1 // SPDX-License-Identifier: GPL-2.0-only 2 /* 3 * linux/mm/swapfile.c 4 * 5 * Copyright (C) 1991, 1992, 1993, 1994 Linus Torvalds 6 * Swap reorganised 29.12.95, Stephen Tweedie 7 */ 8 9 #include <linux/mm.h> 10 #include <linux/sched/mm.h> 11 #include <linux/sched/task.h> 12 #include <linux/hugetlb.h> 13 #include <linux/mman.h> 14 #include <linux/slab.h> 15 #include <linux/kernel_stat.h> 16 #include <linux/swap.h> 17 #include <linux/vmalloc.h> 18 #include <linux/pagemap.h> 19 #include <linux/namei.h> 20 #include <linux/shmem_fs.h> 21 #include <linux/blkdev.h> 22 #include <linux/random.h> 23 #include <linux/writeback.h> 24 #include <linux/proc_fs.h> 25 #include <linux/seq_file.h> 26 #include <linux/init.h> 27 #include <linux/ksm.h> 28 #include <linux/rmap.h> 29 #include <linux/security.h> 30 #include <linux/backing-dev.h> 31 #include <linux/mutex.h> 32 #include <linux/capability.h> 33 #include <linux/syscalls.h> 34 #include <linux/memcontrol.h> 35 #include <linux/poll.h> 36 #include <linux/oom.h> 37 #include <linux/frontswap.h> 38 #include <linux/swapfile.h> 39 #include <linux/export.h> 40 #include <linux/swap_slots.h> 41 #include <linux/sort.h> 42 43 #include <asm/pgtable.h> 44 #include <asm/tlbflush.h> 45 #include <linux/swapops.h> 46 #include <linux/swap_cgroup.h> 47 48 static bool swap_count_continued(struct swap_info_struct *, pgoff_t, 49 unsigned char); 50 static void free_swap_count_continuations(struct swap_info_struct *); 51 static sector_t map_swap_entry(swp_entry_t, struct block_device**); 52 53 DEFINE_SPINLOCK(swap_lock); 54 static unsigned int nr_swapfiles; 55 atomic_long_t nr_swap_pages; 56 /* 57 * Some modules use swappable objects and may try to swap them out under 58 * memory pressure (via the shrinker). Before doing so, they may wish to 59 * check to see if any swap space is available. 60 */ 61 EXPORT_SYMBOL_GPL(nr_swap_pages); 62 /* protected with swap_lock. reading in vm_swap_full() doesn't need lock */ 63 long total_swap_pages; 64 static int least_priority = -1; 65 66 static const char Bad_file[] = "Bad swap file entry "; 67 static const char Unused_file[] = "Unused swap file entry "; 68 static const char Bad_offset[] = "Bad swap offset entry "; 69 static const char Unused_offset[] = "Unused swap offset entry "; 70 71 /* 72 * all active swap_info_structs 73 * protected with swap_lock, and ordered by priority. 74 */ 75 PLIST_HEAD(swap_active_head); 76 77 /* 78 * all available (active, not full) swap_info_structs 79 * protected with swap_avail_lock, ordered by priority. 80 * This is used by get_swap_page() instead of swap_active_head 81 * because swap_active_head includes all swap_info_structs, 82 * but get_swap_page() doesn't need to look at full ones. 83 * This uses its own lock instead of swap_lock because when a 84 * swap_info_struct changes between not-full/full, it needs to 85 * add/remove itself to/from this list, but the swap_info_struct->lock 86 * is held and the locking order requires swap_lock to be taken 87 * before any swap_info_struct->lock. 88 */ 89 static struct plist_head *swap_avail_heads; 90 static DEFINE_SPINLOCK(swap_avail_lock); 91 92 struct swap_info_struct *swap_info[MAX_SWAPFILES]; 93 94 static DEFINE_MUTEX(swapon_mutex); 95 96 static DECLARE_WAIT_QUEUE_HEAD(proc_poll_wait); 97 /* Activity counter to indicate that a swapon or swapoff has occurred */ 98 static atomic_t proc_poll_event = ATOMIC_INIT(0); 99 100 atomic_t nr_rotate_swap = ATOMIC_INIT(0); 101 102 static struct swap_info_struct *swap_type_to_swap_info(int type) 103 { 104 if (type >= READ_ONCE(nr_swapfiles)) 105 return NULL; 106 107 smp_rmb(); /* Pairs with smp_wmb in alloc_swap_info. */ 108 return READ_ONCE(swap_info[type]); 109 } 110 111 static inline unsigned char swap_count(unsigned char ent) 112 { 113 return ent & ~SWAP_HAS_CACHE; /* may include COUNT_CONTINUED flag */ 114 } 115 116 /* Reclaim the swap entry anyway if possible */ 117 #define TTRS_ANYWAY 0x1 118 /* 119 * Reclaim the swap entry if there are no more mappings of the 120 * corresponding page 121 */ 122 #define TTRS_UNMAPPED 0x2 123 /* Reclaim the swap entry if swap is getting full*/ 124 #define TTRS_FULL 0x4 125 126 /* returns 1 if swap entry is freed */ 127 static int __try_to_reclaim_swap(struct swap_info_struct *si, 128 unsigned long offset, unsigned long flags) 129 { 130 swp_entry_t entry = swp_entry(si->type, offset); 131 struct page *page; 132 int ret = 0; 133 134 page = find_get_page(swap_address_space(entry), offset); 135 if (!page) 136 return 0; 137 /* 138 * When this function is called from scan_swap_map_slots() and it's 139 * called by vmscan.c at reclaiming pages. So, we hold a lock on a page, 140 * here. We have to use trylock for avoiding deadlock. This is a special 141 * case and you should use try_to_free_swap() with explicit lock_page() 142 * in usual operations. 143 */ 144 if (trylock_page(page)) { 145 if ((flags & TTRS_ANYWAY) || 146 ((flags & TTRS_UNMAPPED) && !page_mapped(page)) || 147 ((flags & TTRS_FULL) && mem_cgroup_swap_full(page))) 148 ret = try_to_free_swap(page); 149 unlock_page(page); 150 } 151 put_page(page); 152 return ret; 153 } 154 155 /* 156 * swapon tell device that all the old swap contents can be discarded, 157 * to allow the swap device to optimize its wear-levelling. 158 */ 159 static int discard_swap(struct swap_info_struct *si) 160 { 161 struct swap_extent *se; 162 sector_t start_block; 163 sector_t nr_blocks; 164 int err = 0; 165 166 /* Do not discard the swap header page! */ 167 se = &si->first_swap_extent; 168 start_block = (se->start_block + 1) << (PAGE_SHIFT - 9); 169 nr_blocks = ((sector_t)se->nr_pages - 1) << (PAGE_SHIFT - 9); 170 if (nr_blocks) { 171 err = blkdev_issue_discard(si->bdev, start_block, 172 nr_blocks, GFP_KERNEL, 0); 173 if (err) 174 return err; 175 cond_resched(); 176 } 177 178 list_for_each_entry(se, &si->first_swap_extent.list, list) { 179 start_block = se->start_block << (PAGE_SHIFT - 9); 180 nr_blocks = (sector_t)se->nr_pages << (PAGE_SHIFT - 9); 181 182 err = blkdev_issue_discard(si->bdev, start_block, 183 nr_blocks, GFP_KERNEL, 0); 184 if (err) 185 break; 186 187 cond_resched(); 188 } 189 return err; /* That will often be -EOPNOTSUPP */ 190 } 191 192 /* 193 * swap allocation tell device that a cluster of swap can now be discarded, 194 * to allow the swap device to optimize its wear-levelling. 195 */ 196 static void discard_swap_cluster(struct swap_info_struct *si, 197 pgoff_t start_page, pgoff_t nr_pages) 198 { 199 struct swap_extent *se = si->curr_swap_extent; 200 int found_extent = 0; 201 202 while (nr_pages) { 203 if (se->start_page <= start_page && 204 start_page < se->start_page + se->nr_pages) { 205 pgoff_t offset = start_page - se->start_page; 206 sector_t start_block = se->start_block + offset; 207 sector_t nr_blocks = se->nr_pages - offset; 208 209 if (nr_blocks > nr_pages) 210 nr_blocks = nr_pages; 211 start_page += nr_blocks; 212 nr_pages -= nr_blocks; 213 214 if (!found_extent++) 215 si->curr_swap_extent = se; 216 217 start_block <<= PAGE_SHIFT - 9; 218 nr_blocks <<= PAGE_SHIFT - 9; 219 if (blkdev_issue_discard(si->bdev, start_block, 220 nr_blocks, GFP_NOIO, 0)) 221 break; 222 } 223 224 se = list_next_entry(se, list); 225 } 226 } 227 228 #ifdef CONFIG_THP_SWAP 229 #define SWAPFILE_CLUSTER HPAGE_PMD_NR 230 231 #define swap_entry_size(size) (size) 232 #else 233 #define SWAPFILE_CLUSTER 256 234 235 /* 236 * Define swap_entry_size() as constant to let compiler to optimize 237 * out some code if !CONFIG_THP_SWAP 238 */ 239 #define swap_entry_size(size) 1 240 #endif 241 #define LATENCY_LIMIT 256 242 243 static inline void cluster_set_flag(struct swap_cluster_info *info, 244 unsigned int flag) 245 { 246 info->flags = flag; 247 } 248 249 static inline unsigned int cluster_count(struct swap_cluster_info *info) 250 { 251 return info->data; 252 } 253 254 static inline void cluster_set_count(struct swap_cluster_info *info, 255 unsigned int c) 256 { 257 info->data = c; 258 } 259 260 static inline void cluster_set_count_flag(struct swap_cluster_info *info, 261 unsigned int c, unsigned int f) 262 { 263 info->flags = f; 264 info->data = c; 265 } 266 267 static inline unsigned int cluster_next(struct swap_cluster_info *info) 268 { 269 return info->data; 270 } 271 272 static inline void cluster_set_next(struct swap_cluster_info *info, 273 unsigned int n) 274 { 275 info->data = n; 276 } 277 278 static inline void cluster_set_next_flag(struct swap_cluster_info *info, 279 unsigned int n, unsigned int f) 280 { 281 info->flags = f; 282 info->data = n; 283 } 284 285 static inline bool cluster_is_free(struct swap_cluster_info *info) 286 { 287 return info->flags & CLUSTER_FLAG_FREE; 288 } 289 290 static inline bool cluster_is_null(struct swap_cluster_info *info) 291 { 292 return info->flags & CLUSTER_FLAG_NEXT_NULL; 293 } 294 295 static inline void cluster_set_null(struct swap_cluster_info *info) 296 { 297 info->flags = CLUSTER_FLAG_NEXT_NULL; 298 info->data = 0; 299 } 300 301 static inline bool cluster_is_huge(struct swap_cluster_info *info) 302 { 303 if (IS_ENABLED(CONFIG_THP_SWAP)) 304 return info->flags & CLUSTER_FLAG_HUGE; 305 return false; 306 } 307 308 static inline void cluster_clear_huge(struct swap_cluster_info *info) 309 { 310 info->flags &= ~CLUSTER_FLAG_HUGE; 311 } 312 313 static inline struct swap_cluster_info *lock_cluster(struct swap_info_struct *si, 314 unsigned long offset) 315 { 316 struct swap_cluster_info *ci; 317 318 ci = si->cluster_info; 319 if (ci) { 320 ci += offset / SWAPFILE_CLUSTER; 321 spin_lock(&ci->lock); 322 } 323 return ci; 324 } 325 326 static inline void unlock_cluster(struct swap_cluster_info *ci) 327 { 328 if (ci) 329 spin_unlock(&ci->lock); 330 } 331 332 /* 333 * Determine the locking method in use for this device. Return 334 * swap_cluster_info if SSD-style cluster-based locking is in place. 335 */ 336 static inline struct swap_cluster_info *lock_cluster_or_swap_info( 337 struct swap_info_struct *si, unsigned long offset) 338 { 339 struct swap_cluster_info *ci; 340 341 /* Try to use fine-grained SSD-style locking if available: */ 342 ci = lock_cluster(si, offset); 343 /* Otherwise, fall back to traditional, coarse locking: */ 344 if (!ci) 345 spin_lock(&si->lock); 346 347 return ci; 348 } 349 350 static inline void unlock_cluster_or_swap_info(struct swap_info_struct *si, 351 struct swap_cluster_info *ci) 352 { 353 if (ci) 354 unlock_cluster(ci); 355 else 356 spin_unlock(&si->lock); 357 } 358 359 static inline bool cluster_list_empty(struct swap_cluster_list *list) 360 { 361 return cluster_is_null(&list->head); 362 } 363 364 static inline unsigned int cluster_list_first(struct swap_cluster_list *list) 365 { 366 return cluster_next(&list->head); 367 } 368 369 static void cluster_list_init(struct swap_cluster_list *list) 370 { 371 cluster_set_null(&list->head); 372 cluster_set_null(&list->tail); 373 } 374 375 static void cluster_list_add_tail(struct swap_cluster_list *list, 376 struct swap_cluster_info *ci, 377 unsigned int idx) 378 { 379 if (cluster_list_empty(list)) { 380 cluster_set_next_flag(&list->head, idx, 0); 381 cluster_set_next_flag(&list->tail, idx, 0); 382 } else { 383 struct swap_cluster_info *ci_tail; 384 unsigned int tail = cluster_next(&list->tail); 385 386 /* 387 * Nested cluster lock, but both cluster locks are 388 * only acquired when we held swap_info_struct->lock 389 */ 390 ci_tail = ci + tail; 391 spin_lock_nested(&ci_tail->lock, SINGLE_DEPTH_NESTING); 392 cluster_set_next(ci_tail, idx); 393 spin_unlock(&ci_tail->lock); 394 cluster_set_next_flag(&list->tail, idx, 0); 395 } 396 } 397 398 static unsigned int cluster_list_del_first(struct swap_cluster_list *list, 399 struct swap_cluster_info *ci) 400 { 401 unsigned int idx; 402 403 idx = cluster_next(&list->head); 404 if (cluster_next(&list->tail) == idx) { 405 cluster_set_null(&list->head); 406 cluster_set_null(&list->tail); 407 } else 408 cluster_set_next_flag(&list->head, 409 cluster_next(&ci[idx]), 0); 410 411 return idx; 412 } 413 414 /* Add a cluster to discard list and schedule it to do discard */ 415 static void swap_cluster_schedule_discard(struct swap_info_struct *si, 416 unsigned int idx) 417 { 418 /* 419 * If scan_swap_map() can't find a free cluster, it will check 420 * si->swap_map directly. To make sure the discarding cluster isn't 421 * taken by scan_swap_map(), mark the swap entries bad (occupied). It 422 * will be cleared after discard 423 */ 424 memset(si->swap_map + idx * SWAPFILE_CLUSTER, 425 SWAP_MAP_BAD, SWAPFILE_CLUSTER); 426 427 cluster_list_add_tail(&si->discard_clusters, si->cluster_info, idx); 428 429 schedule_work(&si->discard_work); 430 } 431 432 static void __free_cluster(struct swap_info_struct *si, unsigned long idx) 433 { 434 struct swap_cluster_info *ci = si->cluster_info; 435 436 cluster_set_flag(ci + idx, CLUSTER_FLAG_FREE); 437 cluster_list_add_tail(&si->free_clusters, ci, idx); 438 } 439 440 /* 441 * Doing discard actually. After a cluster discard is finished, the cluster 442 * will be added to free cluster list. caller should hold si->lock. 443 */ 444 static void swap_do_scheduled_discard(struct swap_info_struct *si) 445 { 446 struct swap_cluster_info *info, *ci; 447 unsigned int idx; 448 449 info = si->cluster_info; 450 451 while (!cluster_list_empty(&si->discard_clusters)) { 452 idx = cluster_list_del_first(&si->discard_clusters, info); 453 spin_unlock(&si->lock); 454 455 discard_swap_cluster(si, idx * SWAPFILE_CLUSTER, 456 SWAPFILE_CLUSTER); 457 458 spin_lock(&si->lock); 459 ci = lock_cluster(si, idx * SWAPFILE_CLUSTER); 460 __free_cluster(si, idx); 461 memset(si->swap_map + idx * SWAPFILE_CLUSTER, 462 0, SWAPFILE_CLUSTER); 463 unlock_cluster(ci); 464 } 465 } 466 467 static void swap_discard_work(struct work_struct *work) 468 { 469 struct swap_info_struct *si; 470 471 si = container_of(work, struct swap_info_struct, discard_work); 472 473 spin_lock(&si->lock); 474 swap_do_scheduled_discard(si); 475 spin_unlock(&si->lock); 476 } 477 478 static void alloc_cluster(struct swap_info_struct *si, unsigned long idx) 479 { 480 struct swap_cluster_info *ci = si->cluster_info; 481 482 VM_BUG_ON(cluster_list_first(&si->free_clusters) != idx); 483 cluster_list_del_first(&si->free_clusters, ci); 484 cluster_set_count_flag(ci + idx, 0, 0); 485 } 486 487 static void free_cluster(struct swap_info_struct *si, unsigned long idx) 488 { 489 struct swap_cluster_info *ci = si->cluster_info + idx; 490 491 VM_BUG_ON(cluster_count(ci) != 0); 492 /* 493 * If the swap is discardable, prepare discard the cluster 494 * instead of free it immediately. The cluster will be freed 495 * after discard. 