1 /* 2 * linux/mm/swapfile.c 3 * 4 * Copyright (C) 1991, 1992, 1993, 1994 Linus Torvalds 5 * Swap reorganised 29.12.95, Stephen Tweedie 6 */ 7 8 #include <linux/mm.h> 9 #include <linux/hugetlb.h> 10 #include <linux/mman.h> 11 #include <linux/slab.h> 12 #include <linux/kernel_stat.h> 13 #include <linux/swap.h> 14 #include <linux/vmalloc.h> 15 #include <linux/pagemap.h> 16 #include <linux/namei.h> 17 #include <linux/shm.h> 18 #include <linux/blkdev.h> 19 #include <linux/random.h> 20 #include <linux/writeback.h> 21 #include <linux/proc_fs.h> 22 #include <linux/seq_file.h> 23 #include <linux/init.h> 24 #include <linux/module.h> 25 #include <linux/ksm.h> 26 #include <linux/rmap.h> 27 #include <linux/security.h> 28 #include <linux/backing-dev.h> 29 #include <linux/mutex.h> 30 #include <linux/capability.h> 31 #include <linux/syscalls.h> 32 #include <linux/memcontrol.h> 33 34 #include <asm/pgtable.h> 35 #include <asm/tlbflush.h> 36 #include <linux/swapops.h> 37 #include <linux/page_cgroup.h> 38 39 static bool swap_count_continued(struct swap_info_struct *, pgoff_t, 40 unsigned char); 41 static void free_swap_count_continuations(struct swap_info_struct *); 42 static sector_t map_swap_entry(swp_entry_t, struct block_device**); 43 44 static DEFINE_SPINLOCK(swap_lock); 45 static unsigned int nr_swapfiles; 46 long nr_swap_pages; 47 long total_swap_pages; 48 static int least_priority; 49 50 static const char Bad_file[] = "Bad swap file entry "; 51 static const char Unused_file[] = "Unused swap file entry "; 52 static const char Bad_offset[] = "Bad swap offset entry "; 53 static const char Unused_offset[] = "Unused swap offset entry "; 54 55 static struct swap_list_t swap_list = {-1, -1}; 56 57 static struct swap_info_struct *swap_info[MAX_SWAPFILES]; 58 59 static DEFINE_MUTEX(swapon_mutex); 60 61 static inline unsigned char swap_count(unsigned char ent) 62 { 63 return ent & ~SWAP_HAS_CACHE; /* may include SWAP_HAS_CONT flag */ 64 } 65 66 /* returns 1 if swap entry is freed */ 67 static int 68 __try_to_reclaim_swap(struct swap_info_struct *si, unsigned long offset) 69 { 70 swp_entry_t entry = swp_entry(si->type, offset); 71 struct page *page; 72 int ret = 0; 73 74 page = find_get_page(&swapper_space, entry.val); 75 if (!page) 76 return 0; 77 /* 78 * This function is called from scan_swap_map() and it's called 79 * by vmscan.c at reclaiming pages. So, we hold a lock on a page, here. 80 * We have to use trylock for avoiding deadlock. This is a special 81 * case and you should use try_to_free_swap() with explicit lock_page() 82 * in usual operations. 83 */ 84 if (trylock_page(page)) { 85 ret = try_to_free_swap(page); 86 unlock_page(page); 87 } 88 page_cache_release(page); 89 return ret; 90 } 91 92 /* 93 * We need this because the bdev->unplug_fn can sleep and we cannot 94 * hold swap_lock while calling the unplug_fn. And swap_lock 95 * cannot be turned into a mutex. 96 */ 97 static DECLARE_RWSEM(swap_unplug_sem); 98 99 void swap_unplug_io_fn(struct backing_dev_info *unused_bdi, struct page *page) 100 { 101 swp_entry_t entry; 102 103 down_read(&swap_unplug_sem); 104 entry.val = page_private(page); 105 if (PageSwapCache(page)) { 106 struct block_device *bdev = swap_info[swp_type(entry)]->bdev; 107 struct backing_dev_info *bdi; 108 109 /* 110 * If the page is removed from swapcache from under us (with a 111 * racy try_to_unuse/swapoff) we need an additional reference 112 * count to avoid reading garbage from page_private(page) above. 113 * If the WARN_ON triggers during a swapoff it maybe the race 114 * condition and it's harmless. However if it triggers without 115 * swapoff it signals a problem. 116 */ 117 WARN_ON(page_count(page) <= 1); 118 119 bdi = bdev->bd_inode->i_mapping->backing_dev_info; 120 blk_run_backing_dev(bdi, page); 121 } 122 up_read(&swap_unplug_sem); 123 } 124 125 /* 126 * swapon tell device that all the old swap contents can be discarded, 127 * to allow the swap device to optimize its wear-levelling. 128 */ 129 static int discard_swap(struct swap_info_struct *si) 130 { 131 struct swap_extent *se; 132 sector_t start_block; 133 sector_t nr_blocks; 134 int err = 0; 135 136 /* Do not discard the swap header page! */ 137 se = &si->first_swap_extent; 138 start_block = (se->start_block + 1) << (PAGE_SHIFT - 9); 139 nr_blocks = ((sector_t)se->nr_pages - 1) << (PAGE_SHIFT - 9); 140 if (nr_blocks) { 141 err = blkdev_issue_discard(si->bdev, start_block, 142 nr_blocks, GFP_KERNEL, DISCARD_FL_BARRIER); 143 if (err) 144 return err; 145 cond_resched(); 146 } 147 148 list_for_each_entry(se, &si->first_swap_extent.list, list) { 149 start_block = se->start_block << (PAGE_SHIFT - 9); 150 nr_blocks = (sector_t)se->nr_pages << (PAGE_SHIFT - 9); 151 152 err = blkdev_issue_discard(si->bdev, start_block, 153 nr_blocks, GFP_KERNEL, DISCARD_FL_BARRIER); 154 if (err) 155 break; 156 157 cond_resched(); 158 } 159 return err; /* That will often be -EOPNOTSUPP */ 160 } 161 162 /* 163 * swap allocation tell device that a cluster of swap can now be discarded, 164 * to allow the swap device to optimize its wear-levelling. 165 */ 166 static void discard_swap_cluster(struct swap_info_struct *si, 167 pgoff_t start_page, pgoff_t nr_pages) 168 { 169 struct swap_extent *se = si->curr_swap_extent; 170 int found_extent = 0; 171 172 while (nr_pages) { 173 struct list_head *lh; 174 175 if (se->start_page <= start_page && 176 start_page < se->start_page + se->nr_pages) { 177 pgoff_t offset = start_page - se->start_page; 178 sector_t start_block = se->start_block + offset; 179 sector_t nr_blocks = se->nr_pages - offset; 180 181 if (nr_blocks > nr_pages) 182 nr_blocks = nr_pages; 183 start_page += nr_blocks; 184 nr_pages -= nr_blocks; 185 186 if (!found_extent++) 187 si->curr_swap_extent = se; 188 189 start_block <<= PAGE_SHIFT - 9; 190 nr_blocks <<= PAGE_SHIFT - 9; 191 if (blkdev_issue_discard(si->bdev, start_block, 192 nr_blocks, GFP_NOIO, DISCARD_FL_BARRIER)) 193 break; 194 } 195 196 lh = se->list.next; 197 se = list_entry(lh, struct swap_extent, list); 198 } 199 } 200 201 static int wait_for_discard(void *word) 202 { 203 schedule(); 204 return 0; 205 } 206 207 #define SWAPFILE_CLUSTER 256 208 #define LATENCY_LIMIT 256 209 210 static inline unsigned long scan_swap_map(struct swap_info_struct *si, 211 unsigned char usage) 212 { 213 unsigned long offset; 214 unsigned long scan_base; 215 unsigned long last_in_cluster = 0; 216 int latency_ration = LATENCY_LIMIT; 217 int found_free_cluster = 0; 218 219 /* 220 * We try to cluster swap pages by allocating them sequentially 221 * in swap. Once we've allocated SWAPFILE_CLUSTER pages this 222 * way, however, we resort to first-free allocation, starting 223 * a new cluster. This prevents us from scattering swap pages 224 * all over the entire swap partition, so that we reduce 225 * overall disk seek times between swap pages. -- sct 226 * But we do now try to find an empty cluster. -Andrea 227 * And we let swap pages go all over an SSD partition. Hugh 228 */ 229 230 si->flags += SWP_SCANNING; 231 scan_base = offset = si->cluster_next; 232 233 if (unlikely(!si->cluster_nr--)) { 234 if (si->pages - si->inuse_pages < SWAPFILE_CLUSTER) { 235 si->cluster_nr = SWAPFILE_CLUSTER - 1; 236 goto checks; 237 } 238 if (si->flags & SWP_DISCARDABLE) { 239 /* 240 * Start range check on racing allocations, in case 241 * they overlap the cluster we eventually decide on 242 * (we scan without swap_lock to allow preemption). 243 * It's hardly conceivable that cluster_nr could be 244 * wrapped during our scan, but don't depend on it. 245 */ 246 if (si->lowest_alloc) 247 goto checks; 248 si->lowest_alloc = si->max; 249 si->highest_alloc = 0; 250 } 251 spin_unlock(&swap_lock); 252 253 /* 254 * If seek is expensive, start searching for new cluster from 255 * start of partition, to minimize the span of allocated swap. 256 * But if seek is cheap, search from our current position, so 257 * that swap is allocated from all over the partition: if the 258 * Flash Translation Layer only remaps within limited zones, 259 * we don't want to wear out the first zone too quickly. 260 */ 261 if (!(si->flags & SWP_SOLIDSTATE)) 262 scan_base = offset = si->lowest_bit; 263 last_in_cluster = offset + SWAPFILE_CLUSTER - 1; 264 265 /* Locate the first empty (unaligned) cluster */ 266 for (; last_in_cluster <= si->highest_bit; offset++) { 267 if (si->swap_map[offset]) 268 last_in_cluster = offset + SWAPFILE_CLUSTER; 269 else if (offset == last_in_cluster) { 270 spin_lock(&swap_lock); 271 offset -= SWAPFILE_CLUSTER - 1; 272 si->cluster_next = offset; 273 si->cluster_nr = SWAPFILE_CLUSTER - 1; 274 found_free_cluster = 1; 275 goto checks; 276 } 277 if (unlikely(--latency_ration < 0)) { 278 cond_resched(); 279 latency_ration = LATENCY_LIMIT; 280 } 281 } 282 283 offset = si->lowest_bit; 284 last_in_cluster = offset + SWAPFILE_CLUSTER - 1; 285 286 /* Locate the first empty (unaligned) cluster */ 287 for (; last_in_cluster < scan_base; offset++) { 288 if (si->swap_map[offset]) 289 last_in_cluster = offset + SWAPFILE_CLUSTER; 290 else if (offset == last_in_cluster) { 291 spin_lock(&swap_lock); 292 offset -= SWAPFILE_CLUSTER - 1; 293 si->cluster_next = offset; 294 si->cluster_nr = SWAPFILE_CLUSTER - 1; 295 found_free_cluster = 1; 296 goto checks; 297 } 298 if (unlikely(--latency_ration < 0)) { 299 cond_resched(); 300 latency_ration = LATENCY_LIMIT; 301 } 302 } 303 304 offset = scan_base; 305 spin_lock(&swap_lock); 306 si->cluster_nr = SWAPFILE_CLUSTER - 1; 307 si->lowest_alloc = 0; 308 } 309 310 checks: 311 if (!