xref: /openbmc/linux/mm/swapfile.c (revision 9ac8d3fb)
1 /*
2  *  linux/mm/swapfile.c
3  *
4  *  Copyright (C) 1991, 1992, 1993, 1994  Linus Torvalds
5  *  Swap reorganised 29.12.95, Stephen Tweedie
6  */
7 
8 #include <linux/mm.h>
9 #include <linux/hugetlb.h>
10 #include <linux/mman.h>
11 #include <linux/slab.h>
12 #include <linux/kernel_stat.h>
13 #include <linux/swap.h>
14 #include <linux/vmalloc.h>
15 #include <linux/pagemap.h>
16 #include <linux/namei.h>
17 #include <linux/shm.h>
18 #include <linux/blkdev.h>
19 #include <linux/writeback.h>
20 #include <linux/proc_fs.h>
21 #include <linux/seq_file.h>
22 #include <linux/init.h>
23 #include <linux/module.h>
24 #include <linux/rmap.h>
25 #include <linux/security.h>
26 #include <linux/backing-dev.h>
27 #include <linux/mutex.h>
28 #include <linux/capability.h>
29 #include <linux/syscalls.h>
30 #include <linux/memcontrol.h>
31 
32 #include <asm/pgtable.h>
33 #include <asm/tlbflush.h>
34 #include <linux/swapops.h>
35 
36 static DEFINE_SPINLOCK(swap_lock);
37 static unsigned int nr_swapfiles;
38 long total_swap_pages;
39 static int swap_overflow;
40 static int least_priority;
41 
42 static const char Bad_file[] = "Bad swap file entry ";
43 static const char Unused_file[] = "Unused swap file entry ";
44 static const char Bad_offset[] = "Bad swap offset entry ";
45 static const char Unused_offset[] = "Unused swap offset entry ";
46 
47 static struct swap_list_t swap_list = {-1, -1};
48 
49 static struct swap_info_struct swap_info[MAX_SWAPFILES];
50 
51 static DEFINE_MUTEX(swapon_mutex);
52 
53 /*
54  * We need this because the bdev->unplug_fn can sleep and we cannot
55  * hold swap_lock while calling the unplug_fn. And swap_lock
56  * cannot be turned into a mutex.
57  */
58 static DECLARE_RWSEM(swap_unplug_sem);
59 
60 void swap_unplug_io_fn(struct backing_dev_info *unused_bdi, struct page *page)
61 {
62 	swp_entry_t entry;
63 
64 	down_read(&swap_unplug_sem);
65 	entry.val = page_private(page);
66 	if (PageSwapCache(page)) {
67 		struct block_device *bdev = swap_info[swp_type(entry)].bdev;
68 		struct backing_dev_info *bdi;
69 
70 		/*
71 		 * If the page is removed from swapcache from under us (with a
72 		 * racy try_to_unuse/swapoff) we need an additional reference
73 		 * count to avoid reading garbage from page_private(page) above.
74 		 * If the WARN_ON triggers during a swapoff it maybe the race
75 		 * condition and it's harmless. However if it triggers without
76 		 * swapoff it signals a problem.
77 		 */
78 		WARN_ON(page_count(page) <= 1);
79 
80 		bdi = bdev->bd_inode->i_mapping->backing_dev_info;
81 		blk_run_backing_dev(bdi, page);
82 	}
83 	up_read(&swap_unplug_sem);
84 }
85 
86 #define SWAPFILE_CLUSTER	256
87 #define LATENCY_LIMIT		256
88 
89 static inline unsigned long scan_swap_map(struct swap_info_struct *si)
90 {
91 	unsigned long offset, last_in_cluster;
92 	int latency_ration = LATENCY_LIMIT;
93 
94 	/*
95 	 * We try to cluster swap pages by allocating them sequentially
96 	 * in swap.  Once we've allocated SWAPFILE_CLUSTER pages this
97 	 * way, however, we resort to first-free allocation, starting
98 	 * a new cluster.  This prevents us from scattering swap pages
99 	 * all over the entire swap partition, so that we reduce
100 	 * overall disk seek times between swap pages.  -- sct
101 	 * But we do now try to find an empty cluster.  -Andrea
102 	 */
103 
104 	si->flags += SWP_SCANNING;
105 	if (unlikely(!si->cluster_nr)) {
106 		si->cluster_nr = SWAPFILE_CLUSTER - 1;
107 		if (si->pages - si->inuse_pages < SWAPFILE_CLUSTER)
108 			goto lowest;
109 		spin_unlock(&swap_lock);
110 
111 		offset = si->lowest_bit;
112 		last_in_cluster = offset + SWAPFILE_CLUSTER - 1;
113 
114 		/* Locate the first empty (unaligned) cluster */
115 		for (; last_in_cluster <= si->highest_bit; offset++) {
116 			if (si->swap_map[offset])
117 				last_in_cluster = offset + SWAPFILE_CLUSTER;
118 			else if (offset == last_in_cluster) {
119 				spin_lock(&swap_lock);
120 				si->cluster_next = offset-SWAPFILE_CLUSTER+1;
121 				goto cluster;
122 			}
123 			if (unlikely(--latency_ration < 0)) {
124 				cond_resched();
125 				latency_ration = LATENCY_LIMIT;
126 			}
127 		}
128 		spin_lock(&swap_lock);
129 		goto lowest;
130 	}
131 
132 	si->cluster_nr--;
133 cluster:
134 	offset = si->cluster_next;
135 	if (offset > si->highest_bit)
136 lowest:		offset = si->lowest_bit;
137 checks:	if (!(si->flags & SWP_WRITEOK))
138 		goto no_page;
139 	if (!si->highest_bit)
140 		goto no_page;
141 	if (!si->swap_map[offset]) {
142 		if (offset == si->lowest_bit)
143 			si->lowest_bit++;
144 		if (offset == si->highest_bit)
145 			si->highest_bit--;
146 		si->inuse_pages++;
147 		if (si->inuse_pages == si->pages) {
148 			si->lowest_bit = si->max;
149 			si->highest_bit = 0;
150 		}
151 		si->swap_map[offset] = 1;
152 		si->cluster_next = offset + 1;
153 		si->flags -= SWP_SCANNING;
154 		return offset;
155 	}
156 
157 	spin_unlock(&swap_lock);
158 	while (++offset <= si->highest_bit) {
159 		if (!si->swap_map[offset]) {
160 			spin_lock(&swap_lock);
161 			goto checks;
162 		}
163 		if (unlikely(--latency_ration < 0)) {
164 			cond_resched();
165 			latency_ration = LATENCY_LIMIT;
166 		}
167 	}
168 	spin_lock(&swap_lock);
169 	goto lowest;
170 
171 no_page:
172 	si->flags -= SWP_SCANNING;
173 	return 0;
174 }
175 
176 swp_entry_t get_swap_page(void)
177 {
178 	struct swap_info_struct *si;
179 	pgoff_t offset;
180 	int type, next;
181 	int wrapped = 0;
182 
183 	spin_lock(&swap_lock);
184 	if (nr_swap_pages <= 0)
185 		goto noswap;
186 	nr_swap_pages--;
187 
188 	for (type = swap_list.next; type >= 0 && wrapped < 2; type = next) {
189 		si = swap_info + type;
190 		next = si->next;
191 		if (next < 0 ||
192 		    (!wrapped && si->prio != swap_info[next].prio)) {
193 			next = swap_list.head;
194 			wrapped++;
195 		}
196 
197 		if (!si->highest_bit)
198 			continue;
199 		if (!(si->flags & SWP_WRITEOK))
200 			continue;
201 
202 		swap_list.next = next;
203 		offset = scan_swap_map(si);
204 		if (offset) {
205 			spin_unlock(&swap_lock);
206 			return swp_entry(type, offset);
207 		}
208 		next = swap_list.next;
209 	}
210 
211 	nr_swap_pages++;
212 noswap:
213 	spin_unlock(&swap_lock);
214 	return (swp_entry_t) {0};
215 }
216 
217 swp_entry_t get_swap_page_of_type(int type)
218 {
219 	struct swap_info_struct *si;
220 	pgoff_t offset;
221 
222 	spin_lock(&swap_lock);
223 	si = swap_info + type;
224 	if (si->flags & SWP_WRITEOK) {
225 		nr_swap_pages--;
226 		offset = scan_swap_map(si);
227 		if (offset) {
228 			spin_unlock(&swap_lock);
229 			return swp_entry(type, offset);
230 		}
231 		nr_swap_pages++;
232 	}
233 	spin_unlock(&swap_lock);
234 	return (swp_entry_t) {0};
235 }
236 
237 static struct swap_info_struct * swap_info_get(swp_entry_t entry)
238 {
239 	struct swap_info_struct * p;
240 	unsigned long offset, type;
241 
242 	if (!entry.val)
243 		goto out;
244 	type = swp_type(entry);
245 	if (type >= nr_swapfiles)
246 		goto bad_nofile;
247 	p = & swap_info[type];
248 	if (!(p->flags & SWP_USED))
249 		goto bad_device;
250 	offset = swp_offset(entry);
251 	if (offset >= p->max)
252 		goto bad_offset;
253 	if (!p->swap_map[offset])
254 		goto bad_free;
255 	spin_lock(&swap_lock);
256 	return p;
257 
258 bad_free:
259 	printk(KERN_ERR "swap_free: %s%08lx\n", Unused_offset, entry.val);
260 	goto out;
261 bad_offset:
262 	printk(KERN_ERR "swap_free: %s%08lx\n", Bad_offset, entry.val);
263 	goto out;
264 bad_device:
265 	printk(KERN_ERR "swap_free: %s%08lx\n", Unused_file, entry.val);
266 	goto out;
267 bad_nofile:
268 	printk(KERN_ERR "swap_free: %s%08lx\n", Bad_file, entry.val);
269 out:
270 	return NULL;
271 }
272 
273 static int swap_entry_free(struct swap_info_struct *p, unsigned long offset)
274 {
275 	int count = p->swap_map[offset];
276 
277 	if (count < SWAP_MAP_MAX) {
278 		count--;
279 		p->swap_map[offset] = count;
280 		if (!count) {
281 			if (offset < p->lowest_bit)
282 				p->lowest_bit = offset;
283 			if (offset > p->highest_bit)
284 				p->highest_bit = offset;
285 			if (p->prio > swap_info[swap_list.next].prio)
286 				swap_list.next = p - swap_info;
287 			nr_swap_pages++;
288 			p->inuse_pages--;
289 		}
290 	}
291 	return count;
292 }
293 
294 /*
295  * Caller has made sure that the swapdevice corresponding to entry
296  * is still around or has not been recycled.