496 */ 497 if ((si->flags & (SWP_WRITEOK | SWP_PAGE_DISCARD)) == 498 (SWP_WRITEOK | SWP_PAGE_DISCARD)) { 499 swap_cluster_schedule_discard(si, idx); 500 return; 501 } 502 503 __free_cluster(si, idx); 504 } 505 506 /* 507 * The cluster corresponding to page_nr will be used. The cluster will be 508 * removed from free cluster list and its usage counter will be increased. 509 */ 510 static void inc_cluster_info_page(struct swap_info_struct *p, 511 struct swap_cluster_info *cluster_info, unsigned long page_nr) 512 { 513 unsigned long idx = page_nr / SWAPFILE_CLUSTER; 514 515 if (!cluster_info) 516 return; 517 if (cluster_is_free(&cluster_info[idx])) 518 alloc_cluster(p, idx); 519 520 VM_BUG_ON(cluster_count(&cluster_info[idx]) >= SWAPFILE_CLUSTER); 521 cluster_set_count(&cluster_info[idx], 522 cluster_count(&cluster_info[idx]) + 1); 523 } 524 525 /* 526 * The cluster corresponding to page_nr decreases one usage. If the usage 527 * counter becomes 0, which means no page in the cluster is in using, we can 528 * optionally discard the cluster and add it to free cluster list. 529 */ 530 static void dec_cluster_info_page(struct swap_info_struct *p, 531 struct swap_cluster_info *cluster_info, unsigned long page_nr) 532 { 533 unsigned long idx = page_nr / SWAPFILE_CLUSTER; 534 535 if (!cluster_info) 536 return; 537 538 VM_BUG_ON(cluster_count(&cluster_info[idx]) == 0); 539 cluster_set_count(&cluster_info[idx], 540 cluster_count(&cluster_info[idx]) - 1); 541 542 if (cluster_count(&cluster_info[idx]) == 0) 543 free_cluster(p, idx); 544 } 545 546 /* 547 * It's possible scan_swap_map() uses a free cluster in the middle of free 548 * cluster list. Avoiding such abuse to avoid list corruption. 549 */ 550 static bool 551 scan_swap_map_ssd_cluster_conflict(struct swap_info_struct *si, 552 unsigned long offset) 553 { 554 struct percpu_cluster *percpu_cluster; 555 bool conflict; 556 557 offset /= SWAPFILE_CLUSTER; 558 conflict = !cluster_list_empty(&si->free_clusters) && 559 offset != cluster_list_first(&si->free_clusters) && 560 cluster_is_free(&si->cluster_info[offset]); 561 562 if (!conflict) 563 return false; 564 565 percpu_cluster = this_cpu_ptr(si->percpu_cluster); 566 cluster_set_null(&percpu_cluster->index); 567 return true; 568 } 569 570 /* 571 * Try to get a swap entry from current cpu's swap entry pool (a cluster). This 572 * might involve allocating a new cluster for current CPU too. 573 */ 574 static bool scan_swap_map_try_ssd_cluster(struct swap_info_struct *si, 575 unsigned long *offset, unsigned long *scan_base) 576 { 577 struct percpu_cluster *cluster; 578 struct swap_cluster_info *ci; 579 bool found_free; 580 unsigned long tmp, max; 581 582 new_cluster: 583 cluster = this_cpu_ptr(si->percpu_cluster); 584 if (cluster_is_null(&cluster->index)) { 585 if (!cluster_list_empty(&si->free_clusters)) { 586 cluster->index = si->free_clusters.head; 587 cluster->next = cluster_next(&cluster->index) * 588 SWAPFILE_CLUSTER; 589 } else if (!cluster_list_empty(&si->discard_clusters)) { 590 /* 591 * we don't have free cluster but have some clusters in 592 * discarding, do discard now and reclaim them 593 */ 594 swap_do_scheduled_discard(si); 595 *scan_base = *offset = si->cluster_next; 596 goto new_cluster; 597 } else 598 return false; 599 } 600 601 found_free = false; 602 603 /* 604 * Other CPUs can use our cluster if they can't find a free cluster, 605 * check if there is still free entry in the cluster 606 */ 607 tmp = cluster->next; 608 max = min_t(unsigned long, si->max, 609 (cluster_next(&cluster->index) + 1) * SWAPFILE_CLUSTER); 610 if (tmp >= max) { 611 cluster_set_null(&cluster->index); 612 goto new_cluster; 613 } 614 ci = lock_cluster(si, tmp); 615 while (tmp < max) { 616 if (!si->swap_map[tmp]) { 617 found_free = true; 618 break; 619 } 620 tmp++; 621 } 622 unlock_cluster(ci); 623 if (!found_free) { 624 cluster_set_null(&cluster->index); 625 goto new_cluster; 626 } 627 cluster->next = tmp + 1; 628 *offset = tmp; 629 *scan_base = tmp; 630 return found_free; 631 } 632 633 static void __del_from_avail_list(struct swap_info_struct *p) 634 { 635 int nid; 636 637 for_each_node(nid) 638 plist_del(&p->avail_lists[nid], &swap_avail_heads[nid]); 639 } 640 641 static void del_from_avail_list(struct swap_info_struct *p) 642 { 643 spin_lock(&swap_avail_lock); 644 __del_from_avail_list(p); 645 spin_unlock(&swap_avail_lock); 646 } 647 648 static void swap_range_alloc(struct swap_info_struct *si, unsigned long offset, 649 unsigned int nr_entries) 650 { 651 unsigned int end = offset + nr_entries - 1; 652 653 if (offset == si->lowest_bit) 654 si->lowest_bit += nr_entries; 655 if (end == si->highest_bit) 656 si->highest_bit -= nr_entries; 657 si->inuse_pages += nr_entries; 658 if (si->inuse_pages == si->pages) { 659 si->lowest_bit = si->max; 660 si->highest_bit = 0; 661 del_from_avail_list(si); 662 } 663 } 664 665 static void add_to_avail_list(struct swap_info_struct *p) 666 { 667 int nid; 668 669 spin_lock(&swap_avail_lock); 670 for_each_node(nid) { 671 WARN_ON(!plist_node_empty(&p->avail_lists[nid])); 672 plist_add(&p->avail_lists[nid], &swap_avail_heads[nid]); 673 } 674 spin_unlock(&swap_avail_lock); 675 } 676 677 static void swap_range_free(struct swap_info_struct *si, unsigned long offset, 678 unsigned int nr_entries) 679 { 680 unsigned long end = offset + nr_entries - 1; 681 void (*swap_slot_free_notify)(struct block_device *, unsigned long); 682 683 if (offset < si->lowest_bit) 684 si->lowest_bit = offset; 685 if (end > si->highest_bit) { 686 bool was_full = !si->highest_bit; 687 688 si->highest_bit = end; 689 if (was_full && (si->flags & SWP_WRITEOK)) 690 add_to_avail_list(si); 691 } 692 atomic_long_add(nr_entries, &nr_swap_pages); 693 si->inuse_pages -= nr_entries; 694 if (si->flags & SWP_BLKDEV) 695 swap_slot_free_notify = 696 si->bdev->bd_disk->fops->swap_slot_free_notify; 697 else 698 swap_slot_free_notify = NULL; 699 while (offset <= end) { 700 frontswap_invalidate_page(si->type, offset); 701 if (swap_slot_free_notify) 702 swap_slot_free_notify(si->bdev, offset); 703 offset++; 704 } 705 } 706 707 static int scan_swap_map_slots(struct swap_info_struct *si, 708 unsigned char usage, int nr, 709 swp_entry_t slots[]) 710 { 711 struct swap_cluster_info *ci; 712 unsigned long offset; 713 unsigned long scan_base; 714 unsigned long last_in_cluster = 0; 715 int latency_ration = LATENCY_LIMIT; 716 int n_ret = 0; 717 718 if (nr > SWAP_BATCH) 719 nr = SWAP_BATCH; 720 721 /* 722 * We try to cluster swap pages by allocating them sequentially 723 * in swap. Once we've allocated SWAPFILE_CLUSTER pages this 724 * way, however, we resort to first-free allocation, starting 725 * a new cluster. This prevents us from scattering swap pages 726 * all over the entire swap partition, so that we reduce 727 * overall disk seek times between swap pages. -- sct 728 * But we do now try to find an empty cluster. -Andrea 729 * And we let swap pages go all over an SSD partition. Hugh 730 */ 731 732 si->flags += SWP_SCANNING; 733 scan_base = offset = si->cluster_next; 734 735 /* SSD algorithm */ 736 if (si->cluster_info) { 737 if (scan_swap_map_try_ssd_cluster(si, &offset, &scan_base)) 738 goto checks; 739 else 740 goto scan; 741 } 742 743 if (unlikely(!si->cluster_nr--)) { 744 if (si->pages - si->inuse_pages < SWAPFILE_CLUSTER) { 745 si->cluster_nr = SWAPFILE_CLUSTER - 1; 746 goto checks; 747 } 748 749 spin_unlock(&si->lock); 750 751 /* 752 * If seek is expensive, start searching for new cluster from 753 * start of partition, to minimize the span of allocated swap. 754 * If seek is cheap, that is the SWP_SOLIDSTATE si->cluster_info 755 * case, just handled by scan_swap_map_try_ssd_cluster() above. 756 */ 757 scan_base = offset = si->lowest_bit; 758 last_in_cluster = offset + SWAPFILE_CLUSTER - 1; 759 760 /* Locate the first empty (unaligned) cluster */ 761 for (; last_in_cluster <= si->highest_bit; offset++) { 762 if (si->swap_map[offset]) 763 last_in_cluster = offset + SWAPFILE_CLUSTER; 764 else if (offset == last_in_cluster) { 765 spin_lock(&si->lock); 766 offset -= SWAPFILE_CLUSTER - 1; 767 si->cluster_next = offset; 768 si->cluster_nr = SWAPFILE_CLUSTER - 1; 769 goto checks; 770 } 771 if (unlikely(--latency_ration < 0)) { 772 cond_resched(); 773 latency_ration = LATENCY_LIMIT; 774 } 775 } 776 777 offset = scan_base; 778 spin_lock(&si->lock); 779 si->cluster_nr = SWAPFILE_CLUSTER - 1; 780 } 781 782 checks: 783 if (si->cluster_info) { 784 while (scan_swap_map_ssd_cluster_conflict(si, offset)) { 785 /* take a break if we already got some slots */ 786 if (n_ret) 787 goto done; 788 if (!scan_swap_map_try_ssd_cluster(si, &offset, 789 &scan_base)) 790 goto scan; 791 } 792 } 793 if (!(si->flags & SWP_WRITEOK)) 794 goto no_page; 795 if (!si->highest_bit) 796 goto no_page; 797 if (offset > si->highest_bit) 798 scan_base = offset = si->lowest_bit; 799 800 ci = lock_cluster(si, offset); 801 /* reuse swap entry of cache-only swap if not busy. */ 802 if (vm_swap_full() && si->swap_map[offset] == SWAP_HAS_CACHE) { 803 int swap_was_freed; 804 unlock_cluster(ci); 805 spin_unlock(&si->lock); 806 swap_was_freed = __try_to_reclaim_swap(si, offset, TTRS_ANYWAY); 807 spin_lock(&si->lock); 808 /* entry was freed successfully, try to use this again */ 809 if (swap_was_freed) 810 goto checks; 811 goto scan; /* check next one */ 812 } 813 814 if (si->swap_map[offset]) { 815 unlock_cluster(ci); 816 if (!n_ret) 817 goto scan; 818 else 819 goto done; 820 } 821 si->swap_map[offset] = usage; 822 inc_cluster_info_page(si, si->cluster_info, offset); 823 unlock_cluster(ci); 824 825 swap_range_alloc(si, offset, 1); 826 si->cluster_next = offset + 1; 827 slots[n_ret++] = swp_entry(si->type, offset); 828 829 /* got enough slots or reach max slots? */ 830 if ((n_ret == nr) || (offset >= si->highest_bit)) 831 goto done; 832 833 /* search for next available slot */ 834 835 /* time to take a break? */ 836 if (unlikely(--latency_ration < 0)) { 837 if (n_ret) 838 goto done; 839 spin_unlock(&si->lock); 840 cond_resched(); 841 spin_lock(&si->lock); 842 latency_ration = LATENCY_LIMIT; 843 } 844 845 /* try to get more slots in cluster */ 846 if (si->cluster_info) { 847 if (scan_swap_map_try_ssd_cluster(si, &offset, &scan_base)) 848 goto checks; 849 else 850 goto done; 851 } 852 /* non-ssd case */ 853 ++offset; 854 855 /* non-ssd case, still more slots in cluster? */ 856 if (si->cluster_nr && !si->swap_map[offset]) { 857 --si->cluster_nr; 858 goto checks; 859 } 860 861 done: 862 si->flags -= SWP_SCANNING; 863 return n_ret; 864 865 scan: 866 spin_unlock(&si->lock); 867 while (++offset <= si->highest_bit) { 868 if (!si->swap_map[offset]) { 869 spin_lock(&si->lock); 870 goto checks; 871 } 872 if (vm_swap_full() && si->swap_map[offset] == SWAP_HAS_CACHE) { 873 spin_lock(&si->lock); 874 goto checks; 875 } 876 if (unlikely(--latency_ration < 0)) { 877 cond_resched(); 878 latency_ration = LATENCY_LIMIT; 879 } 880 } 881 offset = si->lowest_bit; 882 while (offset < scan_base) { 883 if (!si->swap_map[offset]) { 884 spin_lock(&si->lock); 885 goto checks; 886 } 887 if (vm_swap_full() && si->swap_map[offset] == SWAP_HAS_CACHE) { 888 spin_lock(&si->lock); 889 goto checks; 890 } 891 if (unlikely(--latency_ration < 0)) { 892 cond_resched(); 893 latency_ration = LATENCY_LIMIT; 894 } 895 offset++; 896 } 897 spin_lock(&si->lock); 898 899 no_page: 900 si->flags -= SWP_SCANNING; 901 return n_ret; 902 } 903 904 static int swap_alloc_cluster(struct swap_info_struct *si, swp_entry_t *slot) 905 { 906 unsigned long idx; 907 struct swap_cluster_info *ci; 908 unsigned long offset, i; 909 unsigned char *map; 910 911 /* 912 * Should not even be attempting cluster allocations when huge 913 * page swap is disabled. Warn and fail the allocation. 