(si->flags & SWP_WRITEOK)) 312 goto no_page; 313 if (!si->highest_bit) 314 goto no_page; 315 if (offset > si->highest_bit) 316 scan_base = offset = si->lowest_bit; 317 318 /* reuse swap entry of cache-only swap if not busy. */ 319 if (vm_swap_full() && si->swap_map[offset] == SWAP_HAS_CACHE) { 320 int swap_was_freed; 321 spin_unlock(&swap_lock); 322 swap_was_freed = __try_to_reclaim_swap(si, offset); 323 spin_lock(&swap_lock); 324 /* entry was freed successfully, try to use this again */ 325 if (swap_was_freed) 326 goto checks; 327 goto scan; /* check next one */ 328 } 329 330 if (si->swap_map[offset]) 331 goto scan; 332 333 if (offset == si->lowest_bit) 334 si->lowest_bit++; 335 if (offset == si->highest_bit) 336 si->highest_bit--; 337 si->inuse_pages++; 338 if (si->inuse_pages == si->pages) { 339 si->lowest_bit = si->max; 340 si->highest_bit = 0; 341 } 342 si->swap_map[offset] = usage; 343 si->cluster_next = offset + 1; 344 si->flags -= SWP_SCANNING; 345 346 if (si->lowest_alloc) { 347 /* 348 * Only set when SWP_DISCARDABLE, and there's a scan 349 * for a free cluster in progress or just completed. 350 */ 351 if (found_free_cluster) { 352 /* 353 * To optimize wear-levelling, discard the 354 * old data of the cluster, taking care not to 355 * discard any of its pages that have already 356 * been allocated by racing tasks (offset has 357 * already stepped over any at the beginning). 358 */ 359 if (offset < si->highest_alloc && 360 si->lowest_alloc <= last_in_cluster) 361 last_in_cluster = si->lowest_alloc - 1; 362 si->flags |= SWP_DISCARDING; 363 spin_unlock(&swap_lock); 364 365 if (offset < last_in_cluster) 366 discard_swap_cluster(si, offset, 367 last_in_cluster - offset + 1); 368 369 spin_lock(&swap_lock); 370 si->lowest_alloc = 0; 371 si->flags &= ~SWP_DISCARDING; 372 373 smp_mb(); /* wake_up_bit advises this */ 374 wake_up_bit(&si->flags, ilog2(SWP_DISCARDING)); 375 376 } else if (si->flags & SWP_DISCARDING) { 377 /* 378 * Delay using pages allocated by racing tasks 379 * until the whole discard has been issued. We 380 * could defer that delay until swap_writepage, 381 * but it's easier to keep this self-contained. 382 */ 383 spin_unlock(&swap_lock); 384 wait_on_bit(&si->flags, ilog2(SWP_DISCARDING), 385 wait_for_discard, TASK_UNINTERRUPTIBLE); 386 spin_lock(&swap_lock); 387 } else { 388 /* 389 * Note pages allocated by racing tasks while 390 * scan for a free cluster is in progress, so 391 * that its final discard can exclude them. 392 */ 393 if (offset < si->lowest_alloc) 394 si->lowest_alloc = offset; 395 if (offset > si->highest_alloc) 396 si->highest_alloc = offset; 397 } 398 } 399 return offset; 400 401 scan: 402 spin_unlock(&swap_lock); 403 while (++offset <= si->highest_bit) { 404 if (!si->swap_map[offset]) { 405 spin_lock(&swap_lock); 406 goto checks; 407 } 408 if (vm_swap_full() && si->swap_map[offset] == SWAP_HAS_CACHE) { 409 spin_lock(&swap_lock); 410 goto checks; 411 } 412 if (unlikely(--latency_ration < 0)) { 413 cond_resched(); 414 latency_ration = LATENCY_LIMIT; 415 } 416 } 417 offset = si->lowest_bit; 418 while (++offset < scan_base) { 419 if (!si->swap_map[offset]) { 420 spin_lock(&swap_lock); 421 goto checks; 422 } 423 if (vm_swap_full() && si->swap_map[offset] == SWAP_HAS_CACHE) { 424 spin_lock(&swap_lock); 425 goto checks; 426 } 427 if (unlikely(--latency_ration < 0)) { 428 cond_resched(); 429 latency_ration = LATENCY_LIMIT; 430 } 431 } 432 spin_lock(&swap_lock); 433 434 no_page: 435 si->flags -= SWP_SCANNING; 436 return 0; 437 } 438 439 swp_entry_t get_swap_page(void) 440 { 441 struct swap_info_struct *si; 442 pgoff_t offset; 443 int type, next; 444 int wrapped = 0; 445 446 spin_lock(&swap_lock); 447 if (nr_swap_pages <= 0) 448 goto noswap; 449 nr_swap_pages--; 450 451 for (type = swap_list.next; type >= 0 && wrapped < 2; type = next) { 452 si = swap_info[type]; 453 next = si->next; 454 if (next < 0 || 455 (!wrapped && si->prio != swap_info[next]->prio)) { 456 next = swap_list.head; 457 wrapped++; 458 } 459 460 if (!si->highest_bit) 461 continue; 462 if (!(si->flags & SWP_WRITEOK)) 463 continue; 464 465 swap_list.next = next; 466 /* This is called for allocating swap entry for cache */ 467 offset = scan_swap_map(si, SWAP_HAS_CACHE); 468 if (offset) { 469 spin_unlock(&swap_lock); 470 return swp_entry(type, offset); 471 } 472 next = swap_list.next; 473 } 474 475 nr_swap_pages++; 476 noswap: 477 spin_unlock(&swap_lock); 478 return (swp_entry_t) {0}; 479 } 480 481 /* The only caller of this function is now susupend routine */ 482 swp_entry_t get_swap_page_of_type(int type) 483 { 484 struct swap_info_struct *si; 485 pgoff_t offset; 486 487 spin_lock(&swap_lock); 488 si = swap_info[type]; 489 if (si && (si->flags & SWP_WRITEOK)) { 490 nr_swap_pages--; 491 /* This is called for allocating swap entry, not cache */ 492 offset = scan_swap_map(si, 1); 493 if (offset) { 494 spin_unlock(&swap_lock); 495 return swp_entry(type, offset); 496 } 497 nr_swap_pages++; 498 } 499 spin_unlock(&swap_lock); 500 return (swp_entry_t) {0}; 501 } 502 503 static struct swap_info_struct *swap_info_get(swp_entry_t entry) 504 { 505 struct swap_info_struct *p; 506 unsigned long offset, type; 507 508 if (!entry.val) 509 goto out; 510 type = swp_type(entry); 511 if (type >= nr_swapfiles) 512 goto bad_nofile; 513 p = swap_info[type]; 514 if (!(p->flags & SWP_USED)) 515 goto bad_device; 516 offset = swp_offset(entry); 517 if (offset >= p->max) 518 goto bad_offset; 519 if (!p->swap_map[offset]) 520 goto bad_free; 521 spin_lock(&swap_lock); 522 return p; 523 524 bad_free: 525 printk(KERN_ERR "swap_free: %s%08lx\n", Unused_offset, entry.val); 526 goto out; 527 bad_offset: 528 printk(KERN_ERR "swap_free: %s%08lx\n", Bad_offset, entry.val); 529 goto out; 530 bad_device: 531 printk(KERN_ERR "swap_free: %s%08lx\n", Unused_file, entry.val); 532 goto out; 533 bad_nofile: 534 printk(KERN_ERR "swap_free: %s%08lx\n", Bad_file, entry.val); 535 out: 536 return NULL; 537 } 538 539 static unsigned char swap_entry_free(struct swap_info_struct *p, 540 swp_entry_t entry, unsigned char usage) 541 { 542 unsigned long offset = swp_offset(entry); 543 unsigned char count; 544 unsigned char has_cache; 545 546 count = p->swap_map[offset]; 547 has_cache = count & SWAP_HAS_CACHE; 548 count &= ~SWAP_HAS_CACHE; 549 550 if (usage == SWAP_HAS_CACHE) { 551 VM_BUG_ON(!has_cache); 552 has_cache = 0; 553 } else if (count == SWAP_MAP_SHMEM) { 554 /* 555 * Or we could insist on shmem.c using a special 556 * swap_shmem_free() and free_shmem_swap_and_cache()... 557 */ 558 count = 0; 559 } else if ((count & ~COUNT_CONTINUED) <= SWAP_MAP_MAX) { 560 if (count == COUNT_CONTINUED) { 561 if (swap_count_continued(p, offset, count)) 562 count = SWAP_MAP_MAX | COUNT_CONTINUED; 563 else 564 count = SWAP_MAP_MAX; 565 } else 566 count--; 567 } 568 569 if (!count) 570 mem_cgroup_uncharge_swap(entry); 571 572 usage = count | has_cache; 573 p->swap_map[offset] = usage; 574 575 /* free if no reference */ 576 if (!usage) { 577 if (offset < p->lowest_bit) 578 p->lowest_bit = offset; 579 if (offset > p->highest_bit) 580 p->highest_bit = offset; 581 if (swap_list.next >= 0 && 582 p->prio > swap_info[swap_list.next]->prio) 583 swap_list.next = p->type; 584 nr_swap_pages++; 585 p->inuse_pages--; 586 } 587 588 return usage; 589 } 590 591 /* 592 * Caller has made sure that the swapdevice corresponding to entry 593 * is still around or has not been recycled. 594 */ 595 void swap_free(swp_entry_t entry) 596 { 597 struct swap_info_struct *p; 598 599 p = swap_info_get(entry); 600 if (p) { 601 swap_entry_free(p, entry, 1); 602 spin_unlock(&swap_lock); 603 } 604 } 605 606 /* 607 * Called after dropping swapcache to decrease refcnt to swap entries. 