < nr_swapfiles; type++) { 2824 if (!(swap_info[type]->flags & SWP_USED)) 2825 break; 2826 } 2827 if (type >= MAX_SWAPFILES) { 2828 spin_unlock(&swap_lock); 2829 kvfree(p); 2830 return ERR_PTR(-EPERM); 2831 } 2832 if (type >= nr_swapfiles) { 2833 p->type = type; 2834 swap_info[type] = p; 2835 /* 2836 * Write swap_info[type] before nr_swapfiles, in case a 2837 * racing procfs swap_start() or swap_next() is reading them. 2838 * (We never shrink nr_swapfiles, we never free this entry.) 2839 */ 2840 smp_wmb(); 2841 nr_swapfiles++; 2842 } else { 2843 kvfree(p); 2844 p = swap_info[type]; 2845 /* 2846 * Do not memset this entry: a racing procfs swap_next() 2847 * would be relying on p->type to remain valid. 2848 */ 2849 } 2850 INIT_LIST_HEAD(&p->first_swap_extent.list); 2851 plist_node_init(&p->list, 0); 2852 for_each_node(i) 2853 plist_node_init(&p->avail_lists[i], 0); 2854 p->flags = SWP_USED; 2855 spin_unlock(&swap_lock); 2856 spin_lock_init(&p->lock); 2857 spin_lock_init(&p->cont_lock); 2858 2859 return p; 2860 } 2861 2862 static int claim_swapfile(struct swap_info_struct *p, struct inode *inode) 2863 { 2864 int error; 2865 2866 if (S_ISBLK(inode->i_mode)) { 2867 p->bdev = bdgrab(I_BDEV(inode)); 2868 error = blkdev_get(p->bdev, 2869 FMODE_READ | FMODE_WRITE | FMODE_EXCL, p); 2870 if (error < 0) { 2871 p->bdev = NULL; 2872 return error; 2873 } 2874 p->old_block_size = block_size(p->bdev); 2875 error = set_blocksize(p->bdev, PAGE_SIZE); 2876 if (error < 0) 2877 return error; 2878 p->flags |= SWP_BLKDEV; 2879 } else if (S_ISREG(inode->i_mode)) { 2880 p->bdev = inode->i_sb->s_bdev; 2881 inode_lock(inode); 2882 if (IS_SWAPFILE(inode)) 2883 return -EBUSY; 2884 } else 2885 return -EINVAL; 2886 2887 return 0; 2888 } 2889 2890 2891 /* 2892 * Find out how many pages are allowed for a single swap device. There 2893 * are two limiting factors: 2894 * 1) the number of bits for the swap offset in the swp_entry_t type, and 2895 * 2) the number of bits in the swap pte, as defined by the different 2896 * architectures. 2897 * 2898 * In order to find the largest possible bit mask, a swap entry with 2899 * swap type 0 and swap offset ~0UL is created, encoded to a swap pte, 2900 * decoded to a swp_entry_t again, and finally the swap offset is 2901 * extracted. 2902 * 2903 * This will mask all the bits from the initial ~0UL mask that can't 2904 * be encoded in either the swp_entry_t or the architecture definition 2905 * of a swap pte. 2906 */ 2907 unsigned long generic_max_swapfile_size(void) 2908 { 2909 return swp_offset(pte_to_swp_entry( 2910 swp_entry_to_pte(swp_entry(0, ~0UL)))) + 1; 2911 } 2912 2913 /* Can be overridden by an architecture for additional checks. */ 2914 __weak unsigned long max_swapfile_size(void) 2915 { 2916 return generic_max_swapfile_size(); 2917 } 2918 2919 static unsigned long read_swap_header(struct swap_info_struct *p, 2920 union swap_header *swap_header, 2921 struct inode *inode) 2922 { 2923 int i; 2924 unsigned long maxpages; 2925 unsigned long swapfilepages; 2926 unsigned long last_page; 2927 2928 if (memcmp("SWAPSPACE2", swap_header->magic.magic, 10)) { 2929 pr_err("Unable to find swap-space signature\n"); 2930 return 0; 2931 } 2932 2933 /* swap partition endianess hack... */ 2934 if (swab32(swap_header->info.version) == 1) { 2935 swab32s(&swap_header->info.version); 2936 swab32s(&swap_header->info.last_page); 2937 swab32s(&swap_header->info.nr_badpages); 2938 if (swap_header->info.nr_badpages > MAX_SWAP_BADPAGES) 2939 return 0; 2940 for (i = 0; i < swap_header->info.nr_badpages; i++) 