914 */ 915 if (!IS_ENABLED(CONFIG_THP_SWAP)) { 916 VM_WARN_ON_ONCE(1); 917 return 0; 918 } 919 920 if (cluster_list_empty(&si->free_clusters)) 921 return 0; 922 923 idx = cluster_list_first(&si->free_clusters); 924 offset = idx * SWAPFILE_CLUSTER; 925 ci = lock_cluster(si, offset); 926 alloc_cluster(si, idx); 927 cluster_set_count_flag(ci, SWAPFILE_CLUSTER, CLUSTER_FLAG_HUGE); 928 929 map = si->swap_map + offset; 930 for (i = 0; i < SWAPFILE_CLUSTER; i++) 931 map[i] = SWAP_HAS_CACHE; 932 unlock_cluster(ci); 933 swap_range_alloc(si, offset, SWAPFILE_CLUSTER); 934 *slot = swp_entry(si->type, offset); 935 936 return 1; 937 } 938 939 static void swap_free_cluster(struct swap_info_struct *si, unsigned long idx) 940 { 941 unsigned long offset = idx * SWAPFILE_CLUSTER; 942 struct swap_cluster_info *ci; 943 944 ci = lock_cluster(si, offset); 945 memset(si->swap_map + offset, 0, SWAPFILE_CLUSTER); 946 cluster_set_count_flag(ci, 0, 0); 947 free_cluster(si, idx); 948 unlock_cluster(ci); 949 swap_range_free(si, offset, SWAPFILE_CLUSTER); 950 } 951 952 static unsigned long scan_swap_map(struct swap_info_struct *si, 953 unsigned char usage) 954 { 955 swp_entry_t entry; 956 int n_ret; 957 958 n_ret = scan_swap_map_slots(si, usage, 1, &entry); 959 960 if (n_ret) 961 return swp_offset(entry); 962 else 963 return 0; 964 965 } 966 967 int get_swap_pages(int n_goal, swp_entry_t swp_entries[], int entry_size) 968 { 969 unsigned long size = swap_entry_size(entry_size); 970 struct swap_info_struct *si, *next; 971 long avail_pgs; 972 int n_ret = 0; 973 int node; 974 975 /* Only single cluster request supported */ 976 WARN_ON_ONCE(n_goal > 1 && size == SWAPFILE_CLUSTER); 977 978 avail_pgs = atomic_long_read(&nr_swap_pages) / size; 979 if (avail_pgs <= 0) 980 goto noswap; 981 982 if (n_goal > SWAP_BATCH) 983 n_goal = SWAP_BATCH; 984 985 if (n_goal > avail_pgs) 986 n_goal = avail_pgs; 987 988 atomic_long_sub(n_goal * size, &nr_swap_pages); 989 990 spin_lock(&swap_avail_lock); 991 992 start_over: 993 node = numa_node_id(); 994 plist_for_each_entry_safe(si, next, &swap_avail_heads[node], avail_lists[node]) { 995 /* requeue si to after same-priority siblings */ 996 plist_requeue(&si->avail_lists[node], &swap_avail_heads[node]); 997 spin_unlock(&swap_avail_lock); 998 spin_lock(&si->lock); 999 if (!si->highest_bit || !(si->flags & SWP_WRITEOK)) { 1000 spin_lock(&swap_avail_lock); 1001 if (plist_node_empty(&si->avail_lists[node])) { 1002 spin_unlock(&si->lock); 1003 goto nextsi; 1004 } 1005 WARN(!si->highest_bit, 1006 "swap_info %d in list but !highest_bit\n", 1007 si->type); 1008 WARN(!(si->flags & SWP_WRITEOK), 1009 "swap_info %d in list but !SWP_WRITEOK\n", 1010 si->type); 1011 __del_from_avail_list(si); 1012 spin_unlock(&si->lock); 1013 goto nextsi; 1014 } 1015 if (size == SWAPFILE_CLUSTER) { 1016 if (!(si->flags & SWP_FS)) 1017 n_ret = swap_alloc_cluster(si, swp_entries); 1018 } else 1019 n_ret = scan_swap_map_slots(si, SWAP_HAS_CACHE, 1020 n_goal, swp_entries); 1021 spin_unlock(&si->lock); 1022 if (n_ret || size == SWAPFILE_CLUSTER) 1023 goto check_out; 1024 pr_debug("scan_swap_map of si %d failed to find offset\n", 1025 si->type); 1026 1027 spin_lock(&swap_avail_lock); 1028 nextsi: 1029 /* 1030 * if we got here, it's likely that si was almost full before, 1031 * and since scan_swap_map() can drop the si->lock, multiple 1032 * callers probably all tried to get a page from the same si 1033 * and it filled up before we could get one; or, the si filled 1034 * up between us dropping swap_avail_lock and taking si->lock. 1035 * Since we dropped the swap_avail_lock, the swap_avail_head 1036 * list may have been modified; so if next is still in the 1037 * swap_avail_head list then try it, otherwise start over 1038 * if we have not gotten any slots. 1039 */ 1040 if (plist_node_empty(&next->avail_lists[node])) 1041 goto start_over; 1042 } 1043 1044 spin_unlock(&swap_avail_lock); 1045 1046 check_out: 1047 if (n_ret < n_goal) 1048 atomic_long_add((long)(n_goal - n_ret) * size, 1049 &nr_swap_pages); 1050 noswap: 1051 return n_ret; 1052 } 1053 1054 /* The only caller of this function is now suspend routine */ 1055 swp_entry_t get_swap_page_of_type(int type) 1056 { 1057 struct swap_info_struct *si = swap_type_to_swap_info(type); 1058 pgoff_t offset; 1059 1060 if (!si) 1061 goto fail; 1062 1063 spin_lock(&si->lock); 1064 if (si->flags & SWP_WRITEOK) { 1065 atomic_long_dec(&nr_swap_pages); 1066 /* This is called for allocating swap entry, not cache */ 1067 offset = scan_swap_map(si, 1); 1068 if (offset) { 1069 spin_unlock(&si->lock); 1070 return swp_entry(type, offset); 1071 } 1072 atomic_long_inc(&nr_swap_pages); 1073 } 1074 spin_unlock(&si->lock); 1075 fail: 1076 return (swp_entry_t) {0}; 1077 } 1078 1079 static struct swap_info_struct *__swap_info_get(swp_entry_t entry) 1080 { 1081 struct swap_info_struct *p; 1082 unsigned long offset, type; 1083 1084 if (!entry.val) 1085 goto out; 1086 type = swp_type(entry); 1087 p = swap_type_to_swap_info(type); 1088 if (!p) 1089 goto bad_nofile; 1090 if (!(p->flags & SWP_USED)) 1091 goto bad_device; 1092 offset = swp_offset(entry); 1093 if (offset >= p->max) 1094 goto bad_offset; 1095 return p; 1096 1097 bad_offset: 1098 pr_err("swap_info_get: %s%08lx\n", Bad_offset, entry.val); 1099 goto out; 1100 bad_device: 1101 pr_err("swap_info_get: %s%08lx\n", Unused_file, entry.val); 1102 goto out; 1103 bad_nofile: 1104 pr_err("swap_info_get: %s%08lx\n", Bad_file, entry.val); 1105 out: 1106 return NULL; 1107 } 1108 1109 static struct swap_info_struct *_swap_info_get(swp_entry_t entry) 1110 { 1111 struct swap_info_struct *p; 1112 1113 p = __swap_info_get(entry); 1114 if (!p) 1115 goto out; 1116 if (!p->swap_map[swp_offset(entry)]) 1117 goto bad_free; 1118 return p; 1119 1120 bad_free: 1121 pr_err("swap_info_get: %s%08lx\n", Unused_offset, entry.val); 1122 goto out; 1123 out: 1124 return NULL; 1125 } 1126 1127 static struct swap_info_struct *swap_info_get(swp_entry_t entry) 1128 { 1129 struct swap_info_struct *p; 1130 1131 p = _swap_info_get(entry); 1132 if (p) 1133 spin_lock(&p->lock); 1134 return p; 1135 } 1136 1137 static struct swap_info_struct *swap_info_get_cont(swp_entry_t entry, 1138 struct swap_info_struct *q) 1139 { 1140 struct swap_info_struct *p; 1141 1142 p = _swap_info_get(entry); 1143 1144 if (p != q) { 1145 if (q != NULL) 1146 spin_unlock(&q->lock); 1147 if (p != NULL) 1148 spin_lock(&p->lock); 1149 } 1150 return p; 1151 } 1152 1153 static unsigned char __swap_entry_free_locked(struct swap_info_struct *p, 1154 unsigned long offset, 1155 unsigned char usage) 1156 { 1157 unsigned char count; 1158 unsigned char has_cache; 1159 1160 count = p->swap_map[offset]; 1161 1162 has_cache = count & SWAP_HAS_CACHE; 1163 count &= ~SWAP_HAS_CACHE; 1164 1165 if (usage == SWAP_HAS_CACHE) { 1166 VM_BUG_ON(!has_cache); 1167 has_cache = 0; 1168 } else if (count == SWAP_MAP_SHMEM) { 1169 /* 1170 * Or we could insist on shmem.c using a special 1171 * swap_shmem_free() and free_shmem_swap_and_cache()... 1172 */ 1173 count = 0; 1174 } else if ((count & ~COUNT_CONTINUED) <= SWAP_MAP_MAX) { 1175 if (count == COUNT_CONTINUED) { 1176 if (swap_count_continued(p, offset, count)) 1177 count = SWAP_MAP_MAX | COUNT_CONTINUED; 1178 else 1179 count = SWAP_MAP_MAX; 1180 } else 1181 count--; 1182 } 1183 1184 usage = count | has_cache; 1185 p->swap_map[offset] = usage ? : SWAP_HAS_CACHE; 1186 1187 return usage; 1188 } 1189 1190 static unsigned char __swap_entry_free(struct swap_info_struct *p, 1191 swp_entry_t entry, unsigned char usage) 1192 { 1193 struct swap_cluster_info *ci; 1194 unsigned long offset = swp_offset(entry); 1195 1196 ci = lock_cluster_or_swap_info(p, offset); 1197 usage = __swap_entry_free_locked(p, offset, usage); 1198 unlock_cluster_or_swap_info(p, ci); 1199 if (!usage) 1200 free_swap_slot(entry); 1201 1202 return usage; 1203 } 1204 1205 static void swap_entry_free(struct swap_info_struct *p, swp_entry_t entry) 1206 { 1207 struct swap_cluster_info *ci; 1208 unsigned long offset = swp_offset(entry); 1209 unsigned char count; 1210 1211 ci = lock_cluster(p, offset); 1212 count = p->swap_map[offset]; 1213 VM_BUG_ON(count != SWAP_HAS_CACHE); 1214 p->swap_map[offset] = 0; 1215 dec_cluster_info_page(p, p->cluster_info, offset); 1216 unlock_cluster(ci); 1217 1218 mem_cgroup_uncharge_swap(entry, 1); 1219 swap_range_free(p, offset, 1); 1220 } 1221 1222 /* 1223 * Caller has made sure that the swap device corresponding to entry 1224 * is still around or has not been recycled. 1225 */ 1226 void swap_free(swp_entry_t entry) 1227 { 1228 struct swap_info_struct *p; 1229 1230 p = _swap_info_get(entry); 1231 if (p) 1232 __swap_entry_free(p, entry, 1); 1233 } 1234 1235 /* 1236 * Called after dropping swapcache to decrease refcnt to swap entries. 1237 */ 1238 void put_swap_page(struct page *page, swp_entry_t entry) 1239 { 1240 unsigned long offset = swp_offset(entry); 1241 unsigned long idx = offset / SWAPFILE_CLUSTER; 1242 struct swap_cluster_info *ci; 1243 struct swap_info_struct *si; 1244 unsigned char *map; 1245 unsigned int i, free_entries = 0; 1246 unsigned char val; 1247 int size = swap_entry_size(hpage_nr_pages(page)); 1248 1249 si = _swap_info_get(entry); 1250 if (!si) 1251 return; 1252 1253 ci = lock_cluster_or_swap_info(si, offset); 1254 if (size == SWAPFILE_CLUSTER) { 1255 VM_BUG_ON(!cluster_is_huge(ci)); 1256 map = si->swap_map + offset; 1257 for (i = 0; i < SWAPFILE_CLUSTER; i++) { 1258 val = map[i]; 1259 VM_BUG_ON(!(val & SWAP_HAS_CACHE)); 1260 if (val == SWAP_HAS_CACHE) 1261 free_entries++; 1262 } 1263 cluster_clear_huge(ci); 1264 if (free_entries == SWAPFILE_CLUSTER) { 1265 unlock_cluster_or_swap_info(si, ci); 1266 spin_lock(&si->lock); 1267 mem_cgroup_uncharge_swap(entry, SWAPFILE_CLUSTER); 1268 swap_free_cluster(si, idx); 1269 spin_unlock(&si->lock); 1270 return; 1271 } 1272 } 1273 for (i = 0; i < size; i++, entry.val++) { 1274 if (!__swap_entry_free_locked(si, offset + i, SWAP_HAS_CACHE)) { 1275 unlock_cluster_or_swap_info(si, ci); 1276 free_swap_slot(entry); 1277 if (i == size - 1) 1278 return; 1279 lock_cluster_or_swap_info(si, offset); 1280 } 1281 } 1282 unlock_cluster_or_swap_info(si, ci); 1283 } 1284 1285 #ifdef CONFIG_THP_SWAP 1286 int split_swap_cluster(swp_entry_t entry) 1287 { 1288 struct swap_info_struct *si; 1289 struct swap_cluster_info *ci; 1290 unsigned long offset = swp_offset(entry); 1291 1292 si = _swap_info_get(entry); 1293 if (!si) 1294 return -EBUSY; 1295 ci = lock_cluster(si, offset); 1296 cluster_clear_huge(ci); 1297 unlock_cluster(ci); 1298 return 0; 1299 } 1300 #endif 1301 1302 static int swp_entry_cmp(const void *ent1, const void *ent2) 1303 { 1304 const swp_entry_t *e1 = ent1, *e2 = ent2; 1305 1306 return (int)swp_type(*e1) - (int)swp_type(*e2); 1307 } 1308 1309 void swapcache_free_entries(swp_entry_t *entries, int n) 1310 { 1311 struct swap_info_struct *p, *prev; 1312 int i; 1313 1314 if (n <= 0) 1315 return; 1316 1317 prev = NULL; 1318 p = NULL; 1319 1320 /* 1321 * Sort swap entries by swap device, so each lock is only taken once. 1322 * nr_swapfiles isn't absolutely correct, but the overhead of sort() is 1323 * so low that it isn't necessary to optimize further. 1324 */ 1325 if (nr_swapfiles > 1) 1326 sort(entries, n, sizeof(entries[0]), swp_entry_cmp, NULL); 1327 for (i = 0; i < n; ++i) { 1328 p = swap_info_get_cont(entries[i], prev); 1329 if (p) 1330 swap_entry_free(p, entries[i]); 1331 prev = p; 1332 } 1333 if (p) 1334 spin_unlock(&p->lock); 1335 } 1336 1337 /* 1338 * How many references to page are currently swapped out? 1339 * This does not give an exact answer when swap count is continued, 1340 * but does include the high COUNT_CONTINUED flag to allow for that. 1341 */ 1342 int page_swapcount(struct page *page) 1343 { 1344 int count = 0; 1345 struct swap_info_struct *p; 1346 struct swap_cluster_info *ci; 1347 swp_entry_t entry; 1348 unsigned long offset; 1349 1350 entry.val = page_private(page); 1351 p = _swap_info_get(entry); 1352 if (p) { 1353 offset = swp_offset(entry); 1354 ci = lock_cluster_or_swap_info(p, offset); 1355 count = swap_count(p->swap_map[offset]); 1356 unlock_cluster_or_swap_info(p, ci); 1357 } 1358 return count; 1359 } 1360 1361 int __swap_count(struct swap_info_struct *si, swp_entry_t entry) 1362 { 1363 pgoff_t offset = swp_offset(entry); 1364 1365 return swap_count(si->swap_map[offset]); 1366 } 1367 1368 static int swap_swapcount(struct swap_info_struct *si, swp_entry_t entry) 1369 { 1370 int count = 0; 1371 pgoff_t offset = swp_offset(entry); 1372 struct swap_cluster_info *ci; 1373 1374 ci = lock_cluster_or_swap_info(si, offset); 1375 count = swap_count(si->swap_map[offset]); 1376 unlock_cluster_or_swap_info(si, ci); 1377 return count; 1378 } 1379 1380 /* 1381 * How many references to @entry are currently swapped out? 1382 * This does not give an exact answer when swap count is continued, 1383 * but does include the high COUNT_CONTINUED flag to allow for that. 1384 */ 1385 int __swp_swapcount(swp_entry_t entry) 1386 { 1387 int count = 0; 1388 struct swap_info_struct *si; 1389 1390 si = __swap_info_get(entry); 1391 if (si) 1392 count = swap_swapcount(si, entry); 1393 return count; 1394 } 1395 1396 /* 1397 * How many references to @entry are currently swapped out? 1398 * This considers COUNT_CONTINUED so it returns exact answer. 