1 // SPDX-License-Identifier: GPL-2.0-only 2 /* 3 * linux/mm/swapfile.c 4 * 5 * Copyright (C) 1991, 1992, 1993, 1994 Linus Torvalds 6 * Swap reorganised 29.12.95, Stephen Tweedie 7 */ 8 9 #include <linux/mm.h> 10 #include <linux/sched/mm.h> 11 #include <linux/sched/task.h> 12 #include <linux/hugetlb.h> 13 #include <linux/mman.h> 14 #include <linux/slab.h> 15 #include <linux/kernel_stat.h> 16 #include <linux/swap.h> 17 #include <linux/vmalloc.h> 18 #include <linux/pagemap.h> 19 #include <linux/namei.h> 20 #include <linux/shmem_fs.h> 21 #include <linux/blk-cgroup.h> 22 #include <linux/random.h> 23 #include <linux/writeback.h> 24 #include <linux/proc_fs.h> 25 #include <linux/seq_file.h> 26 #include <linux/init.h> 27 #include <linux/ksm.h> 28 #include <linux/rmap.h> 29 #include <linux/security.h> 30 #include <linux/backing-dev.h> 31 #include <linux/mutex.h> 32 #include <linux/capability.h> 33 #include <linux/syscalls.h> 34 #include <linux/memcontrol.h> 35 #include <linux/poll.h> 36 #include <linux/oom.h> 37 #include <linux/frontswap.h> 38 #include <linux/swapfile.h> 39 #include <linux/export.h> 40 #include <linux/swap_slots.h> 41 #include <linux/sort.h> 42 #include <linux/completion.h> 43 44 #include <asm/tlbflush.h> 45 #include <linux/swapops.h> 46 #include <linux/swap_cgroup.h> 47 48 static bool swap_count_continued(struct swap_info_struct *, pgoff_t, 49 unsigned char); 50 static void free_swap_count_continuations(struct swap_info_struct *); 51 52 static DEFINE_SPINLOCK(swap_lock); 53 static unsigned int nr_swapfiles; 54 atomic_long_t nr_swap_pages; 55 /* 56 * Some modules use swappable objects and may try to swap them out under 57 * memory pressure (via the shrinker). Before doing so, they may wish to 58 * check to see if any swap space is available. 59 */ 60 EXPORT_SYMBOL_GPL(nr_swap_pages); 61 /* protected with swap_lock. reading in vm_swap_full() doesn't need lock */ 62 long total_swap_pages; 63 static int least_priority = -1; 64 65 static const char Bad_file[] = "Bad swap file entry "; 66 static const char Unused_file[] = "Unused swap file entry "; 67 static const char Bad_offset[] = "Bad swap offset entry "; 68 static const char Unused_offset[] = "Unused swap offset entry "; 69 70 /* 71 * all active swap_info_structs 72 * protected with swap_lock, and ordered by priority. 73 */ 74 static PLIST_HEAD(swap_active_head); 75 76 /* 77 * all available (active, not full) swap_info_structs 78 * protected with swap_avail_lock, ordered by priority. 79 * This is used by get_swap_page() instead of swap_active_head 80 * because swap_active_head includes all swap_info_structs, 81 * but get_swap_page() doesn't need to look at full ones. 82 * This uses its own lock instead of swap_lock because when a 83 * swap_info_struct changes between not-full/full, it needs to 84 * add/remove itself to/from this list, but the swap_info_struct->lock 85 * is held and the locking order requires swap_lock to be taken 86 * before any swap_info_struct->lock. 87 */ 88 static struct plist_head *swap_avail_heads; 89 static DEFINE_SPINLOCK(swap_avail_lock); 90 91 struct swap_info_struct *swap_info[MAX_SWAPFILES]; 92 93 static DEFINE_MUTEX(swapon_mutex); 94 95 static DECLARE_WAIT_QUEUE_HEAD(proc_poll_wait); 96 /* Activity counter to indicate that a swapon or swapoff has occurred */ 97 static atomic_t proc_poll_event = ATOMIC_INIT(0); 98 99 atomic_t nr_rotate_swap = ATOMIC_INIT(0); 100 101 static struct swap_info_struct *swap_type_to_swap_info(int type) 102 { 103 if (type >= MAX_SWAPFILES) 104 return NULL; 105 106 return READ_ONCE(swap_info[type]); /* rcu_dereference() */ 107 } 108 109 static inline unsigned char swap_count(unsigned char ent) 110 { 111 return ent & ~SWAP_HAS_CACHE; /* may include COUNT_CONTINUED flag */ 112 } 113 114 /* Reclaim the swap entry anyway if possible */ 115 #define TTRS_ANYWAY 0x1 116 /* 117 * Reclaim the swap entry if there are no more mappings of the 118 * corresponding page 119 */ 120 #define TTRS_UNMAPPED 0x2 121 /* Reclaim the swap entry if swap is getting full*/ 122 #define TTRS_FULL 0x4 123 124 /* returns 1 if swap entry is freed */ 125 static int __try_to_reclaim_swap(struct swap_info_struct *si, 126 unsigned long offset, unsigned long flags) 127 { 128 swp_entry_t entry = swp_entry(si->type, offset); 129 struct page *page; 130 int ret = 0; 131 132 page = find_get_page(swap_address_space(entry), offset); 133 if (!page) 134 return 0; 135 /* 136 * When this function is called from scan_swap_map_slots() and it's 137 * called by vmscan.c at reclaiming pages. So, we hold a lock on a page, 138 * here. We have to use trylock for avoiding deadlock. This is a special 139 * case and you should use try_to_free_swap() with explicit lock_page() 140 * in usual operations. 141 */ 142 if (trylock_page(page)) { 143 if ((flags & TTRS_ANYWAY) || 144 ((flags & TTRS_UNMAPPED) && !page_mapped(page)) || 145 ((flags & TTRS_FULL) && mem_cgroup_swap_full(page))) 146 ret = try_to_free_swap(page); 147 unlock_page(page); 148 } 149 put_page(page); 150 return ret; 151 } 152 153 static inline struct swap_extent *first_se(struct swap_info_struct *sis) 154 { 155 struct rb_node *rb = rb_first(&sis->swap_extent_root); 156 return rb_entry(rb, struct swap_extent, rb_node); 157 } 158 159 static inline struct swap_extent *next_se(struct swap_extent *se) 160 { 161 struct rb_node *rb = rb_next(&se->rb_node); 162 return rb ? rb_entry(rb, struct swap_extent, rb_node) : NULL; 163 } 164 165 /* 166 * swapon tell device that all the old swap contents can be discarded, 167 * to allow the swap device to optimize its wear-levelling. 168 */ 169 static int discard_swap(struct swap_info_struct *si) 170 { 171 struct swap_extent *se; 172 sector_t start_block; 173 sector_t nr_blocks; 174 int err = 0; 175 176 /* Do not discard the swap header page! */ 177 se = first_se(si); 178 start_block = (se->start_block + 1) << (PAGE_SHIFT - 9); 179 nr_blocks = ((sector_t)se->nr_pages - 1) << (PAGE_SHIFT - 9); 180 if (nr_blocks) { 181 err = blkdev_issue_discard(si->bdev, start_block, 182 nr_blocks, GFP_KERNEL, 0); 183 if (err) 184 return err; 185 cond_resched(); 186 } 187 188 for (se = next_se(se); se; se = next_se(se)) { 189 start_block = se->start_block << (PAGE_SHIFT - 9); 190 nr_blocks = (sector_t)se->nr_pages << (PAGE_SHIFT - 9); 191 192 err = blkdev_issue_discard(si->bdev, start_block, 193 nr_blocks, GFP_KERNEL, 0); 194 if (err) 195 break; 196 197 cond_resched(); 198 } 199 return err; /* That will often be -EOPNOTSUPP */ 200 } 201 202 static struct swap_extent * 203 offset_to_swap_extent(struct swap_info_struct *sis, unsigned long offset) 204 { 205 struct swap_extent *se; 206 struct rb_node *rb; 207 208 rb = sis->swap_extent_root.rb_node; 209 while (rb) { 210 se = rb_entry(rb, struct swap_extent, rb_node); 211 if (offset < se->start_page) 212 rb = rb->rb_left; 213 else if (offset >= se->start_page + se->nr_pages) 214 rb = rb->rb_right; 215 else 216 return se; 217 } 218 /* It *must* be present */ 219 BUG(); 220 } 221 222 sector_t swap_page_sector(struct page *page) 223 { 224 struct swap_info_struct *sis = page_swap_info(page); 225 struct swap_extent *se; 226 sector_t sector; 227 pgoff_t offset; 228 229 offset = __page_file_index(page); 230 se = offset_to_swap_extent(sis, offset); 231 sector = se->start_block + (offset - se->start_page); 232 return sector << (PAGE_SHIFT - 9); 233 } 234 235 /* 236 * swap allocation tell device that a cluster of swap can now be discarded, 237 * to allow the swap device to optimize its wear-levelling. 