2941 swab32s(&swap_header->info.badpages[i]); 2942 } 2943 /* Check the swap header's sub-version */ 2944 if (swap_header->info.version != 1) { 2945 pr_warn("Unable to handle swap header version %d\n", 2946 swap_header->info.version); 2947 return 0; 2948 } 2949 2950 p->lowest_bit = 1; 2951 p->cluster_next = 1; 2952 p->cluster_nr = 0; 2953 2954 maxpages = max_swapfile_size(); 2955 last_page = swap_header->info.last_page; 2956 if (!last_page) { 2957 pr_warn("Empty swap-file\n"); 2958 return 0; 2959 } 2960 if (last_page > maxpages) { 2961 pr_warn("Truncating oversized swap area, only using %luk out of %luk\n", 2962 maxpages << (PAGE_SHIFT - 10), 2963 last_page << (PAGE_SHIFT - 10)); 2964 } 2965 if (maxpages > last_page) { 2966 maxpages = last_page + 1; 2967 /* p->max is an unsigned int: don't overflow it */ 2968 if ((unsigned int)maxpages == 0) 2969 maxpages = UINT_MAX; 2970 } 2971 p->highest_bit = maxpages - 1; 2972 2973 if (!maxpages) 2974 return 0; 2975 swapfilepages = i_size_read(inode) >> PAGE_SHIFT; 2976 if (swapfilepages && maxpages > swapfilepages) { 2977 pr_warn("Swap area shorter than signature indicates\n"); 2978 return 0; 2979 } 2980 if (swap_header->info.nr_badpages && S_ISREG(inode->i_mode)) 2981 return 0; 2982 if (swap_header->info.nr_badpages > MAX_SWAP_BADPAGES) 2983 return 0; 2984 2985 return maxpages; 2986 } 2987 2988 #define SWAP_CLUSTER_INFO_COLS \ 2989 DIV_ROUND_UP(L1_CACHE_BYTES, sizeof(struct swap_cluster_info)) 2990 #define SWAP_CLUSTER_SPACE_COLS \ 2991 DIV_ROUND_UP(SWAP_ADDRESS_SPACE_PAGES, SWAPFILE_CLUSTER) 2992 #define SWAP_CLUSTER_COLS \ 2993 max_t(unsigned int, SWAP_CLUSTER_INFO_COLS, SWAP_CLUSTER_SPACE_COLS) 2994 2995 static int setup_swap_map_and_extents(struct swap_info_struct *p, 2996 union swap_header *swap_header, 2997 unsigned char *swap_map, 2998 struct swap_cluster_info *cluster_info, 2999 unsigned long maxpages, 3000 sector_t *span) 3001 { 3002 unsigned int j, k; 3003 unsigned int nr_good_pages; 3004 int nr_extents; 3005 unsigned long nr_clusters = DIV_ROUND_UP(maxpages, SWAPFILE_CLUSTER); 3006 unsigned long col = p->cluster_next / SWAPFILE_CLUSTER % SWAP_CLUSTER_COLS; 3007 unsigned long i, idx; 3008 3009 nr_good_pages = maxpages - 1; /* omit header page */ 3010 3011 cluster_list_init(&p->free_clusters); 3012 cluster_list_init(&p->discard_clusters); 3013 3014 for (i = 0; i < swap_header->info.nr_badpages; i++) { 3015 unsigned int page_nr = swap_header->info.badpages[i]; 3016 if (page_nr == 0 || page_nr > swap_header->info.last_page) 3017 return -EINVAL; 3018 if (page_nr < maxpages) { 3019 swap_map[page_nr] = SWAP_MAP_BAD; 3020 nr_good_pages--; 3021 /* 3022 * Haven't marked the cluster free yet, no list 3023 * operation involved 3024 */ 3025 inc_cluster_info_page(p, cluster_info, page_nr); 3026 } 3027 } 3028 3029 /* Haven't marked the cluster free yet, no list operation involved */ 3030 for (i = maxpages; i < round_up(maxpages, SWAPFILE_CLUSTER); i++) 3031 inc_cluster_info_page(p, cluster_info, i); 3032 3033 if (nr_good_pages) { 3034 swap_map[0] = SWAP_MAP_BAD; 3035 /* 3036 * Not mark the cluster free yet, no list 3037 * operation involved 3038 */ 3039 inc_cluster_info_page(p, cluster_info, 0); 3040 p->max = maxpages; 3041 p->pages = nr_good_pages; 3042 nr_extents = setup_swap_extents(p, span); 3043 if (nr_extents < 0) 3044 return nr_extents; 3045 nr_good_pages = p->pages; 3046 } 3047 if (!nr_good_pages) { 3048 pr_warn("Empty swap-file\n"); 3049 return -EINVAL; 3050 } 3051 3052 if (!cluster_info) 3053 return nr_extents; 3054 3055 3056 /* 3057 * Reduce false cache line sharing between cluster_info and 3058 * sharing same address space. 