1399 */ 1400 int swp_swapcount(swp_entry_t entry) 1401 { 1402 int count, tmp_count, n; 1403 struct swap_info_struct *p; 1404 struct swap_cluster_info *ci; 1405 struct page *page; 1406 pgoff_t offset; 1407 unsigned char *map; 1408 1409 p = _swap_info_get(entry); 1410 if (!p) 1411 return 0; 1412 1413 offset = swp_offset(entry); 1414 1415 ci = lock_cluster_or_swap_info(p, offset); 1416 1417 count = swap_count(p->swap_map[offset]); 1418 if (!(count & COUNT_CONTINUED)) 1419 goto out; 1420 1421 count &= ~COUNT_CONTINUED; 1422 n = SWAP_MAP_MAX + 1; 1423 1424 page = vmalloc_to_page(p->swap_map + offset); 1425 offset &= ~PAGE_MASK; 1426 VM_BUG_ON(page_private(page) != SWP_CONTINUED); 1427 1428 do { 1429 page = list_next_entry(page, lru); 1430 map = kmap_atomic(page); 1431 tmp_count = map[offset]; 1432 kunmap_atomic(map); 1433 1434 count += (tmp_count & ~COUNT_CONTINUED) * n; 1435 n *= (SWAP_CONT_MAX + 1); 1436 } while (tmp_count & COUNT_CONTINUED); 1437 out: 1438 unlock_cluster_or_swap_info(p, ci); 1439 return count; 1440 } 1441 1442 static bool swap_page_trans_huge_swapped(struct swap_info_struct *si, 1443 swp_entry_t entry) 1444 { 1445 struct swap_cluster_info *ci; 1446 unsigned char *map = si->swap_map; 1447 unsigned long roffset = swp_offset(entry); 1448 unsigned long offset = round_down(roffset, SWAPFILE_CLUSTER); 1449 int i; 1450 bool ret = false; 1451 1452 ci = lock_cluster_or_swap_info(si, offset); 1453 if (!ci || !cluster_is_huge(ci)) { 1454 if (swap_count(map[roffset])) 1455 ret = true; 1456 goto unlock_out; 1457 } 1458 for (i = 0; i < SWAPFILE_CLUSTER; i++) { 1459 if (swap_count(map[offset + i])) { 1460 ret = true; 1461 break; 1462 } 1463 } 1464 unlock_out: 1465 unlock_cluster_or_swap_info(si, ci); 1466 return ret; 1467 } 1468 1469 static bool page_swapped(struct page *page) 1470 { 1471 swp_entry_t entry; 1472 struct swap_info_struct *si; 1473 1474 if (!IS_ENABLED(CONFIG_THP_SWAP) || likely(!PageTransCompound(page))) 1475 return page_swapcount(page) != 0; 1476 1477 page = compound_head(page); 1478 entry.val = page_private(page); 1479 si = _swap_info_get(entry); 1480 if (si) 1481 return swap_page_trans_huge_swapped(si, entry); 1482 return false; 1483 } 1484 1485 static int page_trans_huge_map_swapcount(struct page *page, int *total_mapcount, 1486 int *total_swapcount) 1487 { 1488 int i, map_swapcount, _total_mapcount, _total_swapcount; 1489 unsigned long offset = 0; 1490 struct swap_info_struct *si; 1491 struct swap_cluster_info *ci = NULL; 1492 unsigned char *map = NULL; 1493 int mapcount, swapcount = 0; 1494 1495 /* hugetlbfs shouldn't call it */ 1496 VM_BUG_ON_PAGE(PageHuge(page), page); 1497 1498 if (!IS_ENABLED(CONFIG_THP_SWAP) || likely(!PageTransCompound(page))) { 1499 mapcount = page_trans_huge_mapcount(page, total_mapcount); 1500 if (PageSwapCache(page)) 1501 swapcount = page_swapcount(page); 1502 if (total_swapcount) 1503 *total_swapcount = swapcount; 1504 return mapcount + swapcount; 1505 } 1506 1507 page = compound_head(page); 1508 1509 _total_mapcount = _total_swapcount = map_swapcount = 0; 1510 if (PageSwapCache(page)) { 1511 swp_entry_t entry; 1512 1513 entry.val = page_private(page); 1514 si = _swap_info_get(entry); 1515 if (si) { 1516 map = si->swap_map; 1517 offset = swp_offset(entry); 1518 } 1519 } 1520 if (map) 1521 ci = lock_cluster(si, offset); 1522 for (i = 0; i < HPAGE_PMD_NR; i++) { 1523 mapcount = atomic_read(&page[i]._mapcount) + 1; 1524 _total_mapcount += mapcount; 1525 if (map) { 1526 swapcount = swap_count(map[offset + i]); 1527 _total_swapcount += swapcount; 1528 } 1529 map_swapcount = max(map_swapcount, mapcount + swapcount); 1530 } 1531 unlock_cluster(ci); 1532 if (PageDoubleMap(page)) { 1533 map_swapcount -= 1; 1534 _total_mapcount -= HPAGE_PMD_NR; 1535 } 1536 mapcount = compound_mapcount(page); 1537 map_swapcount += mapcount; 1538 _total_mapcount += mapcount; 1539 if (total_mapcount) 1540 *total_mapcount = _total_mapcount; 1541 if (total_swapcount) 1542 *total_swapcount = _total_swapcount; 1543 1544 return map_swapcount; 1545 } 1546 1547 /* 1548 * We can write to an anon page without COW if there are no other references 1549 * to it. And as a side-effect, free up its swap: because the old content 1550 * on disk will never be read, and seeking back there to write new content 1551 * later would only waste time away from clustering. 1552 * 1553 * NOTE: total_map_swapcount should not be relied upon by the caller if 1554 * reuse_swap_page() returns false, but it may be always overwritten 1555 * (see the other implementation for CONFIG_SWAP=n). 1556 */ 1557 bool reuse_swap_page(struct page *page, int *total_map_swapcount) 1558 { 1559 int count, total_mapcount, total_swapcount; 1560 1561 VM_BUG_ON_PAGE(!PageLocked(page), page); 1562 if (unlikely(PageKsm(page))) 1563 return false; 1564 count = page_trans_huge_map_swapcount(page, &total_mapcount, 1565 &total_swapcount); 1566 if (total_map_swapcount) 1567 *total_map_swapcount = total_mapcount + total_swapcount; 1568 if (count == 1 && PageSwapCache(page) && 1569 (likely(!PageTransCompound(page)) || 1570 /* The remaining swap count will be freed soon */ 1571 total_swapcount == page_swapcount(page))) { 1572 if (!PageWriteback(page)) { 1573 page = compound_head(page); 1574 delete_from_swap_cache(page); 1575 SetPageDirty(page); 1576 } else { 1577 swp_entry_t entry; 1578 struct swap_info_struct *p; 1579 1580 entry.val = page_private(page); 1581 p = swap_info_get(entry); 1582 if (p->flags & SWP_STABLE_WRITES) { 1583 spin_unlock(&p->lock); 1584 return false; 1585 } 1586 spin_unlock(&p->lock); 1587 } 1588 } 1589 1590 return count <= 1; 1591 } 1592 1593 /* 1594 * If swap is getting full, or if there are no more mappings of this page, 1595 * then try_to_free_swap is called to free its swap space. 1596 */ 1597 int try_to_free_swap(struct page *page) 1598 { 1599 VM_BUG_ON_PAGE(!PageLocked(page), page); 1600 1601 if (!PageSwapCache(page)) 1602 return 0; 1603 if (PageWriteback(page)) 1604 return 0; 1605 if (page_swapped(page)) 1606 return 0; 1607 1608 /* 1609 * Once hibernation has begun to create its image of memory, 1610 * there's a danger that one of the calls to try_to_free_swap() 1611 * - most probably a call from __try_to_reclaim_swap() while 1612 * hibernation is allocating its own swap pages for the image, 1613 * but conceivably even a call from memory reclaim - will free 1614 * the swap from a page which has already been recorded in the 1615 * image as a clean swapcache page, and then reuse its swap for 1616 * another page of the image. On waking from hibernation, the 1617 * original page might be freed under memory pressure, then 1618 * later read back in from swap, now with the wrong data. 1619 * 1620 * Hibernation suspends storage while it is writing the image 1621 * to disk so check that here. 1622 */ 1623 if (pm_suspended_storage()) 1624 return 0; 1625 1626 page = compound_head(page); 1627 delete_from_swap_cache(page); 1628 SetPageDirty(page); 1629 return 1; 1630 } 1631 1632 /* 1633 * Free the swap entry like above, but also try to 1634 * free the page cache entry if it is the last user. 1635 */ 1636 int free_swap_and_cache(swp_entry_t entry) 1637 { 1638 struct swap_info_struct *p; 1639 unsigned char count; 1640 1641 if (non_swap_entry(entry)) 1642 return 1; 1643 1644 p = _swap_info_get(entry); 1645 if (p) { 1646 count = __swap_entry_free(p, entry, 1); 1647 if (count == SWAP_HAS_CACHE && 1648 !swap_page_trans_huge_swapped(p, entry)) 1649 __try_to_reclaim_swap(p, swp_offset(entry), 1650 TTRS_UNMAPPED | TTRS_FULL); 1651 } 1652 return p != NULL; 1653 } 1654 1655 #ifdef CONFIG_HIBERNATION 1656 /* 1657 * Find the swap type that corresponds to given device (if any). 1658 * 1659 * @offset - number of the PAGE_SIZE-sized block of the device, starting 1660 * from 0, in which the swap header is expected to be located. 1661 * 1662 * This is needed for the suspend to disk (aka swsusp). 1663 */ 1664 int swap_type_of(dev_t device, sector_t offset, struct block_device **bdev_p) 1665 { 1666 struct block_device *bdev = NULL; 1667 int type; 1668 1669 if (device) 1670 bdev = bdget(device); 1671 1672 spin_lock(&swap_lock); 1673 for (type = 0; type < nr_swapfiles; type++) { 1674 struct swap_info_struct *sis = swap_info[type]; 1675 1676 if (!(sis->flags & SWP_WRITEOK)) 1677 continue; 1678 1679 if (!bdev) { 1680 if (bdev_p) 1681 *bdev_p = bdgrab(sis->bdev); 1682 1683 spin_unlock(&swap_lock); 1684 return type; 1685 } 1686 if (bdev == sis->bdev) { 1687 struct swap_extent *se = &sis->first_swap_extent; 1688 1689 if (se->start_block == offset) { 1690 if (bdev_p) 1691 *bdev_p = bdgrab(sis->bdev); 1692 1693 spin_unlock(&swap_lock); 1694 bdput(bdev); 1695 return type; 1696 } 1697 } 1698 } 1699 spin_unlock(&swap_lock); 1700 if (bdev) 1701 bdput(bdev); 1702 1703 return -ENODEV; 1704 } 1705 1706 /* 1707 * Get the (PAGE_SIZE) block corresponding to given offset on the swapdev 1708 * corresponding to given index in swap_info (swap type). 1709 */ 1710 sector_t swapdev_block(int type, pgoff_t offset) 1711 { 1712 struct block_device *bdev; 1713 struct swap_info_struct *si = swap_type_to_swap_info(type); 1714 1715 if (!si || !(si->flags & SWP_WRITEOK)) 1716 return 0; 1717 return map_swap_entry(swp_entry(type, offset), &bdev); 1718 } 1719 1720 /* 1721 * Return either the total number of swap pages of given type, or the number 1722 * of free pages of that type (depending on @free) 1723 * 1724 * This is needed for software suspend 1725 */ 1726 unsigned int count_swap_pages(int type, int free) 1727 { 1728 unsigned int n = 0; 1729 1730 spin_lock(&swap_lock); 1731 if ((unsigned int)type < nr_swapfiles) { 1732 struct swap_info_struct *sis = swap_info[type]; 1733 1734 spin_lock(&sis->lock); 1735 if (sis->flags & SWP_WRITEOK) { 1736 n = sis->pages; 1737 if (free) 1738 n -= sis->inuse_pages; 1739 } 1740 spin_unlock(&sis->lock); 1741 } 1742 spin_unlock(&swap_lock); 1743 return n; 1744 } 1745 #endif /* CONFIG_HIBERNATION */ 1746 1747 static inline int pte_same_as_swp(pte_t pte, pte_t swp_pte) 1748 { 1749 return pte_same(pte_swp_clear_soft_dirty(pte), swp_pte); 1750 } 1751 1752 /* 1753 * No need to decide whether this PTE shares the swap entry with others, 1754 * just let do_wp_page work it out if a write is requested later - to 1755 * force COW, vm_page_prot omits write permission from any private vma. 1756 */ 1757 static int unuse_pte(struct vm_area_struct *vma, pmd_t *pmd, 1758 unsigned long addr, swp_entry_t entry, struct page *page) 1759 { 1760 struct page *swapcache; 1761 struct mem_cgroup *memcg; 1762 spinlock_t *ptl; 1763 pte_t *pte; 1764 int ret = 1; 1765 1766 swapcache = page; 1767 page = ksm_might_need_to_copy(page, vma, addr); 1768 if (unlikely(!page)) 1769 return -ENOMEM; 1770 1771 if (mem_cgroup_try_charge(page, vma->vm_mm, GFP_KERNEL, 1772 &memcg, false)) { 1773 ret = -ENOMEM; 1774 goto out_nolock; 1775 } 1776 1777 pte = pte_offset_map_lock(vma->vm_mm, pmd, addr, &ptl); 1778 if (unlikely(!pte_same_as_swp(*pte, swp_entry_to_pte(entry)))) { 1779 mem_cgroup_cancel_charge(page, memcg, false); 1780 ret = 0; 1781 goto out; 1782 } 1783 1784 dec_mm_counter(vma->vm_mm, MM_SWAPENTS); 1785 inc_mm_counter(vma->vm_mm, MM_ANONPAGES); 1786 get_page(page); 1787 set_pte_at(vma->vm_mm, addr, pte, 1788 pte_mkold(mk_pte(page, vma->vm_page_prot))); 1789 if (page == swapcache) { 1790 page_add_anon_rmap(page, vma, addr, false); 1791 mem_cgroup_commit_charge(page, memcg, true, false); 1792 } else { /* ksm created a completely new copy */ 1793 page_add_new_anon_rmap(page, vma, addr, false); 1794 mem_cgroup_commit_charge(page, memcg, false, false); 1795 lru_cache_add_active_or_unevictable(page, vma); 1796 } 1797 swap_free(entry); 1798 /* 1799 * Move the page to the active list so it is not 1800 * immediately swapped out again after swapon. 1801 */ 1802 activate_page(page); 1803 out: 1804 pte_unmap_unlock(pte, ptl); 1805 out_nolock: 1806 if (page != swapcache) { 1807 unlock_page(page); 1808 put_page(page); 1809 } 1810 return ret; 1811 } 1812 1813 static int unuse_pte_range(struct vm_area_struct *vma, pmd_t *pmd, 1814 unsigned long addr, unsigned long end, 1815 unsigned int type, bool frontswap, 1816 unsigned long *fs_pages_to_unuse) 1817 { 1818 struct page *page; 1819 swp_entry_t entry; 1820 pte_t *pte; 1821 struct swap_info_struct *si; 1822 unsigned long offset; 1823 int ret = 0; 1824 volatile unsigned char *swap_map; 1825 1826 si = swap_info[type]; 1827 pte = pte_offset_map(pmd, addr); 1828 do { 1829 struct vm_fault vmf; 1830 1831 if (!is_swap_pte(*pte)) 1832 continue; 1833 1834 entry = pte_to_swp_entry(*pte); 1835 if (swp_type(entry) != type) 1836 continue; 1837 1838 offset = swp_offset(entry); 1839 if (frontswap && !frontswap_test(si, offset)) 1840 continue; 1841 1842 pte_unmap(pte); 1843 swap_map = &si->swap_map[offset]; 1844 vmf.vma = vma; 1845 vmf.address = addr; 1846 vmf.pmd = pmd; 1847 page = swapin_readahead(entry, GFP_HIGHUSER_MOVABLE, &vmf); 1848 if (!page) { 1849 if (*swap_map == 0 || *swap_map == SWAP_MAP_BAD) 1850 goto try_next; 1851 return -ENOMEM; 1852 } 1853 1854 lock_page(page); 1855 wait_on_page_writeback(page); 1856 ret = unuse_pte(vma, pmd, addr, entry, page); 1857 if (ret < 0) { 1858 unlock_page(page); 1859 put_page(page); 1860 goto out; 1861 } 1862 1863 try_to_free_swap(page); 1864 unlock_page(page); 1865 put_page(page); 1866 1867 if (*fs_pages_to_unuse && !