238 */ 239 static void discard_swap_cluster(struct swap_info_struct *si, 240 pgoff_t start_page, pgoff_t nr_pages) 241 { 242 struct swap_extent *se = offset_to_swap_extent(si, start_page); 243 244 while (nr_pages) { 245 pgoff_t offset = start_page - se->start_page; 246 sector_t start_block = se->start_block + offset; 247 sector_t nr_blocks = se->nr_pages - offset; 248 249 if (nr_blocks > nr_pages) 250 nr_blocks = nr_pages; 251 start_page += nr_blocks; 252 nr_pages -= nr_blocks; 253 254 start_block <<= PAGE_SHIFT - 9; 255 nr_blocks <<= PAGE_SHIFT - 9; 256 if (blkdev_issue_discard(si->bdev, start_block, 257 nr_blocks, GFP_NOIO, 0)) 258 break; 259 260 se = next_se(se); 261 } 262 } 263 264 #ifdef CONFIG_THP_SWAP 265 #define SWAPFILE_CLUSTER HPAGE_PMD_NR 266 267 #define swap_entry_size(size) (size) 268 #else 269 #define SWAPFILE_CLUSTER 256 270 271 /* 272 * Define swap_entry_size() as constant to let compiler to optimize 273 * out some code if !CONFIG_THP_SWAP 274 */ 275 #define swap_entry_size(size) 1 276 #endif 277 #define LATENCY_LIMIT 256 278 279 static inline void cluster_set_flag(struct swap_cluster_info *info, 280 unsigned int flag) 281 { 282 info->flags = flag; 283 } 284 285 static inline unsigned int cluster_count(struct swap_cluster_info *info) 286 { 287 return info->data; 288 } 289 290 static inline void cluster_set_count(struct swap_cluster_info *info, 291 unsigned int c) 292 { 293 info->data = c; 294 } 295 296 static inline void cluster_set_count_flag(struct swap_cluster_info *info, 297 unsigned int c, unsigned int f) 298 { 299 info->flags = f; 300 info->data = c; 301 } 302 303 static inline unsigned int cluster_next(struct swap_cluster_info *info) 304 { 305 return info->data; 306 } 307 308 static inline void cluster_set_next(struct swap_cluster_info *info, 309 unsigned int n) 310 { 311 info->data = n; 312 } 313 314 static inline void cluster_set_next_flag(struct swap_cluster_info *info, 315 unsigned int n, unsigned int f) 316 { 317 info->flags = f; 318 info->data = n; 319 } 320 321 static inline bool cluster_is_free(struct swap_cluster_info *info) 322 { 323 return info->flags & CLUSTER_FLAG_FREE; 324 } 325 326 static inline bool cluster_is_null(struct swap_cluster_info *info) 327 { 328 return info->flags & CLUSTER_FLAG_NEXT_NULL; 329 } 330 331 static inline void cluster_set_null(struct swap_cluster_info *info) 332 { 333 info->flags = CLUSTER_FLAG_NEXT_NULL; 334 info->data = 0; 335 } 336 337 static inline bool cluster_is_huge(struct swap_cluster_info *info) 338 { 339 if (IS_ENABLED(CONFIG_THP_SWAP)) 340 return info->flags & CLUSTER_FLAG_HUGE; 341 return false; 342 } 343 344 static inline void cluster_clear_huge(struct swap_cluster_info *info) 345 { 346 info->flags &= ~CLUSTER_FLAG_HUGE; 347 } 348 349 static inline struct swap_cluster_info *lock_cluster(struct swap_info_struct *si, 350 unsigned long offset) 351 { 352 struct swap_cluster_info *ci; 353 354 ci = si->cluster_info; 355 if (ci) { 356 ci += offset / SWAPFILE_CLUSTER; 357 spin_lock(&ci->lock); 358 } 359 return ci; 360 } 361 362 static inline void unlock_cluster(struct swap_cluster_info *ci) 363 { 364 if (ci) 365 spin_unlock(&ci->lock); 366 } 367 368 /* 369 * Determine the locking method in use for this device. Return 370 * swap_cluster_info if SSD-style cluster-based locking is in place. 371 */ 372 static inline struct swap_cluster_info *lock_cluster_or_swap_info( 373 struct swap_info_struct *si, unsigned long offset) 374 { 375 struct swap_cluster_info *ci; 376 377 /* Try to use fine-grained SSD-style locking if available: */ 378 ci = lock_cluster(si, offset); 379 /* Otherwise, fall back to traditional, coarse locking: */ 380 if (!ci) 381 spin_lock(&si->lock); 382 383 return ci; 384 } 385 386 static inline void unlock_cluster_or_swap_info(struct swap_info_struct *si, 387 struct swap_cluster_info *ci) 388 { 389 if (ci) 390 unlock_cluster(ci); 391 else 392 spin_unlock(&si->lock); 393 } 394 395 static inline bool cluster_list_empty(struct swap_cluster_list *list) 396 { 397 return cluster_is_null(&list->head); 398 } 399 400 static inline unsigned int cluster_list_first(struct swap_cluster_list *list) 401 { 402 return cluster_next(&list->head); 403 } 404 405 static void cluster_list_init(struct swap_cluster_list *list) 406 { 407 cluster_set_null(&list->head); 408 cluster_set_null(&list->tail); 409 } 410 411 static void cluster_list_add_tail(struct swap_cluster_list *list, 412 struct swap_cluster_info *ci, 413 unsigned int idx) 414 { 415 if (cluster_list_empty(list)) { 416 cluster_set_next_flag(&list->head, idx, 0); 417 cluster_set_next_flag(&list->tail, idx, 0); 418 } else { 419 struct swap_cluster_info *ci_tail; 420 unsigned int tail = cluster_next(&list->tail); 421 422 /* 423 * Nested cluster lock, but both cluster locks are 424 * only acquired when we held swap_info_struct->lock 425 */ 426 ci_tail = ci + tail; 427 spin_lock_nested(&ci_tail->lock, SINGLE_DEPTH_NESTING); 428 cluster_set_next(ci_tail, idx); 429 spin_unlock(&ci_tail->lock); 430 cluster_set_next_flag(&list->tail, idx, 0); 431 } 432 } 433 434 static unsigned int cluster_list_del_first(struct swap_cluster_list *list, 435 struct swap_cluster_info *ci) 436 { 437 unsigned int idx; 438 439 idx = cluster_next(&list->head); 440 if (cluster_next(&list->tail) == idx) { 441 cluster_set_null(&list->head); 442 cluster_set_null(&list->tail); 443 } else 444 cluster_set_next_flag(&list->head, 445 cluster_next(&ci[idx]), 0); 446 447 return idx; 448 } 449 450 /* Add a cluster to discard list and schedule it to do discard */ 451 static void swap_cluster_schedule_discard(struct swap_info_struct *si, 452 unsigned int idx) 453 { 454 /* 455 * If scan_swap_map_slots() can't find a free cluster, it will check 456 * si->swap_map directly. To make sure the discarding cluster isn't 457 * taken by scan_swap_map_slots(), mark the swap entries bad (occupied). 458 * It will be cleared after discard 459 */ 460 memset(si->swap_map + idx * SWAPFILE_CLUSTER, 461 SWAP_MAP_BAD, SWAPFILE_CLUSTER); 462 463 cluster_list_add_tail(&si->discard_clusters, si->cluster_info, idx); 464 465 schedule_work(&si->discard_work); 466 } 467 468 static void __free_cluster(struct swap_info_struct *si, unsigned long idx) 469 { 470 struct swap_cluster_info *ci = si->cluster_info; 471 472 cluster_set_flag(ci + idx, CLUSTER_FLAG_FREE); 473 cluster_list_add_tail(&si->free_clusters, ci, idx); 474 } 475 476 /* 477 * Doing discard actually. After a cluster discard is finished, the cluster 478 * will be added to free cluster list. caller should hold si->lock. 479 */ 480 static void swap_do_scheduled_discard(struct swap_info_struct *si) 481 { 482 struct swap_cluster_info *info, *ci; 483 unsigned int idx; 484 485 info = si->cluster_info; 486 487 while (!cluster_list_empty(&si->discard_clusters)) { 488 idx = cluster_list_del_first(&si->discard_clusters, info); 489 spin_unlock(&si->lock); 490 491 discard_swap_cluster(si, idx * SWAPFILE_CLUSTER, 492 SWAPFILE_CLUSTER); 493 494 spin_lock(&si->lock); 495 ci = lock_cluster(si, idx * SWAPFILE_CLUSTER); 496 __free_cluster(si, idx); 497 memset(si->swap_map + idx * SWAPFILE_CLUSTER, 498 0, SWAPFILE_CLUSTER); 499 unlock_cluster(ci); 500 } 501 } 502 503 static void swap_discard_work(struct work_struct *work) 504 { 505 struct swap_info_struct *si; 506 507 si = container_of(work, struct swap_info_struct, discard_work); 508 509 spin_lock(&si->lock); 510 swap_do_scheduled_discard(si); 511 spin_unlock(&si->lock); 512 } 513 514 static void swap_users_ref_free(struct percpu_ref *ref) 515 { 516 struct swap_info_struct *si; 517 518 si = container_of(ref, struct swap_info_struct, users); 519 complete(&si->comp); 520 } 521 522 static void alloc_cluster(struct swap_info_struct *si, unsigned long idx) 523 { 524 struct swap_cluster_info *ci = si->cluster_info; 525 526 VM_BUG_ON(cluster_list_first(&si->free_clusters) != idx); 527 cluster_list_del_first(&si->free_clusters, ci); 528 cluster_set_count_flag(ci + idx, 0, 0); 529 } 530 531 static void free_cluster(struct swap_info_struct *si, unsigned long idx) 532 { 533 struct swap_cluster_info *ci = si->cluster_info + idx; 534 535 VM_BUG_ON(cluster_count(ci) != 0); 536 /* 537 * If the swap is discardable, prepare discard the cluster 538 * instead of free it immediately. The cluster will be freed 539 * after discard. 540 */ 541 if ((si->flags & (SWP_WRITEOK | SWP_PAGE_DISCARD)) == 542 (SWP_WRITEOK | SWP_PAGE_DISCARD)) { 543 swap_cluster_schedule_discard(si, idx); 544 return; 545 } 546 547 __free_cluster(si, idx); 548 } 549 550 /* 551 * The cluster corresponding to page_nr will be used. The cluster will be 552 * removed from free cluster list and its usage counter will be increased. 