297  */
298 void swap_free(swp_entry_t entry)
299 {
300 	struct swap_info_struct * p;
301 
302 	p = swap_info_get(entry);
303 	if (p) {
304 		swap_entry_free(p, swp_offset(entry));
305 		spin_unlock(&swap_lock);
306 	}
307 }
308 
309 /*
310  * How many references to page are currently swapped out?
311  */
312 static inline int page_swapcount(struct page *page)
313 {
314 	int count = 0;
315 	struct swap_info_struct *p;
316 	swp_entry_t entry;
317 
318 	entry.val = page_private(page);
319 	p = swap_info_get(entry);
320 	if (p) {
321 		/* Subtract the 1 for the swap cache itself */
322 		count = p->swap_map[swp_offset(entry)] - 1;
323 		spin_unlock(&swap_lock);
324 	}
325 	return count;
326 }
327 
328 /*
329  * We can use this swap cache entry directly
330  * if there are no other references to it.
331  */
332 int can_share_swap_page(struct page *page)
333 {
334 	int count;
335 
336 	BUG_ON(!PageLocked(page));
337 	count = page_mapcount(page);
338 	if (count <= 1 && PageSwapCache(page))
339 		count += page_swapcount(page);
340 	return count == 1;
341 }
342 
343 /*
344  * Work out if there are any other processes sharing this
345  * swap cache page. Free it if you can. Return success.
346  */
347 static int remove_exclusive_swap_page_count(struct page *page, int count)
348 {
349 	int retval;
350 	struct swap_info_struct * p;
351 	swp_entry_t entry;
352 
353 	BUG_ON(PagePrivate(page));
354 	BUG_ON(!PageLocked(page));
355 
356 	if (!PageSwapCache(page))
357 		return 0;
358 	if (PageWriteback(page))
359 		return 0;
360 	if (page_count(page) != count) /* us + cache + ptes */
361 		return 0;
362 
363 	entry.val = page_private(page);
364 	p = swap_info_get(entry);
365 	if (!p)
366 		return 0;
367 
368 	/* Is the only swap cache user the cache itself? */
369 	retval = 0;
370 	if (p->swap_map[swp_offset(entry)] == 1) {
371 		/* Recheck the page count with the swapcache lock held.. */
372 		spin_lock_irq(&swapper_space.tree_lock);
373 		if ((page_count(page) == count) && !PageWriteback(page)) {
374 			__delete_from_swap_cache(page);
375 			SetPageDirty(page);
376 			retval = 1;
377 		}
378 		spin_unlock_irq(&swapper_space.tree_lock);
379 	}
380 	spin_unlock(&swap_lock);
381 
382 	if (retval) {
383 		swap_free(entry);
384 		page_cache_release(page);
385 	}
386 
387 	return retval;
388 }
389 
390 /*
391  * Most of the time the page should have two references: one for the
392  * process and one for the swap cache.
393  */
394 int remove_exclusive_swap_page(struct page *page)
395 {
396 	return remove_exclusive_swap_page_count(page, 2);
397 }
398 
399 /*
400  * The pageout code holds an extra reference to the page.  That raises
401  * the reference count to test for to 2 for a page that is only in the
402  * swap cache plus 1 for each process that maps the page.
403  */
404 int remove_exclusive_swap_page_ref(struct page *page)
405 {
406 	return remove_exclusive_swap_page_count(page, 2 + page_mapcount(page));
407 }
408 
409 /*
410  * Free the swap entry like above, but also try to
411  * free the page cache entry if it is the last user.
412  */
413 void free_swap_and_cache(swp_entry_t entry)
414 {
415 	struct swap_info_struct * p;
416 	struct page *page = NULL;
417 
418 	if (is_migration_entry(entry))
419 		return;
420 
421 	p = swap_info_get(entry);
422 	if (p) {
423 		if (swap_entry_free(p, swp_offset(entry)) == 1) {
424 			page = find_get_page(&swapper_space, entry.val);
425 			if (page && !trylock_page(page)) {
426 				page_cache_release(page);
427 				page = NULL;
428 			}
429 		}
430 		spin_unlock(&swap_lock);
431 	}
432 	if (page) {
433 		int one_user;
434 
435 		BUG_ON(PagePrivate(page));
436 		one_user = (page_count(page) == 2);
437 		/* Only cache user (+us), or swap space full? Free it! */
438 		/* Also recheck PageSwapCache after page is locked (above) */
439 		if (PageSwapCache(page) && !PageWriteback(page) &&
440 					(one_user || vm_swap_full())) {
441 			delete_from_swap_cache(page);
442 			SetPageDirty(page);
443 		}
444 		unlock_page(page);
445 		page_cache_release(page);
446 	}
447 }
448 
449 #ifdef CONFIG_HIBERNATION
450 /*
451  * Find the swap type that corresponds to given device (if any).
452  *
453  * @offset - number of the PAGE_SIZE-sized block of the device, starting
454  * from 0, in which the swap header is expected to be located.
455  *
456  * This is needed for the suspend to disk (aka swsusp).
457  */
458 int swap_type_of(dev_t device, sector_t offset, struct block_device **bdev_p)
459 {
460 	struct block_device *bdev = NULL;
461 	int i;
462 
463 	if (device)
464 		bdev = bdget(device);
465 
466 	spin_lock(&swap_lock);
467 	for (i = 0; i < nr_swapfiles; i++) {
468 		struct swap_info_struct *sis = swap_info + i;
469 
470 		if (!(sis->flags & SWP_WRITEOK))
471 			continue;
472 
473 		if (!bdev) {
474 			if (bdev_p)
475 				*bdev_p = sis->bdev;
476 
477 			spin_unlock(&swap_lock);
478 			return i;
479 		}
480 		if (bdev == sis->bdev) {
481 			struct swap_extent *se;
482 
483 			se = list_entry(sis->extent_list.next,
484 					struct swap_extent, list);
485 			if (se->start_block == offset) {
486 				if (bdev_p)
487 					*bdev_p = sis->bdev;
488 
489 				spin_unlock(&swap_lock);
490 				bdput(bdev);
491 				return i;
492 			}
493 		}
494 	}
495 	spin_unlock(&swap_lock);
496 	if (bdev)
497 		bdput(bdev);
498 
499 	return -ENODEV;
500 }
501 
502 /*
503  * Return either the total number of swap pages of given type, or the number
504  * of free pages of that type (depending on @free)
505  *
506  * This is needed for software suspend
507  */
508 unsigned int count_swap_pages(int type, int free)
509 {
510 	unsigned int n = 0;
511 
512 	if (type < nr_swapfiles) {
513 		spin_lock(&swap_lock);
514 		if (swap_info[type].flags & SWP_WRITEOK) {
515 			n = swap_info[type].pages;
516 			if (free)
517 				n -= swap_info[type].inuse_pages;
518 		}
519 		spin_unlock(&swap_lock);
520 	}
521 	return n;
522 }
523 #endif
524 
525 /*
526  * No need to decide whether this PTE shares the swap entry with others,
527  * just let do_wp_page work it out if a write is requested later - to
528  * force COW, vm_page_prot omits write permission from any private vma.