3059 */ 3060 for (k = 0; k < SWAP_CLUSTER_COLS; k++) { 3061 j = (k + col) % SWAP_CLUSTER_COLS; 3062 for (i = 0; i < DIV_ROUND_UP(nr_clusters, SWAP_CLUSTER_COLS); i++) { 3063 idx = i * SWAP_CLUSTER_COLS + j; 3064 if (idx >= nr_clusters) 3065 continue; 3066 if (cluster_count(&cluster_info[idx])) 3067 continue; 3068 cluster_set_flag(&cluster_info[idx], CLUSTER_FLAG_FREE); 3069 cluster_list_add_tail(&p->free_clusters, cluster_info, 3070 idx); 3071 } 3072 } 3073 return nr_extents; 3074 } 3075 3076 /* 3077 * Helper to sys_swapon determining if a given swap 3078 * backing device queue supports DISCARD operations. 3079 */ 3080 static bool swap_discardable(struct swap_info_struct *si) 3081 { 3082 struct request_queue *q = bdev_get_queue(si->bdev); 3083 3084 if (!q || !blk_queue_discard(q)) 3085 return false; 3086 3087 return true; 3088 } 3089 3090 SYSCALL_DEFINE2(swapon, const char __user *, specialfile, int, swap_flags) 3091 { 3092 struct swap_info_struct *p; 3093 struct filename *name; 3094 struct file *swap_file = NULL; 3095 struct address_space *mapping; 3096 int prio; 3097 int error; 3098 union swap_header *swap_header; 3099 int nr_extents; 3100 sector_t span; 3101 unsigned long maxpages; 3102 unsigned char *swap_map = NULL; 3103 struct swap_cluster_info *cluster_info = NULL; 3104 unsigned long *frontswap_map = NULL; 3105 struct page *page = NULL; 3106 struct inode *inode = NULL; 3107 bool inced_nr_rotate_swap = false; 3108 3109 if (swap_flags & ~SWAP_FLAGS_VALID) 3110 return -EINVAL; 3111 3112 if (!capable(CAP_SYS_ADMIN)) 3113 return -EPERM; 3114 3115 if (!swap_avail_heads) 3116 return -ENOMEM; 3117 3118 p = alloc_swap_info(); 3119 if (IS_ERR(p)) 3120 return PTR_ERR(p); 3121 3122 INIT_WORK(&p->discard_work, swap_discard_work); 3123 3124 name = getname(specialfile); 3125 if (IS_ERR(name)) { 3126 error = PTR_ERR(name); 3127 name = NULL; 3128 goto bad_swap; 3129 } 3130 swap_file = file_open_name(name, O_RDWR|O_LARGEFILE, 0); 3131 if (IS_ERR(swap_file)) { 3132 error = PTR_ERR(swap_file); 3133 swap_file = NULL; 3134 goto bad_swap; 3135 } 3136 3137 p->swap_file = swap_file; 3138 mapping = swap_file->f_mapping; 3139 inode = mapping->host; 3140 3141 /* If S_ISREG(inode->i_mode) will do inode_lock(inode); */ 3142 error = claim_swapfile(p, inode); 3143 if (unlikely(error)) 3144 goto bad_swap; 3145 3146 /* 3147 * Read the swap header. 3148 */ 3149 if (!mapping->a_ops->readpage) { 3150 error = -EINVAL; 3151 goto bad_swap; 3152 } 3153 page = read_mapping_page(mapping, 0, swap_file); 3154 if (IS_ERR(page)) { 3155 error = PTR_ERR(page); 3156 goto bad_swap; 3157 } 3158 swap_header = kmap(page); 3159 3160 maxpages = read_swap_header(p, swap_header, inode); 3161 if (unlikely(!maxpages)) { 3162 error = -EINVAL; 3163 goto bad_swap; 3164 } 3165 3166 /* OK, set up the swap map and apply the bad block list */ 3167 swap_map = vzalloc(maxpages); 3168 if (!swap_map) { 3169 error = -ENOMEM; 3170 goto bad_swap; 3171 } 3172 3173 if (bdi_cap_stable_pages_required(inode_to_bdi(inode))) 3174 p->flags |= SWP_STABLE_WRITES; 3175 3176 if (bdi_cap_synchronous_io(inode_to_bdi(inode))) 3177 p->flags |= SWP_SYNCHRONOUS_IO; 3178 3179 if (p->bdev && blk_queue_nonrot(bdev_get_queue(p->bdev))) { 3180 int cpu; 3181 unsigned long ci, nr_cluster; 3182 3183 p->flags |= SWP_SOLIDSTATE; 3184 /* 3185 * select a random position to start with to help wear leveling 3186 * SSD 3187 */ 3188 p->cluster_next = 1 + (prandom_u32() % p->highest_bit); 3189 nr_cluster = DIV_ROUND_UP(maxpages, SWAPFILE_CLUSTER); 3190 3191 cluster_info = kvcalloc(nr_cluster, sizeof(*cluster_info), 3192 GFP_KERNEL); 3193 if (!cluster_info) { 3194 error = -ENOMEM; 3195 goto bad_swap; 3196 } 3197 3198 for (ci = 0; ci < nr_cluster; ci++) 3199 spin_lock_init(&((cluster_info + ci)->lock)); 3200 3201 p->percpu_cluster = alloc_percpu(struct percpu_cluster); 3202 if (!p->percpu_cluster) { 3203 error = -ENOMEM; 3204 goto bad_swap; 3205 } 3206 for_each_possible_cpu(cpu) { 3207 struct percpu_cluster *cluster; 3208 cluster = per_cpu_ptr(p->percpu_cluster, cpu); 3209 cluster_set_null(&cluster->index); 3210 } 3211 } else { 3212 atomic_inc(&nr_rotate_swap); 3213 inced_nr_rotate_swap = true; 3214 } 3215 3216 error = swap_cgroup_swapon(p->type, maxpages); 3217 if (error) 3218 goto bad_swap; 3219 3220 nr_extents = setup_swap_map_and_extents(p, swap_header, swap_map, 3221 cluster_info, maxpages, &span); 3222 if (unlikely(nr_extents < 0)) { 3223 error = nr_extents; 3224 goto bad_swap; 3225 } 3226 /* frontswap enabled? set up bit-per-page map for frontswap */ 3227 if (IS_ENABLED(CONFIG_FRONTSWAP)) 3228 frontswap_map = kvcalloc(BITS_TO_LONGS(maxpages), 3229 sizeof(long), 3230 GFP_KERNEL); 3231 3232 if (p->bdev &&(swap_flags & SWAP_FLAG_DISCARD) && swap_discardable(p)) { 3233 /* 3234 * When discard is enabled for swap with no particular 3235 * policy flagged, we set all swap discard flags here in 3236 * order to sustain backward compatibility with older 3237 * swapon(8) releases. 3238 */ 3239 p->flags |= (SWP_DISCARDABLE | SWP_AREA_DISCARD | 3240 SWP_PAGE_DISCARD); 3241 3242 /* 3243 * By flagging sys_swapon, a sysadmin can tell us to 3244 * either do single-time area discards only, or to just 3245 * perform discards for released swap page-clusters. 3246 * Now it's time to adjust the p->flags accordingly. 3247 */ 3248 if (swap_flags & SWAP_FLAG_DISCARD_ONCE) 3249 p->flags &= ~SWP_PAGE_DISCARD; 3250 else if (swap_flags & SWAP_FLAG_DISCARD_PAGES) 3251 p->flags &= ~SWP_AREA_DISCARD; 3252 3253 /* issue a swapon-time discard if it's still required */ 3254 if (p->flags & SWP_AREA_DISCARD) { 3255 int err = discard_swap(p); 3256 if (unlikely(err)) 3257 pr_err("swapon: discard_swap(%p): %d\n", 3258 p, err); 3259 } 3260 } 3261 3262 error = init_swap_address_space(p->type, maxpages); 3263 if (error) 3264 goto bad_swap; 3265 3266 mutex_lock(&swapon_mutex); 3267 prio = -1; 3268 if (swap_flags & SWAP_FLAG_PREFER) 3269 prio = 3270 (swap_flags & SWAP_FLAG_PRIO_MASK) >> SWAP_FLAG_PRIO_SHIFT; 3271 enable_swap_info(p, prio, swap_map, cluster_info, frontswap_map); 3272 3273 pr_info("Adding %uk swap on %s. Priority:%d extents:%d across:%lluk %s%s%s%s%s\n", 3274 p->pages<<(PAGE_SHIFT-10), name->name, p->prio, 3275 nr_extents, (unsigned long long)span<<(PAGE_SHIFT-10), 3276 (p->flags & SWP_SOLIDSTATE) ? "SS" : "", 3277 (p->flags & SWP_DISCARDABLE) ? "D" : "", 3278 (p->flags & SWP_AREA_DISCARD) ? "s" : "", 3279 (p->flags & SWP_PAGE_DISCARD) ? "c" : "", 3280 (frontswap_map) ? "FS" : ""); 3281 3282 mutex_unlock(&swapon_mutex); 3283 atomic_inc(&proc_poll_event); 3284 wake_up_interruptible(&proc_poll_wait); 3285 3286 if (S_ISREG(inode->i_mode)) 3287 inode->i_flags |= S_SWAPFILE; 3288 error = 0; 3289 goto out; 3290 bad_swap: 3291 free_percpu(p->percpu_cluster); 3292 p->percpu_cluster = NULL; 3293 if (inode && S_ISBLK(inode->i_mode) && p->bdev) { 3294 set_blocksize(p->bdev, p->old_block_size); 3295 blkdev_put(p->bdev, FMODE_READ | FMODE_WRITE | FMODE_EXCL); 3296 } 3297 destroy_swap_extents(p); 3298 swap_cgroup_swapoff(p->type); 