553 */ 554 static void inc_cluster_info_page(struct swap_info_struct *p, 555 struct swap_cluster_info *cluster_info, unsigned long page_nr) 556 { 557 unsigned long idx = page_nr / SWAPFILE_CLUSTER; 558 559 if (!cluster_info) 560 return; 561 if (cluster_is_free(&cluster_info[idx])) 562 alloc_cluster(p, idx); 563 564 VM_BUG_ON(cluster_count(&cluster_info[idx]) >= SWAPFILE_CLUSTER); 565 cluster_set_count(&cluster_info[idx], 566 cluster_count(&cluster_info[idx]) + 1); 567 } 568 569 /* 570 * The cluster corresponding to page_nr decreases one usage. If the usage 571 * counter becomes 0, which means no page in the cluster is in using, we can 572 * optionally discard the cluster and add it to free cluster list. 573 */ 574 static void dec_cluster_info_page(struct swap_info_struct *p, 575 struct swap_cluster_info *cluster_info, unsigned long page_nr) 576 { 577 unsigned long idx = page_nr / SWAPFILE_CLUSTER; 578 579 if (!cluster_info) 580 return; 581 582 VM_BUG_ON(cluster_count(&cluster_info[idx]) == 0); 583 cluster_set_count(&cluster_info[idx], 584 cluster_count(&cluster_info[idx]) - 1); 585 586 if (cluster_count(&cluster_info[idx]) == 0) 587 free_cluster(p, idx); 588 } 589 590 /* 591 * It's possible scan_swap_map_slots() uses a free cluster in the middle of free 592 * cluster list. Avoiding such abuse to avoid list corruption. 593 */ 594 static bool 595 scan_swap_map_ssd_cluster_conflict(struct swap_info_struct *si, 596 unsigned long offset) 597 { 598 struct percpu_cluster *percpu_cluster; 599 bool conflict; 600 601 offset /= SWAPFILE_CLUSTER; 602 conflict = !cluster_list_empty(&si->free_clusters) && 603 offset != cluster_list_first(&si->free_clusters) && 604 cluster_is_free(&si->cluster_info[offset]); 605 606 if (!conflict) 607 return false; 608 609 percpu_cluster = this_cpu_ptr(si->percpu_cluster); 610 cluster_set_null(&percpu_cluster->index); 611 return true; 612 } 613 614 /* 615 * Try to get a swap entry from current cpu's swap entry pool (a cluster). This 616 * might involve allocating a new cluster for current CPU too. 617 */ 618 static bool scan_swap_map_try_ssd_cluster(struct swap_info_struct *si, 619 unsigned long *offset, unsigned long *scan_base) 620 { 621 struct percpu_cluster *cluster; 622 struct swap_cluster_info *ci; 623 unsigned long tmp, max; 624 625 new_cluster: 626 cluster = this_cpu_ptr(si->percpu_cluster); 627 if (cluster_is_null(&cluster->index)) { 628 if (!cluster_list_empty(&si->free_clusters)) { 629 cluster->index = si->free_clusters.head; 630 cluster->next = cluster_next(&cluster->index) * 631 SWAPFILE_CLUSTER; 632 } else if (!cluster_list_empty(&si->discard_clusters)) { 633 /* 634 * we don't have free cluster but have some clusters in 635 * discarding, do discard now and reclaim them, then 636 * reread cluster_next_cpu since we dropped si->lock 637 */ 638 swap_do_scheduled_discard(si); 639 *scan_base = this_cpu_read(*si->cluster_next_cpu); 640 *offset = *scan_base; 641 goto new_cluster; 642 } else 643 return false; 644 } 645 646 /* 647 * Other CPUs can use our cluster if they can't find a free cluster, 648 * check if there is still free entry in the cluster 649 */ 650 tmp = cluster->next; 651 max = min_t(unsigned long, si->max, 652 (cluster_next(&cluster->index) + 1) * SWAPFILE_CLUSTER); 653 if (tmp < max) { 654 ci = lock_cluster(si, tmp); 655 while (tmp < max) { 656 if (!si->swap_map[tmp]) 657 break; 658 tmp++; 659 } 660 unlock_cluster(ci); 661 } 662 if (tmp >= max) { 663 cluster_set_null(&cluster->index); 664 goto new_cluster; 665 } 666 cluster->next = tmp + 1; 667 *offset = tmp; 668 *scan_base = tmp; 669 return true; 670 } 671 672 static void __del_from_avail_list(struct swap_info_struct *p) 673 { 674 int nid; 675 676 for_each_node(nid) 677 plist_del(&p->avail_lists[nid], &swap_avail_heads[nid]); 678 } 679 680 static void del_from_avail_list(struct swap_info_struct *p) 681 { 682 spin_lock(&swap_avail_lock); 683 __del_from_avail_list(p); 684 spin_unlock(&swap_avail_lock); 685 } 686 687 static void swap_range_alloc(struct swap_info_struct *si, unsigned long offset, 688 unsigned int nr_entries) 689 { 690 unsigned int end = offset + nr_entries - 1; 691 692 if (offset == si->lowest_bit) 693 si->lowest_bit += nr_entries; 694 if (end == si->highest_bit) 695 WRITE_ONCE(si->highest_bit, si->highest_bit - nr_entries); 696 si->inuse_pages += nr_entries; 697 if (si->inuse_pages == si->pages) { 698 si->lowest_bit = si->max; 699 si->highest_bit = 0; 700 del_from_avail_list(si); 701 } 702 } 703 704 static void add_to_avail_list(struct swap_info_struct *p) 705 { 706 int nid; 707 708 spin_lock(&swap_avail_lock); 709 for_each_node(nid) { 710 WARN_ON(!plist_node_empty(&p->avail_lists[nid])); 711 plist_add(&p->avail_lists[nid], &swap_avail_heads[nid]); 712 } 713 spin_unlock(&swap_avail_lock); 714 } 715 716 static void swap_range_free(struct swap_info_struct *si, unsigned long offset, 717 unsigned int nr_entries) 718 { 719 unsigned long begin = offset; 720 unsigned long end = offset + nr_entries - 1; 721 void (*swap_slot_free_notify)(struct block_device *, unsigned long); 722 723 if (offset < si->lowest_bit) 724 si->lowest_bit = offset; 725 if (end > si->highest_bit) { 726 bool was_full = !si->highest_bit; 727 728 WRITE_ONCE(si->highest_bit, end); 729 if (was_full && (si->flags & SWP_WRITEOK)) 730 add_to_avail_list(si); 731 } 732 atomic_long_add(nr_entries, &nr_swap_pages); 733 si->inuse_pages -= nr_entries; 734 if (si->flags & SWP_BLKDEV) 735 swap_slot_free_notify = 736 si->bdev->bd_disk->fops->swap_slot_free_notify; 737 else 738 swap_slot_free_notify = NULL; 739 while (offset <= end) { 740 arch_swap_invalidate_page(si->type, offset); 741 frontswap_invalidate_page(si->type, offset); 742 if (swap_slot_free_notify) 743 swap_slot_free_notify(si->bdev, offset); 744 offset++; 745 } 746 clear_shadow_from_swap_cache(si->type, begin, end); 747 } 748 749 static void set_cluster_next(struct swap_info_struct *si, unsigned long next) 750 { 751 unsigned long prev; 752 753 if (!(si->flags & SWP_SOLIDSTATE)) { 754 si->cluster_next = next; 755 return; 756 } 757 758 prev = this_cpu_read(*si->cluster_next_cpu); 759 /* 760 * Cross the swap address space size aligned trunk, choose 761 * another trunk randomly to avoid lock contention on swap 762 * address space if possible. 763 */ 764 if ((prev >> SWAP_ADDRESS_SPACE_SHIFT) != 765 (next >> SWAP_ADDRESS_SPACE_SHIFT)) { 766 /* No free swap slots available */ 767 if (si->highest_bit <= si->lowest_bit) 768 return; 769 next = si->lowest_bit + 770 prandom_u32_max(si->highest_bit - si->lowest_bit + 1); 771 next = ALIGN_DOWN(next, SWAP_ADDRESS_SPACE_PAGES); 772 next = max_t(unsigned int, next, si->lowest_bit); 773 } 774 this_cpu_write(*si->cluster_next_cpu, next); 775 } 776 777 static int scan_swap_map_slots(struct swap_info_struct *si, 778 unsigned char usage, int nr, 779 swp_entry_t slots[]) 780 { 781 struct swap_cluster_info *ci; 782 unsigned long offset; 783 unsigned long scan_base; 784 unsigned long last_in_cluster = 0; 785 int latency_ration = LATENCY_LIMIT; 786 int n_ret = 0; 787 bool scanned_many = false; 788 789 /* 790 * We try to cluster swap pages by allocating them sequentially 791 * in swap. Once we've allocated SWAPFILE_CLUSTER pages this 792 * way, however, we resort to first-free allocation, starting 793 * a new cluster. This prevents us from scattering swap pages 794 * all over the entire swap partition, so that we reduce 795 * overall disk seek times between swap pages. -- sct 796 * But we do now try to find an empty cluster. -Andrea 797 * And we let swap pages go all over an SSD partition. Hugh 798 */ 799 800 si->flags += SWP_SCANNING; 801 /* 802 * Use percpu scan base for SSD to reduce lock contention on 803 * cluster and swap cache. For HDD, sequential access is more 804 * important. 805 */ 806 if (si->flags & SWP_SOLIDSTATE) 807 scan_base = this_cpu_read(*si->cluster_next_cpu); 808 else 809 scan_base = si->cluster_next; 810 offset = scan_base; 811 812 /* SSD algorithm */ 813 if (si->cluster_info) { 814 if (!scan_swap_map_try_ssd_cluster(si, &offset, &scan_base)) 815 goto scan; 816 } else if (unlikely(!si->cluster_nr--)) { 817 if (si->pages - si->inuse_pages < SWAPFILE_CLUSTER) { 818 si->cluster_nr = SWAPFILE_CLUSTER - 1; 819 goto checks; 820 } 821 822 spin_unlock(&si->lock); 823 824 /* 825 * If seek is expensive, start searching for new cluster from 826 * start of partition, to minimize the span of allocated swap. 827 * If seek is cheap, that is the SWP_SOLIDSTATE si->cluster_info 828 * case, just handled by scan_swap_map_try_ssd_cluster() above. 