529  */
530 static int unuse_pte(struct vm_area_struct *vma, pmd_t *pmd,
531 		unsigned long addr, swp_entry_t entry, struct page *page)
532 {
533 	spinlock_t *ptl;
534 	pte_t *pte;
535 	int ret = 1;
536 
537 	if (mem_cgroup_charge(page, vma->vm_mm, GFP_KERNEL))
538 		ret = -ENOMEM;
539 
540 	pte = pte_offset_map_lock(vma->vm_mm, pmd, addr, &ptl);
541 	if (unlikely(!pte_same(*pte, swp_entry_to_pte(entry)))) {
542 		if (ret > 0)
543 			mem_cgroup_uncharge_page(page);
544 		ret = 0;
545 		goto out;
546 	}
547 
548 	inc_mm_counter(vma->vm_mm, anon_rss);
549 	get_page(page);
550 	set_pte_at(vma->vm_mm, addr, pte,
551 		   pte_mkold(mk_pte(page, vma->vm_page_prot)));
552 	page_add_anon_rmap(page, vma, addr);
553 	swap_free(entry);
554 	/*
555 	 * Move the page to the active list so it is not
556 	 * immediately swapped out again after swapon.
557 	 */
558 	activate_page(page);
559 out:
560 	pte_unmap_unlock(pte, ptl);
561 	return ret;
562 }
563 
564 static int unuse_pte_range(struct vm_area_struct *vma, pmd_t *pmd,
565 				unsigned long addr, unsigned long end,
566 				swp_entry_t entry, struct page *page)
567 {
568 	pte_t swp_pte = swp_entry_to_pte(entry);
569 	pte_t *pte;
570 	int ret = 0;
571 
572 	/*
573 	 * We don't actually need pte lock while scanning for swp_pte: since
574 	 * we hold page lock and mmap_sem, swp_pte cannot be inserted into the
575 	 * page table while we're scanning; though it could get zapped, and on
576 	 * some architectures (e.g. x86_32 with PAE) we might catch a glimpse
577 	 * of unmatched parts which look like swp_pte, so unuse_pte must
578 	 * recheck under pte lock.  Scanning without pte lock lets it be
579 	 * preemptible whenever CONFIG_PREEMPT but not CONFIG_HIGHPTE.
580 	 */
581 	pte = pte_offset_map(pmd, addr);
582 	do {
583 		/*
584 		 * swapoff spends a _lot_ of time in this loop!
585 		 * Test inline before going to call unuse_pte.
586 		 */
587 		if (unlikely(pte_same(*pte, swp_pte))) {
588 			pte_unmap(pte);
589 			ret = unuse_pte(vma, pmd, addr, entry, page);
590 			if (ret)
591 				goto out;
592 			pte = pte_offset_map(pmd, addr);
593 		}
594 	} while (pte++, addr += PAGE_SIZE, addr != end);
595 	pte_unmap(pte - 1);
596 out:
597 	return ret;
598 }
599 
600 static inline int unuse_pmd_range(struct vm_area_struct *vma, pud_t *pud,
601 				unsigned long addr, unsigned long end,
602 				swp_entry_t entry, struct page *page)
603 {
604 	pmd_t *pmd;
605 	unsigned long next;
606 	int ret;
607 
608 	pmd = pmd_offset(pud, addr);
609 	do {
610 		next = pmd_addr_end(addr, end);
611 		if (pmd_none_or_clear_bad(pmd))
612 			continue;
613 		ret = unuse_pte_range(vma, pmd, addr, next, entry, page);
614 		if (ret)
615 			return ret;
616 	} while (pmd++, addr = next, addr != end);
617 	return 0;
618 }
619 
620 static inline int unuse_pud_range(struct vm_area_struct *vma, pgd_t *pgd,
621 				unsigned long addr, unsigned long end,
622 				swp_entry_t entry, struct page *page)
623 {
624 	pud_t *pud;
625 	unsigned long next;
626 	int ret;
627 
628 	pud = pud_offset(pgd, addr);
629 	do {
630 		next = pud_addr_end(addr, end);
631 		if (pud_none_or_clear_bad(pud))
632 			continue;
633 		ret = unuse_pmd_range(vma, pud, addr, next, entry, page);
634 		if (ret)
635 			return ret;
636 	} while (pud++, addr = next, addr != end);
637 	return 0;
638 }
639 
640 static int unuse_vma(struct vm_area_struct *vma,
641 				swp_entry_t entry, struct page *page)
642 {
643 	pgd_t *pgd;
644 	unsigned long addr, end, next;
645 	int ret;
646 
647 	if (page->mapping) {
648 		addr = page_address_in_vma(page, vma);
649 		if (addr == -EFAULT)
650 			return 0;
651 		else
652 			end = addr + PAGE_SIZE;
653 	} else {
654 		addr = vma->vm_start;
655 		end = vma->vm_end;
656 	}
657 
658 	pgd = pgd_offset(vma->vm_mm, addr);
659 	do {
660 		next = pgd_addr_end(addr, end);
661 		if (pgd_none_or_clear_bad(pgd))
662 			continue;
663 		ret = unuse_pud_range(vma, pgd, addr, next, entry, page);
664 		if (ret)
665 			return ret;
666 	} while (pgd++, addr = next, addr != end);
667 	return 0;
668 }
669 
670 static int unuse_mm(struct mm_struct *mm,
671 				swp_entry_t entry, struct page *page)
672 {
673 	struct vm_area_struct *vma;
674 	int ret = 0;
675 
676 	if (!down_read_trylock(&mm->mmap_sem)) {
677 		/*
678 		 * Activate page so shrink_inactive_list is unlikely to unmap
679 		 * its ptes while lock is dropped, so swapoff can make progress.
680 		 */
681 		activate_page(page);
682 		unlock_page(page);
683 		down_read(&mm->mmap_sem);
684 		lock_page(page);
685 	}
686 	for (vma = mm->mmap; vma; vma = vma->vm_next) {
687 		if (vma->anon_vma && (ret = unuse_vma(vma, entry, page)))
688 			break;
689 	}
690 	up_read(&mm->mmap_sem);
691 	return (ret < 0)? ret: 0;
692 }
693 
694 /*
695  * Scan swap_map from current position to next entry still in use.
696  * Recycle to start on reaching the end, returning 0 when empty.
697  */
698 static unsigned int find_next_to_unuse(struct swap_info_struct *si,
699 					unsigned int prev)
700 {
701 	unsigned int max = si->max;
702 	unsigned int i = prev;
703 	int count;
704 
705 	/*
706 	 * No need for swap_lock here: we're just looking
707 	 * for whether an entry is in use, not modifying it; false
708 	 * hits are okay, and sys_swapoff() has already prevented new
709 	 * allocations from this area (while holding swap_lock).
710 	 */
711 	for (;;) {
712 		if (++i >= max) {
713 			if (!prev) {
714 				i = 0;
715 				break;
716 			}
717 			/*
718 			 * No entries in use at top of swap_map,
719 			 * loop back to start and recheck there.
720 			 */
721 			max = prev + 1;
722 			prev = 0;
723 			i = 1;
724 		}
725 		count = si->swap_map[i];
726 		if (count && count != SWAP_MAP_BAD)
727 			break;
728 	}
729 	return i;
730 }
731 
732 /*
733  * We completely avoid races by reading each swap page in advance,
734  * and then search for the process using it.  All the necessary
735  * page table adjustments can then be made atomically.
736  */
737 static int try_to_unuse(unsigned int type)
738 {
739 	struct swap_info_struct * si = &swap_info[type];
740 	struct mm_struct *start_mm;
741 	unsigned short *swap_map;
742 	unsigned short swcount;
743 	struct page *page;
744 	swp_entry_t entry;
745 	unsigned int i = 0;
746 	int retval = 0;
747 	int reset_overflow = 0;
748 	int shmem;
749 
750 	/*
751 	 * When searching mms for an entry, a good strategy is to
752 	 * start at the first mm we freed the previous entry from
753 	 * (though actually we don't notice whether we or coincidence
754 	 * freed the entry).  Initialize this start_mm with a hold.