--(*fs_pages_to_unuse)) { 1868 ret = FRONTSWAP_PAGES_UNUSED; 1869 goto out; 1870 } 1871 try_next: 1872 pte = pte_offset_map(pmd, addr); 1873 } while (pte++, addr += PAGE_SIZE, addr != end); 1874 pte_unmap(pte - 1); 1875 1876 ret = 0; 1877 out: 1878 return ret; 1879 } 1880 1881 static inline int unuse_pmd_range(struct vm_area_struct *vma, pud_t *pud, 1882 unsigned long addr, unsigned long end, 1883 unsigned int type, bool frontswap, 1884 unsigned long *fs_pages_to_unuse) 1885 { 1886 pmd_t *pmd; 1887 unsigned long next; 1888 int ret; 1889 1890 pmd = pmd_offset(pud, addr); 1891 do { 1892 cond_resched(); 1893 next = pmd_addr_end(addr, end); 1894 if (pmd_none_or_trans_huge_or_clear_bad(pmd)) 1895 continue; 1896 ret = unuse_pte_range(vma, pmd, addr, next, type, 1897 frontswap, fs_pages_to_unuse); 1898 if (ret) 1899 return ret; 1900 } while (pmd++, addr = next, addr != end); 1901 return 0; 1902 } 1903 1904 static inline int unuse_pud_range(struct vm_area_struct *vma, p4d_t *p4d, 1905 unsigned long addr, unsigned long end, 1906 unsigned int type, bool frontswap, 1907 unsigned long *fs_pages_to_unuse) 1908 { 1909 pud_t *pud; 1910 unsigned long next; 1911 int ret; 1912 1913 pud = pud_offset(p4d, addr); 1914 do { 1915 next = pud_addr_end(addr, end); 1916 if (pud_none_or_clear_bad(pud)) 1917 continue; 1918 ret = unuse_pmd_range(vma, pud, addr, next, type, 1919 frontswap, fs_pages_to_unuse); 1920 if (ret) 1921 return ret; 1922 } while (pud++, addr = next, addr != end); 1923 return 0; 1924 } 1925 1926 static inline int unuse_p4d_range(struct vm_area_struct *vma, pgd_t *pgd, 1927 unsigned long addr, unsigned long end, 1928 unsigned int type, bool frontswap, 1929 unsigned long *fs_pages_to_unuse) 1930 { 1931 p4d_t *p4d; 1932 unsigned long next; 1933 int ret; 1934 1935 p4d = p4d_offset(pgd, addr); 1936 do { 1937 next = p4d_addr_end(addr, end); 1938 if (p4d_none_or_clear_bad(p4d)) 1939 continue; 1940 ret = unuse_pud_range(vma, p4d, addr, next, type, 1941 frontswap, fs_pages_to_unuse); 1942 if (ret) 1943 return ret; 1944 } while (p4d++, addr = next, addr != end); 1945 return 0; 1946 } 1947 1948 static int unuse_vma(struct vm_area_struct *vma, unsigned int type, 1949 bool frontswap, unsigned long *fs_pages_to_unuse) 1950 { 1951 pgd_t *pgd; 1952 unsigned long addr, end, next; 1953 int ret; 1954 1955 addr = vma->vm_start; 1956 end = vma->vm_end; 1957 1958 pgd = pgd_offset(vma->vm_mm, addr); 1959 do { 1960 next = pgd_addr_end(addr, end); 1961 if (pgd_none_or_clear_bad(pgd)) 1962 continue; 1963 ret = unuse_p4d_range(vma, pgd, addr, next, type, 1964 frontswap, fs_pages_to_unuse); 1965 if (ret) 1966 return ret; 1967 } while (pgd++, addr = next, addr != end); 1968 return 0; 1969 } 1970 1971 static int unuse_mm(struct mm_struct *mm, unsigned int type, 1972 bool frontswap, unsigned long *fs_pages_to_unuse) 1973 { 1974 struct vm_area_struct *vma; 1975 int ret = 0; 1976 1977 down_read(&mm->mmap_sem); 1978 for (vma = mm->mmap; vma; vma = vma->vm_next) { 1979 if (vma->anon_vma) { 1980 ret = unuse_vma(vma, type, frontswap, 1981 fs_pages_to_unuse); 1982 if (ret) 1983 break; 1984 } 1985 cond_resched(); 1986 } 1987 up_read(&mm->mmap_sem); 1988 return ret; 1989 } 1990 1991 /* 1992 * Scan swap_map (or frontswap_map if frontswap parameter is true) 1993 * from current position to next entry still in use. Return 0 1994 * if there are no inuse entries after prev till end of the map. 1995 */ 1996 static unsigned int find_next_to_unuse(struct swap_info_struct *si, 1997 unsigned int prev, bool frontswap) 1998 { 1999 unsigned int i; 2000 unsigned char count; 2001 2002 /* 2003 * No need for swap_lock here: we're just looking 2004 * for whether an entry is in use, not modifying it; false 2005 * hits are okay, and sys_swapoff() has already prevented new 2006 * allocations from this area (while holding swap_lock). 2007 */ 2008 for (i = prev + 1; i < si->max; i++) { 2009 count = READ_ONCE(si->swap_map[i]); 2010 if (count && swap_count(count) != SWAP_MAP_BAD) 2011 if (!frontswap || frontswap_test(si, i)) 2012 break; 2013 if ((i % LATENCY_LIMIT) == 0) 2014 cond_resched(); 2015 } 2016 2017 if (i == si->max) 2018 i = 0; 2019 2020 return i; 2021 } 2022 2023 /* 2024 * If the boolean frontswap is true, only unuse pages_to_unuse pages; 2025 * pages_to_unuse==0 means all pages; ignored if frontswap is false 2026 */ 2027 int try_to_unuse(unsigned int type, bool frontswap, 2028 unsigned long pages_to_unuse) 2029 { 2030 struct mm_struct *prev_mm; 2031 struct mm_struct *mm; 2032 struct list_head *p; 2033 int retval = 0; 2034 struct swap_info_struct *si = swap_info[type]; 2035 struct page *page; 2036 swp_entry_t entry; 2037 unsigned int i; 2038 2039 if (!si->inuse_pages) 2040 return 0; 2041 2042 if (!frontswap) 2043 pages_to_unuse = 0; 2044 2045 retry: 2046 retval = shmem_unuse(type, frontswap, &pages_to_unuse); 2047 if (retval) 2048 goto out; 2049 2050 prev_mm = &init_mm; 2051 mmget(prev_mm); 2052 2053 spin_lock(&mmlist_lock); 2054 p = &init_mm.mmlist; 2055 while (si->inuse_pages && 2056 !signal_pending(current) && 2057 (p = p->next) != &init_mm.mmlist) { 2058 2059 mm = list_entry(p, struct mm_struct, mmlist); 2060 if (!mmget_not_zero(mm)) 2061 continue; 2062 spin_unlock(&mmlist_lock); 2063 mmput(prev_mm); 2064 prev_mm = mm; 2065 retval = unuse_mm(mm, type, frontswap, &pages_to_unuse); 2066 2067 if (retval) { 2068 mmput(prev_mm); 2069 goto out; 2070 } 2071 2072 /* 2073 * Make sure that we aren't completely killing 2074 * interactive performance. 2075 */ 2076 cond_resched(); 2077 spin_lock(&mmlist_lock); 2078 } 2079 spin_unlock(&mmlist_lock); 2080 2081 mmput(prev_mm); 2082 2083 i = 0; 2084 while (si->inuse_pages && 2085 !signal_pending(current) && 2086 (i = find_next_to_unuse(si, i, frontswap)) != 0) { 2087 2088 entry = swp_entry(type, i); 2089 page = find_get_page(swap_address_space(entry), i); 2090 if (!page) 2091 continue; 2092 2093 /* 2094 * It is conceivable that a racing task removed this page from 2095 * swap cache just before we acquired the page lock. The page 2096 * might even be back in swap cache on another swap area. But 2097 * that is okay, try_to_free_swap() only removes stale pages. 2098 */ 2099 lock_page(page); 2100 wait_on_page_writeback(page); 2101 try_to_free_swap(page); 2102 unlock_page(page); 2103 put_page(page); 2104 2105 /* 2106 * For frontswap, we just need to unuse pages_to_unuse, if 2107 * it was specified. Need not check frontswap again here as 2108 * we already zeroed out pages_to_unuse if not frontswap. 2109 */ 2110 if (pages_to_unuse && --pages_to_unuse == 0) 2111 goto out; 2112 } 2113 2114 /* 2115 * Lets check again to see if there are still swap entries in the map. 2116 * If yes, we would need to do retry the unuse logic again. 2117 * Under global memory pressure, swap entries can be reinserted back 2118 * into process space after the mmlist loop above passes over them. 2119 * 2120 * Limit the number of retries? No: when mmget_not_zero() above fails, 2121 * that mm is likely to be freeing swap from exit_mmap(), which proceeds 2122 * at its own independent pace; and even shmem_writepage() could have 2123 * been preempted after get_swap_page(), temporarily hiding that swap. 2124 * It's easy and robust (though cpu-intensive) just to keep retrying. 2125 */ 2126 if (si->inuse_pages) { 2127 if (!signal_pending(current)) 2128 goto retry; 2129 retval = -EINTR; 2130 } 2131 out: 2132 return (retval == FRONTSWAP_PAGES_UNUSED) ? 0 : retval; 2133 } 2134 2135 /* 2136 * After a successful try_to_unuse, if no swap is now in use, we know 2137 * we can empty the mmlist. swap_lock must be held on entry and exit. 2138 * Note that mmlist_lock nests inside swap_lock, and an mm must be 2139 * added to the mmlist just after page_duplicate - before would be racy. 2140 */ 2141 static void drain_mmlist(void) 2142 { 2143 struct list_head *p, *next; 2144 unsigned int type; 2145 2146 for (type = 0; type < nr_swapfiles; type++) 2147 if (swap_info[type]->inuse_pages) 2148 return; 2149 spin_lock(&mmlist_lock); 2150 list_for_each_safe(p, next, &init_mm.mmlist) 2151 list_del_init(p); 2152 spin_unlock(&mmlist_lock); 2153 } 2154 2155 /* 2156 * Use this swapdev's extent info to locate the (PAGE_SIZE) block which 2157 * corresponds to page offset for the specified swap entry. 2158 * Note that the type of this function is sector_t, but it returns page offset 2159 * into the bdev, not sector offset. 2160 */ 2161 static sector_t map_swap_entry(swp_entry_t entry, struct block_device **bdev) 2162 { 2163 struct swap_info_struct *sis; 2164 struct swap_extent *start_se; 2165 struct swap_extent *se; 2166 pgoff_t offset; 2167 2168 sis = swp_swap_info(entry); 2169 *bdev = sis->bdev; 2170 2171 offset = swp_offset(entry); 2172 start_se = sis->curr_swap_extent; 2173 se = start_se; 2174 2175 for ( ; ; ) { 2176 if (se->start_page <= offset && 2177 offset < (se->start_page + se->nr_pages)) { 2178 return se->start_block + (offset - se->start_page); 2179 } 2180 se = list_next_entry(se, list); 2181 sis->curr_swap_extent = se; 2182 BUG_ON(se == start_se); /* It *must* be present */ 2183 } 2184 } 2185 2186 /* 2187 * Returns the page offset into bdev for the specified page's swap entry. 2188 */ 2189 sector_t map_swap_page(struct page *page, struct block_device **bdev) 2190 { 2191 swp_entry_t entry; 2192 entry.val = page_private(page); 2193 return map_swap_entry(entry, bdev); 2194 } 2195 2196 /* 2197 * Free all of a swapdev's extent information 2198 */ 2199 static void destroy_swap_extents(struct swap_info_struct *sis) 2200 { 2201 while (!list_empty(&sis->first_swap_extent.list)) { 2202 struct swap_extent *se; 2203 2204 se = list_first_entry(&sis->first_swap_extent.list, 2205 struct swap_extent, list); 2206 list_del(&se->list); 2207 kfree(se); 2208 } 2209 2210 if (sis->flags & SWP_ACTIVATED) { 2211 struct file *swap_file = sis->swap_file; 2212 struct address_space *mapping = swap_file->f_mapping; 2213 2214 sis->flags &= ~SWP_ACTIVATED; 2215 if (mapping->a_ops->swap_deactivate) 2216 mapping->a_ops->swap_deactivate(swap_file); 2217 } 2218 } 2219 2220 /* 2221 * Add a block range (and the corresponding page range) into this swapdev's 2222 * extent list. The extent list is kept sorted in page order. 2223 * 2224 * This function rather assumes that it is called in ascending page order. 2225 */ 2226 int 2227 add_swap_extent(struct swap_info_struct *sis, unsigned long start_page, 2228 unsigned long nr_pages, sector_t start_block) 2229 { 2230 struct swap_extent *se; 2231 struct swap_extent *new_se; 2232 struct list_head *lh; 2233 2234 if (start_page == 0) { 2235 se = &sis->first_swap_extent; 2236 sis->curr_swap_extent = se; 2237 se->start_page = 0; 2238 se->nr_pages = nr_pages; 2239 se->start_block = start_block; 2240 return 1; 2241 } else { 2242 lh = sis->first_swap_extent.list.prev; /* Highest extent */ 2243 se = list_entry(lh, struct swap_extent, list); 2244 BUG_ON(se->start_page + se->nr_pages != start_page); 2245 if (se->start_block + se->nr_pages == start_block) { 2246 /* Merge it */ 2247 se->nr_pages += nr_pages; 2248 return 0; 2249 } 2250 } 2251 2252 /* 2253 * No merge. Insert a new extent, preserving ordering. 2254 */ 2255 new_se = kmalloc(sizeof(*se), GFP_KERNEL); 2256 if (new_se == NULL) 2257 return -ENOMEM; 2258 new_se->start_page = start_page; 2259 new_se->nr_pages = nr_pages; 2260 new_se->start_block = start_block; 2261 2262 list_add_tail(&new_se->list, &sis->first_swap_extent.list); 2263 return 1; 2264 } 2265 EXPORT_SYMBOL_GPL(add_swap_extent); 2266 2267 /* 2268 * A `swap extent' is a simple thing which maps a contiguous range of pages 2269 * onto a contiguous range of disk blocks. An ordered list of swap extents 2270 * is built at swapon time and is then used at swap_writepage/swap_readpage 2271 * time for locating where on disk a page belongs. 2272 * 2273 * If the swapfile is an S_ISBLK block device, a single extent is installed. 2274 * This is done so that the main operating code can treat S_ISBLK and S_ISREG 2275 * swap files identically. 2276 * 2277 * Whether the swapdev is an S_ISREG file or an S_ISBLK blockdev, the swap 2278 * extent list operates in PAGE_SIZE disk blocks. Both S_ISREG and S_ISBLK 2279 * swapfiles are handled *identically* after swapon time. 2280 * 2281 * For S_ISREG swapfiles, setup_swap_extents() will walk all the file's blocks 2282 * and will parse them into an ordered extent list, in PAGE_SIZE chunks. If 2283 * some stray blocks are found which do not fall within the PAGE_SIZE alignment 2284 * requirements, they are simply tossed out - we will never use those blocks 2285 * for swapping. 2286 * 2287 * For S_ISREG swapfiles we set S_SWAPFILE across the life of the swapon. This 2288 * prevents root from shooting her foot off by ftruncating an in-use swapfile, 2289 * which will scribble on the fs. 2290 * 2291 * The amount of disk space which a single swap extent represents varies. 2292 * Typically it is in the 1-4 megabyte range. So we can have hundreds of 2293 * extents in the list. To avoid much list walking, we cache the previous 2294 * search location in `curr_swap_extent', and start new searches from there. 