829 */ 830 scan_base = offset = si->lowest_bit; 831 last_in_cluster = offset + SWAPFILE_CLUSTER - 1; 832 833 /* Locate the first empty (unaligned) cluster */ 834 for (; last_in_cluster <= si->highest_bit; offset++) { 835 if (si->swap_map[offset]) 836 last_in_cluster = offset + SWAPFILE_CLUSTER; 837 else if (offset == last_in_cluster) { 838 spin_lock(&si->lock); 839 offset -= SWAPFILE_CLUSTER - 1; 840 si->cluster_next = offset; 841 si->cluster_nr = SWAPFILE_CLUSTER - 1; 842 goto checks; 843 } 844 if (unlikely(--latency_ration < 0)) { 845 cond_resched(); 846 latency_ration = LATENCY_LIMIT; 847 } 848 } 849 850 offset = scan_base; 851 spin_lock(&si->lock); 852 si->cluster_nr = SWAPFILE_CLUSTER - 1; 853 } 854 855 checks: 856 if (si->cluster_info) { 857 while (scan_swap_map_ssd_cluster_conflict(si, offset)) { 858 /* take a break if we already got some slots */ 859 if (n_ret) 860 goto done; 861 if (!scan_swap_map_try_ssd_cluster(si, &offset, 862 &scan_base)) 863 goto scan; 864 } 865 } 866 if (!(si->flags & SWP_WRITEOK)) 867 goto no_page; 868 if (!si->highest_bit) 869 goto no_page; 870 if (offset > si->highest_bit) 871 scan_base = offset = si->lowest_bit; 872 873 ci = lock_cluster(si, offset); 874 /* reuse swap entry of cache-only swap if not busy. */ 875 if (vm_swap_full() && si->swap_map[offset] == SWAP_HAS_CACHE) { 876 int swap_was_freed; 877 unlock_cluster(ci); 878 spin_unlock(&si->lock); 879 swap_was_freed = __try_to_reclaim_swap(si, offset, TTRS_ANYWAY); 880 spin_lock(&si->lock); 881 /* entry was freed successfully, try to use this again */ 882 if (swap_was_freed) 883 goto checks; 884 goto scan; /* check next one */ 885 } 886 887 if (si->swap_map[offset]) { 888 unlock_cluster(ci); 889 if (!n_ret) 890 goto scan; 891 else 892 goto done; 893 } 894 WRITE_ONCE(si->swap_map[offset], usage); 895 inc_cluster_info_page(si, si->cluster_info, offset); 896 unlock_cluster(ci); 897 898 swap_range_alloc(si, offset, 1); 899 slots[n_ret++] = swp_entry(si->type, offset); 900 901 /* got enough slots or reach max slots? */ 902 if ((n_ret == nr) || (offset >= si->highest_bit)) 903 goto done; 904 905 /* search for next available slot */ 906 907 /* time to take a break? */ 908 if (unlikely(--latency_ration < 0)) { 909 if (n_ret) 910 goto done; 911 spin_unlock(&si->lock); 912 cond_resched(); 913 spin_lock(&si->lock); 914 latency_ration = LATENCY_LIMIT; 915 } 916 917 /* try to get more slots in cluster */ 918 if (si->cluster_info) { 919 if (scan_swap_map_try_ssd_cluster(si, &offset, &scan_base)) 920 goto checks; 921 } else if (si->cluster_nr && !si->swap_map[++offset]) { 922 /* non-ssd case, still more slots in cluster? */ 923 --si->cluster_nr; 924 goto checks; 925 } 926 927 /* 928 * Even if there's no free clusters available (fragmented), 929 * try to scan a little more quickly with lock held unless we 930 * have scanned too many slots already. 931 */ 932 if (!scanned_many) { 933 unsigned long scan_limit; 934 935 if (offset < scan_base) 936 scan_limit = scan_base; 937 else 938 scan_limit = si->highest_bit; 939 for (; offset <= scan_limit && --latency_ration > 0; 940 offset++) { 941 if (!si->swap_map[offset]) 942 goto checks; 943 } 944 } 945 946 done: 947 set_cluster_next(si, offset + 1); 948 si->flags -= SWP_SCANNING; 949 return n_ret; 950 951 scan: 952 spin_unlock(&si->lock); 953 while (++offset <= READ_ONCE(si->highest_bit)) { 954 if (data_race(!si->swap_map[offset])) { 955 spin_lock(&si->lock); 956 goto checks; 957 } 958 if (vm_swap_full() && 959 READ_ONCE(si->swap_map[offset]) == SWAP_HAS_CACHE) { 960 spin_lock(&si->lock); 961 goto checks; 962 } 963 if (unlikely(--latency_ration < 0)) { 964 cond_resched(); 965 latency_ration = LATENCY_LIMIT; 966 scanned_many = true; 967 } 968 } 969 offset = si->lowest_bit; 970 while (offset < scan_base) { 971 if (data_race(!si->swap_map[offset])) { 972 spin_lock(&si->lock); 973 goto checks; 974 } 975 if (vm_swap_full() && 976 READ_ONCE(si->swap_map[offset]) == SWAP_HAS_CACHE) { 977 spin_lock(&si->lock); 978 goto checks; 979 } 980 if (unlikely(--latency_ration < 0)) { 981 cond_resched(); 982 latency_ration = LATENCY_LIMIT; 983 scanned_many = true; 984 } 985 offset++; 986 } 987 spin_lock(&si->lock); 988 989 no_page: 990 si->flags -= SWP_SCANNING; 991 return n_ret; 992 } 993 994 static int swap_alloc_cluster(struct swap_info_struct *si, swp_entry_t *slot) 995 { 996 unsigned long idx; 997 struct swap_cluster_info *ci; 998 unsigned long offset; 999 1000 /* 1001 * Should not even be attempting cluster allocations when huge 1002 * page swap is disabled. Warn and fail the allocation. 1003 */ 1004 if (!IS_ENABLED(CONFIG_THP_SWAP)) { 1005 VM_WARN_ON_ONCE(1); 1006 return 0; 1007 } 1008 1009 if (cluster_list_empty(&si->free_clusters)) 1010 return 0; 1011 1012 idx = cluster_list_first(&si->free_clusters); 1013 offset = idx * SWAPFILE_CLUSTER; 1014 ci = lock_cluster(si, offset); 1015 alloc_cluster(si, idx); 1016 cluster_set_count_flag(ci, SWAPFILE_CLUSTER, CLUSTER_FLAG_HUGE); 1017 1018 memset(si->swap_map + offset, SWAP_HAS_CACHE, SWAPFILE_CLUSTER); 1019 unlock_cluster(ci); 1020 swap_range_alloc(si, offset, SWAPFILE_CLUSTER); 1021 *slot = swp_entry(si->type, offset); 1022 1023 return 1; 1024 } 1025 1026 static void swap_free_cluster(struct swap_info_struct *si, unsigned long idx) 1027 { 1028 unsigned long offset = idx * SWAPFILE_CLUSTER; 1029 struct swap_cluster_info *ci; 1030 1031 ci = lock_cluster(si, offset); 1032 memset(si->swap_map + offset, 0, SWAPFILE_CLUSTER); 1033 cluster_set_count_flag(ci, 0, 0); 1034 free_cluster(si, idx); 1035 unlock_cluster(ci); 1036 swap_range_free(si, offset, SWAPFILE_CLUSTER); 1037 } 1038 1039 int get_swap_pages(int n_goal, swp_entry_t swp_entries[], int entry_size) 1040 { 1041 unsigned long size = swap_entry_size(entry_size); 1042 struct swap_info_struct *si, *next; 1043 long avail_pgs; 1044 int n_ret = 0; 1045 int node; 1046 1047 /* Only single cluster request supported */ 1048 WARN_ON_ONCE(n_goal > 1 && size == SWAPFILE_CLUSTER); 1049 1050 spin_lock(&swap_avail_lock); 1051 1052 avail_pgs = atomic_long_read(&nr_swap_pages) / size; 1053 if (avail_pgs <= 0) { 1054 spin_unlock(&swap_avail_lock); 1055 goto noswap; 1056 } 1057 1058 n_goal = min3((long)n_goal, (long)SWAP_BATCH, avail_pgs); 1059 1060 atomic_long_sub(n_goal * size, &nr_swap_pages); 1061 1062 start_over: 1063 node = numa_node_id(); 1064 plist_for_each_entry_safe(si, next, &swap_avail_heads[node], avail_lists[node]) { 1065 /* requeue si to after same-priority siblings */ 1066 plist_requeue(&si->avail_lists[node], &swap_avail_heads[node]); 1067 spin_unlock(&swap_avail_lock); 1068 spin_lock(&si->lock); 1069 if (!si->highest_bit || !(si->flags & SWP_WRITEOK)) { 1070 spin_lock(&swap_avail_lock); 1071 if (plist_node_empty(&si->avail_lists[node])) { 1072 spin_unlock(&si->lock); 1073 goto nextsi; 1074 } 1075 WARN(!si->highest_bit, 1076 "swap_info %d in list but !highest_bit\n", 1077 si->type); 1078 WARN(!(si->flags & SWP_WRITEOK), 1079 "swap_info %d in list but !SWP_WRITEOK\n", 1080 si->type); 1081 __del_from_avail_list(si); 1082 spin_unlock(&si->lock); 1083 goto nextsi; 1084 } 1085 if (size == SWAPFILE_CLUSTER) { 1086 if (si->flags & SWP_BLKDEV) 1087 n_ret = swap_alloc_cluster(si, swp_entries); 1088 } else 1089 n_ret = scan_swap_map_slots(si, SWAP_HAS_CACHE, 1090 n_goal, swp_entries); 1091 spin_unlock(&si->lock); 1092 if (n_ret || size == SWAPFILE_CLUSTER) 1093 goto check_out; 1094 pr_debug("scan_swap_map of si %d failed to find offset\n", 1095 si->type); 1096 1097 spin_lock(&swap_avail_lock); 1098 nextsi: 1099 /* 1100 * if we got here, it's likely that si was almost full before, 1101 * and since scan_swap_map_slots() can drop the si->lock, 1102 * multiple callers probably all tried to get a page from the 1103 * same si and it filled up before we could get one; or, the si 1104 * filled up between us dropping swap_avail_lock and taking 1105 * si->lock. Since we dropped the swap_avail_lock, the 1106 * swap_avail_head list may have been modified; so if next is 1107 * still in the swap_avail_head list then try it, otherwise 1108 * start over if we have not gotten any slots. 