3299 spin_lock(&swap_lock); 3300 p->swap_file = NULL; 3301 p->flags = 0; 3302 spin_unlock(&swap_lock); 3303 vfree(swap_map); 3304 kvfree(cluster_info); 3305 kvfree(frontswap_map); 3306 if (inced_nr_rotate_swap) 3307 atomic_dec(&nr_rotate_swap); 3308 if (swap_file) { 3309 if (inode && S_ISREG(inode->i_mode)) { 3310 inode_unlock(inode); 3311 inode = NULL; 3312 } 3313 filp_close(swap_file, NULL); 3314 } 3315 out: 3316 if (page && !IS_ERR(page)) { 3317 kunmap(page); 3318 put_page(page); 3319 } 3320 if (name) 3321 putname(name); 3322 if (inode && S_ISREG(inode->i_mode)) 3323 inode_unlock(inode); 3324 if (!error) 3325 enable_swap_slots_cache(); 3326 return error; 3327 } 3328 3329 void si_swapinfo(struct sysinfo *val) 3330 { 3331 unsigned int type; 3332 unsigned long nr_to_be_unused = 0; 3333 3334 spin_lock(&swap_lock); 3335 for (type = 0; type < nr_swapfiles; type++) { 3336 struct swap_info_struct *si = swap_info[type]; 3337 3338 if ((si->flags & SWP_USED) && !(si->flags & SWP_WRITEOK)) 3339 nr_to_be_unused += si->inuse_pages; 3340 } 3341 val->freeswap = atomic_long_read(&nr_swap_pages) + nr_to_be_unused; 3342 val->totalswap = total_swap_pages + nr_to_be_unused; 3343 spin_unlock(&swap_lock); 3344 } 3345 3346 /* 3347 * Verify that a swap entry is valid and increment its swap map count. 3348 * 3349 * Returns error code in following case. 3350 * - success -> 0 3351 * - swp_entry is invalid -> EINVAL 3352 * - swp_entry is migration entry -> EINVAL 3353 * - swap-cache reference is requested but there is already one. -> EEXIST 3354 * - swap-cache reference is requested but the entry is not used. -> ENOENT 3355 * - swap-mapped reference requested but needs continued swap count. -> ENOMEM 3356 */ 3357 static int __swap_duplicate(swp_entry_t entry, unsigned char usage) 3358 { 3359 struct swap_info_struct *p; 3360 struct swap_cluster_info *ci; 3361 unsigned long offset, type; 3362 unsigned char count; 3363 unsigned char has_cache; 3364 int err = -EINVAL; 3365 3366 if (non_swap_entry(entry)) 3367 goto out; 3368 3369 type = swp_type(entry); 3370 if (type >= nr_swapfiles) 3371 goto bad_file; 3372 p = swap_info[type]; 3373 offset = swp_offset(entry); 3374 if (unlikely(offset >= p->max)) 3375 goto out; 3376 3377 ci = lock_cluster_or_swap_info(p, offset); 3378 3379 count = p->swap_map[offset]; 3380 3381 /* 3382 * swapin_readahead() doesn't check if a swap entry is valid, so the 3383 * swap entry could be SWAP_MAP_BAD. Check here with lock held. 3384 */ 3385 if (unlikely(swap_count(count) == SWAP_MAP_BAD)) { 3386 err = -ENOENT; 3387 goto unlock_out; 3388 } 3389 3390 has_cache = count & SWAP_HAS_CACHE; 3391 count &= ~SWAP_HAS_CACHE; 3392 err = 0; 3393 3394 if (usage == SWAP_HAS_CACHE) { 3395 3396 /* set SWAP_HAS_CACHE if there is no cache and entry is used */ 3397 if (!has_cache && count) 3398 has_cache = SWAP_HAS_CACHE; 3399 else if (has_cache) /* someone else added cache */ 3400 err = -EEXIST; 3401 else /* no users remaining */ 3402 err = -ENOENT; 3403 3404 } else if (count || has_cache) { 3405 3406 if ((count & ~COUNT_CONTINUED) < SWAP_MAP_MAX) 3407 count += usage; 3408 else if ((count & ~COUNT_CONTINUED) > SWAP_MAP_MAX) 3409 err = -EINVAL; 3410 else if (swap_count_continued(p, offset, count)) 3411 count = COUNT_CONTINUED; 3412 else 3413 err = -ENOMEM; 3414 } else 3415 err = -ENOENT; /* unused swap entry */ 3416 3417 p->swap_map[offset] = count | has_cache; 3418 3419 unlock_out: 3420 unlock_cluster_or_swap_info(p, ci); 3421 out: 3422 return err; 3423 3424 bad_file: 3425 pr_err("swap_dup: %s%08lx\n", Bad_file, entry.val); 3426 goto out; 3427 } 3428 3429 /* 3430 * Help swapoff by noting that swap entry belongs to shmem/tmpfs 3431 * (in which case its reference count is never incremented). 