608 */ 609 void swapcache_free(swp_entry_t entry, struct page *page) 610 { 611 struct swap_info_struct *p; 612 unsigned char count; 613 614 p = swap_info_get(entry); 615 if (p) { 616 count = swap_entry_free(p, entry, SWAP_HAS_CACHE); 617 if (page) 618 mem_cgroup_uncharge_swapcache(page, entry, count != 0); 619 spin_unlock(&swap_lock); 620 } 621 } 622 623 /* 624 * How many references to page are currently swapped out? 625 * This does not give an exact answer when swap count is continued, 626 * but does include the high COUNT_CONTINUED flag to allow for that. 627 */ 628 static inline int page_swapcount(struct page *page) 629 { 630 int count = 0; 631 struct swap_info_struct *p; 632 swp_entry_t entry; 633 634 entry.val = page_private(page); 635 p = swap_info_get(entry); 636 if (p) { 637 count = swap_count(p->swap_map[swp_offset(entry)]); 638 spin_unlock(&swap_lock); 639 } 640 return count; 641 } 642 643 /* 644 * We can write to an anon page without COW if there are no other references 645 * to it. And as a side-effect, free up its swap: because the old content 646 * on disk will never be read, and seeking back there to write new content 647 * later would only waste time away from clustering. 648 */ 649 int reuse_swap_page(struct page *page) 650 { 651 int count; 652 653 VM_BUG_ON(!PageLocked(page)); 654 if (unlikely(PageKsm(page))) 655 return 0; 656 count = page_mapcount(page); 657 if (count <= 1 && PageSwapCache(page)) { 658 count += page_swapcount(page); 659 if (count == 1 && !PageWriteback(page)) { 660 delete_from_swap_cache(page); 661 SetPageDirty(page); 662 } 663 } 664 return count <= 1; 665 } 666 667 /* 668 * If swap is getting full, or if there are no more mappings of this page, 669 * then try_to_free_swap is called to free its swap space. 670 */ 671 int try_to_free_swap(struct page *page) 672 { 673 VM_BUG_ON(!PageLocked(page)); 674 675 if (!PageSwapCache(page)) 676 return 0; 677 if (PageWriteback(page)) 678 return 0; 679 if (page_swapcount(page)) 680 return 0; 681 682 delete_from_swap_cache(page); 683 SetPageDirty(page); 684 return 1; 685 } 686 687 /* 688 * Free the swap entry like above, but also try to 689 * free the page cache entry if it is the last user. 690 */ 691 int free_swap_and_cache(swp_entry_t entry) 692 { 693 struct swap_info_struct *p; 694 struct page *page = NULL; 695 696 if (non_swap_entry(entry)) 697 return 1; 698 699 p = swap_info_get(entry); 700 if (p) { 701 if (swap_entry_free(p, entry, 1) == SWAP_HAS_CACHE) { 702 page = find_get_page(&swapper_space, entry.val); 703 if (page && !trylock_page(page)) { 704 page_cache_release(page); 705 page = NULL; 706 } 707 } 708 spin_unlock(&swap_lock); 709 } 710 if (page) { 711 /* 712 * Not mapped elsewhere, or swap space full? Free it! 713 * Also recheck PageSwapCache now page is locked (above). 714 */ 715 if (PageSwapCache(page) && !PageWriteback(page) && 716 (!page_mapped(page) || vm_swap_full())) { 717 delete_from_swap_cache(page); 718 SetPageDirty(page); 719 } 720 unlock_page(page); 721 page_cache_release(page); 722 } 723 return p != NULL; 724 } 725 726 #ifdef CONFIG_HIBERNATION 727 /* 728 * Find the swap type that corresponds to given device (if any). 729 * 730 * @offset - number of the PAGE_SIZE-sized block of the device, starting 731 * from 0, in which the swap header is expected to be located. 732 * 733 * This is needed for the suspend to disk (aka swsusp). 734 */ 735 int swap_type_of(dev_t device, sector_t offset, struct block_device **bdev_p) 736 { 737 struct block_device *bdev = NULL; 738 int type; 739 740 if (device) 741 bdev = bdget(device); 742 743 spin_lock(&swap_lock); 744 for (type = 0; type < nr_swapfiles; type++) { 745 struct swap_info_struct *sis = swap_info[type]; 746 747 if (!(sis->flags & SWP_WRITEOK)) 748 continue; 749 750 if (!bdev) { 751 if (bdev_p) 752 *bdev_p = bdgrab(sis->bdev); 753 754 spin_unlock(&swap_lock); 755 return type; 756 } 757 if (bdev == sis->bdev) { 758 struct swap_extent *se = &sis->first_swap_extent; 759 760 if (se->start_block == offset) { 761 if (bdev_p) 762 *bdev_p = bdgrab(sis->bdev); 763 764 spin_unlock(&swap_lock); 765 bdput(bdev); 766 return type; 767 } 768 } 769 } 770 spin_unlock(&swap_lock); 771 if (bdev) 772 bdput(bdev); 773 774 return -ENODEV; 775 } 776 777 /* 778 * Get the (PAGE_SIZE) block corresponding to given offset on the swapdev 779 * corresponding to given index in swap_info (swap type). 780 */ 781 sector_t swapdev_block(int type, pgoff_t offset) 782 { 783 struct block_device *bdev; 784 785 if ((unsigned int)type >= nr_swapfiles) 786 return 0; 787 if (!(swap_info[type]->flags & SWP_WRITEOK)) 788 return 0; 789 return map_swap_entry(swp_entry(type, offset), &bdev); 790 } 791 792 /* 793 * Return either the total number of swap pages of given type, or the number 794 * of free pages of that type (depending on @free) 795 * 796 * This is needed for software suspend 797 */ 798 unsigned int count_swap_pages(int type, int free) 799 { 800 unsigned int n = 0; 801 802 spin_lock(&swap_lock); 803 if ((unsigned int)type < nr_swapfiles) { 804 struct swap_info_struct *sis = swap_info[type]; 805 806 if (sis->flags & SWP_WRITEOK) { 807 n = sis->pages; 808 if (free) 809 n -= sis->inuse_pages; 810 } 811 } 812 spin_unlock(&swap_lock); 813 return n; 814 } 815 #endif /* CONFIG_HIBERNATION */ 816 817 /* 818 * No need to decide whether this PTE shares the swap entry with others, 819 * just let do_wp_page work it out if a write is requested later - to 820 * force COW, vm_page_prot omits write permission from any private vma. 821 */ 822 static int unuse_pte(struct vm_area_struct *vma, pmd_t *pmd, 823 unsigned long addr, swp_entry_t entry, struct page *page) 824 { 825 struct mem_cgroup *ptr = NULL; 826 spinlock_t *ptl; 827 pte_t *pte; 828 int ret = 1; 829 830 if (mem_cgroup_try_charge_swapin(vma->vm_mm, page, GFP_KERNEL, &ptr)) { 831 ret = -ENOMEM; 832 goto out_nolock; 833 } 834 835 pte = pte_offset_map_lock(vma->vm_mm, pmd, addr, &ptl); 836 if (unlikely(!pte_same(*pte, swp_entry_to_pte(entry)))) { 837 if (ret > 0) 838 mem_cgroup_cancel_charge_swapin(ptr); 839 ret = 0; 840 goto out; 841 } 842 843 inc_mm_counter(vma->vm_mm, anon_rss); 844 get_page(page); 845 set_pte_at(vma->vm_mm, addr, pte, 846 pte_mkold(mk_pte(page, vma->vm_page_prot))); 847 page_add_anon_rmap(page, vma, addr); 848 mem_cgroup_commit_charge_swapin(page, ptr); 849 swap_free(entry); 850 /* 851 * Move the page to the active list so it is not 852 * immediately swapped out again after swapon. 853 */ 854 activate_page(page); 855 out: 856 pte_unmap_unlock(pte, ptl); 857 out_nolock: 858 return ret; 859 } 860 861 static int unuse_pte_range(struct vm_area_struct *vma, pmd_t *pmd, 862 unsigned long addr, unsigned long end, 863 swp_entry_t entry, struct page *page) 864 { 865 pte_t swp_pte = swp_entry_to_pte(entry); 866 pte_t *pte; 867 int ret = 0; 868 869 /* 870 * We don't actually need pte lock while scanning for swp_pte: since 871 * we hold page lock and mmap_sem, swp_pte cannot be inserted into the 872 * page table while we're scanning; though it could get zapped, and on 873 * some architectures (e.g. x86_32 with PAE) we might catch a glimpse 874 * of unmatched parts which look like swp_pte, so unuse_pte must 875 * recheck under pte lock. Scanning without pte lock lets it be 876 * preemptible whenever CONFIG_PREEMPT but not CONFIG_HIGHPTE. 877 */ 878 pte = pte_offset_map(pmd, addr); 879 do { 880 /* 881 * swapoff spends a _lot_ of time in this loop! 882 * Test inline before going to call unuse_pte. 883 */ 884 if (unlikely(pte_same(*pte, swp_pte))) { 885 pte_unmap(pte); 886 ret = unuse_pte(vma, pmd, addr, entry, page); 887 if (ret) 888 goto out; 889 pte = pte_offset_map(pmd, addr); 890 } 891 } while (pte++, addr += PAGE_SIZE, addr != end); 892 pte_unmap(pte - 1); 893 out: 894 return ret; 895 } 896 897 static inline int unuse_pmd_range(struct vm_area_struct *vma, pud_t *pud, 898 unsigned long addr, unsigned long end, 899 swp_entry_t entry, struct page *page) 900 { 901 pmd_t *pmd; 902 unsigned long next; 903 int ret; 904 905 pmd = pmd_offset(pud, addr); 906 do { 907 next = pmd_addr_end(addr, end); 908 if (pmd_none_or_clear_bad(pmd)) 909 continue; 910 ret = unuse_pte_range(vma, pmd, addr, next, entry, page); 911 if (ret) 912 return ret; 913 } while (pmd++, addr = next, addr != end); 914 return 0; 915 } 916 917 static inline int unuse_pud_range(struct vm_area_struct *vma, pgd_t *pgd, 918 unsigned long addr, unsigned long end, 919 swp_entry_t entry, struct page *page) 920 { 921 pud_t *pud; 922 unsigned long next; 923 int ret; 924 925 pud = pud_offset(pgd, addr); 926 do { 927 next = pud_addr_end(addr, end); 928 if (pud_none_or_clear_bad(pud)) 929 continue; 930 ret = unuse_pmd_range(vma, pud, addr, next, entry, page); 931 if (ret) 932 return ret; 933 } while (pud++, addr = next, addr != end); 934 return 0; 935 } 936 937 static int unuse_vma(struct vm_area_struct *vma, 938 swp_entry_t entry, struct page *page) 939 { 940 pgd_t *pgd; 941 unsigned long addr, end, next; 942 int ret; 943 944 if (page_anon_vma(page)) { 945 addr = page_address_in_vma(page, vma); 946 if (addr == -EFAULT) 947 return 0; 948 else 949 end = addr + PAGE_SIZE; 950 } else { 951 addr = vma->vm_start; 952 end = vma->vm_end; 953 } 954 955 pgd = pgd_offset(vma->vm_mm, addr); 956 do { 957 next = pgd_addr_end(addr, end); 958 if (pgd_none_or_clear_bad(pgd)) 959 continue; 960 ret = unuse_pud_range(vma, pgd, addr, next, entry, page); 961 if (ret) 962 return ret; 963 } while (pgd++, addr = next, addr != end); 964 return 0; 965 } 966 967 static int unuse_mm(struct mm_struct *mm, 968 swp_entry_t entry, struct page *page) 969 { 970 struct vm_area_struct *vma; 971 int ret = 0; 972 973 if (!down_read_trylock(&mm->mmap_sem)) { 974 /* 975 * Activate page so shrink_inactive_list is unlikely to unmap 976 * its ptes while lock is dropped, so swapoff can make progress. 