1109 */ 1110 if (plist_node_empty(&next->avail_lists[node])) 1111 goto start_over; 1112 } 1113 1114 spin_unlock(&swap_avail_lock); 1115 1116 check_out: 1117 if (n_ret < n_goal) 1118 atomic_long_add((long)(n_goal - n_ret) * size, 1119 &nr_swap_pages); 1120 noswap: 1121 return n_ret; 1122 } 1123 1124 static struct swap_info_struct *__swap_info_get(swp_entry_t entry) 1125 { 1126 struct swap_info_struct *p; 1127 unsigned long offset; 1128 1129 if (!entry.val) 1130 goto out; 1131 p = swp_swap_info(entry); 1132 if (!p) 1133 goto bad_nofile; 1134 if (data_race(!(p->flags & SWP_USED))) 1135 goto bad_device; 1136 offset = swp_offset(entry); 1137 if (offset >= p->max) 1138 goto bad_offset; 1139 return p; 1140 1141 bad_offset: 1142 pr_err("%s: %s%08lx\n", __func__, Bad_offset, entry.val); 1143 goto out; 1144 bad_device: 1145 pr_err("%s: %s%08lx\n", __func__, Unused_file, entry.val); 1146 goto out; 1147 bad_nofile: 1148 pr_err("%s: %s%08lx\n", __func__, Bad_file, entry.val); 1149 out: 1150 return NULL; 1151 } 1152 1153 static struct swap_info_struct *_swap_info_get(swp_entry_t entry) 1154 { 1155 struct swap_info_struct *p; 1156 1157 p = __swap_info_get(entry); 1158 if (!p) 1159 goto out; 1160 if (data_race(!p->swap_map[swp_offset(entry)])) 1161 goto bad_free; 1162 return p; 1163 1164 bad_free: 1165 pr_err("%s: %s%08lx\n", __func__, Unused_offset, entry.val); 1166 out: 1167 return NULL; 1168 } 1169 1170 static struct swap_info_struct *swap_info_get_cont(swp_entry_t entry, 1171 struct swap_info_struct *q) 1172 { 1173 struct swap_info_struct *p; 1174 1175 p = _swap_info_get(entry); 1176 1177 if (p != q) { 1178 if (q != NULL) 1179 spin_unlock(&q->lock); 1180 if (p != NULL) 1181 spin_lock(&p->lock); 1182 } 1183 return p; 1184 } 1185 1186 static unsigned char __swap_entry_free_locked(struct swap_info_struct *p, 1187 unsigned long offset, 1188 unsigned char usage) 1189 { 1190 unsigned char count; 1191 unsigned char has_cache; 1192 1193 count = p->swap_map[offset]; 1194 1195 has_cache = count & SWAP_HAS_CACHE; 1196 count &= ~SWAP_HAS_CACHE; 1197 1198 if (usage == SWAP_HAS_CACHE) { 1199 VM_BUG_ON(!has_cache); 1200 has_cache = 0; 1201 } else if (count == SWAP_MAP_SHMEM) { 1202 /* 1203 * Or we could insist on shmem.c using a special 1204 * swap_shmem_free() and free_shmem_swap_and_cache()... 1205 */ 1206 count = 0; 1207 } else if ((count & ~COUNT_CONTINUED) <= SWAP_MAP_MAX) { 1208 if (count == COUNT_CONTINUED) { 1209 if (swap_count_continued(p, offset, count)) 1210 count = SWAP_MAP_MAX | COUNT_CONTINUED; 1211 else 1212 count = SWAP_MAP_MAX; 1213 } else 1214 count--; 1215 } 1216 1217 usage = count | has_cache; 1218 if (usage) 1219 WRITE_ONCE(p->swap_map[offset], usage); 1220 else 1221 WRITE_ONCE(p->swap_map[offset], SWAP_HAS_CACHE); 1222 1223 return usage; 1224 } 1225 1226 /* 1227 * Check whether swap entry is valid in the swap device. If so, 1228 * return pointer to swap_info_struct, and keep the swap entry valid 1229 * via preventing the swap device from being swapoff, until 1230 * put_swap_device() is called. Otherwise return NULL. 1231 * 1232 * Notice that swapoff or swapoff+swapon can still happen before the 1233 * percpu_ref_tryget_live() in get_swap_device() or after the 1234 * percpu_ref_put() in put_swap_device() if there isn't any other way 1235 * to prevent swapoff, such as page lock, page table lock, etc. The 1236 * caller must be prepared for that. For example, the following 1237 * situation is possible. 1238 * 1239 * CPU1 CPU2 1240 * do_swap_page() 1241 * ... swapoff+swapon 1242 * __read_swap_cache_async() 1243 * swapcache_prepare() 1244 * __swap_duplicate() 1245 * // check swap_map 1246 * // verify PTE not changed 1247 * 1248 * In __swap_duplicate(), the swap_map need to be checked before 1249 * changing partly because the specified swap entry may be for another 1250 * swap device which has been swapoff. And in do_swap_page(), after 1251 * the page is read from the swap device, the PTE is verified not 1252 * changed with the page table locked to check whether the swap device 1253 * has been swapoff or swapoff+swapon. 1254 */ 1255 struct swap_info_struct *get_swap_device(swp_entry_t entry) 1256 { 1257 struct swap_info_struct *si; 1258 unsigned long offset; 1259 1260 if (!entry.val) 1261 goto out; 1262 si = swp_swap_info(entry); 1263 if (!si) 1264 goto bad_nofile; 1265 if (!percpu_ref_tryget_live(&si->users)) 1266 goto out; 1267 /* 1268 * Guarantee the si->users are checked before accessing other 1269 * fields of swap_info_struct. 1270 * 1271 * Paired with the spin_unlock() after setup_swap_info() in 1272 * enable_swap_info(). 1273 */ 1274 smp_rmb(); 1275 offset = swp_offset(entry); 1276 if (offset >= si->max) 1277 goto put_out; 1278 1279 return si; 1280 bad_nofile: 1281 pr_err("%s: %s%08lx\n", __func__, Bad_file, entry.val); 1282 out: 1283 return NULL; 1284 put_out: 1285 percpu_ref_put(&si->users); 1286 return NULL; 1287 } 1288 1289 static unsigned char __swap_entry_free(struct swap_info_struct *p, 1290 swp_entry_t entry) 1291 { 1292 struct swap_cluster_info *ci; 1293 unsigned long offset = swp_offset(entry); 1294 unsigned char usage; 1295 1296 ci = lock_cluster_or_swap_info(p, offset); 1297 usage = __swap_entry_free_locked(p, offset, 1); 1298 unlock_cluster_or_swap_info(p, ci); 1299 if (!usage) 1300 free_swap_slot(entry); 1301 1302 return usage; 1303 } 1304 1305 static void swap_entry_free(struct swap_info_struct *p, swp_entry_t entry) 1306 { 1307 struct swap_cluster_info *ci; 1308 unsigned long offset = swp_offset(entry); 1309 unsigned char count; 1310 1311 ci = lock_cluster(p, offset); 1312 count = p->swap_map[offset]; 1313 VM_BUG_ON(count != SWAP_HAS_CACHE); 1314 p->swap_map[offset] = 0; 1315 dec_cluster_info_page(p, p->cluster_info, offset); 1316 unlock_cluster(ci); 1317 1318 mem_cgroup_uncharge_swap(entry, 1); 1319 swap_range_free(p, offset, 1); 1320 } 1321 1322 /* 1323 * Caller has made sure that the swap device corresponding to entry 1324 * is still around or has not been recycled. 1325 */ 1326 void swap_free(swp_entry_t entry) 1327 { 1328 struct swap_info_struct *p; 1329 1330 p = _swap_info_get(entry); 1331 if (p) 1332 __swap_entry_free(p, entry); 1333 } 1334 1335 /* 1336 * Called after dropping swapcache to decrease refcnt to swap entries. 1337 */ 1338 void put_swap_page(struct page *page, swp_entry_t entry) 1339 { 1340 unsigned long offset = swp_offset(entry); 1341 unsigned long idx = offset / SWAPFILE_CLUSTER; 1342 struct swap_cluster_info *ci; 1343 struct swap_info_struct *si; 1344 unsigned char *map; 1345 unsigned int i, free_entries = 0; 1346 unsigned char val; 1347 int size = swap_entry_size(thp_nr_pages(page)); 1348 1349 si = _swap_info_get(entry); 1350 if (!si) 1351 return; 1352 1353 ci = lock_cluster_or_swap_info(si, offset); 1354 if (size == SWAPFILE_CLUSTER) { 1355 VM_BUG_ON(!cluster_is_huge(ci)); 1356 map = si->swap_map + offset; 1357 for (i = 0; i < SWAPFILE_CLUSTER; i++) { 1358 val = map[i]; 1359 VM_BUG_ON(!(val & SWAP_HAS_CACHE)); 1360 if (val == SWAP_HAS_CACHE) 1361 free_entries++; 1362 } 1363 cluster_clear_huge(ci); 1364 if (free_entries == SWAPFILE_CLUSTER) { 1365 unlock_cluster_or_swap_info(si, ci); 1366 spin_lock(&si->lock); 1367 mem_cgroup_uncharge_swap(entry, SWAPFILE_CLUSTER); 1368 swap_free_cluster(si, idx); 1369 spin_unlock(&si->lock); 1370 return; 1371 } 1372 } 1373 for (i = 0; i < size; i++, entry.val++) { 1374 if (!__swap_entry_free_locked(si, offset + i, SWAP_HAS_CACHE)) { 1375 unlock_cluster_or_swap_info(si, ci); 1376 free_swap_slot(entry); 1377 if (i == size - 1) 1378 return; 1379 lock_cluster_or_swap_info(si, offset); 1380 } 1381 } 1382 unlock_cluster_or_swap_info(si, ci); 1383 } 1384 1385 #ifdef CONFIG_THP_SWAP 1386 int split_swap_cluster(swp_entry_t entry) 1387 { 1388 struct swap_info_struct *si; 1389 struct swap_cluster_info *ci; 1390 unsigned long offset = swp_offset(entry); 1391 1392 si = _swap_info_get(entry); 1393 if (!si) 1394 return -EBUSY; 1395 ci = lock_cluster(si, offset); 1396 cluster_clear_huge(ci); 1397 unlock_cluster(ci); 1398 return 0; 1399 } 1400 #endif 1401 1402 static int swp_entry_cmp(const void *ent1, const void *ent2) 1403 { 1404 const swp_entry_t *e1 = ent1, *e2 = ent2; 1405 1406 return (int)swp_type(*e1) - (int)swp_type(*e2); 1407 } 1408 1409 void swapcache_free_entries(swp_entry_t *entries, int n) 1410 { 1411 struct swap_info_struct *p, *prev; 1412 int i; 1413 1414 if (n <= 0) 1415 return; 1416 1417 prev = NULL; 1418 p = NULL; 1419 1420 /* 1421 * Sort swap entries by swap device, so each lock is only taken once. 1422 * nr_swapfiles isn't absolutely correct, but the overhead of sort() is 1423 * so low that it isn't necessary to optimize further. 