755 	 *
756 	 * A simpler strategy would be to start at the last mm we
757 	 * freed the previous entry from; but that would take less
758 	 * advantage of mmlist ordering, which clusters forked mms
759 	 * together, child after parent.  If we race with dup_mmap(), we
760 	 * prefer to resolve parent before child, lest we miss entries
761 	 * duplicated after we scanned child: using last mm would invert
762 	 * that.  Though it's only a serious concern when an overflowed
763 	 * swap count is reset from SWAP_MAP_MAX, preventing a rescan.
764 	 */
765 	start_mm = &init_mm;
766 	atomic_inc(&init_mm.mm_users);
767 
768 	/*
769 	 * Keep on scanning until all entries have gone.  Usually,
770 	 * one pass through swap_map is enough, but not necessarily:
771 	 * there are races when an instance of an entry might be missed.
772 	 */
773 	while ((i = find_next_to_unuse(si, i)) != 0) {
774 		if (signal_pending(current)) {
775 			retval = -EINTR;
776 			break;
777 		}
778 
779 		/*
780 		 * Get a page for the entry, using the existing swap
781 		 * cache page if there is one.  Otherwise, get a clean
782 		 * page and read the swap into it.
783 		 */
784 		swap_map = &si->swap_map[i];
785 		entry = swp_entry(type, i);
786 		page = read_swap_cache_async(entry,
787 					GFP_HIGHUSER_MOVABLE, NULL, 0);
788 		if (!page) {
789 			/*
790 			 * Either swap_duplicate() failed because entry
791 			 * has been freed independently, and will not be
792 			 * reused since sys_swapoff() already disabled
793 			 * allocation from here, or alloc_page() failed.
794 			 */
795 			if (!*swap_map)
796 				continue;
797 			retval = -ENOMEM;
798 			break;
799 		}
800 
801 		/*
802 		 * Don't hold on to start_mm if it looks like exiting.
803 		 */
804 		if (atomic_read(&start_mm->mm_users) == 1) {
805 			mmput(start_mm);
806 			start_mm = &init_mm;
807 			atomic_inc(&init_mm.mm_users);
808 		}
809 
810 		/*
811 		 * Wait for and lock page.  When do_swap_page races with
812 		 * try_to_unuse, do_swap_page can handle the fault much
813 		 * faster than try_to_unuse can locate the entry.  This
814 		 * apparently redundant "wait_on_page_locked" lets try_to_unuse
815 		 * defer to do_swap_page in such a case - in some tests,
816 		 * do_swap_page and try_to_unuse repeatedly compete.
817 		 */
818 		wait_on_page_locked(page);
819 		wait_on_page_writeback(page);
820 		lock_page(page);
821 		wait_on_page_writeback(page);
822 
823 		/*
824 		 * Remove all references to entry.
825 		 * Whenever we reach init_mm, there's no address space
826 		 * to search, but use it as a reminder to search shmem.
827 		 */
828 		shmem = 0;
829 		swcount = *swap_map;
830 		if (swcount > 1) {
831 			if (start_mm == &init_mm)
832 				shmem = shmem_unuse(entry, page);
833 			else
834 				retval = unuse_mm(start_mm, entry, page);
835 		}
836 		if (*swap_map > 1) {
837 			int set_start_mm = (*swap_map >= swcount);
838 			struct list_head *p = &start_mm->mmlist;
839 			struct mm_struct *new_start_mm = start_mm;
840 			struct mm_struct *prev_mm = start_mm;
841 			struct mm_struct *mm;
842 
843 			atomic_inc(&new_start_mm->mm_users);
844 			atomic_inc(&prev_mm->mm_users);
845 			spin_lock(&mmlist_lock);
846 			while (*swap_map > 1 && !retval && !shmem &&
847 					(p = p->next) != &start_mm->mmlist) {
848 				mm = list_entry(p, struct mm_struct, mmlist);
849 				if (!atomic_inc_not_zero(&mm->mm_users))
850 					continue;
851 				spin_unlock(&mmlist_lock);
852 				mmput(prev_mm);
853 				prev_mm = mm;
854 
855 				cond_resched();
856 
857 				swcount = *swap_map;
858 				if (swcount <= 1)
859 					;
860 				else if (mm == &init_mm) {
861 					set_start_mm = 1;
862 					shmem = shmem_unuse(entry, page);
863 				} else
864 					retval = unuse_mm(mm, entry, page);
865 				if (set_start_mm && *swap_map < swcount) {
866 					mmput(new_start_mm);
867 					atomic_inc(&mm->mm_users);
868 					new_start_mm = mm;
869 					set_start_mm = 0;
870 				}
871 				spin_lock(&mmlist_lock);
872 			}
873 			spin_unlock(&mmlist_lock);
874 			mmput(prev_mm);
875 			mmput(start_mm);
876 			start_mm = new_start_mm;
877 		}
878 		if (shmem) {
879 			/* page has already been unlocked and released */
880 			if (shmem > 0)
881 				continue;
882 			retval = shmem;
883 			break;
884 		}
885 		if (retval) {
886 			unlock_page(page);
887 			page_cache_release(page);
888 			break;
889 		}
890 
891 		/*
892 		 * How could swap count reach 0x7fff when the maximum
893 		 * pid is 0x7fff, and there's no way to repeat a swap
894 		 * page within an mm (except in shmem, where it's the
895 		 * shared object which takes the reference count)?
896 		 * We believe SWAP_MAP_MAX cannot occur in Linux 2.4.
897 		 *
898 		 * If that's wrong, then we should worry more about
899 		 * exit_mmap() and do_munmap() cases described above:
900 		 * we might be resetting SWAP_MAP_MAX too early here.
901 		 * We know "Undead"s can happen, they're okay, so don't
902 		 * report them; but do report if we reset SWAP_MAP_MAX.
903 		 */
904 		if (*swap_map == SWAP_MAP_MAX) {
905 			spin_lock(&swap_lock);
906 			*swap_map = 1;
907 			spin_unlock(&swap_lock);
908 			reset_overflow = 1;
909 		}
910 
911 		/*
912 		 * If a reference remains (rare), we would like to leave
913 		 * the page in the swap cache; but try_to_unmap could
914 		 * then re-duplicate the entry once we drop page lock,
915 		 * so we might loop indefinitely; also, that page could
916 		 * not be swapped out to other storage meanwhile.  So:
917 		 * delete from cache even if there's another reference,
918 		 * after ensuring that the data has been saved to disk -
919 		 * since if the reference remains (rarer), it will be
920 		 * read from disk into another page.  Splitting into two
921 		 * pages would be incorrect if swap supported "shared
922 		 * private" pages, but they are handled by tmpfs files.
923 		 */
924 		if ((*swap_map > 1) && PageDirty(page) && PageSwapCache(page)) {
925 			struct writeback_control wbc = {
926 				.sync_mode = WB_SYNC_NONE,
927 			};
928 
929 			swap_writepage(page, &wbc);
930 			lock_page(page);
931 			wait_on_page_writeback(page);
932 		}
933 		if (PageSwapCache(page))
934 			delete_from_swap_cache(page);
935 
936 		/*
937 		 * So we could skip searching mms once swap count went
938 		 * to 1, we did not mark any present ptes as dirty: must
939 		 * mark page dirty so shrink_page_list will preserve it.
940 		 */
941 		SetPageDirty(page);
942 		unlock_page(page);
943 		page_cache_release(page);
944 
945 		/*
946 		 * Make sure that we aren't completely killing
947 		 * interactive performance.
948 		 */
949 		cond_resched();
950 	}
951 
952 	mmput(start_mm);
953 	if (reset_overflow) {
954 		printk(KERN_WARNING "swapoff: cleared swap entry overflow\n");
955 		swap_overflow = 0;
956 	}
957 	return retval;
958 }
959 
960 /*
961  * After a successful try_to_unuse, if no swap is now in use, we know
962  * we can empty the mmlist.  swap_lock must be held on entry and exit.
963  * Note that mmlist_lock nests inside swap_lock, and an mm must be
964  * added to the mmlist just after page_duplicate - before would be racy.
965  */
966 static void drain_mmlist(void)
967 {
968 	struct list_head *p, *next;
969 	unsigned int i;
970 
971 	for (i = 0; i < nr_swapfiles; i++)
972 		if (swap_info[i].inuse_pages)
973 			return;
974 	spin_lock(&mmlist_lock);
975 	list_for_each_safe(p, next, &init_mm.mmlist)
976 		list_del_init(p);
977 	spin_unlock(&mmlist_lock);
978 }
979 
980 /*
981  * Use this swapdev's extent info to locate the (PAGE_SIZE) block which
982  * corresponds to page offset `offset'.