2295 * This is extremely effective. The average number of iterations in 2296 * map_swap_page() has been measured at about 0.3 per page. - akpm. 2297 */ 2298 static int setup_swap_extents(struct swap_info_struct *sis, sector_t *span) 2299 { 2300 struct file *swap_file = sis->swap_file; 2301 struct address_space *mapping = swap_file->f_mapping; 2302 struct inode *inode = mapping->host; 2303 int ret; 2304 2305 if (S_ISBLK(inode->i_mode)) { 2306 ret = add_swap_extent(sis, 0, sis->max, 0); 2307 *span = sis->pages; 2308 return ret; 2309 } 2310 2311 if (mapping->a_ops->swap_activate) { 2312 ret = mapping->a_ops->swap_activate(sis, swap_file, span); 2313 if (ret >= 0) 2314 sis->flags |= SWP_ACTIVATED; 2315 if (!ret) { 2316 sis->flags |= SWP_FS; 2317 ret = add_swap_extent(sis, 0, sis->max, 0); 2318 *span = sis->pages; 2319 } 2320 return ret; 2321 } 2322 2323 return generic_swapfile_activate(sis, swap_file, span); 2324 } 2325 2326 static int swap_node(struct swap_info_struct *p) 2327 { 2328 struct block_device *bdev; 2329 2330 if (p->bdev) 2331 bdev = p->bdev; 2332 else 2333 bdev = p->swap_file->f_inode->i_sb->s_bdev; 2334 2335 return bdev ? bdev->bd_disk->node_id : NUMA_NO_NODE; 2336 } 2337 2338 static void _enable_swap_info(struct swap_info_struct *p, int prio, 2339 unsigned char *swap_map, 2340 struct swap_cluster_info *cluster_info) 2341 { 2342 int i; 2343 2344 if (prio >= 0) 2345 p->prio = prio; 2346 else 2347 p->prio = --least_priority; 2348 /* 2349 * the plist prio is negated because plist ordering is 2350 * low-to-high, while swap ordering is high-to-low 2351 */ 2352 p->list.prio = -p->prio; 2353 for_each_node(i) { 2354 if (p->prio >= 0) 2355 p->avail_lists[i].prio = -p->prio; 2356 else { 2357 if (swap_node(p) == i) 2358 p->avail_lists[i].prio = 1; 2359 else 2360 p->avail_lists[i].prio = -p->prio; 2361 } 2362 } 2363 p->swap_map = swap_map; 2364 p->cluster_info = cluster_info; 2365 p->flags |= SWP_WRITEOK; 2366 atomic_long_add(p->pages, &nr_swap_pages); 2367 total_swap_pages += p->pages; 2368 2369 assert_spin_locked(&swap_lock); 2370 /* 2371 * both lists are plists, and thus priority ordered. 2372 * swap_active_head needs to be priority ordered for swapoff(), 2373 * which on removal of any swap_info_struct with an auto-assigned 2374 * (i.e. negative) priority increments the auto-assigned priority 2375 * of any lower-priority swap_info_structs. 2376 * swap_avail_head needs to be priority ordered for get_swap_page(), 2377 * which allocates swap pages from the highest available priority 2378 * swap_info_struct. 2379 */ 2380 plist_add(&p->list, &swap_active_head); 2381 add_to_avail_list(p); 2382 } 2383 2384 static void enable_swap_info(struct swap_info_struct *p, int prio, 2385 unsigned char *swap_map, 2386 struct swap_cluster_info *cluster_info, 2387 unsigned long *frontswap_map) 2388 { 2389 frontswap_init(p->type, frontswap_map); 2390 spin_lock(&swap_lock); 2391 spin_lock(&p->lock); 2392 _enable_swap_info(p, prio, swap_map, cluster_info); 2393 spin_unlock(&p->lock); 2394 spin_unlock(&swap_lock); 2395 } 2396 2397 static void reinsert_swap_info(struct swap_info_struct *p) 2398 { 2399 spin_lock(&swap_lock); 2400 spin_lock(&p->lock); 2401 _enable_swap_info(p, p->prio, p->swap_map, p->cluster_info); 2402 spin_unlock(&p->lock); 2403 spin_unlock(&swap_lock); 2404 } 2405 2406 bool has_usable_swap(void) 2407 { 2408 bool ret = true; 2409 2410 spin_lock(&swap_lock); 2411 if (plist_head_empty(&swap_active_head)) 2412 ret = false; 2413 spin_unlock(&swap_lock); 2414 return ret; 2415 } 2416 2417 SYSCALL_DEFINE1(swapoff, const char __user *, specialfile) 2418 { 2419 struct swap_info_struct *p = NULL; 2420 unsigned char *swap_map; 2421 struct swap_cluster_info *cluster_info; 2422 unsigned long *frontswap_map; 2423 struct file *swap_file, *victim; 2424 struct address_space *mapping; 2425 struct inode *inode; 2426 struct filename *pathname; 2427 int err, found = 0; 2428 unsigned int old_block_size; 2429 2430 if (!capable(CAP_SYS_ADMIN)) 2431 return -EPERM; 2432 2433 BUG_ON(!current->mm); 2434 2435 pathname = getname(specialfile); 2436 if (IS_ERR(pathname)) 2437 return PTR_ERR(pathname); 2438 2439 victim = file_open_name(pathname, O_RDWR|O_LARGEFILE, 0); 2440 err = PTR_ERR(victim); 2441 if (IS_ERR(victim)) 2442 goto out; 2443 2444 mapping = victim->f_mapping; 2445 spin_lock(&swap_lock); 2446 plist_for_each_entry(p, &swap_active_head, list) { 2447 if (p->flags & SWP_WRITEOK) { 2448 if (p->swap_file->f_mapping == mapping) { 2449 found = 1; 2450 break; 2451 } 2452 } 2453 } 2454 if (!found) { 2455 err = -EINVAL; 2456 spin_unlock(&swap_lock); 2457 goto out_dput; 2458 } 2459 if (!security_vm_enough_memory_mm(current->mm, p->pages)) 2460 vm_unacct_memory(p->pages); 2461 else { 2462 err = -ENOMEM; 2463 spin_unlock(&swap_lock); 2464 goto out_dput; 2465 } 2466 del_from_avail_list(p); 2467 spin_lock(&p->lock); 2468 if (p->prio < 0) { 2469 struct swap_info_struct *si = p; 2470 int nid; 2471 2472 plist_for_each_entry_continue(si, &swap_active_head, list) { 2473 si->prio++; 2474 si->list.prio--; 2475 for_each_node(nid) { 2476 if (si->avail_lists[nid].prio != 1) 2477 si->avail_lists[nid].prio--; 2478 } 2479 } 2480 least_priority++; 2481 } 2482 plist_del(&p->list, &swap_active_head); 2483 atomic_long_sub(p->pages, &nr_swap_pages); 2484 total_swap_pages -= p->pages; 2485 p->flags &= ~SWP_WRITEOK; 2486 spin_unlock(&p->lock); 2487 spin_unlock(&swap_lock); 2488 2489 disable_swap_slots_cache_lock(); 2490 2491 set_current_oom_origin(); 2492 err = try_to_unuse(p->type, false, 0); /* force unuse all pages */ 2493 clear_current_oom_origin(); 2494 2495 if (err) { 2496 /* re-insert swap space back into swap_list */ 2497 reinsert_swap_info(p); 2498 reenable_swap_slots_cache_unlock(); 2499 goto out_dput; 2500 } 2501 2502 reenable_swap_slots_cache_unlock(); 2503 2504 flush_work(&p->discard_work); 2505 2506 destroy_swap_extents(p); 2507 if (p->flags & SWP_CONTINUED) 2508 free_swap_count_continuations(p); 2509 2510 if (!p->bdev || !blk_queue_nonrot(bdev_get_queue(p->bdev))) 2511 atomic_dec(&nr_rotate_swap); 2512 2513 mutex_lock(&swapon_mutex); 2514 spin_lock(&swap_lock); 2515 spin_lock(&p->lock); 2516 drain_mmlist(); 2517 2518 /* wait for anyone still in scan_swap_map */ 2519 p->highest_bit = 0; /* cuts scans short */ 2520 while (p->flags >= SWP_SCANNING) { 2521 spin_unlock(&p->lock); 2522 spin_unlock(&swap_lock); 2523 schedule_timeout_uninterruptible(1); 2524 spin_lock(&swap_lock); 2525 spin_lock(&p->lock); 2526 } 2527 2528 swap_file = p->swap_file; 2529 old_block_size = p->old_block_size; 2530 p->swap_file = NULL; 2531 p->max = 0; 2532 swap_map = p->swap_map; 2533 p->swap_map = NULL; 2534 cluster_info = p->cluster_info; 2535 p->cluster_info = NULL; 2536 frontswap_map = frontswap_map_get(p); 2537 spin_unlock(&p->lock); 2538 spin_unlock(&swap_lock); 2539 frontswap_invalidate_area(p->type); 2540 frontswap_map_set(p, NULL); 2541 mutex_unlock(&swapon_mutex); 2542 free_percpu(p->percpu_cluster); 2543 p->percpu_cluster = NULL; 2544 vfree(swap_map); 2545 kvfree(cluster_info); 2546 kvfree(frontswap_map); 2547 /* Destroy swap account information */ 2548 swap_cgroup_swapoff(p->type); 2549 exit_swap_address_space(p->type); 2550 2551 inode = mapping->host; 2552 if (S_ISBLK(inode->i_mode)) { 2553 struct block_device *bdev = I_BDEV(inode); 2554 set_blocksize(bdev, old_block_size); 2555 blkdev_put(bdev, FMODE_READ | FMODE_WRITE | FMODE_EXCL); 2556 } else { 2557 inode_lock(inode); 2558 inode->i_flags &= ~S_SWAPFILE; 2559 inode_unlock(inode); 2560 } 2561 filp_close(swap_file, NULL); 2562 2563 /* 2564 * Clear the SWP_USED flag after all resources are freed so that swapon 2565 * can reuse this swap_info in alloc_swap_info() safely. It is ok to 2566 * not hold p->lock after we cleared its SWP_WRITEOK. 2567 */ 2568 spin_lock(&swap_lock); 2569 p->flags = 0; 2570 spin_unlock(&swap_lock); 2571 2572 err = 0; 2573 atomic_inc(&proc_poll_event); 2574 wake_up_interruptible(&proc_poll_wait); 2575 2576 out_dput: 2577 filp_close(victim, NULL); 2578 out: 2579 putname(pathname); 2580 return err; 2581 } 2582 2583 #ifdef CONFIG_PROC_FS 2584 static __poll_t swaps_poll(struct file *file, poll_table *wait) 2585 { 2586 struct seq_file *seq = file->private_data; 2587 2588 poll_wait(file, &proc_poll_wait, wait); 2589 2590 if (seq->poll_event != atomic_read(&proc_poll_event)) { 2591 seq->poll_event = atomic_read(&proc_poll_event); 2592 return EPOLLIN | EPOLLRDNORM | EPOLLERR | EPOLLPRI; 2593 } 2594 2595 return EPOLLIN | EPOLLRDNORM; 2596 } 2597 2598 /* iterator */ 2599 static void *swap_start(struct seq_file *swap, loff_t *pos) 2600 { 2601 struct swap_info_struct *si; 2602 int type; 2603 loff_t l = *pos; 2604 2605 mutex_lock(&swapon_mutex); 2606 2607 if (!l) 2608 return SEQ_START_TOKEN; 2609 2610 for (type = 0; (si = swap_type_to_swap_info(type)); type++) { 2611 if (!(si->flags & SWP_USED) || !si->swap_map) 2612 continue; 2613 if (!--l) 2614 return si; 2615 } 2616 2617 return NULL; 2618 } 2619 2620 static void *swap_next(struct seq_file *swap, void *v, loff_t *pos) 2621 { 2622 struct swap_info_struct *si = v; 2623 int type; 2624 2625 if (v == SEQ_START_TOKEN) 2626 type = 0; 2627 else 2628 type = si->type + 1; 2629 2630 for (; (si = swap_type_to_swap_info(type)); type++) { 2631 if (!(si->flags & SWP_USED) || !si->swap_map) 2632 continue; 2633 ++*pos; 2634 return si; 2635 } 2636 2637 return NULL; 2638 } 2639 2640 static void swap_stop(struct seq_file *swap, void *v) 2641 { 2642 mutex_unlock(&swapon_mutex); 2643 } 2644 2645 static int swap_show(struct seq_file *swap, void *v) 2646 { 2647 struct swap_info_struct *si = v; 2648 struct file *file; 2649 int len; 2650 2651 if (si == SEQ_START_TOKEN) { 2652 seq_puts(swap,"Filename\t\t\t\tType\t\tSize\tUsed\tPriority\n"); 2653 return 0; 2654 } 2655 2656 file = si->swap_file; 2657 len = seq_file_path(swap, file, " \t\n\\"); 2658 seq_printf(swap, "%*s%s\t%u\t%u\t%d\n", 2659 len < 40 ? 40 - len : 1, " ", 2660 S_ISBLK(file_inode(file)->i_mode) ? 2661 "partition" : "file\t", 2662 si->pages << (PAGE_SHIFT - 10), 2663 si->inuse_pages << (PAGE_SHIFT - 10), 2664 si->prio); 2665 return 0; 2666 } 2667 2668 static const struct seq_operations swaps_op = { 2669 .start = swap_start, 2670 .next = swap_next, 2671 .stop = swap_stop, 2672 .show = swap_show 2673 }; 2674 2675 static int swaps_open(struct inode *inode, struct file *file) 2676 { 2677 struct seq_file *seq; 2678 int ret; 2679 2680 ret = seq_open(file, &swaps_op); 2681 if (ret) 2682 return ret; 2683 2684 seq = file->private_data; 2685 seq->poll_event = atomic_read(&proc_poll_event); 2686 return 0; 2687 } 2688 2689 static const struct file_operations proc_swaps_operations = { 2690 .open = swaps_open, 2691 .read = seq_read, 2692 .llseek = seq_lseek, 2693 .release = seq_release, 2694 .poll = swaps_poll, 2695 }; 2696 2697 static int __init procswaps_init(void) 2698 { 2699 proc_create("swaps", 0, NULL, &proc_swaps_operations); 2700 return 0; 2701 } 2702 __initcall(procswaps_init); 2703 #endif /* CONFIG_PROC_FS */ 2704 2705 #ifdef MAX_SWAPFILES_CHECK 2706 static int __init max_swapfiles_check(void) 2707 { 2708 MAX_SWAPFILES_CHECK(); 2709 return 0; 2710 } 2711 late_initcall(max_swapfiles_check); 2712 #endif 2713 2714 static struct swap_info_struct *alloc_swap_info(void) 2715 { 2716 struct swap_info_struct *p; 2717 unsigned int type; 2718 int i; 2719 2720 p = kvzalloc(struct_size(p, avail_lists, nr_node_ids), GFP_KERNEL); 2721 if (!p) 2722 return ERR_PTR(-ENOMEM); 2723 2724 spin_lock(&swap_lock); 2725 for (type = 0; type < nr_swapfiles; type++) { 2726 if (!(swap_info[type]->flags & SWP_USED)) 2727 break; 2728 } 2729 if (type >= MAX_SWAPFILES) { 2730 spin_unlock(&swap_lock); 2731 kvfree(p); 2732 return ERR_PTR(-EPERM); 2733 } 2734 if (type >= nr_swapfiles) { 2735 p->type = type; 2736 WRITE_ONCE(swap_info[type], p); 2737 /* 2738 * Write swap_info[type] before nr_swapfiles, in case a 2739 * racing procfs swap_start() or swap_next() is reading them. 2740 * (We never shrink nr_swapfiles, we never free this entry.) 2741 */ 2742 smp_wmb(); 2743 WRITE_ONCE(nr_swapfiles, nr_swapfiles + 1); 2744 } else { 2745 kvfree(p); 2746 p = swap_info[type]; 2747 /* 2748 * Do not memset this entry: a racing procfs swap_next() 2749 * would be relying on p->type to remain valid. 2750 */ 2751 } 2752 INIT_LIST_HEAD(&p->first_swap_extent.list); 2753 plist_node_init(&p->list, 0); 2754 for_each_node(i) 2755 plist_node_init(&p->avail_lists[i], 0); 2756 p->flags = SWP_USED; 2757 spin_unlock(&swap_lock); 2758 spin_lock_init(&p->lock); 2759 spin_lock_init(&p->cont_lock); 2760 2761 return p; 2762 } 2763 2764 static int claim_swapfile(struct swap_info_struct *p, struct inode *inode) 2765 { 2766 int error; 2767 2768 if (S_ISBLK(inode->i_mode)) { 2769 p->bdev = bdgrab(I_BDEV(inode)); 2770 error = blkdev_get(p->bdev, 2771 FMODE_READ | FMODE_WRITE | FMODE_EXCL, p); 2772 if (error < 0) { 2773 p->bdev = NULL; 2774 return error; 2775 } 2776 p->old_block_size = block_size(p->bdev); 2777 error = set_blocksize(p->bdev, PAGE_SIZE); 2778 if (error < 0) 2779 return error; 2780 p->flags |= SWP_BLKDEV; 2781 } else if (S_ISREG(inode->i_mode)) { 2782 p->bdev = inode->i_sb->s_bdev; 2783 inode_lock(inode); 2784 if (IS_SWAPFILE(inode)) 2785 return -EBUSY; 2786 } else 2787 return -EINVAL; 2788 2789 return 0; 2790 } 2791 2792 2793 /* 2794 * Find out how many pages are allowed for a single swap device. There 2795 * are two limiting factors: 2796 * 1) the number of bits for the swap offset in the swp_entry_t type, and 2797 * 2) the number of bits in the swap pte, as defined by the different 2798 * architectures. 