1424 */ 1425 if (nr_swapfiles > 1) 1426 sort(entries, n, sizeof(entries[0]), swp_entry_cmp, NULL); 1427 for (i = 0; i < n; ++i) { 1428 p = swap_info_get_cont(entries[i], prev); 1429 if (p) 1430 swap_entry_free(p, entries[i]); 1431 prev = p; 1432 } 1433 if (p) 1434 spin_unlock(&p->lock); 1435 } 1436 1437 /* 1438 * How many references to page are currently swapped out? 1439 * This does not give an exact answer when swap count is continued, 1440 * but does include the high COUNT_CONTINUED flag to allow for that. 1441 */ 1442 int page_swapcount(struct page *page) 1443 { 1444 int count = 0; 1445 struct swap_info_struct *p; 1446 struct swap_cluster_info *ci; 1447 swp_entry_t entry; 1448 unsigned long offset; 1449 1450 entry.val = page_private(page); 1451 p = _swap_info_get(entry); 1452 if (p) { 1453 offset = swp_offset(entry); 1454 ci = lock_cluster_or_swap_info(p, offset); 1455 count = swap_count(p->swap_map[offset]); 1456 unlock_cluster_or_swap_info(p, ci); 1457 } 1458 return count; 1459 } 1460 1461 int __swap_count(swp_entry_t entry) 1462 { 1463 struct swap_info_struct *si; 1464 pgoff_t offset = swp_offset(entry); 1465 int count = 0; 1466 1467 si = get_swap_device(entry); 1468 if (si) { 1469 count = swap_count(si->swap_map[offset]); 1470 put_swap_device(si); 1471 } 1472 return count; 1473 } 1474 1475 static int swap_swapcount(struct swap_info_struct *si, swp_entry_t entry) 1476 { 1477 int count = 0; 1478 pgoff_t offset = swp_offset(entry); 1479 struct swap_cluster_info *ci; 1480 1481 ci = lock_cluster_or_swap_info(si, offset); 1482 count = swap_count(si->swap_map[offset]); 1483 unlock_cluster_or_swap_info(si, ci); 1484 return count; 1485 } 1486 1487 /* 1488 * How many references to @entry are currently swapped out? 1489 * This does not give an exact answer when swap count is continued, 1490 * but does include the high COUNT_CONTINUED flag to allow for that. 1491 */ 1492 int __swp_swapcount(swp_entry_t entry) 1493 { 1494 int count = 0; 1495 struct swap_info_struct *si; 1496 1497 si = get_swap_device(entry); 1498 if (si) { 1499 count = swap_swapcount(si, entry); 1500 put_swap_device(si); 1501 } 1502 return count; 1503 } 1504 1505 /* 1506 * How many references to @entry are currently swapped out? 1507 * This considers COUNT_CONTINUED so it returns exact answer. 1508 */ 1509 int swp_swapcount(swp_entry_t entry) 1510 { 1511 int count, tmp_count, n; 1512 struct swap_info_struct *p; 1513 struct swap_cluster_info *ci; 1514 struct page *page; 1515 pgoff_t offset; 1516 unsigned char *map; 1517 1518 p = _swap_info_get(entry); 1519 if (!p) 1520 return 0; 1521 1522 offset = swp_offset(entry); 1523 1524 ci = lock_cluster_or_swap_info(p, offset); 1525 1526 count = swap_count(p->swap_map[offset]); 1527 if (!(count & COUNT_CONTINUED)) 1528 goto out; 1529 1530 count &= ~COUNT_CONTINUED; 1531 n = SWAP_MAP_MAX + 1; 1532 1533 page = vmalloc_to_page(p->swap_map + offset); 1534 offset &= ~PAGE_MASK; 1535 VM_BUG_ON(page_private(page) != SWP_CONTINUED); 1536 1537 do { 1538 page = list_next_entry(page, lru); 1539 map = kmap_atomic(page); 1540 tmp_count = map[offset]; 1541 kunmap_atomic(map); 1542 1543 count += (tmp_count & ~COUNT_CONTINUED) * n; 1544 n *= (SWAP_CONT_MAX + 1); 1545 } while (tmp_count & COUNT_CONTINUED); 1546 out: 1547 unlock_cluster_or_swap_info(p, ci); 1548 return count; 1549 } 1550 1551 static bool swap_page_trans_huge_swapped(struct swap_info_struct *si, 1552 swp_entry_t entry) 1553 { 1554 struct swap_cluster_info *ci; 1555 unsigned char *map = si->swap_map; 1556 unsigned long roffset = swp_offset(entry); 1557 unsigned long offset = round_down(roffset, SWAPFILE_CLUSTER); 1558 int i; 1559 bool ret = false; 1560 1561 ci = lock_cluster_or_swap_info(si, offset); 1562 if (!ci || !cluster_is_huge(ci)) { 1563 if (swap_count(map[roffset])) 1564 ret = true; 1565 goto unlock_out; 1566 } 1567 for (i = 0; i < SWAPFILE_CLUSTER; i++) { 1568 if (swap_count(map[offset + i])) { 1569 ret = true; 1570 break; 1571 } 1572 } 1573 unlock_out: 1574 unlock_cluster_or_swap_info(si, ci); 1575 return ret; 1576 } 1577 1578 static bool page_swapped(struct page *page) 1579 { 1580 swp_entry_t entry; 1581 struct swap_info_struct *si; 1582 1583 if (!IS_ENABLED(CONFIG_THP_SWAP) || likely(!PageTransCompound(page))) 1584 return page_swapcount(page) != 0; 1585 1586 page = compound_head(page); 1587 entry.val = page_private(page); 1588 si = _swap_info_get(entry); 1589 if (si) 1590 return swap_page_trans_huge_swapped(si, entry); 1591 return false; 1592 } 1593 1594 /* 1595 * If swap is getting full, or if there are no more mappings of this page, 1596 * then try_to_free_swap is called to free its swap space. 1597 */ 1598 int try_to_free_swap(struct page *page) 1599 { 1600 VM_BUG_ON_PAGE(!PageLocked(page), page); 1601 1602 if (!PageSwapCache(page)) 1603 return 0; 1604 if (PageWriteback(page)) 1605 return 0; 1606 if (page_swapped(page)) 1607 return 0; 1608 1609 /* 1610 * Once hibernation has begun to create its image of memory, 1611 * there's a danger that one of the calls to try_to_free_swap() 1612 * - most probably a call from __try_to_reclaim_swap() while 1613 * hibernation is allocating its own swap pages for the image, 1614 * but conceivably even a call from memory reclaim - will free 1615 * the swap from a page which has already been recorded in the 1616 * image as a clean swapcache page, and then reuse its swap for 1617 * another page of the image. On waking from hibernation, the 1618 * original page might be freed under memory pressure, then 1619 * later read back in from swap, now with the wrong data. 1620 * 1621 * Hibernation suspends storage while it is writing the image 1622 * to disk so check that here. 1623 */ 1624 if (pm_suspended_storage()) 1625 return 0; 1626 1627 page = compound_head(page); 1628 delete_from_swap_cache(page); 1629 SetPageDirty(page); 1630 return 1; 1631 } 1632 1633 /* 1634 * Free the swap entry like above, but also try to 1635 * free the page cache entry if it is the last user. 1636 */ 1637 int free_swap_and_cache(swp_entry_t entry) 1638 { 1639 struct swap_info_struct *p; 1640 unsigned char count; 1641 1642 if (non_swap_entry(entry)) 1643 return 1; 1644 1645 p = _swap_info_get(entry); 1646 if (p) { 1647 count = __swap_entry_free(p, entry); 1648 if (count == SWAP_HAS_CACHE && 1649 !swap_page_trans_huge_swapped(p, entry)) 1650 __try_to_reclaim_swap(p, swp_offset(entry), 1651 TTRS_UNMAPPED | TTRS_FULL); 1652 } 1653 return p != NULL; 1654 } 1655 1656 #ifdef CONFIG_HIBERNATION 1657 1658 swp_entry_t get_swap_page_of_type(int type) 1659 { 1660 struct swap_info_struct *si = swap_type_to_swap_info(type); 1661 swp_entry_t entry = {0}; 1662 1663 if (!si) 1664 goto fail; 1665 1666 /* This is called for allocating swap entry, not cache */ 1667 spin_lock(&si->lock); 1668 if ((si->flags & SWP_WRITEOK) && scan_swap_map_slots(si, 1, 1, &entry)) 1669 atomic_long_dec(&nr_swap_pages); 1670 spin_unlock(&si->lock); 1671 fail: 1672 return entry; 1673 } 1674 1675 /* 1676 * Find the swap type that corresponds to given device (if any). 1677 * 1678 * @offset - number of the PAGE_SIZE-sized block of the device, starting 1679 * from 0, in which the swap header is expected to be located. 1680 * 1681 * This is needed for the suspend to disk (aka swsusp). 1682 */ 1683 int swap_type_of(dev_t device, sector_t offset) 1684 { 1685 int type; 1686 1687 if (!device) 1688 return -1; 1689 1690 spin_lock(&swap_lock); 1691 for (type = 0; type < nr_swapfiles; type++) { 1692 struct swap_info_struct *sis = swap_info[type]; 1693 1694 if (!(sis->flags & SWP_WRITEOK)) 1695 continue; 1696 1697 if (device == sis->bdev->bd_dev) { 1698 struct swap_extent *se = first_se(sis); 1699 1700 if (se->start_block == offset) { 1701 spin_unlock(&swap_lock); 1702 return type; 1703 } 1704 } 1705 } 1706 spin_unlock(&swap_lock); 1707 return -ENODEV; 1708 } 1709 1710 int find_first_swap(dev_t *device) 1711 { 1712 int type; 1713 1714 spin_lock(&swap_lock); 1715 for (type = 0; type < nr_swapfiles; type++) { 1716 struct swap_info_struct *sis = swap_info[type]; 1717 1718 if (!