3432 */ 3433 void swap_shmem_alloc(swp_entry_t entry) 3434 { 3435 __swap_duplicate(entry, SWAP_MAP_SHMEM); 3436 } 3437 3438 /* 3439 * Increase reference count of swap entry by 1. 3440 * Returns 0 for success, or -ENOMEM if a swap_count_continuation is required 3441 * but could not be atomically allocated. Returns 0, just as if it succeeded, 3442 * if __swap_duplicate() fails for another reason (-EINVAL or -ENOENT), which 3443 * might occur if a page table entry has got corrupted. 3444 */ 3445 int swap_duplicate(swp_entry_t entry) 3446 { 3447 int err = 0; 3448 3449 while (!err && __swap_duplicate(entry, 1) == -ENOMEM) 3450 err = add_swap_count_continuation(entry, GFP_ATOMIC); 3451 return err; 3452 } 3453 3454 /* 3455 * @entry: swap entry for which we allocate swap cache. 3456 * 3457 * Called when allocating swap cache for existing swap entry, 3458 * This can return error codes. Returns 0 at success. 3459 * -EBUSY means there is a swap cache. 3460 * Note: return code is different from swap_duplicate(). 3461 */ 3462 int swapcache_prepare(swp_entry_t entry) 3463 { 3464 return __swap_duplicate(entry, SWAP_HAS_CACHE); 3465 } 3466 3467 struct swap_info_struct *swp_swap_info(swp_entry_t entry) 3468 { 3469 return swap_info[swp_type(entry)]; 3470 } 3471 3472 struct swap_info_struct *page_swap_info(struct page *page) 3473 { 3474 swp_entry_t entry = { .val = page_private(page) }; 3475 return swp_swap_info(entry); 3476 } 3477 3478 /* 3479 * out-of-line __page_file_ methods to avoid include hell. 3480 */ 3481 struct address_space *__page_file_mapping(struct page *page) 3482 { 3483 return page_swap_info(page)->swap_file->f_mapping; 3484 } 3485 EXPORT_SYMBOL_GPL(__page_file_mapping); 3486 3487 pgoff_t __page_file_index(struct page *page) 3488 { 3489 swp_entry_t swap = { .val = page_private(page) }; 3490 return swp_offset(swap); 3491 } 3492 EXPORT_SYMBOL_GPL(__page_file_index); 3493 3494 /* 3495 * add_swap_count_continuation - called when a swap count is duplicated 3496 * beyond SWAP_MAP_MAX, it allocates a new page and links that to the entry's 3497 * page of the original vmalloc'ed swap_map, to hold the continuation count 3498 * (for that entry and for its neighbouring PAGE_SIZE swap entries). Called 3499 * again when count is duplicated beyond SWAP_MAP_MAX * SWAP_CONT_MAX, etc. 3500 * 3501 * These continuation pages are seldom referenced: the common paths all work 3502 * on the original swap_map, only referring to a continuation page when the 3503 * low "digit" of a count is incremented or decremented through SWAP_MAP_MAX. 3504 * 3505 * add_swap_count_continuation(, GFP_ATOMIC) can be called while holding 3506 * page table locks; if it fails, add_swap_count_continuation(, GFP_KERNEL) 3507 * can be called after dropping locks. 3508 */ 3509 int add_swap_count_continuation(swp_entry_t entry, gfp_t gfp_mask) 3510 { 3511 struct swap_info_struct *si; 3512 struct swap_cluster_info *ci; 3513 struct page *head; 3514 struct page *page; 3515 struct page *list_page; 3516 pgoff_t offset; 3517 unsigned char count; 3518 3519 /* 3520 * When debugging, it's easier to use __GFP_ZERO here; but it's better 3521 * for latency not to zero a page while GFP_ATOMIC and holding locks. 3522 */ 3523 page = alloc_page(gfp_mask | __GFP_HIGHMEM); 3524 3525 si = swap_info_get(entry); 3526 if (!si) { 3527 /* 3528 * An acceptable race has occurred since the failing 3529 * __swap_duplicate(): the swap entry has been freed, 3530 * perhaps even the whole swap_map cleared for swapoff. 