983  */
984 sector_t map_swap_page(struct swap_info_struct *sis, pgoff_t offset)
985 {
986 	struct swap_extent *se = sis->curr_swap_extent;
987 	struct swap_extent *start_se = se;
988 
989 	for ( ; ; ) {
990 		struct list_head *lh;
991 
992 		if (se->start_page <= offset &&
993 				offset < (se->start_page + se->nr_pages)) {
994 			return se->start_block + (offset - se->start_page);
995 		}
996 		lh = se->list.next;
997 		if (lh == &sis->extent_list)
998 			lh = lh->next;
999 		se = list_entry(lh, struct swap_extent, list);
1000 		sis->curr_swap_extent = se;
1001 		BUG_ON(se == start_se);		/* It *must* be present */
1002 	}
1003 }
1004 
1005 #ifdef CONFIG_HIBERNATION
1006 /*
1007  * Get the (PAGE_SIZE) block corresponding to given offset on the swapdev
1008  * corresponding to given index in swap_info (swap type).
1009  */
1010 sector_t swapdev_block(int swap_type, pgoff_t offset)
1011 {
1012 	struct swap_info_struct *sis;
1013 
1014 	if (swap_type >= nr_swapfiles)
1015 		return 0;
1016 
1017 	sis = swap_info + swap_type;
1018 	return (sis->flags & SWP_WRITEOK) ? map_swap_page(sis, offset) : 0;
1019 }
1020 #endif /* CONFIG_HIBERNATION */
1021 
1022 /*
1023  * Free all of a swapdev's extent information
1024  */
1025 static void destroy_swap_extents(struct swap_info_struct *sis)
1026 {
1027 	while (!list_empty(&sis->extent_list)) {
1028 		struct swap_extent *se;
1029 
1030 		se = list_entry(sis->extent_list.next,
1031 				struct swap_extent, list);
1032 		list_del(&se->list);
1033 		kfree(se);
1034 	}
1035 }
1036 
1037 /*
1038  * Add a block range (and the corresponding page range) into this swapdev's
1039  * extent list.  The extent list is kept sorted in page order.
1040  *
1041  * This function rather assumes that it is called in ascending page order.
1042  */
1043 static int
1044 add_swap_extent(struct swap_info_struct *sis, unsigned long start_page,
1045 		unsigned long nr_pages, sector_t start_block)
1046 {
1047 	struct swap_extent *se;
1048 	struct swap_extent *new_se;
1049 	struct list_head *lh;
1050 
1051 	lh = sis->extent_list.prev;	/* The highest page extent */
1052 	if (lh != &sis->extent_list) {
1053 		se = list_entry(lh, struct swap_extent, list);
1054 		BUG_ON(se->start_page + se->nr_pages != start_page);
1055 		if (se->start_block + se->nr_pages == start_block) {
1056 			/* Merge it */
1057 			se->nr_pages += nr_pages;
1058 			return 0;
1059 		}
1060 	}
1061 
1062 	/*
1063 	 * No merge.  Insert a new extent, preserving ordering.
1064 	 */
1065 	new_se = kmalloc(sizeof(*se), GFP_KERNEL);
1066 	if (new_se == NULL)
1067 		return -ENOMEM;
1068 	new_se->start_page = start_page;
1069 	new_se->nr_pages = nr_pages;
1070 	new_se->start_block = start_block;
1071 
1072 	list_add_tail(&new_se->list, &sis->extent_list);
1073 	return 1;
1074 }
1075 
1076 /*
1077  * A `swap extent' is a simple thing which maps a contiguous range of pages
1078  * onto a contiguous range of disk blocks.  An ordered list of swap extents
1079  * is built at swapon time and is then used at swap_writepage/swap_readpage
1080  * time for locating where on disk a page belongs.
1081  *
1082  * If the swapfile is an S_ISBLK block device, a single extent is installed.
1083  * This is done so that the main operating code can treat S_ISBLK and S_ISREG
1084  * swap files identically.
1085  *
1086  * Whether the swapdev is an S_ISREG file or an S_ISBLK blockdev, the swap
1087  * extent list operates in PAGE_SIZE disk blocks.  Both S_ISREG and S_ISBLK
1088  * swapfiles are handled *identically* after swapon time.
1089  *
1090  * For S_ISREG swapfiles, setup_swap_extents() will walk all the file's blocks
1091  * and will parse them into an ordered extent list, in PAGE_SIZE chunks.  If
1092  * some stray blocks are found which do not fall within the PAGE_SIZE alignment
1093  * requirements, they are simply tossed out - we will never use those blocks
1094  * for swapping.
1095  *
1096  * For S_ISREG swapfiles we set S_SWAPFILE across the life of the swapon.  This
1097  * prevents root from shooting her foot off by ftruncating an in-use swapfile,
1098  * which will scribble on the fs.
1099  *
1100  * The amount of disk space which a single swap extent represents varies.
1101  * Typically it is in the 1-4 megabyte range.  So we can have hundreds of
1102  * extents in the list.  To avoid much list walking, we cache the previous
1103  * search location in `curr_swap_extent', and start new searches from there.
1104  * This is extremely effective.  The average number of iterations in
1105  * map_swap_page() has been measured at about 0.3 per page.  - akpm.
1106  */
1107 static int setup_swap_extents(struct swap_info_struct *sis, sector_t *span)
1108 {
1109 	struct inode *inode;
1110 	unsigned blocks_per_page;
1111 	unsigned long page_no;
1112 	unsigned blkbits;
1113 	sector_t probe_block;
1114 	sector_t last_block;
1115 	sector_t lowest_block = -1;
1116 	sector_t highest_block = 0;
1117 	int nr_extents = 0;
1118 	int ret;
1119 
1120 	inode = sis->swap_file->f_mapping->host;
1121 	if (S_ISBLK(inode->i_mode)) {
1122 		ret = add_swap_extent(sis, 0, sis->max, 0);
1123 		*span = sis->pages;
1124 		goto done;
1125 	}
1126 
1127 	blkbits = inode->i_blkbits;
1128 	blocks_per_page = PAGE_SIZE >> blkbits;
1129 
1130 	/*
1131 	 * Map all the blocks into the extent list.  This code doesn't try
1132 	 * to be very smart.