(sis->flags & SWP_WRITEOK)) 1719 continue; 1720 *device = sis->bdev->bd_dev; 1721 spin_unlock(&swap_lock); 1722 return type; 1723 } 1724 spin_unlock(&swap_lock); 1725 return -ENODEV; 1726 } 1727 1728 /* 1729 * Get the (PAGE_SIZE) block corresponding to given offset on the swapdev 1730 * corresponding to given index in swap_info (swap type). 1731 */ 1732 sector_t swapdev_block(int type, pgoff_t offset) 1733 { 1734 struct swap_info_struct *si = swap_type_to_swap_info(type); 1735 struct swap_extent *se; 1736 1737 if (!si || !(si->flags & SWP_WRITEOK)) 1738 return 0; 1739 se = offset_to_swap_extent(si, offset); 1740 return se->start_block + (offset - se->start_page); 1741 } 1742 1743 /* 1744 * Return either the total number of swap pages of given type, or the number 1745 * of free pages of that type (depending on @free) 1746 * 1747 * This is needed for software suspend 1748 */ 1749 unsigned int count_swap_pages(int type, int free) 1750 { 1751 unsigned int n = 0; 1752 1753 spin_lock(&swap_lock); 1754 if ((unsigned int)type < nr_swapfiles) { 1755 struct swap_info_struct *sis = swap_info[type]; 1756 1757 spin_lock(&sis->lock); 1758 if (sis->flags & SWP_WRITEOK) { 1759 n = sis->pages; 1760 if (free) 1761 n -= sis->inuse_pages; 1762 } 1763 spin_unlock(&sis->lock); 1764 } 1765 spin_unlock(&swap_lock); 1766 return n; 1767 } 1768 #endif /* CONFIG_HIBERNATION */ 1769 1770 static inline int pte_same_as_swp(pte_t pte, pte_t swp_pte) 1771 { 1772 return pte_same(pte_swp_clear_flags(pte), swp_pte); 1773 } 1774 1775 /* 1776 * No need to decide whether this PTE shares the swap entry with others, 1777 * just let do_wp_page work it out if a write is requested later - to 1778 * force COW, vm_page_prot omits write permission from any private vma. 1779 */ 1780 static int unuse_pte(struct vm_area_struct *vma, pmd_t *pmd, 1781 unsigned long addr, swp_entry_t entry, struct page *page) 1782 { 1783 struct page *swapcache; 1784 spinlock_t *ptl; 1785 pte_t *pte; 1786 int ret = 1; 1787 1788 swapcache = page; 1789 page = ksm_might_need_to_copy(page, vma, addr); 1790 if (unlikely(!page)) 1791 return -ENOMEM; 1792 1793 pte = pte_offset_map_lock(vma->vm_mm, pmd, addr, &ptl); 1794 if (unlikely(!pte_same_as_swp(*pte, swp_entry_to_pte(entry)))) { 1795 ret = 0; 1796 goto out; 1797 } 1798 1799 dec_mm_counter(vma->vm_mm, MM_SWAPENTS); 1800 inc_mm_counter(vma->vm_mm, MM_ANONPAGES); 1801 get_page(page); 1802 if (page == swapcache) { 1803 page_add_anon_rmap(page, vma, addr, false); 1804 } else { /* ksm created a completely new copy */ 1805 page_add_new_anon_rmap(page, vma, addr, false); 1806 lru_cache_add_inactive_or_unevictable(page, vma); 1807 } 1808 set_pte_at(vma->vm_mm, addr, pte, 1809 pte_mkold(mk_pte(page, vma->vm_page_prot))); 1810 swap_free(entry); 1811 out: 1812 pte_unmap_unlock(pte, ptl); 1813 if (page != swapcache) { 1814 unlock_page(page); 1815 put_page(page); 1816 } 1817 return ret; 1818 } 1819 1820 static int unuse_pte_range(struct vm_area_struct *vma, pmd_t *pmd, 1821 unsigned long addr, unsigned long end, 1822 unsigned int type) 1823 { 1824 struct page *page; 1825 swp_entry_t entry; 1826 pte_t *pte; 1827 struct swap_info_struct *si; 1828 unsigned long offset; 1829 int ret = 0; 1830 volatile unsigned char *swap_map; 1831 1832 si = swap_info[type]; 1833 pte = pte_offset_map(pmd, addr); 1834 do { 1835 if (!is_swap_pte(*pte)) 1836 continue; 1837 1838 entry = pte_to_swp_entry(*pte); 1839 if (swp_type(entry) != type) 1840 continue; 1841 1842 offset = swp_offset(entry); 1843 pte_unmap(pte); 1844 swap_map = &si->swap_map[offset]; 1845 page = lookup_swap_cache(entry, vma, addr); 1846 if (!page) { 1847 struct vm_fault vmf = { 1848 .vma = vma, 1849 .address = addr, 1850 .real_address = addr, 1851 .pmd = pmd, 1852 }; 1853 1854 page = swapin_readahead(entry, GFP_HIGHUSER_MOVABLE, 1855 &vmf); 1856 } 1857 if (!page) { 1858 if (*swap_map == 0 || *swap_map == SWAP_MAP_BAD) 1859 goto try_next; 1860 return -ENOMEM; 1861 } 1862 1863 lock_page(page); 1864 wait_on_page_writeback(page); 1865 ret = unuse_pte(vma, pmd, addr, entry, page); 1866 if (ret < 0) { 1867 unlock_page(page); 1868 put_page(page); 1869 goto out; 1870 } 1871 1872 try_to_free_swap(page); 1873 unlock_page(page); 1874 put_page(page); 1875 try_next: 1876 pte = pte_offset_map(pmd, addr); 1877 } while (pte++, addr += PAGE_SIZE, addr != end); 1878 pte_unmap(pte - 1); 1879 1880 ret = 0; 1881 out: 1882 return ret; 1883 } 1884 1885 static inline int unuse_pmd_range(struct vm_area_struct *vma, pud_t *pud, 1886 unsigned long addr, unsigned long end, 1887 unsigned int type) 1888 { 1889 pmd_t *pmd; 1890 unsigned long next; 1891 int ret; 1892 1893 pmd = pmd_offset(pud, addr); 1894 do { 1895 cond_resched(); 1896 next = pmd_addr_end(addr, end); 1897 if (pmd_none_or_trans_huge_or_clear_bad(pmd)) 1898 continue; 1899 ret = unuse_pte_range(vma, pmd, addr, next, type); 1900 if (ret) 1901 return ret; 1902 } while (pmd++, addr = next, addr != end); 1903 return 0; 1904 } 1905 1906 static inline int unuse_pud_range(struct vm_area_struct *vma, p4d_t *p4d, 1907 unsigned long addr, unsigned long end, 1908 unsigned int type) 1909 { 1910 pud_t *pud; 1911 unsigned long next; 1912 int ret; 1913 1914 pud = pud_offset(p4d, addr); 1915 do { 1916 next = pud_addr_end(addr, end); 1917 if (pud_none_or_clear_bad(pud)) 1918 continue; 1919 ret = unuse_pmd_range(vma, pud, addr, next, type); 1920 if (ret) 1921 return ret; 1922 } while (pud++, addr = next, addr != end); 1923 return 0; 1924 } 1925 1926 static inline int unuse_p4d_range(struct vm_area_struct *vma, pgd_t *pgd, 1927 unsigned long addr, unsigned long end, 1928 unsigned int type) 1929 { 1930 p4d_t *p4d; 1931 unsigned long next; 1932 int ret; 1933 1934 p4d = p4d_offset(pgd, addr); 1935 do { 1936 next = p4d_addr_end(addr, end); 1937 if (p4d_none_or_clear_bad(p4d)) 1938 continue; 1939 ret = unuse_pud_range(vma, p4d, addr, next, type); 1940 if (ret) 1941 return ret; 1942 } while (p4d++, addr = next, addr != end); 1943 return 0; 1944 } 1945 1946 static int unuse_vma(struct vm_area_struct *vma, unsigned int type) 1947 { 1948 pgd_t *pgd; 1949 unsigned long addr, end, next; 1950 int ret; 1951 1952 addr = vma->vm_start; 1953 end = vma->vm_end; 1954 1955 pgd = pgd_offset(vma->vm_mm, addr); 1956 do { 1957 next = pgd_addr_end(addr, end); 1958 if (pgd_none_or_clear_bad(pgd)) 1959 continue; 1960 ret = unuse_p4d_range(vma, pgd, addr, next, type); 1961 if (ret) 1962 return ret; 1963 } while (pgd++, addr = next, addr != end); 1964 return 0; 1965 } 1966 1967 static int unuse_mm(struct mm_struct *mm, unsigned int type) 1968 { 1969 struct vm_area_struct *vma; 1970 int ret = 0; 1971 1972 mmap_read_lock(mm); 1973 for (vma = mm->mmap; vma; vma = vma->vm_next) { 1974 if (vma->anon_vma) { 1975 ret = unuse_vma(vma, type); 1976 if (ret) 1977 break; 1978 } 1979 cond_resched(); 1980 } 1981 mmap_read_unlock(mm); 1982 return ret; 1983 } 1984 1985 /* 1986 * Scan swap_map (or frontswap_map if frontswap parameter is true) 1987 * from current position to next entry still in use. Return 0 1988 * if there are no inuse entries after prev till end of the map. 1989 */ 1990 static unsigned int find_next_to_unuse(struct swap_info_struct *si, 1991 unsigned int prev) 1992 { 1993 unsigned int i; 1994 unsigned char count; 1995 1996 /* 1997 * No need for swap_lock here: we're just looking 1998 * for whether an entry is in use, not modifying it; false 1999 * hits are okay, and sys_swapoff() has already prevented new 2000 * allocations from this area (while holding swap_lock). 2001 */ 2002 for (i = prev + 1; i < si->max; i++) { 2003 count = READ_ONCE(si->swap_map[i]); 2004 if (count && swap_count(count) != SWAP_MAP_BAD) 2005 break; 2006 if ((i % LATENCY_LIMIT) == 0) 2007 cond_resched(); 2008 } 2009 2010 if (i == si->max) 2011 i = 0; 2012 2013 return i; 2014 } 2015 2016 static int try_to_unuse(unsigned int type) 2017 { 2018 struct mm_struct *prev_mm; 2019 struct mm_struct *mm; 2020 struct list_head *p; 2021 int retval = 0; 2022 struct swap_info_struct *si = swap_info[type]; 2023 struct page *page; 2024 swp_entry_t entry; 2025 unsigned int i; 2026 2027 if (!READ_ONCE(si->inuse_pages)) 2028 return 0; 2029 2030 retry: 2031 retval = shmem_unuse(type); 2032 if (retval) 2033 return retval; 2034 2035 prev_mm = &init_mm; 2036 mmget(prev_mm); 2037 2038 spin_lock(&mmlist_lock); 2039 p = &init_mm.mmlist; 2040 while (READ_ONCE(si->inuse_pages) && 2041 !signal_pending(current) && 2042 (p = p->next) != &init_mm.mmlist) { 2043 2044 mm = list_entry(p, struct mm_struct, mmlist); 2045 if (!mmget_not_zero(mm)) 2046 continue; 2047 spin_unlock(&mmlist_lock); 2048 mmput(prev_mm); 2049 prev_mm = mm; 2050 retval = unuse_mm(mm, type); 2051 if (retval) { 2052 mmput(prev_mm); 2053 return retval; 2054 } 2055 2056 /* 2057 * Make sure that we aren't completely killing 2058 * interactive performance. 