3531 */ 3532 goto outer; 3533 } 3534 3535 offset = swp_offset(entry); 3536 3537 ci = lock_cluster(si, offset); 3538 3539 count = si->swap_map[offset] & ~SWAP_HAS_CACHE; 3540 3541 if ((count & ~COUNT_CONTINUED) != SWAP_MAP_MAX) { 3542 /* 3543 * The higher the swap count, the more likely it is that tasks 3544 * will race to add swap count continuation: we need to avoid 3545 * over-provisioning. 3546 */ 3547 goto out; 3548 } 3549 3550 if (!page) { 3551 unlock_cluster(ci); 3552 spin_unlock(&si->lock); 3553 return -ENOMEM; 3554 } 3555 3556 /* 3557 * We are fortunate that although vmalloc_to_page uses pte_offset_map, 3558 * no architecture is using highmem pages for kernel page tables: so it 3559 * will not corrupt the GFP_ATOMIC caller's atomic page table kmaps. 3560 */ 3561 head = vmalloc_to_page(si->swap_map + offset); 3562 offset &= ~PAGE_MASK; 3563 3564 spin_lock(&si->cont_lock); 3565 /* 3566 * Page allocation does not initialize the page's lru field, 3567 * but it does always reset its private field. 3568 */ 3569 if (!page_private(head)) { 3570 BUG_ON(count & COUNT_CONTINUED); 3571 INIT_LIST_HEAD(&head->lru); 3572 set_page_private(head, SWP_CONTINUED); 3573 si->flags |= SWP_CONTINUED; 3574 } 3575 3576 list_for_each_entry(list_page, &head->lru, lru) { 3577 unsigned char *map; 3578 3579 /* 3580 * If the previous map said no continuation, but we've found 3581 * a continuation page, free our allocation and use this one. 3582 */ 3583 if (!(count & COUNT_CONTINUED)) 3584 goto out_unlock_cont; 3585 3586 map = kmap_atomic(list_page) + offset; 3587 count = *map; 3588 kunmap_atomic(map); 3589 3590 /* 3591 * If this continuation count now has some space in it, 3592 * free our allocation and use this one. 3593 */ 3594 if ((count & ~COUNT_CONTINUED) != SWAP_CONT_MAX) 3595 goto out_unlock_cont; 3596 } 3597 3598 list_add_tail(&page->lru, &head->lru); 3599 page = NULL; /* now it's attached, don't free it */ 3600 out_unlock_cont: 3601 spin_unlock(&si->cont_lock); 3602 out: 3603 unlock_cluster(ci); 3604 spin_unlock(&si->lock); 3605 outer: 3606 if (page) 3607 __free_page(page); 3608 return 0; 3609 } 3610 3611 /* 3612 * swap_count_continued - when the original swap_map count is incremented 3613 * from SWAP_MAP_MAX, check if there is already a continuation page to carry 3614 * into, carry if so, or else fail until a new continuation page is allocated; 3615 * when the original swap_map count is decremented from 0 with continuation, 3616 * borrow from the continuation and report whether it still holds more. 3617 * Called while __swap_duplicate() or swap_entry_free() holds swap or cluster 3618 * lock. 3619 */ 3620 static bool swap_count_continued(struct swap_info_struct *si, 3621 pgoff_t offset, unsigned char count) 3622 { 3623 struct page *head; 3624 struct page *page; 3625 unsigned char *map; 3626 bool ret; 3627 3628 head = vmalloc_to_page(si->swap_map + offset); 3629 if (page_private(head) != SWP_CONTINUED) { 3630 BUG_ON(count & COUNT_CONTINUED); 3631 return false; /* need to add count continuation */ 3632 } 3633 3634 spin_lock(&si->cont_lock); 3635 offset &= ~PAGE_MASK; 3636 page = list_entry(head->lru.next, struct page, lru); 3637 map = kmap_atomic(page) + offset; 3638 3639 if (count == SWAP_MAP_MAX) /* initial increment from swap_map */ 3640 goto init_map; /* jump over SWAP_CONT_MAX checks */ 3641 3642 if (count == (SWAP_MAP_MAX | COUNT_CONTINUED)) { /* incrementing */ 3643 /* 3644 * Think