1133 	 */
1134 	probe_block = 0;
1135 	page_no = 0;
1136 	last_block = i_size_read(inode) >> blkbits;
1137 	while ((probe_block + blocks_per_page) <= last_block &&
1138 			page_no < sis->max) {
1139 		unsigned block_in_page;
1140 		sector_t first_block;
1141 
1142 		first_block = bmap(inode, probe_block);
1143 		if (first_block == 0)
1144 			goto bad_bmap;
1145 
1146 		/*
1147 		 * It must be PAGE_SIZE aligned on-disk
1148 		 */
1149 		if (first_block & (blocks_per_page - 1)) {
1150 			probe_block++;
1151 			goto reprobe;
1152 		}
1153 
1154 		for (block_in_page = 1; block_in_page < blocks_per_page;
1155 					block_in_page++) {
1156 			sector_t block;
1157 
1158 			block = bmap(inode, probe_block + block_in_page);
1159 			if (block == 0)
1160 				goto bad_bmap;
1161 			if (block != first_block + block_in_page) {
1162 				/* Discontiguity */
1163 				probe_block++;
1164 				goto reprobe;
1165 			}
1166 		}
1167 
1168 		first_block >>= (PAGE_SHIFT - blkbits);
1169 		if (page_no) {	/* exclude the header page */
1170 			if (first_block < lowest_block)
1171 				lowest_block = first_block;
1172 			if (first_block > highest_block)
1173 				highest_block = first_block;
1174 		}
1175 
1176 		/*
1177 		 * We found a PAGE_SIZE-length, PAGE_SIZE-aligned run of blocks
1178 		 */
1179 		ret = add_swap_extent(sis, page_no, 1, first_block);
1180 		if (ret < 0)
1181 			goto out;
1182 		nr_extents += ret;
1183 		page_no++;
1184 		probe_block += blocks_per_page;
1185 reprobe:
1186 		continue;
1187 	}
1188 	ret = nr_extents;
1189 	*span = 1 + highest_block - lowest_block;
1190 	if (page_no == 0)
1191 		page_no = 1;	/* force Empty message */
1192 	sis->max = page_no;
1193 	sis->pages = page_no - 1;
1194 	sis->highest_bit = page_no - 1;
1195 done:
1196 	sis->curr_swap_extent = list_entry(sis->extent_list.prev,
1197 					struct swap_extent, list);
1198 	goto out;
1199 bad_bmap:
1200 	printk(KERN_ERR "swapon: swapfile has holes\n");
1201 	ret = -EINVAL;
1202 out:
1203 	return ret;
1204 }
1205 
1206 #if 0	/* We don't need this yet */
1207 #include <linux/backing-dev.h>
1208 int page_queue_congested(struct page *page)
1209 {
1210 	struct backing_dev_info *bdi;
1211 
1212 	BUG_ON(!PageLocked(page));	/* It pins the swap_info_struct */
1213 
1214 	if (PageSwapCache(page)) {
1215 		swp_entry_t entry = { .val = page_private(page) };
1216 		struct swap_info_struct *sis;
1217 
1218 		sis = get_swap_info_struct(swp_type(entry));
1219 		bdi = sis->bdev->bd_inode->i_mapping->backing_dev_info;
1220 	} else
1221 		bdi = page->mapping->backing_dev_info;
1222 	return bdi_write_congested(bdi);
1223 }
1224 #endif
1225 
1226 asmlinkage long sys_swapoff(const char __user * specialfile)
1227 {
1228 	struct swap_info_struct * p = NULL;
1229 	unsigned short *swap_map;
1230 	struct file *swap_file, *victim;
1231 	struct address_space *mapping;
1232 	struct inode *inode;
1233 	char * pathname;
1234 	int i, type, prev;
1235 	int err;
1236 
1237 	if (!capable(CAP_SYS_ADMIN))
1238 		return -EPERM;
1239 
1240 	pathname = getname(specialfile);
1241 	err = PTR_ERR(pathname);
1242 	if (IS_ERR(pathname))
1243 		goto out;
1244 
1245 	victim = filp_open(pathname, O_RDWR|O_LARGEFILE, 0);
1246 	putname(pathname);
1247 	err = PTR_ERR(victim);
1248 	if (IS_ERR(victim))
1249 		goto out;
1250 
1251 	mapping = victim->f_mapping;
1252 	prev = -1;
1253 	spin_lock(&swap_lock);
1254 	for (type = swap_list.head; type >= 0; type = swap_info[type].next) {
1255 		p = swap_info + type;
1256 		if ((p->flags & SWP_ACTIVE) == SWP_ACTIVE) {
1257 			if (p->swap_file->f_mapping == mapping)
1258 				break;
1259 		}
1260 		prev = type;
1261 	}
1262 	if (type < 0) {
1263 		err = -EINVAL;
1264 		spin_unlock(&swap_lock);
1265 		goto out_dput;
1266 	}
1267 	if (!security_vm_enough_memory(p->pages))
1268 		vm_unacct_memory(p->pages);
1269 	else {
1270 		err = -ENOMEM;
1271 		spin_unlock(&swap_lock);
1272 		goto out_dput;
1273 	}
1274 	if (prev < 0) {
1275 		swap_list.head = p->next;
1276 	} else {
1277 		swap_info[prev].next = p->next;
1278 	}
1279 	if (type == swap_list.next) {
1280 		/* just pick something that's safe... */
1281 		swap_list.next = swap_list.head;
1282 	}
1283 	if (p->prio < 0) {
1284 		for (i = p->next; i >= 0; i = swap_info[i].next)
1285 			swap_info[i].prio = p->prio--;
1286 		least_priority++;
1287 	}
1288 	nr_swap_pages -= p->pages;
1289 	total_swap_pages -= p->pages;
1290 	p->flags &= ~SWP_WRITEOK;
1291 	spin_unlock(&swap_lock);
1292 
1293 	current->flags |= PF_SWAPOFF;
1294 	err = try_to_unuse(type);
1295 	current->flags &= ~PF_SWAPOFF;
1296 
1297 	if (err) {
1298 		/* re-insert swap space back into swap_list */
1299 		spin_lock(&swap_lock);
1300 		if (p->prio < 0)
1301 			p->prio = --least_priority;
1302 		prev = -1;
1303 		for (i = swap_list.head; i >= 0; i = swap_info[i].next) {
1304 			if (p->prio >= swap_info[i].prio)
1305 				break;
1306 			prev = i;
1307 		}
1308 		p->next = i;
1309 		if (prev < 0)
1310 			swap_list.head = swap_list.next = p - swap_info;
1311 		else
1312 			swap_info[prev].next = p - swap_info;
1313 		nr_swap_pages += p->pages;
1314 		total_swap_pages += p->pages;
1315 		p->flags |= SWP_WRITEOK;
1316 		spin_unlock(&swap_lock);
1317 		goto out_dput;
1318 	}
1319 
1320 	/* wait for any unplug function to finish */
1321 	down_write(&swap_unplug_sem);
1322 	up_write(&swap_unplug_sem);
1323 
1324 	destroy_swap_extents(p);
1325 	mutex_lock(&swapon_mutex);
1326 	spin_lock(&swap_lock);
1327 	drain_mmlist();
1328 
1329 	/* wait for anyone still in scan_swap_map */
1330 	p->highest_bit = 0;		/* cuts scans short */
1331 	while (p->flags >= SWP_SCANNING) {
1332 		spin_unlock(&swap_lock);
1333 		schedule_timeout_uninterruptible(1);
1334 		spin_lock(&swap_lock);
1335 	}
1336 
1337 	swap_file = p->swap_file;
1338 	p->swap_file = NULL;
1339 	p->max = 0;
1340 	swap_map = p->swap_map;
1341 	p->swap_map = NULL;
1342 	p->flags = 0;
1343 	spin_unlock(&swap_lock);
1344 	mutex_unlock(&swapon_mutex);
1345 	vfree(swap_map);
1346 	inode = mapping->host;
1347 	if (S_ISBLK(inode->i_mode)) {
1348 		struct block_device *bdev = I_BDEV(inode);
1349 		set_blocksize(bdev, p->old_block_size);
1350 		bd_release(bdev);
1351 	} else {
1352 		mutex_lock(&inode->i_mutex);
1353 		inode->i_flags &= ~S_SWAPFILE;
1354 		mutex_unlock(&inode->i_mutex);
1355 	}
1356 	filp_close(swap_file, NULL);
1357 	err = 0;
1358 
1359 out_dput:
1360 	filp_close(victim, NULL);
1361 out:
1362 	return err;
1363 }
1364 
1365 #ifdef CONFIG_PROC_FS
1366 /* iterator */
1367 static void *swap_start(struct seq_file *swap, loff_t *pos)
1368 {
1369 	struct swap_info_struct *ptr = swap_info;
1370 	int i;
1371 	loff_t l = *pos;
1372 
1373 	mutex_lock(&swapon_mutex);
1374 
1375 	if (!l)
1376 		return SEQ_START_TOKEN;
1377 
1378 	for (i = 0; i < nr_swapfiles; i++, ptr++) {
1379 		if (!(ptr->flags & SWP_USED) || !ptr->swap_map)
1380 			continue;
1381 		if (!--l)
1382 			return ptr;
1383 	}
1384 
1385 	return NULL;
1386 }
1387 
1388 static void *swap_next(struct seq_file *swap, void *v, loff_t *pos)
1389 {
1390 	struct swap_info_struct *ptr;
1391 	struct swap_info_struct *endptr = swap_info + nr_swapfiles;
1392 
1393 	if (v == SEQ_START_TOKEN)
1394 		ptr = swap_info;
1395 	else {
1396 		ptr = v;
1397 		ptr++;
1398 	}
1399 
1400 	for (; ptr < endptr; ptr++) {
1401 		if (!(ptr->flags & SWP_USED) || !ptr->swap_map)
1402 			continue;
1403 		++*pos;
1404 		return ptr;
1405 	}
1406 
1407 	return NULL;
1408 }
1409 
1410 static void swap_stop(struct seq_file *swap, void *v)
1411 {
1412 	mutex_unlock(&swapon_mutex);
1413 }
1414 
1415 static int swap_show(struct seq_file *swap, void *v)
1416 {
1417 	struct swap_info_struct *ptr = v;
1418 	struct file *file;
1419 	int len;
1420 
1421 	if (ptr == SEQ_START_TOKEN) {
1422 		seq_puts(swap,"Filename\t\t\t\tType\t\tSize\tUsed\tPriority\n");
1423 		return 0;
1424 	}
1425 
1426 	file = ptr->swap_file;
1427 	len = seq_path(swap, &file->f_path, " \t\n\\");
1428 	seq_printf(swap, "%*s%s\t%u\t%u\t%d\n",
1429 		       len < 40 ? 40 - len : 1, " ",
1430 		       S_ISBLK(file->f_path.dentry->d_inode->i_mode) ?
1431 				"partition" : "file\t",
1432 		       ptr->pages << (PAGE_SHIFT - 10),
1433 		       ptr->inuse_pages << (PAGE_SHIFT - 10),
1434 		       ptr->prio);
1435 	return 0;
1436 }
1437 
1438 static const struct seq_operations swaps_op = {
1439 	.start =	swap_start,
1440 	.next =		swap_next,
1441 	.stop =		swap_stop,
1442 	.show =		swap_show
1443 };
1444 
1445 static int swaps_open(struct inode *inode, struct file *file)
1446 {
1447 	return seq_open(file, &swaps_op);
1448 }
1449 
1450 static const struct file_operations proc_swaps_operations = {
1451 	.open		= swaps_open,
1452 	.read		= seq_read,
1453 	.llseek		= seq_lseek,
1454 	.release	= seq_release,
1455 };
1456 
1457 static int __init procswaps_init(void)
1458 {
1459 	proc_create("swaps", 0, NULL, &proc_swaps_operations);
1460 	return 0;
1461 }
1462 __initcall(procswaps_init);
1463 #endif /* CONFIG_PROC_FS */
1464 
1465 /*
1466  * Written 01/25/92 by Simmule Turner, heavily changed by Linus.