977 */ 978 activate_page(page); 979 unlock_page(page); 980 down_read(&mm->mmap_sem); 981 lock_page(page); 982 } 983 for (vma = mm->mmap; vma; vma = vma->vm_next) { 984 if (vma->anon_vma && (ret = unuse_vma(vma, entry, page))) 985 break; 986 } 987 up_read(&mm->mmap_sem); 988 return (ret < 0)? ret: 0; 989 } 990 991 /* 992 * Scan swap_map from current position to next entry still in use. 993 * Recycle to start on reaching the end, returning 0 when empty. 994 */ 995 static unsigned int find_next_to_unuse(struct swap_info_struct *si, 996 unsigned int prev) 997 { 998 unsigned int max = si->max; 999 unsigned int i = prev; 1000 unsigned char count; 1001 1002 /* 1003 * No need for swap_lock here: we're just looking 1004 * for whether an entry is in use, not modifying it; false 1005 * hits are okay, and sys_swapoff() has already prevented new 1006 * allocations from this area (while holding swap_lock). 1007 */ 1008 for (;;) { 1009 if (++i >= max) { 1010 if (!prev) { 1011 i = 0; 1012 break; 1013 } 1014 /* 1015 * No entries in use at top of swap_map, 1016 * loop back to start and recheck there. 1017 */ 1018 max = prev + 1; 1019 prev = 0; 1020 i = 1; 1021 } 1022 count = si->swap_map[i]; 1023 if (count && swap_count(count) != SWAP_MAP_BAD) 1024 break; 1025 } 1026 return i; 1027 } 1028 1029 /* 1030 * We completely avoid races by reading each swap page in advance, 1031 * and then search for the process using it. All the necessary 1032 * page table adjustments can then be made atomically. 1033 */ 1034 static int try_to_unuse(unsigned int type) 1035 { 1036 struct swap_info_struct *si = swap_info[type]; 1037 struct mm_struct *start_mm; 1038 unsigned char *swap_map; 1039 unsigned char swcount; 1040 struct page *page; 1041 swp_entry_t entry; 1042 unsigned int i = 0; 1043 int retval = 0; 1044 1045 /* 1046 * When searching mms for an entry, a good strategy is to 1047 * start at the first mm we freed the previous entry from 1048 * (though actually we don't notice whether we or coincidence 1049 * freed the entry). Initialize this start_mm with a hold. 1050 * 1051 * A simpler strategy would be to start at the last mm we 1052 * freed the previous entry from; but that would take less 1053 * advantage of mmlist ordering, which clusters forked mms 1054 * together, child after parent. If we race with dup_mmap(), we 1055 * prefer to resolve parent before child, lest we miss entries 1056 * duplicated after we scanned child: using last mm would invert 1057 * that. 1058 */ 1059 start_mm = &init_mm; 1060 atomic_inc(&init_mm.mm_users); 1061 1062 /* 1063 * Keep on scanning until all entries have gone. Usually, 1064 * one pass through swap_map is enough, but not necessarily: 1065 * there are races when an instance of an entry might be missed. 1066 */ 1067 while ((i = find_next_to_unuse(si, i)) != 0) { 1068 if (signal_pending(current)) { 1069 retval = -EINTR; 1070 break; 1071 } 1072 1073 /* 1074 * Get a page for the entry, using the existing swap 1075 * cache page if there is one. Otherwise, get a clean 1076 * page and read the swap into it. 1077 */ 1078 swap_map = &si->swap_map[i]; 1079 entry = swp_entry(type, i); 1080 page = read_swap_cache_async(entry, 1081 GFP_HIGHUSER_MOVABLE, NULL, 0); 1082 if (!page) { 1083 /* 1084 * Either swap_duplicate() failed because entry 1085 * has been freed independently, and will not be 1086 * reused since sys_swapoff() already disabled 1087 * allocation from here, or alloc_page() failed. 1088 */ 1089 if (!*swap_map) 1090 continue; 1091 retval = -ENOMEM; 1092 break; 1093 } 1094 1095 /* 1096 * Don't hold on to start_mm if it looks like exiting. 1097 */ 1098 if (atomic_read(&start_mm->mm_users) == 1) { 1099 mmput(start_mm); 1100 start_mm = &init_mm; 1101 atomic_inc(&init_mm.mm_users); 1102 } 1103 1104 /* 1105 * Wait for and lock page. When do_swap_page races with 1106 * try_to_unuse, do_swap_page can handle the fault much 1107 * faster than try_to_unuse can locate the entry. This 1108 * apparently redundant "wait_on_page_locked" lets try_to_unuse 1109 * defer to do_swap_page in such a case - in some tests, 1110 * do_swap_page and try_to_unuse repeatedly compete. 1111 */ 1112 wait_on_page_locked(page); 1113 wait_on_page_writeback(page); 1114 lock_page(page); 1115 wait_on_page_writeback(page); 1116 1117 /* 1118 * Remove all references to entry. 1119 */ 1120 swcount = *swap_map; 1121 if (swap_count(swcount) == SWAP_MAP_SHMEM) { 1122 retval = shmem_unuse(entry, page); 1123 /* page has already been unlocked and released */ 1124 if (retval < 0) 1125 break; 1126 continue; 1127 } 1128 if (swap_count(swcount) && start_mm != &init_mm) 1129 retval = unuse_mm(start_mm, entry, page); 1130 1131 if (swap_count(*swap_map)) { 1132 int set_start_mm = (*swap_map >= swcount); 1133 struct list_head *p = &start_mm->mmlist; 1134 struct mm_struct *new_start_mm = start_mm; 1135 struct mm_struct *prev_mm = start_mm; 1136 struct mm_struct *mm; 1137 1138 atomic_inc(&new_start_mm->mm_users); 1139 atomic_inc(&prev_mm->mm_users); 1140 spin_lock(&mmlist_lock); 1141 while (swap_count(*swap_map) && !retval && 1142 (p = p->next) != &start_mm->mmlist) { 1143 mm = list_entry(p, struct mm_struct, mmlist); 1144 if (!atomic_inc_not_zero(&mm->mm_users)) 1145 continue; 1146 spin_unlock(&mmlist_lock); 1147 mmput(prev_mm); 1148 prev_mm = mm; 1149 1150 cond_resched(); 1151 1152 swcount = *swap_map; 1153 if (!swap_count(swcount)) /* any usage ? */ 1154 ; 1155 else if (mm == &init_mm) 1156 set_start_mm = 1; 1157 else 1158 retval = unuse_mm(mm, entry, page); 1159 1160 if (set_start_mm && *swap_map < swcount) { 1161 mmput(new_start_mm); 1162 atomic_inc(&mm->mm_users); 1163 new_start_mm = mm; 1164 set_start_mm = 0; 1165 } 1166 spin_lock(&mmlist_lock); 1167 } 1168 spin_unlock(&mmlist_lock); 1169 mmput(prev_mm); 1170 mmput(start_mm); 1171 start_mm = new_start_mm; 1172 } 1173 if (retval) { 1174 unlock_page(page); 1175 page_cache_release(page); 1176 break; 1177 } 1178 1179 /* 1180 * If a reference remains (rare), we would like to leave 1181 * the page in the swap cache; but try_to_unmap could 1182 * then re-duplicate the entry once we drop page lock, 1183 * so we might loop indefinitely; also, that page could 1184 * not be swapped out to other storage meanwhile. So: 1185 * delete from cache even if there's another reference, 1186 * after ensuring that the data has been saved to disk - 1187 * since if the reference remains (rarer), it will be 1188 * read from disk into another page. Splitting into two 1189 * pages would be incorrect if swap supported "shared 1190 * private" pages, but they are handled by tmpfs files. 1191 * 1192 * Given how unuse_vma() targets one particular offset 1193 * in an anon_vma, once the anon_vma has been determined, 1194 * this splitting happens to be just what is needed to 1195 * handle where KSM pages have been swapped out: re-reading 1196 * is unnecessarily slow, but we can fix that later on. 1197 */ 1198 if (swap_count(*swap_map) && 1199 PageDirty(page) && PageSwapCache(page)) { 1200 struct writeback_control wbc = { 1201 .sync_mode = WB_SYNC_NONE, 1202 }; 1203 1204 swap_writepage(page, &wbc); 1205 lock_page(page); 1206 wait_on_page_writeback(page); 1207 } 1208 1209 /* 1210 * It is conceivable that a racing task removed this page from 1211 * swap cache just before we acquired the page lock at the top, 1212 * or while we dropped it in unuse_mm(). The page might even 1213 * be back in swap cache on another swap area: that we must not 1214 * delete, since it may not have been written out to swap yet. 1215 */ 1216 if (PageSwapCache(page) && 1217 likely(page_private(page) == entry.val)) 1218 delete_from_swap_cache(page); 1219 1220 /* 1221 * So we could skip searching mms once swap count went 1222 * to 1, we did not mark any present ptes as dirty: must 1223 * mark page dirty so shrink_page_list will preserve it. 1224 */ 1225 SetPageDirty(page); 1226 unlock_page(page); 1227 page_cache_release(page); 1228 1229 /* 1230 * Make sure that we aren't completely killing 1231 * interactive performance. 