of how you add 1 to 999 3645 */ 3646 while (*map == (SWAP_CONT_MAX | COUNT_CONTINUED)) { 3647 kunmap_atomic(map); 3648 page = list_entry(page->lru.next, struct page, lru); 3649 BUG_ON(page == head); 3650 map = kmap_atomic(page) + offset; 3651 } 3652 if (*map == SWAP_CONT_MAX) { 3653 kunmap_atomic(map); 3654 page = list_entry(page->lru.next, struct page, lru); 3655 if (page == head) { 3656 ret = false; /* add count continuation */ 3657 goto out; 3658 } 3659 map = kmap_atomic(page) + offset; 3660 init_map: *map = 0; /* we didn't zero the page */ 3661 } 3662 *map += 1; 3663 kunmap_atomic(map); 3664 page = list_entry(page->lru.prev, struct page, lru); 3665 while (page != head) { 3666 map = kmap_atomic(page) + offset; 3667 *map = COUNT_CONTINUED; 3668 kunmap_atomic(map); 3669 page = list_entry(page->lru.prev, struct page, lru); 3670 } 3671 ret = true; /* incremented */ 3672 3673 } else { /* decrementing */ 3674 /* 3675 * Think of how you subtract 1 from 1000 3676 */ 3677 BUG_ON(count != COUNT_CONTINUED); 3678 while (*map == COUNT_CONTINUED) { 3679 kunmap_atomic(map); 3680 page = list_entry(page->lru.next, struct page, lru); 3681 BUG_ON(page == head); 3682 map = kmap_atomic(page) + offset; 3683 } 3684 BUG_ON(*map == 0); 3685 *map -= 1; 3686 if (*map == 0) 3687 count = 0; 3688 kunmap_atomic(map); 3689 page = list_entry(page->lru.prev, struct page, lru); 3690 while (page != head) { 3691 map = kmap_atomic(page) + offset; 3692 *map = SWAP_CONT_MAX | count; 3693 count = COUNT_CONTINUED; 3694 kunmap_atomic(map); 3695 page = list_entry(page->lru.prev, struct page, lru); 3696 } 3697 ret = count == COUNT_CONTINUED; 3698 } 3699 out: 3700 spin_unlock(&si->cont_lock); 3701 return ret; 3702 } 3703 3704 /* 3705 * free_swap_count_continuations - swapoff free all the continuation pages 3706 * appended to the swap_map, after swap_map is quiesced, before vfree'ing it. 3707 */ 3708 static void free_swap_count_continuations(struct swap_info_struct *si) 3709 { 3710 pgoff_t offset; 3711 3712 for (offset = 0; offset < si->max; offset += PAGE_SIZE) { 3713 struct page *head; 3714 head = vmalloc_to_page(si->swap_map + offset); 3715 if (page_private(head)) { 3716 struct page *page, *next; 3717 3718 list_for_each_entry_safe(page, next, &head->lru, lru) { 3719 list_del(&page->lru); 3720 __free_page(page); 3721 } 3722 } 3723 } 3724 } 3725 3726 #if defined(CONFIG_MEMCG) && defined(CONFIG_BLK_CGROUP) 3727 void mem_cgroup_throttle_swaprate(struct mem_cgroup *memcg, int node, 3728 gfp_t gfp_mask) 3729 { 3730 struct swap_info_struct *si, *next; 3731 if (!(gfp_mask & __GFP_IO) || !memcg) 3732 return; 3733 3734 if (!blk_cgroup_congested()) 3735 return; 3736 3737 /* 3738 * We've already scheduled a throttle, avoid taking the global swap 3739 * lock. 3740 */ 3741 if (current->throttle_queue) 3742 return; 3743 3744 spin_lock(&swap_avail_lock); 3745 plist_for_each_entry_safe(si, next, &swap_avail_heads[node], 3746 avail_lists[node]) { 3747 if (si->bdev) { 3748 blkcg_schedule_throttle(bdev_get_queue(si->bdev), 3749 true); 3750 break; 3751 } 3752 } 3753 spin_unlock(&swap_avail_lock); 3754 } 3755 #endif 3756 3757 static int __init swapfile_init(void) 3758 { 3759 int nid; 3760 3761 swap_avail_heads = kmalloc_array(nr_node_ids, sizeof(struct plist_head), 3762 GFP_KERNEL); 3763 if (!swap_avail_heads) { 3764 pr_emerg("Not enough memory for swap heads, swap is disabled\n"); 3765 return -ENOMEM; 3766 } 3767 3768 for_each_node(nid) 3769 plist_head_init(&swap_avail_heads[nid]); 3770 3771 return 0; 3772 } 3773 subsys_initcall(swapfile_init); 3774