1467  *
1468  * The swapon system call
1469  */
1470 asmlinkage long sys_swapon(const char __user * specialfile, int swap_flags)
1471 {
1472 	struct swap_info_struct * p;
1473 	char *name = NULL;
1474 	struct block_device *bdev = NULL;
1475 	struct file *swap_file = NULL;
1476 	struct address_space *mapping;
1477 	unsigned int type;
1478 	int i, prev;
1479 	int error;
1480 	union swap_header *swap_header = NULL;
1481 	int swap_header_version;
1482 	unsigned int nr_good_pages = 0;
1483 	int nr_extents = 0;
1484 	sector_t span;
1485 	unsigned long maxpages = 1;
1486 	int swapfilesize;
1487 	unsigned short *swap_map = NULL;
1488 	struct page *page = NULL;
1489 	struct inode *inode = NULL;
1490 	int did_down = 0;
1491 
1492 	if (!capable(CAP_SYS_ADMIN))
1493 		return -EPERM;
1494 	spin_lock(&swap_lock);
1495 	p = swap_info;
1496 	for (type = 0 ; type < nr_swapfiles ; type++,p++)
1497 		if (!(p->flags & SWP_USED))
1498 			break;
1499 	error = -EPERM;
1500 	if (type >= MAX_SWAPFILES) {
1501 		spin_unlock(&swap_lock);
1502 		goto out;
1503 	}
1504 	if (type >= nr_swapfiles)
1505 		nr_swapfiles = type+1;
1506 	memset(p, 0, sizeof(*p));
1507 	INIT_LIST_HEAD(&p->extent_list);
1508 	p->flags = SWP_USED;
1509 	p->next = -1;
1510 	spin_unlock(&swap_lock);
1511 	name = getname(specialfile);
1512 	error = PTR_ERR(name);
1513 	if (IS_ERR(name)) {
1514 		name = NULL;
1515 		goto bad_swap_2;
1516 	}
1517 	swap_file = filp_open(name, O_RDWR|O_LARGEFILE, 0);
1518 	error = PTR_ERR(swap_file);
1519 	if (IS_ERR(swap_file)) {
1520 		swap_file = NULL;
1521 		goto bad_swap_2;
1522 	}
1523 
1524 	p->swap_file = swap_file;
1525 	mapping = swap_file->f_mapping;
1526 	inode = mapping->host;
1527 
1528 	error = -EBUSY;
1529 	for (i = 0; i < nr_swapfiles; i++) {
1530 		struct swap_info_struct *q = &swap_info[i];
1531 
1532 		if (i == type || !q->swap_file)
1533 			continue;
1534 		if (mapping == q->swap_file->f_mapping)
1535 			goto bad_swap;
1536 	}
1537 
1538 	error = -EINVAL;
1539 	if (S_ISBLK(inode->i_mode)) {
1540 		bdev = I_BDEV(inode);
1541 		error = bd_claim(bdev, sys_swapon);
1542 		if (error < 0) {
1543 			bdev = NULL;
1544 			error = -EINVAL;
1545 			goto bad_swap;
1546 		}
1547 		p->old_block_size = block_size(bdev);
1548 		error = set_blocksize(bdev, PAGE_SIZE);
1549 		if (error < 0)
1550 			goto bad_swap;
1551 		p->bdev = bdev;
1552 	} else if (S_ISREG(inode->i_mode)) {
1553 		p->bdev = inode->i_sb->s_bdev;
1554 		mutex_lock(&inode->i_mutex);
1555 		did_down = 1;
1556 		if (IS_SWAPFILE(inode)) {
1557 			error = -EBUSY;
1558 			goto bad_swap;
1559 		}
1560 	} else {
1561 		goto bad_swap;
1562 	}
1563 
1564 	swapfilesize = i_size_read(inode) >> PAGE_SHIFT;
1565 
1566 	/*
1567 	 * Read the swap header.
1568 	 */
1569 	if (!mapping->a_ops->readpage) {
1570 		error = -EINVAL;
1571 		goto bad_swap;
1572 	}
1573 	page = read_mapping_page(mapping, 0, swap_file);
1574 	if (IS_ERR(page)) {
1575 		error = PTR_ERR(page);
1576 		goto bad_swap;
1577 	}
1578 	kmap(page);
1579 	swap_header = page_address(page);
1580 
1581 	if (!memcmp("SWAP-SPACE",swap_header->magic.magic,10))
1582 		swap_header_version = 1;
1583 	else if (!memcmp("SWAPSPACE2",swap_header->magic.magic,10))
1584 		swap_header_version = 2;
1585 	else {
1586 		printk(KERN_ERR "Unable to find swap-space signature\n");
1587 		error = -EINVAL;
1588 		goto bad_swap;
1589 	}
1590 
1591 	switch (swap_header_version) {
1592 	case 1:
1593 		printk(KERN_ERR "version 0 swap is no longer supported. "
1594 			"Use mkswap -v1 %s\n", name);
1595 		error = -EINVAL;
1596 		goto bad_swap;
1597 	case 2:
1598 		/* swap partition endianess hack... */
1599 		if (swab32(swap_header->info.version) == 1) {
1600 			swab32s(&swap_header->info.version);
1601 			swab32s(&swap_header->info.last_page);
1602 			swab32s(&swap_header->info.nr_badpages);
1603 			for (i = 0; i < swap_header->info.nr_badpages; i++)
1604 				swab32s(&swap_header->info.badpages[i]);
1605 		}
1606 		/* Check the swap header's sub-version and the size of
1607                    the swap file and bad block lists */
1608 		if (swap_header->info.version != 1) {
1609 			printk(KERN_WARNING
1610 			       "Unable to handle swap header version %d\n",
1611 			       swap_header->info.version);
1612 			error = -EINVAL;
1613 			goto bad_swap;
1614 		}
1615 
1616 		p->lowest_bit  = 1;
1617 		p->cluster_next = 1;
1618 
1619 		/*
1620 		 * Find out how many pages are allowed for a single swap
1621 		 * device. There are two limiting factors: 1) the number of
1622 		 * bits for the swap offset in the swp_entry_t type and
1623 		 * 2) the number of bits in the a swap pte as defined by
1624 		 * the different architectures. In order to find the
1625 		 * largest possible bit mask a swap entry with swap type 0
1626 		 * and swap offset ~0UL is created, encoded to a swap pte,
1627 		 * decoded to a swp_entry_t again and finally the swap
1628 		 * offset is extracted. This will mask all the bits from
1629 		 * the initial ~0UL mask that can't be encoded in either
1630 		 * the swp_entry_t or the architecture definition of a
1631 		 * swap pte.