1232 */ 1233 cond_resched(); 1234 } 1235 1236 mmput(start_mm); 1237 return retval; 1238 } 1239 1240 /* 1241 * After a successful try_to_unuse, if no swap is now in use, we know 1242 * we can empty the mmlist. swap_lock must be held on entry and exit. 1243 * Note that mmlist_lock nests inside swap_lock, and an mm must be 1244 * added to the mmlist just after page_duplicate - before would be racy. 1245 */ 1246 static void drain_mmlist(void) 1247 { 1248 struct list_head *p, *next; 1249 unsigned int type; 1250 1251 for (type = 0; type < nr_swapfiles; type++) 1252 if (swap_info[type]->inuse_pages) 1253 return; 1254 spin_lock(&mmlist_lock); 1255 list_for_each_safe(p, next, &init_mm.mmlist) 1256 list_del_init(p); 1257 spin_unlock(&mmlist_lock); 1258 } 1259 1260 /* 1261 * Use this swapdev's extent info to locate the (PAGE_SIZE) block which 1262 * corresponds to page offset for the specified swap entry. 1263 * Note that the type of this function is sector_t, but it returns page offset 1264 * into the bdev, not sector offset. 1265 */ 1266 static sector_t map_swap_entry(swp_entry_t entry, struct block_device **bdev) 1267 { 1268 struct swap_info_struct *sis; 1269 struct swap_extent *start_se; 1270 struct swap_extent *se; 1271 pgoff_t offset; 1272 1273 sis = swap_info[swp_type(entry)]; 1274 *bdev = sis->bdev; 1275 1276 offset = swp_offset(entry); 1277 start_se = sis->curr_swap_extent; 1278 se = start_se; 1279 1280 for ( ; ; ) { 1281 struct list_head *lh; 1282 1283 if (se->start_page <= offset && 1284 offset < (se->start_page + se->nr_pages)) { 1285 return se->start_block + (offset - se->start_page); 1286 } 1287 lh = se->list.next; 1288 se = list_entry(lh, struct swap_extent, list); 1289 sis->curr_swap_extent = se; 1290 BUG_ON(se == start_se); /* It *must* be present */ 1291 } 1292 } 1293 1294 /* 1295 * Returns the page offset into bdev for the specified page's swap entry. 1296 */ 1297 sector_t map_swap_page(struct page *page, struct block_device **bdev) 1298 { 1299 swp_entry_t entry; 1300 entry.val = page_private(page); 1301 return map_swap_entry(entry, bdev); 1302 } 1303 1304 /* 1305 * Free all of a swapdev's extent information 1306 */ 1307 static void destroy_swap_extents(struct swap_info_struct *sis) 1308 { 1309 while (!list_empty(&sis->first_swap_extent.list)) { 1310 struct swap_extent *se; 1311 1312 se = list_entry(sis->first_swap_extent.list.next, 1313 struct swap_extent, list); 1314 list_del(&se->list); 1315 kfree(se); 1316 } 1317 } 1318 1319 /* 1320 * Add a block range (and the corresponding page range) into this swapdev's 1321 * extent list. The extent list is kept sorted in page order. 1322 * 1323 * This function rather assumes that it is called in ascending page order. 1324 */ 1325 static int 1326 add_swap_extent(struct swap_info_struct *sis, unsigned long start_page, 1327 unsigned long nr_pages, sector_t start_block) 1328 { 1329 struct swap_extent *se; 1330 struct swap_extent *new_se; 1331 struct list_head *lh; 1332 1333 if (start_page == 0) { 1334 se = &sis->first_swap_extent; 1335 sis->curr_swap_extent = se; 1336 se->start_page = 0; 1337 se->nr_pages = nr_pages; 1338 se->start_block = start_block; 1339 return 1; 1340 } else { 1341 lh = sis->first_swap_extent.list.prev; /* Highest extent */ 1342 se = list_entry(lh, struct swap_extent, list); 1343 BUG_ON(se->start_page + se->nr_pages != start_page); 1344 if (se->start_block + se->nr_pages == start_block) { 1345 /* Merge it */ 1346 se->nr_pages += nr_pages; 1347 return 0; 1348 } 1349 } 1350 1351 /* 1352 * No merge. Insert a new extent, preserving ordering. 1353 */ 1354 new_se = kmalloc(sizeof(*se), GFP_KERNEL); 1355 if (new_se == NULL) 1356 return -ENOMEM; 1357 new_se->start_page = start_page; 1358 new_se->nr_pages = nr_pages; 1359 new_se->start_block = start_block; 1360 1361 list_add_tail(&new_se->list, &sis->first_swap_extent.list); 1362 return 1; 1363 } 1364 1365 /* 1366 * A `swap extent' is a simple thing which maps a contiguous range of pages 1367 * onto a contiguous range of disk blocks. An ordered list of swap extents 1368 * is built at swapon time and is then used at swap_writepage/swap_readpage 1369 * time for locating where on disk a page belongs. 1370 * 1371 * If the swapfile is an S_ISBLK block device, a single extent is installed. 1372 * This is done so that the main operating code can treat S_ISBLK and S_ISREG 1373 * swap files identically. 1374 * 1375 * Whether the swapdev is an S_ISREG file or an S_ISBLK blockdev, the swap 1376 * extent list operates in PAGE_SIZE disk blocks. Both S_ISREG and S_ISBLK 1377 * swapfiles are handled *identically* after swapon time. 1378 * 1379 * For S_ISREG swapfiles, setup_swap_extents() will walk all the file's blocks 1380 * and will parse them into an ordered extent list, in PAGE_SIZE chunks. If 1381 * some stray blocks are found which do not fall within the PAGE_SIZE alignment 1382 * requirements, they are simply tossed out - we will never use those blocks 1383 * for swapping. 1384 * 1385 * For S_ISREG swapfiles we set S_SWAPFILE across the life of the swapon. This 1386 * prevents root from shooting her foot off by ftruncating an in-use swapfile, 1387 * which will scribble on the fs. 1388 * 1389 * The amount of disk space which a single swap extent represents varies. 1390 * Typically it is in the 1-4 megabyte range. So we can have hundreds of 1391 * extents in the list. To avoid much list walking, we cache the previous 1392 * search location in `curr_swap_extent', and start new searches from there. 1393 * This is extremely effective. The average number of iterations in 1394 * map_swap_page() has been measured at about 0.3 per page. - akpm. 1395 */ 1396 static int setup_swap_extents(struct swap_info_struct *sis, sector_t *span) 1397 { 1398 struct inode *inode; 1399 unsigned blocks_per_page; 1400 unsigned long page_no; 1401 unsigned blkbits; 1402 sector_t probe_block; 1403 sector_t last_block; 1404 sector_t lowest_block = -1; 1405 sector_t highest_block = 0; 1406 int nr_extents = 0; 1407 int ret; 1408 1409 inode = sis->swap_file->f_mapping->host; 1410 if (S_ISBLK(inode->i_mode)) { 1411 ret = add_swap_extent(sis, 0, sis->max, 0); 1412 *span = sis->pages; 1413 goto out; 1414 } 1415 1416 blkbits = inode->i_blkbits; 1417 blocks_per_page = PAGE_SIZE >> blkbits; 1418 1419 /* 1420 * Map all the blocks into the extent list. This code doesn't try 1421 * to be very smart. 1422 */ 1423 probe_block = 0; 1424 page_no = 0; 1425 last_block = i_size_read(inode) >> blkbits; 1426 while ((probe_block + blocks_per_page) <= last_block && 1427 page_no < sis->max) { 1428 unsigned block_in_page; 1429 sector_t first_block; 1430 1431 first_block = bmap(inode, probe_block); 1432 if (first_block == 0) 1433 goto bad_bmap; 1434 1435 /* 1436 * It must be PAGE_SIZE aligned on-disk 1437 */ 1438 if (first_block & (blocks_per_page - 1)) { 1439 probe_block++; 1440 goto reprobe; 1441 } 1442 1443 for (block_in_page = 1; block_in_page < blocks_per_page; 1444 block_in_page++) { 1445 sector_t block; 1446 1447 block = bmap(inode, probe_block + block_in_page); 1448 if (block == 0) 1449 goto bad_bmap; 1450 if (block != first_block + block_in_page) { 1451 /* Discontiguity */ 1452 probe_block++; 1453 goto reprobe; 1454 } 1455 } 1456 1457 first_block >>= (PAGE_SHIFT - blkbits); 1458 if (page_no) { /* exclude the header page */ 1459 if (first_block < lowest_block) 1460 lowest_block = first_block; 1461 if (first_block > highest_block) 1462 highest_block = first_block; 1463 } 1464 1465 /* 1466 * We found a PAGE_SIZE-length, PAGE_SIZE-aligned run of blocks 1467 */ 1468 ret = add_swap_extent(sis, page_no, 1, first_block); 1469 if (ret < 0) 1470 goto out; 1471 nr_extents += ret; 1472 page_no++; 1473 probe_block += blocks_per_page; 1474 reprobe: 1475 continue; 1476 } 1477 ret = nr_extents; 1478 *span = 1 + highest_block - lowest_block; 1479 if (page_no == 0) 1480 page_no = 1; /* force Empty message */ 1481 sis->max = page_no; 1482 sis->pages = page_no - 1; 1483 sis->highest_bit = page_no - 1; 1484 out: 1485 return ret; 1486 bad_bmap: 1487 printk(KERN_ERR "swapon: swapfile has holes\n"); 1488 ret = -EINVAL; 1489 goto out; 1490 } 1491 1492 SYSCALL_DEFINE1(swapoff, const char __user *, specialfile) 1493 { 1494 struct swap_info_struct *p = NULL; 1495 unsigned char *swap_map; 1496 struct file *swap_file, *victim; 1497 struct address_space *mapping; 1498 struct inode *inode; 1499 char *pathname; 1500 int i, type, prev; 1501 int err; 1502 1503 if (!capable(CAP_SYS_ADMIN)) 1504 return -EPERM; 1505 1506 pathname = getname(specialfile); 1507 err = PTR_ERR(pathname); 1508 if (IS_ERR(pathname)) 1509 goto out; 1510 1511 victim = filp_open(pathname, O_RDWR|O_LARGEFILE, 0); 1512 putname(pathname); 1513 err = PTR_ERR(victim); 1514 if (IS_ERR(victim)) 1515 goto out; 1516 1517 mapping = victim->f_mapping; 1518 prev = -1; 1519 spin_lock(&swap_lock); 1520 for (type = swap_list.head; type >= 0; type = swap_info[type]->next) { 1521 p = swap_info[type]; 1522 if (p->flags & SWP_WRITEOK) { 1523 if (p->swap_file->f_mapping == mapping) 1524 break; 1525 } 1526 prev = type; 1527 } 1528 if (type < 0) { 1529 err = -EINVAL; 1530 spin_unlock(&swap_lock); 1531 goto out_dput; 1532 } 1533 if (!security_vm_enough_memory(p->pages)) 1534 vm_unacct_memory(p->pages); 1535 else { 1536 err = -ENOMEM; 1537 spin_unlock(&swap_lock); 1538 goto out_dput; 1539 } 1540 if (prev < 0) 1541 swap_list.head = p->next; 1542 else 1543 swap_info[prev]->next = p->next; 1544 if (type == swap_list.next) { 1545 /* just pick something that's safe... */ 1546 swap_list.next = swap_list.head; 1547 } 1548 if (p->prio < 0) { 1549 for (i = p->next; i >= 0; i = swap_info[i]->next) 1550 swap_info[i]->prio = p->prio--; 1551 least_priority++; 1552 } 1553 nr_swap_pages -= p->pages; 1554 total_swap_pages -= p->pages; 1555 p->flags &= ~SWP_WRITEOK; 1556 spin_unlock(&swap_lock); 1557 1558 current->flags |= PF_OOM_ORIGIN; 1559 err = try_to_unuse(type); 1560 current->flags &= ~PF_OOM_ORIGIN; 1561 1562 if (err) { 1563 /* re-insert swap space back into swap_list */ 1564 spin_lock(&swap_lock); 1565 if (p->prio < 0) 1566 p->prio = --least_priority; 1567 prev = -1; 1568 for (i = swap_list.head; i >= 0; i = swap_info[i]->next) { 1569 if (p->prio >= swap_info[i]->prio) 1570 break; 1571 prev = i; 1572 } 1573 p->next = i; 1574 if (prev < 0) 1575 swap_list.head = swap_list.next = type; 1576 else 1577 swap_info[prev]->next = type; 1578 nr_swap_pages += p->pages; 1579 total_swap_pages += p->pages; 1580 p->flags |= SWP_WRITEOK; 1581 spin_unlock(&swap_lock); 1582 goto out_dput; 1583 } 1584 1585 /* wait for any unplug function to finish */ 1586 down_write(&swap_unplug_sem); 1587 up_write(&swap_unplug_sem); 1588 1589 destroy_swap_extents(p); 1590 if (p->flags & SWP_CONTINUED) 1591 free_swap_count_continuations(p); 1592 1593 mutex_lock(&swapon_mutex); 1594 spin_lock(&swap_lock); 1595 drain_mmlist(); 1596 1597 /* wait for anyone still in scan_swap_map */ 1598 p->highest_bit = 0; /* cuts scans short */ 1599 while (p->flags >= SWP_SCANNING) { 1600 spin_unlock(&swap_lock); 1601 schedule_timeout_uninterruptible(1); 1602 spin_lock(&swap_lock); 1603 } 1604 1605 swap_file = p->swap_file; 1606 p->swap_file = NULL; 1607 p->max = 0; 1608 swap_map = p->swap_map; 1609 p->swap_map = NULL; 1610 p->flags = 0; 1611 spin_unlock(&swap_lock); 1612 mutex_unlock(&swapon_mutex); 1613 vfree(swap_map); 1614 /* Destroy swap account informatin */ 1615 swap_cgroup_swapoff(type); 1616 1617 inode = mapping->host; 1618 if (S_ISBLK(inode->i_mode)) { 1619 struct block_device *bdev = I_BDEV(inode); 1620 set_blocksize(bdev, p->old_block_size); 1621 bd_release(bdev); 1622 } else { 1623 mutex_lock(&inode->i_mutex); 1624 inode->i_flags &= ~S_SWAPFILE; 1625 mutex_unlock(&inode->i_mutex); 1626 } 1627 filp_close(swap_file, NULL); 1628 err = 0; 1629 1630 out_dput: 1631 filp_close(victim, NULL); 1632 out: 1633 return err; 1634 } 1635 1636 #ifdef CONFIG_PROC_FS 1637 /* iterator */ 1638 static void *swap_start(struct seq_file *swap, loff_t *pos) 1639 { 1640 struct swap_info_struct *si; 1641 int type; 1642 loff_t l = *pos; 1643 1644 mutex_lock(&swapon_mutex); 1645 1646 if (!l) 1647 return SEQ_START_TOKEN; 1648 1649 for (type = 0; type < nr_swapfiles; type++) { 1650 smp_rmb(); /* read nr_swapfiles before swap_info[type] */ 1651 si = swap_info[type]; 1652 if (!(si->flags & SWP_USED) || !si->swap_map) 1653 continue; 1654 if (!--l) 1655 return si; 1656 } 1657 1658 return NULL; 1659 } 1660 1661 static void *swap_next(struct seq_file *swap, void *v, loff_t *pos) 1662 { 1663 struct swap_info_struct *si = v; 1664 int type; 1665 1666 if (v == SEQ_START_TOKEN) 1667 type = 0; 1668 else 1669 type = si->type + 1; 1670 1671 for (; type < nr_swapfiles; type++) { 1672 smp_rmb(); /* read nr_swapfiles before swap_info[type] */ 1673 si = swap_info[type]; 1674 if (!(si->flags & SWP_USED) || !si->swap_map) 1675 continue; 1676 ++*pos; 1677 return si; 1678 } 1679 1680 return NULL; 1681 } 1682 1683 static void swap_stop(struct seq_file *swap, void *v) 1684 { 1685 mutex_unlock(&swapon_mutex); 1686 } 1687 1688 static int swap_show(struct seq_file *swap, void *v) 1689 { 1690 struct swap_info_struct *si = v; 1691 struct file *file; 1692 int len; 1693 1694 if (si == SEQ_START_TOKEN) { 1695 seq_puts(swap,"Filename\t\t\t\tType\t\tSize\tUsed\tPriority\n"); 1696 return 0; 1697 } 1698 1699 file = si->swap_file; 1700 len = seq_path(swap, &file->f_path, " \t\n\\"); 1701 seq_printf(swap, "%*s%s\t%u\t%u\t%d\n", 1702 len < 40 ? 40 - len : 1, " ", 1703 S_ISBLK(file->f_path.dentry->d_inode->i_mode) ? 1704 "partition" : "file\t", 1705 si->pages << (PAGE_SHIFT - 10), 1706 si->inuse_pages << (PAGE_SHIFT - 10), 1707 si->prio); 1708 return 0; 1709 } 1710 1711 static const struct seq_operations swaps_op = { 1712 .start = swap_start, 1713 .next = swap_next, 1714 .stop = swap_stop, 1715 .show = swap_show 1716 }; 1717 1718 static int swaps_open(struct inode *inode, struct file *file) 1719 { 1720 return seq_open(file, &swaps_op); 1721 } 1722 1723 static const struct file_operations proc_swaps_operations = { 1724 .open = swaps_open, 1725 .read = seq_read, 1726 .llseek = seq_lseek, 1727 .release = seq_release, 1728 }; 1729 1730 static int __init procswaps_init(void) 1731 { 1732 proc_create("swaps", 0, NULL, &proc_swaps_operations); 1733 return 0; 1734 } 1735 __initcall(procswaps_init); 1736 #endif /* CONFIG_PROC_FS */ 1737 1738 #ifdef MAX_SWAPFILES_CHECK 1739 static int __init max_swapfiles_check(void) 1740 { 1741 MAX_SWAPFILES_CHECK(); 1742 return 0; 1743 } 1744 late_initcall(max_swapfiles_check); 1745 #endif 1746 1747 /* 1748 * Written 01/25/92 by Simmule Turner, heavily changed by Linus. 1749 * 1750 * The swapon system call 1751 */ 1752 SYSCALL_DEFINE2(swapon, const char __user *, specialfile, int, swap_flags) 1753 { 1754 struct swap_info_struct *p; 1755 char *name = NULL; 1756 struct block_device *bdev = NULL; 1757 struct file *swap_file = NULL; 1758 struct address_space *mapping; 1759 unsigned int type; 1760 int i, prev; 1761 int error; 1762 union swap_header *swap_header = NULL; 1763 unsigned int nr_good_pages = 0; 1764 int nr_extents = 0; 1765 sector_t span; 1766 unsigned long maxpages = 1; 1767 unsigned long swapfilepages; 1768 unsigned char *swap_map = NULL; 1769 struct page *page = NULL; 1770 struct inode *inode = NULL; 1771 int did_down = 0; 1772 1773 if (!capable(CAP_SYS_ADMIN)) 1774 return -EPERM; 1775 1776 p = kzalloc(sizeof(*p), GFP_KERNEL); 1777 if (!p) 1778 return -ENOMEM; 1779 1780 spin_lock(&swap_lock); 1781 for (type = 0; type < nr_swapfiles; type++) { 1782 if (!(swap_info[type]->flags & SWP_USED)) 1783 break; 1784 } 1785 error = -EPERM; 1786 if (type >= MAX_SWAPFILES) { 1787 spin_unlock(&swap_lock); 1788 kfree(p); 1789 goto out; 1790 } 1791 if (type >= nr_swapfiles) { 1792 p->type = type; 1793 swap_info[type] = p; 1794 /* 1795 * Write swap_info[type] before nr_swapfiles, in case a 1796 * racing procfs swap_start() or swap_next() is reading them. 1797 * (We never shrink nr_swapfiles, we never free this entry.) 1798 */ 1799 smp_wmb(); 1800 nr_swapfiles++; 1801 } else { 1802 kfree(p); 1803 p = swap_info[type]; 1804 /* 1805 * Do not memset this entry: a racing procfs swap_next() 1806 * would be relying on p->type to remain valid. 1807 */ 1808 } 1809 INIT_LIST_HEAD(&p->first_swap_extent.list); 1810 p->flags = SWP_USED; 1811 p->next = -1; 1812 spin_unlock(&swap_lock); 1813 1814 name = getname(specialfile); 1815 error = PTR_ERR(name); 1816 if (IS_ERR(name)) { 1817 name = NULL; 1818 goto bad_swap_2; 1819 } 1820 swap_file = filp_open(name, O_RDWR|O_LARGEFILE, 0); 1821 error = PTR_ERR(swap_file); 1822 if (IS_ERR(swap_file)) { 1823 swap_file = NULL; 1824 goto bad_swap_2; 1825 } 1826 1827 p->swap_file = swap_file; 1828 mapping = swap_file->f_mapping; 1829 inode = mapping->host; 1830 1831 error = -EBUSY; 1832 for (i = 0; i < nr_swapfiles; i++) { 1833 struct swap_info_struct *q = swap_info[i]; 1834 1835 if (i == type || !q->swap_file) 1836 continue; 1837 if (mapping == q->swap_file->f_mapping) 1838 goto bad_swap; 1839 } 1840 1841 error = -EINVAL; 1842 if (S_ISBLK(inode->i_mode)) { 1843 bdev = I_BDEV(inode); 1844 error = bd_claim(bdev, sys_swapon); 1845 if (error < 0) { 1846 bdev = NULL; 1847 error = -EINVAL; 1848 goto bad_swap; 1849 } 1850 p->old_block_size = block_size(bdev); 1851 error = set_blocksize(bdev, PAGE_SIZE); 1852 if (error < 0) 1853 goto bad_swap; 1854 p->bdev = bdev; 1855 } else if (S_ISREG(inode->i_mode)) { 1856 p->bdev = inode->i_sb->s_bdev; 1857 mutex_lock(&inode->i_mutex); 1858 did_down = 1; 1859 if (IS_SWAPFILE(inode)) { 1860 error = -EBUSY; 1861 goto bad_swap; 1862 } 1863 } else { 1864 goto bad_swap; 1865 } 1866 1867 swapfilepages = i_size_read(inode) >> PAGE_SHIFT; 1868 1869 /* 1870 * Read the swap header. 