2799 * 2800 * In order to find the largest possible bit mask, a swap entry with 2801 * swap type 0 and swap offset ~0UL is created, encoded to a swap pte, 2802 * decoded to a swp_entry_t again, and finally the swap offset is 2803 * extracted. 2804 * 2805 * This will mask all the bits from the initial ~0UL mask that can't 2806 * be encoded in either the swp_entry_t or the architecture definition 2807 * of a swap pte. 2808 */ 2809 unsigned long generic_max_swapfile_size(void) 2810 { 2811 return swp_offset(pte_to_swp_entry( 2812 swp_entry_to_pte(swp_entry(0, ~0UL)))) + 1; 2813 } 2814 2815 /* Can be overridden by an architecture for additional checks. */ 2816 __weak unsigned long max_swapfile_size(void) 2817 { 2818 return generic_max_swapfile_size(); 2819 } 2820 2821 static unsigned long read_swap_header(struct swap_info_struct *p, 2822 union swap_header *swap_header, 2823 struct inode *inode) 2824 { 2825 int i; 2826 unsigned long maxpages; 2827 unsigned long swapfilepages; 2828 unsigned long last_page; 2829 2830 if (memcmp("SWAPSPACE2", swap_header->magic.magic, 10)) { 2831 pr_err("Unable to find swap-space signature\n"); 2832 return 0; 2833 } 2834 2835 /* swap partition endianess hack... */ 2836 if (swab32(swap_header->info.version) == 1) { 2837 swab32s(&swap_header->info.version); 2838 swab32s(&swap_header->info.last_page); 2839 swab32s(&swap_header->info.nr_badpages); 2840 if (swap_header->info.nr_badpages > MAX_SWAP_BADPAGES) 2841 return 0; 2842 for (i = 0; i < swap_header->info.nr_badpages; i++) 2843 swab32s(&swap_header->info.badpages[i]); 2844 } 2845 /* Check the swap header's sub-version */ 2846 if (swap_header->info.version != 1) { 2847 pr_warn("Unable to handle swap header version %d\n", 2848 swap_header->info.version); 2849 return 0; 2850 } 2851 2852 p->lowest_bit = 1; 2853 p->cluster_next = 1; 2854 p->cluster_nr = 0; 2855 2856 maxpages = max_swapfile_size(); 2857 last_page = swap_header->info.last_page; 2858 if (!last_page) { 2859 pr_warn("Empty swap-file\n"); 2860 return 0; 2861 } 2862 if (last_page > maxpages) { 2863 pr_warn("Truncating oversized swap area, only using %luk out of %luk\n", 2864 maxpages << (PAGE_SHIFT - 10), 2865 last_page << (PAGE_SHIFT - 10)); 2866 } 2867 if (maxpages > last_page) { 2868 maxpages = last_page + 1; 2869 /* p->max is an unsigned int: don't overflow it */ 2870 if ((unsigned int)maxpages == 0) 2871 maxpages = UINT_MAX; 2872 } 2873 p->highest_bit = maxpages - 1; 2874 2875 if (!maxpages) 2876 return 0; 2877 swapfilepages = i_size_read(inode) >> PAGE_SHIFT; 2878 if (swapfilepages && maxpages > swapfilepages) { 2879 pr_warn("Swap area shorter than signature indicates\n"); 2880 return 0; 2881 } 2882 if (swap_header->info.nr_badpages && S_ISREG(inode->i_mode)) 2883 return 0; 2884 if (swap_header->info.nr_badpages > MAX_SWAP_BADPAGES) 2885 return 0; 2886 2887 return maxpages; 2888 } 2889 2890 #define SWAP_CLUSTER_INFO_COLS \ 2891 DIV_ROUND_UP(L1_CACHE_BYTES, sizeof(struct swap_cluster_info)) 2892 #define SWAP_CLUSTER_SPACE_COLS \ 2893 DIV_ROUND_UP(SWAP_ADDRESS_SPACE_PAGES, SWAPFILE_CLUSTER) 2894 #define SWAP_CLUSTER_COLS \ 2895 max_t(unsigned int, SWAP_CLUSTER_INFO_COLS, SWAP_CLUSTER_SPACE_COLS) 2896 2897 static int setup_swap_map_and_extents(struct swap_info_struct *p, 2898 union swap_header *swap_header, 2899 unsigned char *swap_map, 2900 struct swap_cluster_info *cluster_info, 2901 unsigned long maxpages, 2902 sector_t *span) 2903 { 2904 unsigned int j, k; 2905 unsigned int nr_good_pages; 2906 int nr_extents; 2907 unsigned long nr_clusters = DIV_ROUND_UP(maxpages, SWAPFILE_CLUSTER); 2908 unsigned long col = p->cluster_next / SWAPFILE_CLUSTER % SWAP_CLUSTER_COLS; 2909 unsigned long i, idx; 2910 2911 nr_good_pages = maxpages - 1; /* omit header page */ 2912 2913 cluster_list_init(&p->free_clusters); 2914 cluster_list_init(&p->discard_clusters); 2915 2916 for (i = 0; i < swap_header->info.nr_badpages; i++) { 2917 unsigned int page_nr = swap_header->info.badpages[i]; 2918 if (page_nr == 0 || page_nr > swap_header->info.last_page) 2919 return -EINVAL; 2920 if (page_nr < maxpages) { 2921 swap_map[page_nr] = SWAP_MAP_BAD; 2922 nr_good_pages--; 2923 /* 2924 * Haven't marked the cluster free yet, no list 2925 * operation involved 2926 */ 2927 inc_cluster_info_page(p, cluster_info, page_nr); 2928 } 2929 } 2930 2931 /* Haven't marked the cluster free yet, no list operation involved */ 2932 for (i = maxpages; i < round_up(maxpages, SWAPFILE_CLUSTER); i++) 2933 inc_cluster_info_page(p, cluster_info, i); 2934 2935 if (nr_good_pages) { 2936 swap_map[0] = SWAP_MAP_BAD; 2937 /* 2938 * Not mark the cluster free yet, no list 2939 * operation involved 2940 */ 2941 inc_cluster_info_page(p, cluster_info, 0); 2942 p->max = maxpages; 2943 p->pages = nr_good_pages; 2944 nr_extents = setup_swap_extents(p, span); 2945 if (nr_extents < 0) 2946 return nr_extents; 2947 nr_good_pages = p->pages; 2948 } 2949 if (!nr_good_pages) { 2950 pr_warn("Empty swap-file\n"); 2951 return -EINVAL; 2952 } 2953 2954 if (!cluster_info) 2955 return nr_extents; 2956 2957 2958 /* 2959 * Reduce false cache line sharing between cluster_info and 2960 * sharing same address space. 2961 */ 2962 for (k = 0; k < SWAP_CLUSTER_COLS; k++) { 2963 j = (k + col) % SWAP_CLUSTER_COLS; 2964 for (i = 0; i < DIV_ROUND_UP(nr_clusters, SWAP_CLUSTER_COLS); i++) { 2965 idx = i * SWAP_CLUSTER_COLS + j; 2966 if (idx >= nr_clusters) 2967 continue; 2968 if (cluster_count(&cluster_info[idx])) 2969 continue; 2970 cluster_set_flag(&cluster_info[idx], CLUSTER_FLAG_FREE); 2971 cluster_list_add_tail(&p->free_clusters, cluster_info, 2972 idx); 2973 } 2974 } 2975 return nr_extents; 2976 } 2977 2978 /* 2979 * Helper to sys_swapon determining if a given swap 2980 * backing device queue supports DISCARD operations. 2981 */ 2982 static bool swap_discardable(struct swap_info_struct *si) 2983 { 2984 struct request_queue *q = bdev_get_queue(si->bdev); 2985 2986 if (!q || !blk_queue_discard(q)) 2987 return false; 2988 2989 return true; 2990 } 2991 2992 SYSCALL_DEFINE2(swapon, const char __user *, specialfile, int, swap_flags) 2993 { 2994 struct swap_info_struct *p; 2995 struct filename *name; 2996 struct file *swap_file = NULL; 2997 struct address_space *mapping; 2998 int prio; 2999 int error; 3000 union swap_header *swap_header; 3001 int nr_extents; 3002 sector_t span; 3003 unsigned long maxpages; 3004 unsigned char *swap_map = NULL; 3005 struct swap_cluster_info *cluster_info = NULL; 3006 unsigned long *frontswap_map = NULL; 3007 struct page *page = NULL; 3008 struct inode *inode = NULL; 3009 bool inced_nr_rotate_swap = false; 3010 3011 if (swap_flags & ~SWAP_FLAGS_VALID) 3012 return -EINVAL; 3013 3014 if (!capable(CAP_SYS_ADMIN)) 3015 return -EPERM; 3016 3017 if (!swap_avail_heads) 3018 return -ENOMEM; 3019 3020 p = alloc_swap_info(); 3021 if (IS_ERR(p)) 3022 return PTR_ERR(p); 3023 3024 INIT_WORK(&p->discard_work, swap_discard_work); 3025 3026 name = getname(specialfile); 3027 if (IS_ERR(name)) { 3028 error = PTR_ERR(name); 3029 name = NULL; 3030 goto bad_swap; 3031 } 3032 swap_file = file_open_name(name, O_RDWR|O_LARGEFILE, 0); 3033 if (IS_ERR(swap_file)) { 3034 error = PTR_ERR(swap_file); 3035 swap_file = NULL; 3036 goto bad_swap; 3037 } 3038 3039 p->swap_file = swap_file; 3040 mapping = swap_file->f_mapping; 3041 inode = mapping->host; 3042 3043 /* If S_ISREG(inode->i_mode) will do inode_lock(inode); */ 3044 error = claim_swapfile(p, inode); 3045 if (unlikely(error)) 3046 goto bad_swap; 3047 3048 /* 3049 * Read the swap header. 3050 */ 3051 if (!mapping->a_ops->readpage) { 3052 error = -EINVAL; 3053 goto bad_swap; 3054 } 3055 page = read_mapping_page(mapping, 0, swap_file); 3056 if (IS_ERR(page)) { 3057 error = PTR_ERR(page); 3058 goto bad_swap; 3059 } 3060 swap_header = kmap(page); 3061 3062 maxpages = read_swap_header(p, swap_header, inode); 3063 if (unlikely(!maxpages)) { 3064 error = -EINVAL; 3065 goto bad_swap; 3066 } 3067 3068 /* OK, set up the swap map and apply the bad block list */ 3069 swap_map = vzalloc(maxpages); 3070 if (!swap_map) { 3071 error = -ENOMEM; 3072 goto bad_swap; 3073 } 3074 3075 if (bdi_cap_stable_pages_required(inode_to_bdi(inode))) 3076 p->flags |= SWP_STABLE_WRITES; 3077 3078 if (bdi_cap_synchronous_io(inode_to_bdi(inode))) 3079 p->flags |= SWP_SYNCHRONOUS_IO; 3080 3081 if (p->bdev && blk_queue_nonrot(bdev_get_queue(p->bdev))) { 3082 int cpu; 3083 unsigned long ci, nr_cluster; 3084 3085 p->flags |= SWP_SOLIDSTATE; 3086 /* 3087 * select a random position to start with to help wear leveling 3088 * SSD 3089 */ 3090 p->cluster_next = 1 + (prandom_u32() % p->highest_bit); 3091 nr_cluster = DIV_ROUND_UP(maxpages, SWAPFILE_CLUSTER); 3092 3093 cluster_info = kvcalloc(nr_cluster, sizeof(*cluster_info), 3094 GFP_KERNEL); 3095 if (!cluster_info) { 3096 error = -ENOMEM; 3097 goto bad_swap; 3098 } 3099 3100 for (ci = 0; ci < nr_cluster; ci++) 3101 spin_lock_init(&((cluster_info + ci)->lock)); 3102 3103 p->percpu_cluster = alloc_percpu(struct percpu_cluster); 3104 if (!p->percpu_cluster) { 3105 error = -ENOMEM; 3106 goto bad_swap; 3107 } 3108 for_each_possible_cpu(cpu) { 3109 struct percpu_cluster *cluster; 3110 cluster = per_cpu_ptr(p->percpu_cluster, cpu); 3111 cluster_set_null(&cluster->index); 3112 } 3113 } else { 3114 atomic_inc(&nr_rotate_swap); 3115 inced_nr_rotate_swap = true; 3116 } 3117 3118 error = swap_cgroup_swapon(p->type, maxpages); 3119 if (error) 3120 goto bad_swap; 3121 3122 nr_extents = setup_swap_map_and_extents(p, swap_header, swap_map, 3123 cluster_info, maxpages, &span); 3124 if (unlikely(nr_extents < 0)) { 3125 error = nr_extents; 3126 goto bad_swap; 3127 } 3128 /* frontswap enabled? set up bit-per-page map for frontswap */ 3129 if (IS_ENABLED(CONFIG_FRONTSWAP)) 3130 frontswap_map = kvcalloc(BITS_TO_LONGS(maxpages), 3131 sizeof(long), 3132 GFP_KERNEL); 3133 3134 if (p->bdev &&(swap_flags & SWAP_FLAG_DISCARD) && swap_discardable(p)) { 3135 /* 3136 * When discard is enabled for swap with no particular 3137 * policy flagged, we set all swap discard flags here in 3138 * order to sustain backward compatibility with older 3139 * swapon(8) releases. 3140 */ 3141 p->flags |= (SWP_DISCARDABLE | SWP_AREA_DISCARD | 3142 SWP_PAGE_DISCARD); 3143 3144 /* 3145 * By flagging sys_swapon, a sysadmin can tell us to 3146 * either do single-time area discards only, or to just 3147 * perform discards for released swap page-clusters. 3148 * Now it's time to adjust the p->flags accordingly. 3149 */ 3150 if (swap_flags & SWAP_FLAG_DISCARD_ONCE) 3151 p->flags &= ~SWP_PAGE_DISCARD; 3152 else if (swap_flags & SWAP_FLAG_DISCARD_PAGES) 3153 p->flags &= ~SWP_AREA_DISCARD; 3154 3155 /* issue a swapon-time discard if it's still required */ 3156 if (p->flags & SWP_AREA_DISCARD) { 3157 int err = discard_swap(p); 3158 if (unlikely(err)) 3159 pr_err("swapon: discard_swap(%p): %d\n", 3160 p, err); 3161 } 3162 } 3163 3164 error = init_swap_address_space(p->type, maxpages); 3165 if (error) 3166 goto bad_swap; 3167 3168 mutex_lock(&swapon_mutex); 3169 prio = -1; 3170 if (swap_flags & SWAP_FLAG_PREFER) 3171 prio = 3172 (swap_flags & SWAP_FLAG_PRIO_MASK) >> SWAP_FLAG_PRIO_SHIFT; 3173 enable_swap_info(p, prio, swap_map, cluster_info, frontswap_map); 3174 3175 pr_info("Adding %uk swap on %s. Priority:%d extents:%d across:%lluk %s%s%s%s%s\n", 3176 p->pages<<(PAGE_SHIFT-10), name->name, p->prio, 3177 nr_extents, (unsigned long long)span<<(PAGE_SHIFT-10), 3178 (p->flags & SWP_SOLIDSTATE) ? "SS" : "", 3179 (p->flags & SWP_DISCARDABLE) ? "D" : "", 3180 (p->flags & SWP_AREA_DISCARD) ? "s" : "", 3181 (p->flags & SWP_PAGE_DISCARD) ? "c" : "", 3182 (frontswap_map) ? "FS" : ""); 3183 3184 mutex_unlock(&swapon_mutex); 3185 atomic_inc(&proc_poll_event); 3186 wake_up_interruptible(&proc_poll_wait); 3187 3188 if (S_ISREG(inode->i_mode)) 3189 inode->i_flags |= S_SWAPFILE; 3190 error = 0; 3191 goto out; 3192 bad_swap: 3193 free_percpu(p->percpu_cluster); 3194 p->percpu_cluster = NULL; 3195 if (inode && S_ISBLK(inode->i_mode) && p->bdev) { 3196 set_blocksize(p->bdev, p->old_block_size); 3197 blkdev_put(p->bdev, FMODE_READ | FMODE_WRITE | FMODE_EXCL); 3198 } 3199 destroy_swap_extents(p); 3200 swap_cgroup_swapoff(p->type); 3201 spin_lock(&swap_lock); 3202 p->swap_file = NULL; 3203 p->flags = 0; 3204 spin_unlock(&swap_lock); 3205 vfree(swap_map); 3206 kvfree(cluster_info); 3207 kvfree(frontswap_map); 3208 if (inced_nr_rotate_swap) 3209 atomic_dec(&nr_rotate_swap); 3210 if (swap_file) { 3211 if (inode && S_ISREG(inode->i_mode)) { 3212 inode_unlock(inode); 3213 inode = NULL; 3214 } 3215 filp_close(swap_file, NULL); 3216 } 3217 out: 3218 if (page && !IS_ERR(page)) { 3219 kunmap(page); 3220 put_page(page); 3221 } 3222 if (name) 3223 putname(name); 3224 if (inode && S_ISREG(inode->i_mode)) 3225 inode_unlock(inode); 3226 if (!error) 3227 enable_swap_slots_cache(); 3228 return error; 3229 } 3230 3231 void si_swapinfo(struct sysinfo *val) 3232 { 3233 unsigned int type; 3234 unsigned long nr_to_be_unused = 0; 3235 3236 spin_lock(&swap_lock); 3237 for (type = 0; type < nr_swapfiles; type++) { 3238 struct swap_info_struct *si = swap_info[type]; 3239 3240 if ((si->flags & SWP_USED) && !