1632 		 */
1633 		maxpages = swp_offset(pte_to_swp_entry(swp_entry_to_pte(swp_entry(0,~0UL)))) - 1;
1634 		if (maxpages > swap_header->info.last_page)
1635 			maxpages = swap_header->info.last_page;
1636 		p->highest_bit = maxpages - 1;
1637 
1638 		error = -EINVAL;
1639 		if (!maxpages)
1640 			goto bad_swap;
1641 		if (swapfilesize && maxpages > swapfilesize) {
1642 			printk(KERN_WARNING
1643 			       "Swap area shorter than signature indicates\n");
1644 			goto bad_swap;
1645 		}
1646 		if (swap_header->info.nr_badpages && S_ISREG(inode->i_mode))
1647 			goto bad_swap;
1648 		if (swap_header->info.nr_badpages > MAX_SWAP_BADPAGES)
1649 			goto bad_swap;
1650 
1651 		/* OK, set up the swap map and apply the bad block list */
1652 		swap_map = vmalloc(maxpages * sizeof(short));
1653 		if (!swap_map) {
1654 			error = -ENOMEM;
1655 			goto bad_swap;
1656 		}
1657 
1658 		error = 0;
1659 		memset(swap_map, 0, maxpages * sizeof(short));
1660 		for (i = 0; i < swap_header->info.nr_badpages; i++) {
1661 			int page_nr = swap_header->info.badpages[i];
1662 			if (page_nr <= 0 || page_nr >= swap_header->info.last_page)
1663 				error = -EINVAL;
1664 			else
1665 				swap_map[page_nr] = SWAP_MAP_BAD;
1666 		}
1667 		nr_good_pages = swap_header->info.last_page -
1668 				swap_header->info.nr_badpages -
1669 				1 /* header page */;
1670 		if (error)
1671 			goto bad_swap;
1672 	}
1673 
1674 	if (nr_good_pages) {
1675 		swap_map[0] = SWAP_MAP_BAD;
1676 		p->max = maxpages;
1677 		p->pages = nr_good_pages;
1678 		nr_extents = setup_swap_extents(p, &span);
1679 		if (nr_extents < 0) {
1680 			error = nr_extents;
1681 			goto bad_swap;
1682 		}
1683 		nr_good_pages = p->pages;
1684 	}
1685 	if (!nr_good_pages) {
1686 		printk(KERN_WARNING "Empty swap-file\n");
1687 		error = -EINVAL;
1688 		goto bad_swap;
1689 	}
1690 
1691 	mutex_lock(&swapon_mutex);
1692 	spin_lock(&swap_lock);
1693 	if (swap_flags & SWAP_FLAG_PREFER)
1694 		p->prio =
1695 		  (swap_flags & SWAP_FLAG_PRIO_MASK) >> SWAP_FLAG_PRIO_SHIFT;
1696 	else
1697 		p->prio = --least_priority;
1698 	p->swap_map = swap_map;
1699 	p->flags = SWP_ACTIVE;
1700 	nr_swap_pages += nr_good_pages;
1701 	total_swap_pages += nr_good_pages;
1702 
1703 	printk(KERN_INFO "Adding %uk swap on %s.  "
1704 			"Priority:%d extents:%d across:%lluk\n",
1705 		nr_good_pages<<(PAGE_SHIFT-10), name, p->prio,
1706 		nr_extents, (unsigned long long)span<<(PAGE_SHIFT-10));
1707 
1708 	/* insert swap space into swap_list: */
1709 	prev = -1;
1710 	for (i = swap_list.head; i >= 0; i = swap_info[i].next) {
1711 		if (p->prio >= swap_info[i].prio) {
1712 			break;
1713 		}
1714 		prev = i;
1715 	}
1716 	p->next = i;
1717 	if (prev < 0) {
1718 		swap_list.head = swap_list.next = p - swap_info;
1719 	} else {
1720 		swap_info[prev].next = p - swap_info;
1721 	}
1722 	spin_unlock(&swap_lock);
1723 	mutex_unlock(&swapon_mutex);
1724 	error = 0;
1725 	goto out;
1726 bad_swap:
1727 	if (bdev) {
1728 		set_blocksize(bdev, p->old_block_size);
1729 		bd_release(bdev);
1730 	}
1731 	destroy_swap_extents(p);
1732 bad_swap_2:
1733 	spin_lock(&swap_lock);
1734 	p->swap_file = NULL;
1735 	p->flags = 0;
1736 	spin_unlock(&swap_lock);
1737 	vfree(swap_map);
1738 	if (swap_file)
1739 		filp_close(swap_file, NULL);
1740 out:
1741 	if (page && !IS_ERR(page)) {
1742 		kunmap(page);
1743 		page_cache_release(page);
1744 	}
1745 	if (name)
1746 		putname(name);
1747 	if (did_down) {
1748 		if (!error)
1749 			inode->i_flags |= S_SWAPFILE;
1750 		mutex_unlock(&inode->i_mutex);
1751 	}
1752 	return error;
1753 }
1754 
1755 void si_swapinfo(struct sysinfo *val)
1756 {
1757 	unsigned int i;
1758 	unsigned long nr_to_be_unused = 0;
1759 
1760 	spin_lock(&swap_lock);
1761 	for (i = 0; i < nr_swapfiles; i++) {
1762 		if (!(swap_info[i].flags & SWP_USED) ||
1763 		     (swap_info[i].flags & SWP_WRITEOK))
1764 			continue;
1765 		nr_to_be_unused += swap_info[i].inuse_pages;
1766 	}
1767 	val->freeswap = nr_swap_pages + nr_to_be_unused;
1768 	val->totalswap = total_swap_pages + nr_to_be_unused;
1769 	spin_unlock(&swap_lock);
1770 }
1771 
1772 /*
1773  * Verify that a swap entry is valid and increment its swap map count.
1774  *
1775  * Note: if swap_map[] reaches SWAP_MAP_MAX the entries are treated as
1776  * "permanent", but will be reclaimed by the next swapoff.
1777  */
1778 int swap_duplicate(swp_entry_t entry)
1779 {
1780 	struct swap_info_struct * p;
1781 	unsigned long offset, type;
1782 	int result = 0;
1783 
1784 	if (is_migration_entry(entry))
1785 		return 1;
1786 
1787 	type = swp_type(entry);
1788 	if (type >= nr_swapfiles)
1789 		goto bad_file;
1790 	p = type + swap_info;
1791 	offset = swp_offset(entry);
1792 
1793 	spin_lock(&swap_lock);
1794 	if (offset < p->max && p->swap_map[offset]) {
1795 		if (p->swap_map[offset] < SWAP_MAP_MAX - 1) {
1796 			p->swap_map[offset]++;
1797 			result = 1;
1798 		} else if (p->swap_map[offset] <= SWAP_MAP_MAX) {
1799 			if (swap_overflow++ < 5)
1800 				printk(KERN_WARNING "swap_dup: swap entry overflow\n");
1801 			p->swap_map[offset] = SWAP_MAP_MAX;
1802 			result = 1;
1803 		}
1804 	}
1805 	spin_unlock(&swap_lock);
1806 out:
1807 	return result;
1808 
1809 bad_file:
1810 	printk(KERN_ERR "swap_dup: %s%08lx\n", Bad_file, entry.val);
1811 	goto out;
1812 }
1813 
1814 struct swap_info_struct *
1815 get_swap_info_struct(unsigned type)
1816 {
1817 	return &swap_info[type];
1818 }
1819 
1820 /*
1821  * swap_lock prevents swap_map being freed. Don't grab an extra
1822  * reference on the swaphandle, it doesn't matter if it becomes unused.
1823  */
1824 int valid_swaphandles(swp_entry_t entry, unsigned long *offset)
1825 {
1826 	struct swap_info_struct *si;
1827 	int our_page_cluster = page_cluster;
1828 	pgoff_t target, toff;
1829 	pgoff_t base, end;
1830 	int nr_pages = 0;
1831 
1832 	if (!our_page_cluster)	/* no readahead */
1833 		return 0;
1834 
1835 	si = &swap_info[swp_type(entry)];
1836 	target = swp_offset(entry);
1837 	base = (target >> our_page_cluster) << our_page_cluster;
1838 	end = base + (1 << our_page_cluster);
1839 	if (!base)		/* first page is swap header */
1840 		base++;
1841 
1842 	spin_lock(&swap_lock);
1843 	if (end > si->max)	/* don't go beyond end of map */
1844 		end = si->max;
1845 
1846 	/* Count contiguous allocated slots above our target */
1847 	for (toff = target; ++toff < end; nr_pages++) {
1848 		/* Don't read in free or bad pages */
1849 		if (!si->swap_map[toff])
1850 			break;
1851 		if (si->swap_map[toff] == SWAP_MAP_BAD)
1852 			break;
1853 	}
1854 	/* Count contiguous allocated slots below our target */
1855 	for (toff = target; --toff >= base; nr_pages++) {
1856 		/* Don't read in free or bad pages */
1857 		if (!si->swap_map[toff])
1858 			break;
1859 		if (si->swap_map[toff] == SWAP_MAP_BAD)
1860 			break;
1861 	}
1862 	spin_unlock(&swap_lock);
1863 
1864 	/*
1865 	 * Indicate starting offset, and return number of pages to get:
1866 	 * if only 1, say 0, since there's then no readahead to be done.
1867 	 */
1868 	*offset = ++toff;
1869 	return nr_pages? ++nr_pages: 0;
1870 }
1871