1871 */ 1872 if (!mapping->a_ops->readpage) { 1873 error = -EINVAL; 1874 goto bad_swap; 1875 } 1876 page = read_mapping_page(mapping, 0, swap_file); 1877 if (IS_ERR(page)) { 1878 error = PTR_ERR(page); 1879 goto bad_swap; 1880 } 1881 swap_header = kmap(page); 1882 1883 if (memcmp("SWAPSPACE2", swap_header->magic.magic, 10)) { 1884 printk(KERN_ERR "Unable to find swap-space signature\n"); 1885 error = -EINVAL; 1886 goto bad_swap; 1887 } 1888 1889 /* swap partition endianess hack... */ 1890 if (swab32(swap_header->info.version) == 1) { 1891 swab32s(&swap_header->info.version); 1892 swab32s(&swap_header->info.last_page); 1893 swab32s(&swap_header->info.nr_badpages); 1894 for (i = 0; i < swap_header->info.nr_badpages; i++) 1895 swab32s(&swap_header->info.badpages[i]); 1896 } 1897 /* Check the swap header's sub-version */ 1898 if (swap_header->info.version != 1) { 1899 printk(KERN_WARNING 1900 "Unable to handle swap header version %d\n", 1901 swap_header->info.version); 1902 error = -EINVAL; 1903 goto bad_swap; 1904 } 1905 1906 p->lowest_bit = 1; 1907 p->cluster_next = 1; 1908 p->cluster_nr = 0; 1909 1910 /* 1911 * Find out how many pages are allowed for a single swap 1912 * device. There are two limiting factors: 1) the number of 1913 * bits for the swap offset in the swp_entry_t type and 1914 * 2) the number of bits in the a swap pte as defined by 1915 * the different architectures. In order to find the 1916 * largest possible bit mask a swap entry with swap type 0 1917 * and swap offset ~0UL is created, encoded to a swap pte, 1918 * decoded to a swp_entry_t again and finally the swap 1919 * offset is extracted. This will mask all the bits from 1920 * the initial ~0UL mask that can't be encoded in either 1921 * the swp_entry_t or the architecture definition of a 1922 * swap pte. 1923 */ 1924 maxpages = swp_offset(pte_to_swp_entry( 1925 swp_entry_to_pte(swp_entry(0, ~0UL)))) - 1; 1926 if (maxpages > swap_header->info.last_page) 1927 maxpages = swap_header->info.last_page; 1928 p->highest_bit = maxpages - 1; 1929 1930 error = -EINVAL; 1931 if (!maxpages) 1932 goto bad_swap; 1933 if (swapfilepages && maxpages > swapfilepages) { 1934 printk(KERN_WARNING 1935 "Swap area shorter than signature indicates\n"); 1936 goto bad_swap; 1937 } 1938 if (swap_header->info.nr_badpages && S_ISREG(inode->i_mode)) 1939 goto bad_swap; 1940 if (swap_header->info.nr_badpages > MAX_SWAP_BADPAGES) 1941 goto bad_swap; 1942 1943 /* OK, set up the swap map and apply the bad block list */ 1944 swap_map = vmalloc(maxpages); 1945 if (!swap_map) { 1946 error = -ENOMEM; 1947 goto bad_swap; 1948 } 1949 1950 memset(swap_map, 0, maxpages); 1951 for (i = 0; i < swap_header->info.nr_badpages; i++) { 1952 int page_nr = swap_header->info.badpages[i]; 1953 if (page_nr <= 0 || page_nr >= swap_header->info.last_page) { 1954 error = -EINVAL; 1955 goto bad_swap; 1956 } 1957 swap_map[page_nr] = SWAP_MAP_BAD; 1958 } 1959 1960 error = swap_cgroup_swapon(type, maxpages); 1961 if (error) 1962 goto bad_swap; 1963 1964 nr_good_pages = swap_header->info.last_page - 1965 swap_header->info.nr_badpages - 1966 1 /* header page */; 1967 1968 if (nr_good_pages) { 1969 swap_map[0] = SWAP_MAP_BAD; 1970 p->max = maxpages; 1971 p->pages = nr_good_pages; 1972 nr_extents = setup_swap_extents(p, &span); 1973 if (nr_extents < 0) { 1974 error = nr_extents; 1975 goto bad_swap; 1976 } 1977 nr_good_pages = p->pages; 1978 } 1979 if (!nr_good_pages) { 1980 printk(KERN_WARNING "Empty swap-file\n"); 1981 error = -EINVAL; 1982 goto bad_swap; 1983 } 1984 1985 if (p->bdev) { 1986 if (blk_queue_nonrot(bdev_get_queue(p->bdev))) { 1987 p->flags |= SWP_SOLIDSTATE; 1988 p->cluster_next = 1 + (random32() % p->highest_bit); 1989 } 1990 if (discard_swap(p) == 0) 1991 p->flags |= SWP_DISCARDABLE; 1992 } 1993 1994 mutex_lock(&swapon_mutex); 1995 spin_lock(&swap_lock); 1996 if (swap_flags & SWAP_FLAG_PREFER) 1997 p->prio = 1998 (swap_flags & SWAP_FLAG_PRIO_MASK) >> SWAP_FLAG_PRIO_SHIFT; 1999 else 2000 p->prio = --least_priority; 2001 p->swap_map = swap_map; 2002 p->flags |= SWP_WRITEOK; 2003 nr_swap_pages += nr_good_pages; 2004 total_swap_pages += nr_good_pages; 2005 2006 printk(KERN_INFO "Adding %uk swap on %s. " 2007 "Priority:%d extents:%d across:%lluk %s%s\n", 2008 nr_good_pages<<(PAGE_SHIFT-10), name, p->prio, 2009 nr_extents, (unsigned long long)span<<(PAGE_SHIFT-10), 2010 (p->flags & SWP_SOLIDSTATE) ? "SS" : "", 2011 (p->flags & SWP_DISCARDABLE) ? "D" : ""); 2012 2013 /* insert swap space into swap_list: */ 2014 prev = -1; 2015 for (i = swap_list.head; i >= 0; i = swap_info[i]->next) { 2016 if (p->prio >= swap_info[i]->prio) 2017 break; 2018 prev = i; 2019 } 2020 p->next = i; 2021 if (prev < 0) 2022 swap_list.head = swap_list.next = type; 2023 else 2024 swap_info[prev]->next = type; 2025 spin_unlock(&swap_lock); 2026 mutex_unlock(&swapon_mutex); 2027 error = 0; 2028 goto out; 2029 bad_swap: 2030 if (bdev) { 2031 set_blocksize(bdev, p->old_block_size); 2032 bd_release(bdev); 2033 } 2034 destroy_swap_extents(p); 2035 swap_cgroup_swapoff(type); 2036 bad_swap_2: 2037 spin_lock(&swap_lock); 2038 p->swap_file = NULL; 2039 p->flags = 0; 2040 spin_unlock(&swap_lock); 2041 vfree(swap_map); 2042 if (swap_file) 2043 filp_close(swap_file, NULL); 2044 out: 2045 if (page && !IS_ERR(page)) { 2046 kunmap(page); 2047 page_cache_release(page); 2048 } 2049 if (name) 2050 putname(name); 2051 if (did_down) { 2052 if (!error) 2053 inode->i_flags |= S_SWAPFILE; 2054 mutex_unlock(&inode->i_mutex); 2055 } 2056 return error; 2057 } 2058 2059 void si_swapinfo(struct sysinfo *val) 2060 { 2061 unsigned int type; 2062 unsigned long nr_to_be_unused = 0; 2063 2064 spin_lock(&swap_lock); 2065 for (type = 0; type < nr_swapfiles; type++) { 2066 struct swap_info_struct *si = swap_info[type]; 2067 2068 if ((si->flags & SWP_USED) && !(si->flags & SWP_WRITEOK)) 2069 nr_to_be_unused += si->inuse_pages; 2070 } 2071 val->freeswap = nr_swap_pages + nr_to_be_unused; 2072 val->totalswap = total_swap_pages + nr_to_be_unused; 2073 spin_unlock(&swap_lock); 2074 } 2075 2076 /* 2077 * Verify that a swap entry is valid and increment its swap map count. 2078 * 2079 * Returns error code in following case. 2080 * - success -> 0 2081 * - swp_entry is invalid -> EINVAL 2082 * - swp_entry is migration entry -> EINVAL 2083 * - swap-cache reference is requested but there is already one. -> EEXIST 2084 * - swap-cache reference is requested but the entry is not used. -> ENOENT 2085 * - swap-mapped reference requested but needs continued swap count. -> ENOMEM 2086 */ 2087 static int __swap_duplicate(swp_entry_t entry, unsigned char usage) 2088 { 2089 struct swap_info_struct *p; 2090 unsigned long offset, type; 2091 unsigned char count; 2092 unsigned char has_cache; 2093 int err = -EINVAL; 2094 2095 if (non_swap_entry(entry)) 2096 goto out; 2097 2098 type = swp_type(entry); 2099 if (type >= nr_swapfiles) 2100 goto bad_file; 2101 p = swap_info[type]; 2102 offset = swp_offset(entry); 2103 2104 spin_lock(&swap_lock); 2105 if (unlikely(offset >= p->max)) 2106 goto unlock_out; 2107 2108 count = p->swap_map[offset]; 2109 has_cache = count & SWAP_HAS_CACHE; 2110 count &= ~SWAP_HAS_CACHE; 2111 err = 0; 2112 2113 if (usage == SWAP_HAS_CACHE) { 2114 2115 /* set SWAP_HAS_CACHE if there is no cache and entry is used */ 2116 if (!has_cache && count) 2117 has_cache = SWAP_HAS_CACHE; 2118 else if (has_cache) /* someone else added cache */ 2119 err = -EEXIST; 2120 else /* no users remaining */ 2121 err = -ENOENT; 2122 2123 } else if (count || has_cache) { 2124 2125 if ((count & ~COUNT_CONTINUED) < SWAP_MAP_MAX) 2126 count += usage; 2127 else if ((count & ~COUNT_CONTINUED) > SWAP_MAP_MAX) 2128 err = -EINVAL; 2129 else if (swap_count_continued(p, offset, count)) 2130 count = COUNT_CONTINUED; 2131 else 2132 err = -ENOMEM; 2133 } else 2134 err = -ENOENT; /* unused swap entry */ 2135 2136 p->swap_map[offset] = count | has_cache; 2137 2138 unlock_out: 2139 spin_unlock(&swap_lock); 2140 out: 2141 return err; 2142 2143 bad_file: 2144 printk(KERN_ERR "swap_dup: %s%08lx\n", Bad_file, entry.val); 2145 goto out; 2146 } 2147 2148 /* 2149 * Help swapoff by noting that swap entry belongs to shmem/tmpfs 2150 * (in which case its reference count is never incremented). 2151 */ 2152 void swap_shmem_alloc(swp_entry_t entry) 2153 { 2154 __swap_duplicate(entry, SWAP_MAP_SHMEM); 2155 } 2156 2157 /* 2158 * increase reference count of swap entry by 1. 2159 */ 2160 int swap_duplicate(swp_entry_t entry) 2161 { 2162 int err = 0; 2163 2164 while (!err && __swap_duplicate(entry, 1) == -ENOMEM) 2165 err = add_swap_count_continuation(entry, GFP_ATOMIC); 2166 return err; 2167 } 2168 2169 /* 2170 * @entry: swap entry for which we allocate swap cache. 2171 * 2172 * Called when allocating swap cache for existing swap entry, 2173 * This can return error codes. Returns 0 at success. 2174 * -EBUSY means there is a swap cache. 2175 * Note: return code is different from swap_duplicate(). 