(si->flags & SWP_WRITEOK)) 3241 nr_to_be_unused += si->inuse_pages; 3242 } 3243 val->freeswap = atomic_long_read(&nr_swap_pages) + nr_to_be_unused; 3244 val->totalswap = total_swap_pages + nr_to_be_unused; 3245 spin_unlock(&swap_lock); 3246 } 3247 3248 /* 3249 * Verify that a swap entry is valid and increment its swap map count. 3250 * 3251 * Returns error code in following case. 3252 * - success -> 0 3253 * - swp_entry is invalid -> EINVAL 3254 * - swp_entry is migration entry -> EINVAL 3255 * - swap-cache reference is requested but there is already one. -> EEXIST 3256 * - swap-cache reference is requested but the entry is not used. -> ENOENT 3257 * - swap-mapped reference requested but needs continued swap count. -> ENOMEM 3258 */ 3259 static int __swap_duplicate(swp_entry_t entry, unsigned char usage) 3260 { 3261 struct swap_info_struct *p; 3262 struct swap_cluster_info *ci; 3263 unsigned long offset; 3264 unsigned char count; 3265 unsigned char has_cache; 3266 int err = -EINVAL; 3267 3268 if (non_swap_entry(entry)) 3269 goto out; 3270 3271 p = swp_swap_info(entry); 3272 if (!p) 3273 goto bad_file; 3274 3275 offset = swp_offset(entry); 3276 if (unlikely(offset >= p->max)) 3277 goto out; 3278 3279 ci = lock_cluster_or_swap_info(p, offset); 3280 3281 count = p->swap_map[offset]; 3282 3283 /* 3284 * swapin_readahead() doesn't check if a swap entry is valid, so the 3285 * swap entry could be SWAP_MAP_BAD. Check here with lock held. 3286 */ 3287 if (unlikely(swap_count(count) == SWAP_MAP_BAD)) { 3288 err = -ENOENT; 3289 goto unlock_out; 3290 } 3291 3292 has_cache = count & SWAP_HAS_CACHE; 3293 count &= ~SWAP_HAS_CACHE; 3294 err = 0; 3295 3296 if (usage == SWAP_HAS_CACHE) { 3297 3298 /* set SWAP_HAS_CACHE if there is no cache and entry is used */ 3299 if (!has_cache && count) 3300 has_cache = SWAP_HAS_CACHE; 3301 else if (has_cache) /* someone else added cache */ 3302 err = -EEXIST; 3303 else /* no users remaining */ 3304 err = -ENOENT; 3305 3306 } else if (count || has_cache) { 3307 3308 if ((count & ~COUNT_CONTINUED) < SWAP_MAP_MAX) 3309 count += usage; 3310 else if ((count & ~COUNT_CONTINUED) > SWAP_MAP_MAX) 3311 err = -EINVAL; 3312 else if (swap_count_continued(p, offset, count)) 3313 count = COUNT_CONTINUED; 3314 else 3315 err = -ENOMEM; 3316 } else 3317 err = -ENOENT; /* unused swap entry */ 3318 3319 p->swap_map[offset] = count | has_cache; 3320 3321 unlock_out: 3322 unlock_cluster_or_swap_info(p, ci); 3323 out: 3324 return err; 3325 3326 bad_file: 3327 pr_err("swap_dup: %s%08lx\n", Bad_file, entry.val); 3328 goto out; 3329 } 3330 3331 /* 3332 * Help swapoff by noting that swap entry belongs to shmem/tmpfs 3333 * (in which case its reference count is never incremented). 3334 */ 3335 void swap_shmem_alloc(swp_entry_t entry) 3336 { 3337 __swap_duplicate(entry, SWAP_MAP_SHMEM); 3338 } 3339 3340 /* 3341 * Increase reference count of swap entry by 1. 3342 * Returns 0 for success, or -ENOMEM if a swap_count_continuation is required 3343 * but could not be atomically allocated. Returns 0, just as if it succeeded, 3344 * if __swap_duplicate() fails for another reason (-EINVAL or -ENOENT), which 3345 * might occur if a page table entry has got corrupted. 3346 */ 3347 int swap_duplicate(swp_entry_t entry) 3348 { 3349 int err = 0; 3350 3351 while (!err && __swap_duplicate(entry, 1) == -ENOMEM) 3352 err = add_swap_count_continuation(entry, GFP_ATOMIC); 3353 return err; 3354 } 3355 3356 /* 3357 * @entry: swap entry for which we allocate swap cache. 3358 * 3359 * Called when allocating swap cache for existing swap entry, 3360 * This can return error codes. Returns 0 at success. 3361 * -EBUSY means there is a swap cache. 3362 * Note: return code is different from swap_duplicate(). 3363 */ 3364 int swapcache_prepare(swp_entry_t entry) 3365 { 3366 return __swap_duplicate(entry, SWAP_HAS_CACHE); 3367 } 3368 3369 struct swap_info_struct *swp_swap_info(swp_entry_t entry) 3370 { 3371 return swap_type_to_swap_info(swp_type(entry)); 3372 } 3373 3374 struct swap_info_struct *page_swap_info(struct page *page) 3375 { 3376 swp_entry_t entry = { .val = page_private(page) }; 3377 return swp_swap_info(entry); 3378 } 3379 3380 /* 3381 * out-of-line __page_file_ methods to avoid include hell. 3382 */ 3383 struct address_space *__page_file_mapping(struct page *page) 3384 { 3385 return page_swap_info(page)->swap_file->f_mapping; 3386 } 3387 EXPORT_SYMBOL_GPL(__page_file_mapping); 3388 3389 pgoff_t __page_file_index(struct page *page) 3390 { 3391 swp_entry_t swap = { .val = page_private(page) }; 3392 return swp_offset(swap); 3393 } 3394 EXPORT_SYMBOL_GPL(__page_file_index); 3395 3396 /* 3397 * add_swap_count_continuation - called when a swap count is duplicated 3398 * beyond SWAP_MAP_MAX, it allocates a new page and links that to the entry's 3399 * page of the original vmalloc'ed swap_map, to hold the continuation count 3400 * (for that entry and for its neighbouring PAGE_SIZE swap entries). Called 3401 * again when count is duplicated beyond SWAP_MAP_MAX * SWAP_CONT_MAX, etc. 3402 * 3403 * These continuation pages are seldom referenced: the common paths all work 3404 * on the original swap_map, only referring to a continuation page when the 3405 * low "digit" of a count is incremented or decremented through SWAP_MAP_MAX. 3406 * 3407 * add_swap_count_continuation(, GFP_ATOMIC) can be called while holding 3408 * page table locks; if it fails, add_swap_count_continuation(, GFP_KERNEL) 3409 * can be called after dropping locks. 3410 */ 3411 int add_swap_count_continuation(swp_entry_t entry, gfp_t gfp_mask) 3412 { 3413 struct swap_info_struct *si; 3414 struct swap_cluster_info *ci; 3415 struct page *head; 3416 struct page *page; 3417 struct page *list_page; 3418 pgoff_t offset; 3419 unsigned char count; 3420 3421 /* 3422 * When debugging, it's easier to use __GFP_ZERO here; but it's better 3423 * for latency not to zero a page while GFP_ATOMIC and holding locks. 3424 */ 3425 page = alloc_page(gfp_mask | __GFP_HIGHMEM); 3426 3427 si = swap_info_get(entry); 3428 if (!si) { 3429 /* 3430 * An acceptable race has occurred since the failing 3431 * __swap_duplicate(): the swap entry has been freed, 3432 * perhaps even the whole swap_map cleared for swapoff. 3433 */ 3434 goto outer; 3435 } 3436 3437 offset = swp_offset(entry); 3438 3439 ci = lock_cluster(si, offset); 3440 3441 count = si->swap_map[offset] & ~SWAP_HAS_CACHE; 3442 3443 if ((count & ~COUNT_CONTINUED) != SWAP_MAP_MAX) { 3444 /* 3445 * The higher the swap count, the more likely it is that tasks 3446 * will race to add swap count continuation: we need to avoid 3447 * over-provisioning. 3448 */ 3449 goto out; 3450 } 3451 3452 if (!page) { 3453 unlock_cluster(ci); 3454 spin_unlock(&si->lock); 3455 return -ENOMEM; 3456 } 3457 3458 /* 3459 * We are fortunate that although vmalloc_to_page uses pte_offset_map, 3460 * no architecture is using highmem pages for kernel page tables: so it 3461 * will not corrupt the GFP_ATOMIC caller's atomic page table kmaps. 3462 */ 3463 head = vmalloc_to_page(si->swap_map + offset); 3464 offset &= ~PAGE_MASK; 3465 3466 spin_lock(&si->cont_lock); 3467 /* 3468 * Page allocation does not initialize the page's lru field, 3469 * but it does always reset its private field. 3470 */ 3471 if (!page_private(head)) { 3472 BUG_ON(count & COUNT_CONTINUED); 3473 INIT_LIST_HEAD(&head->lru); 3474 set_page_private(head, SWP_CONTINUED); 3475 si->flags |= SWP_CONTINUED; 3476 } 3477 3478 list_for_each_entry(list_page, &head->lru, lru) { 3479 unsigned char *map; 3480 3481 /* 3482 * If the previous map said no continuation, but we've found 3483 * a continuation page, free our allocation and use this one. 3484 */ 3485 if (!(count & COUNT_CONTINUED)) 3486 goto out_unlock_cont; 3487 3488 map = kmap_atomic(list_page) + offset; 3489 count = *map; 3490 kunmap_atomic(map); 3491 3492 /* 3493 * If this continuation count now has some space in it, 3494 * free our allocation and use this one. 3495 */ 3496 if ((count & ~COUNT_CONTINUED) != SWAP_CONT_MAX) 3497 goto out_unlock_cont; 3498 } 3499 3500 list_add_tail(&page->lru, &head->lru); 3501 page = NULL; /* now it's attached, don't free it */ 3502 out_unlock_cont: 3503 spin_unlock(&si->cont_lock); 3504 out: 3505 unlock_cluster(ci); 3506 spin_unlock(&si->lock); 3507 outer: 3508 if (page) 3509 __free_page(page); 3510 return 0; 3511 } 3512 3513 /* 3514 * swap_count_continued - when the original swap_map count is incremented 3515 * from SWAP_MAP_MAX, check if there is already a continuation page to carry 3516 * into, carry if so, or else fail until a new continuation page is allocated; 3517 * when the original swap_map count is decremented from 0 with continuation, 3518 * borrow from the continuation and report whether it still holds more. 3519 * Called while __swap_duplicate() or swap_entry_free() holds swap or cluster 3520 * lock. 3521 */ 3522 static bool swap_count_continued(struct swap_info_struct *si, 3523 pgoff_t offset, unsigned char count) 3524 { 3525 struct page *head; 3526 struct page *page; 3527 unsigned char *map; 3528 bool ret; 3529 3530 head = vmalloc_to_page(si->swap_map + offset); 3531 if (page_private(head) != SWP_CONTINUED) { 3532 BUG_ON(count & COUNT_CONTINUED); 3533 return false; /* need to add count continuation */ 3534 } 3535 3536 spin_lock(&si->cont_lock); 3537 offset &= ~PAGE_MASK; 3538 page = list_entry(head->lru.next, struct page, lru); 3539 map = kmap_atomic(page) + offset; 3540 3541 if (count == SWAP_MAP_MAX) /* initial increment from swap_map */ 3542 goto init_map; /* jump over SWAP_CONT_MAX checks */ 3543 3544 if (count == (SWAP_MAP_MAX | COUNT_CONTINUED)) { /* incrementing */ 3545 /* 3546 * Think of how you add 1 to 999 3547 */ 3548 while (*map == (SWAP_CONT_MAX | COUNT_CONTINUED)) { 3549 kunmap_atomic(map); 3550 page = list_entry(page->lru.next, struct page, lru); 3551 BUG_ON(page == head); 3552 map = kmap_atomic(page) + offset; 3553 } 3554 if (*map == SWAP_CONT_MAX) { 3555 kunmap_atomic(map); 3556 page = list_entry(page->lru.next, struct page, lru); 3557 if (page == head) { 3558 ret = false; /* add count continuation */ 3559 goto out; 3560 } 3561 map = kmap_atomic(page) + offset; 3562 init_map: *map = 0; /* we didn't zero the page */ 3563 } 3564 *map += 1; 3565 kunmap_atomic(map); 3566 page = list_entry(page->lru.prev, struct page, lru); 3567 while (page != head) { 3568 map = kmap_atomic(page) + offset; 3569 *map = COUNT_CONTINUED; 3570 kunmap_atomic(map); 3571 page = list_entry(page->lru.prev, struct page, lru); 3572 } 3573 ret = true; /* incremented */ 3574 3575 } else { /* decrementing */ 3576 /* 3577 * Think of how you subtract 1 from 1000 3578 */ 3579 BUG_ON(count != COUNT_CONTINUED); 3580 while (*map == COUNT_CONTINUED) { 3581 kunmap_atomic(map); 3582 page = list_entry(page->lru.next, struct page, lru); 3583 BUG_ON(page == head); 3584 map = kmap_atomic(page) + offset; 3585 } 3586 BUG_ON(*map == 0); 3587 *map -= 1; 3588 if (*map == 0) 3589 count = 0; 3590 kunmap_atomic(map); 3591 page = list_entry(page->lru.prev, struct page, lru); 3592 while (page != head) { 3593 map = kmap_atomic(page) + offset; 3594 *map = SWAP_CONT_MAX | count; 3595 count = COUNT_CONTINUED; 3596 kunmap_atomic(map); 3597 page = list_entry(page->lru.prev, struct page, lru); 3598 } 3599 ret = count == COUNT_CONTINUED; 3600 } 3601 out: 3602 spin_unlock(&si->cont_lock); 3603 return ret; 3604 } 3605 3606 /* 3607 * free_swap_count_continuations - swapoff free all the continuation pages 3608 * appended to the swap_map, after swap_map is quiesced, before vfree'ing it. 3609 */ 3610 static void free_swap_count_continuations(struct swap_info_struct *si) 3611 { 3612 pgoff_t offset; 3613 3614 for (offset = 0; offset < si->max; offset += PAGE_SIZE) { 3615 struct page *head; 3616 head = vmalloc_to_page(si->swap_map + offset); 3617 if (page_private(head)) { 3618 struct page *page, *next; 3619 3620 list_for_each_entry_safe(page, next, &head->lru, lru) { 3621 list_del(&page->lru); 3622 __free_page(page); 3623 } 3624 } 3625 } 3626 } 3627 3628 #if defined(CONFIG_MEMCG) && defined(CONFIG_BLK_CGROUP) 3629 void mem_cgroup_throttle_swaprate(struct mem_cgroup *memcg, int node, 3630 gfp_t gfp_mask) 3631 { 3632 struct swap_info_struct *si, *next; 3633 if (!(gfp_mask & __GFP_IO) || !memcg) 3634 return; 3635 3636 if (!blk_cgroup_congested()) 3637 return; 3638 3639 /* 3640 * We've already scheduled a throttle, avoid taking the global swap 3641 * lock. 3642 */ 3643 if (current->throttle_queue) 3644 return; 3645 3646 spin_lock(&swap_avail_lock); 3647 plist_for_each_entry_safe(si, next, &swap_avail_heads[node], 3648 avail_lists[node]) { 3649 if (si->bdev) { 3650 blkcg_schedule_throttle(bdev_get_queue(si->bdev), 3651 true); 3652 break; 3653 } 3654 } 3655 spin_unlock(&swap_avail_lock); 3656 } 3657 #endif 3658 3659 static int __init swapfile_init(void) 3660 { 3661 int nid; 3662 3663 swap_avail_heads = kmalloc_array(nr_node_ids, sizeof(struct plist_head), 3664 GFP_KERNEL); 3665 if (!swap_avail_heads) { 3666 pr_emerg("Not enough memory for swap heads, swap is disabled\n"); 3667 return -ENOMEM; 3668 } 3669 3670 for_each_node(nid) 3671 plist_head_init(&swap_avail_heads[nid]); 3672 3673 return 0; 3674 } 3675 subsys_initcall(swapfile_init); 3676