2176 */ 2177 int swapcache_prepare(swp_entry_t entry) 2178 { 2179 return __swap_duplicate(entry, SWAP_HAS_CACHE); 2180 } 2181 2182 /* 2183 * swap_lock prevents swap_map being freed. Don't grab an extra 2184 * reference on the swaphandle, it doesn't matter if it becomes unused. 2185 */ 2186 int valid_swaphandles(swp_entry_t entry, unsigned long *offset) 2187 { 2188 struct swap_info_struct *si; 2189 int our_page_cluster = page_cluster; 2190 pgoff_t target, toff; 2191 pgoff_t base, end; 2192 int nr_pages = 0; 2193 2194 if (!our_page_cluster) /* no readahead */ 2195 return 0; 2196 2197 si = swap_info[swp_type(entry)]; 2198 target = swp_offset(entry); 2199 base = (target >> our_page_cluster) << our_page_cluster; 2200 end = base + (1 << our_page_cluster); 2201 if (!base) /* first page is swap header */ 2202 base++; 2203 2204 spin_lock(&swap_lock); 2205 if (end > si->max) /* don't go beyond end of map */ 2206 end = si->max; 2207 2208 /* Count contiguous allocated slots above our target */ 2209 for (toff = target; ++toff < end; nr_pages++) { 2210 /* Don't read in free or bad pages */ 2211 if (!si->swap_map[toff]) 2212 break; 2213 if (swap_count(si->swap_map[toff]) == SWAP_MAP_BAD) 2214 break; 2215 } 2216 /* Count contiguous allocated slots below our target */ 2217 for (toff = target; --toff >= base; nr_pages++) { 2218 /* Don't read in free or bad pages */ 2219 if (!si->swap_map[toff]) 2220 break; 2221 if (swap_count(si->swap_map[toff]) == SWAP_MAP_BAD) 2222 break; 2223 } 2224 spin_unlock(&swap_lock); 2225 2226 /* 2227 * Indicate starting offset, and return number of pages to get: 2228 * if only 1, say 0, since there's then no readahead to be done. 2229 */ 2230 *offset = ++toff; 2231 return nr_pages? ++nr_pages: 0; 2232 } 2233 2234 /* 2235 * add_swap_count_continuation - called when a swap count is duplicated 2236 * beyond SWAP_MAP_MAX, it allocates a new page and links that to the entry's 2237 * page of the original vmalloc'ed swap_map, to hold the continuation count 2238 * (for that entry and for its neighbouring PAGE_SIZE swap entries). Called 2239 * again when count is duplicated beyond SWAP_MAP_MAX * SWAP_CONT_MAX, etc. 2240 * 2241 * These continuation pages are seldom referenced: the common paths all work 2242 * on the original swap_map, only referring to a continuation page when the 2243 * low "digit" of a count is incremented or decremented through SWAP_MAP_MAX. 2244 * 2245 * add_swap_count_continuation(, GFP_ATOMIC) can be called while holding 2246 * page table locks; if it fails, add_swap_count_continuation(, GFP_KERNEL) 2247 * can be called after dropping locks. 2248 */ 2249 int add_swap_count_continuation(swp_entry_t entry, gfp_t gfp_mask) 2250 { 2251 struct swap_info_struct *si; 2252 struct page *head; 2253 struct page *page; 2254 struct page *list_page; 2255 pgoff_t offset; 2256 unsigned char count; 2257 2258 /* 2259 * When debugging, it's easier to use __GFP_ZERO here; but it's better 2260 * for latency not to zero a page while GFP_ATOMIC and holding locks. 2261 */ 2262 page = alloc_page(gfp_mask | __GFP_HIGHMEM); 2263 2264 si = swap_info_get(entry); 2265 if (!si) { 2266 /* 2267 * An acceptable race has occurred since the failing 2268 * __swap_duplicate(): the swap entry has been freed, 2269 * perhaps even the whole swap_map cleared for swapoff. 2270 */ 2271 goto outer; 2272 } 2273 2274 offset = swp_offset(entry); 2275 count = si->swap_map[offset] & ~SWAP_HAS_CACHE; 2276 2277 if ((count & ~COUNT_CONTINUED) != SWAP_MAP_MAX) { 2278 /* 2279 * The higher the swap count, the more likely it is that tasks 2280 * will race to add swap count continuation: we need to avoid 2281 * over-provisioning. 2282 */ 2283 goto out; 2284 } 2285 2286 if (!page) { 2287 spin_unlock(&swap_lock); 2288 return -ENOMEM; 2289 } 2290 2291 /* 2292 * We are fortunate that although vmalloc_to_page uses pte_offset_map, 2293 * no architecture is using highmem pages for kernel pagetables: so it 2294 * will not corrupt the GFP_ATOMIC caller's atomic pagetable kmaps. 2295 */ 2296 head = vmalloc_to_page(si->swap_map + offset); 2297 offset &= ~PAGE_MASK; 2298 2299 /* 2300 * Page allocation does not initialize the page's lru field, 2301 * but it does always reset its private field. 2302 */ 2303 if (!page_private(head)) { 2304 BUG_ON(count & COUNT_CONTINUED); 2305 INIT_LIST_HEAD(&head->lru); 2306 set_page_private(head, SWP_CONTINUED); 2307 si->flags |= SWP_CONTINUED; 2308 } 2309 2310 list_for_each_entry(list_page, &head->lru, lru) { 2311 unsigned char *map; 2312 2313 /* 2314 * If the previous map said no continuation, but we've found 2315 * a continuation page, free our allocation and use this one. 2316 */ 2317 if (!(count & COUNT_CONTINUED)) 2318 goto out; 2319 2320 map = kmap_atomic(list_page, KM_USER0) + offset; 2321 count = *map; 2322 kunmap_atomic(map, KM_USER0); 2323 2324 /* 2325 * If this continuation count now has some space in it, 2326 * free our allocation and use this one. 2327 */ 2328 if ((count & ~COUNT_CONTINUED) != SWAP_CONT_MAX) 2329 goto out; 2330 } 2331 2332 list_add_tail(&page->lru, &head->lru); 2333 page = NULL; /* now it's attached, don't free it */ 2334 out: 2335 spin_unlock(&swap_lock); 2336 outer: 2337 if (page) 2338 __free_page(page); 2339 return 0; 2340 } 2341 2342 /* 2343 * swap_count_continued - when the original swap_map count is incremented 2344 * from SWAP_MAP_MAX, check if there is already a continuation page to carry 2345 * into, carry if so, or else fail until a new continuation page is allocated; 2346 * when the original swap_map count is decremented from 0 with continuation, 2347 * borrow from the continuation and report whether it still holds more. 2348 * Called while __swap_duplicate() or swap_entry_free() holds swap_lock. 2349 */ 2350 static bool swap_count_continued(struct swap_info_struct *si, 2351 pgoff_t offset, unsigned char count) 2352 { 2353 struct page *head; 2354 struct page *page; 2355 unsigned char *map; 2356 2357 head = vmalloc_to_page(si->swap_map + offset); 2358 if (page_private(head) != SWP_CONTINUED) { 2359 BUG_ON(count & COUNT_CONTINUED); 2360 return false; /* need to add count continuation */ 2361 } 2362 2363 offset &= ~PAGE_MASK; 2364 page = list_entry(head->lru.next, struct page, lru); 2365 map = kmap_atomic(page, KM_USER0) + offset; 2366 2367 if (count == SWAP_MAP_MAX) /* initial increment from swap_map */ 2368 goto init_map; /* jump over SWAP_CONT_MAX checks */ 2369 2370 if (count == (SWAP_MAP_MAX | COUNT_CONTINUED)) { /* incrementing */ 2371 /* 2372 * Think of how you add 1 to 999 2373 */ 2374 while (*map == (SWAP_CONT_MAX | COUNT_CONTINUED)) { 2375 kunmap_atomic(map, KM_USER0); 2376 page = list_entry(page->lru.next, struct page, lru); 2377 BUG_ON(page == head); 2378 map = kmap_atomic(page, KM_USER0) + offset; 2379 } 2380 if (*map == SWAP_CONT_MAX) { 2381 kunmap_atomic(map, KM_USER0); 2382 page = list_entry(page->lru.next, struct page, lru); 2383 if (page == head) 2384 return false; /* add count continuation */ 2385 map = kmap_atomic(page, KM_USER0) + offset; 2386 init_map: *map = 0; /* we didn't zero the page */ 2387 } 2388 *map += 1; 2389 kunmap_atomic(map, KM_USER0); 2390 page = list_entry(page->lru.prev, struct page, lru); 2391 while (page != head) { 2392 map = kmap_atomic(page, KM_USER0) + offset; 2393 *map = COUNT_CONTINUED; 2394 kunmap_atomic(map, KM_USER0); 2395 page = list_entry(page->lru.prev, struct page, lru); 2396 } 2397 return true; /* incremented */ 2398 2399 } else { /* decrementing */ 2400 /* 2401 * Think of how you subtract 1 from 1000 2402 */ 2403 BUG_ON(count != COUNT_CONTINUED); 2404 while (*map == COUNT_CONTINUED) { 2405 kunmap_atomic(map, KM_USER0); 2406 page = list_entry(page->lru.next, struct page, lru); 2407 BUG_ON(page == head); 2408 map = kmap_atomic(page, KM_USER0) + offset; 2409 } 2410 BUG_ON(*map == 0); 2411 *map -= 1; 2412 if (*map == 0) 2413 count = 0; 2414 kunmap_atomic(map, KM_USER0); 2415 page = list_entry(page->lru.prev, struct page, lru); 2416 while (page != head) { 2417 map = kmap_atomic(page, KM_USER0) + offset; 2418 *map = SWAP_CONT_MAX | count; 2419 count = COUNT_CONTINUED; 2420 kunmap_atomic(map, KM_USER0); 2421 page = list_entry(page->lru.prev, struct page, lru); 2422 } 2423 return count == COUNT_CONTINUED; 2424 } 2425 } 2426 2427 /* 2428 * free_swap_count_continuations - swapoff free all the continuation pages 2429 * appended to the swap_map, after swap_map is quiesced, before vfree'ing it. 2430 */ 2431 static void free_swap_count_continuations(struct swap_info_struct *si) 2432 { 2433 pgoff_t offset; 2434 2435 for (offset = 0; offset < si->max; offset += PAGE_SIZE) { 2436 struct page *head; 2437 head = vmalloc_to_page(si->swap_map + offset); 2438 if (page_private(head)) { 2439 struct list_head *this, *next; 2440 list_for_each_safe(this, next, &head->lru) { 2441 struct page *page; 2442 page = list_entry(this, struct page, lru); 2443 list_del(this); 2444 __free_page(page); 2445 } 2446 } 2447 } 2448 } 2449