2059 */ 2060 cond_resched(); 2061 spin_lock(&mmlist_lock); 2062 } 2063 spin_unlock(&mmlist_lock); 2064 2065 mmput(prev_mm); 2066 2067 i = 0; 2068 while (READ_ONCE(si->inuse_pages) && 2069 !signal_pending(current) && 2070 (i = find_next_to_unuse(si, i)) != 0) { 2071 2072 entry = swp_entry(type, i); 2073 page = find_get_page(swap_address_space(entry), i); 2074 if (!page) 2075 continue; 2076 2077 /* 2078 * It is conceivable that a racing task removed this page from 2079 * swap cache just before we acquired the page lock. The page 2080 * might even be back in swap cache on another swap area. But 2081 * that is okay, try_to_free_swap() only removes stale pages. 2082 */ 2083 lock_page(page); 2084 wait_on_page_writeback(page); 2085 try_to_free_swap(page); 2086 unlock_page(page); 2087 put_page(page); 2088 } 2089 2090 /* 2091 * Lets check again to see if there are still swap entries in the map. 2092 * If yes, we would need to do retry the unuse logic again. 2093 * Under global memory pressure, swap entries can be reinserted back 2094 * into process space after the mmlist loop above passes over them. 2095 * 2096 * Limit the number of retries? No: when mmget_not_zero() above fails, 2097 * that mm is likely to be freeing swap from exit_mmap(), which proceeds 2098 * at its own independent pace; and even shmem_writepage() could have 2099 * been preempted after get_swap_page(), temporarily hiding that swap. 2100 * It's easy and robust (though cpu-intensive) just to keep retrying. 2101 */ 2102 if (READ_ONCE(si->inuse_pages)) { 2103 if (!signal_pending(current)) 2104 goto retry; 2105 return -EINTR; 2106 } 2107 2108 return 0; 2109 } 2110 2111 /* 2112 * After a successful try_to_unuse, if no swap is now in use, we know 2113 * we can empty the mmlist. swap_lock must be held on entry and exit. 2114 * Note that mmlist_lock nests inside swap_lock, and an mm must be 2115 * added to the mmlist just after page_duplicate - before would be racy. 2116 */ 2117 static void drain_mmlist(void) 2118 { 2119 struct list_head *p, *next; 2120 unsigned int type; 2121 2122 for (type = 0; type < nr_swapfiles; type++) 2123 if (swap_info[type]->inuse_pages) 2124 return; 2125 spin_lock(&mmlist_lock); 2126 list_for_each_safe(p, next, &init_mm.mmlist) 2127 list_del_init(p); 2128 spin_unlock(&mmlist_lock); 2129 } 2130 2131 /* 2132 * Free all of a swapdev's extent information 2133 */ 2134 static void destroy_swap_extents(struct swap_info_struct *sis) 2135 { 2136 while (!RB_EMPTY_ROOT(&sis->swap_extent_root)) { 2137 struct rb_node *rb = sis->swap_extent_root.rb_node; 2138 struct swap_extent *se = rb_entry(rb, struct swap_extent, rb_node); 2139 2140 rb_erase(rb, &sis->swap_extent_root); 2141 kfree(se); 2142 } 2143 2144 if (sis->flags & SWP_ACTIVATED) { 2145 struct file *swap_file = sis->swap_file; 2146 struct address_space *mapping = swap_file->f_mapping; 2147 2148 sis->flags &= ~SWP_ACTIVATED; 2149 if (mapping->a_ops->swap_deactivate) 2150 mapping->a_ops->swap_deactivate(swap_file); 2151 } 2152 } 2153 2154 /* 2155 * Add a block range (and the corresponding page range) into this swapdev's 2156 * extent tree. 2157 * 2158 * This function rather assumes that it is called in ascending page order. 2159 */ 2160 int 2161 add_swap_extent(struct swap_info_struct *sis, unsigned long start_page, 2162 unsigned long nr_pages, sector_t start_block) 2163 { 2164 struct rb_node **link = &sis->swap_extent_root.rb_node, *parent = NULL; 2165 struct swap_extent *se; 2166 struct swap_extent *new_se; 2167 2168 /* 2169 * place the new node at the right most since the 2170 * function is called in ascending page order. 2171 */ 2172 while (*link) { 2173 parent = *link; 2174 link = &parent->rb_right; 2175 } 2176 2177 if (parent) { 2178 se = rb_entry(parent, struct swap_extent, rb_node); 2179 BUG_ON(se->start_page + se->nr_pages != start_page); 2180 if (se->start_block + se->nr_pages == start_block) { 2181 /* Merge it */ 2182 se->nr_pages += nr_pages; 2183 return 0; 2184 } 2185 } 2186 2187 /* No merge, insert a new extent. */ 2188 new_se = kmalloc(sizeof(*se), GFP_KERNEL); 2189 if (new_se == NULL) 2190 return -ENOMEM; 2191 new_se->start_page = start_page; 2192 new_se->nr_pages = nr_pages; 2193 new_se->start_block = start_block; 2194 2195 rb_link_node(&new_se->rb_node, parent, link); 2196 rb_insert_color(&new_se->rb_node, &sis->swap_extent_root); 2197 return 1; 2198 } 2199 EXPORT_SYMBOL_GPL(add_swap_extent); 2200 2201 /* 2202 * A `swap extent' is a simple thing which maps a contiguous range of pages 2203 * onto a contiguous range of disk blocks. An ordered list of swap extents 2204 * is built at swapon time and is then used at swap_writepage/swap_readpage 2205 * time for locating where on disk a page belongs. 2206 * 2207 * If the swapfile is an S_ISBLK block device, a single extent is installed. 2208 * This is done so that the main operating code can treat S_ISBLK and S_ISREG 2209 * swap files identically. 2210 * 2211 * Whether the swapdev is an S_ISREG file or an S_ISBLK blockdev, the swap 2212 * extent list operates in PAGE_SIZE disk blocks. Both S_ISREG and S_ISBLK 2213 * swapfiles are handled *identically* after swapon time. 2214 * 2215 * For S_ISREG swapfiles, setup_swap_extents() will walk all the file's blocks 2216 * and will parse them into an ordered extent list, in PAGE_SIZE chunks. If 2217 * some stray blocks are found which do not fall within the PAGE_SIZE alignment 2218 * requirements, they are simply tossed out - we will never use those blocks 2219 * for swapping. 2220 * 2221 * For all swap devices we set S_SWAPFILE across the life of the swapon. This 2222 * prevents users from writing to the swap device, which will corrupt memory. 2223 * 2224 * The amount of disk space which a single swap extent represents varies. 2225 * Typically it is in the 1-4 megabyte range. So we can have hundreds of 2226 * extents in the list. To avoid much list walking, we cache the previous 2227 * search location in `curr_swap_extent', and start new searches from there. 2228 * This is extremely effective. The average number of iterations in 2229 * map_swap_page() has been measured at about 0.3 per page. - akpm. 2230 */ 2231 static int setup_swap_extents(struct swap_info_struct *sis, sector_t *span) 2232 { 2233 struct file *swap_file = sis->swap_file; 2234 struct address_space *mapping = swap_file->f_mapping; 2235 struct inode *inode = mapping->host; 2236 int ret; 2237 2238 if (S_ISBLK(inode->i_mode)) { 2239 ret = add_swap_extent(sis, 0, sis->max, 0); 2240 *span = sis->pages; 2241 return ret; 2242 } 2243 2244 if (mapping->a_ops->swap_activate) { 2245 ret = mapping->a_ops->swap_activate(sis, swap_file, span); 2246 if (ret >= 0) 2247 sis->flags |= SWP_ACTIVATED; 2248 if (!ret) { 2249 sis->flags |= SWP_FS_OPS; 2250 ret = add_swap_extent(sis, 0, sis->max, 0); 2251 *span = sis->pages; 2252 } 2253 return ret; 2254 } 2255 2256 return generic_swapfile_activate(sis, swap_file, span); 2257 } 2258 2259 static int swap_node(struct swap_info_struct *p) 2260 { 2261 struct block_device *bdev; 2262 2263 if (p->bdev) 2264 bdev = p->bdev; 2265 else 2266 bdev = p->swap_file->f_inode->i_sb->s_bdev; 2267 2268 return bdev ? bdev->bd_disk->node_id : NUMA_NO_NODE; 2269 } 2270 2271 static void setup_swap_info(struct swap_info_struct *p, int prio, 2272 unsigned char *swap_map, 2273 struct swap_cluster_info *cluster_info) 2274 { 2275 int i; 2276 2277 if (prio >= 0) 2278 p->prio = prio; 2279 else 2280 p->prio = --least_priority; 2281 /* 2282 * the plist prio is negated because plist ordering is 2283 * low-to-high, while swap ordering is high-to-low 2284 */ 2285 p->list.prio = -p->prio; 2286 for_each_node(i) { 2287 if (p->prio >= 0) 2288 p->avail_lists[i].prio = -p->prio; 2289 else { 2290 if (swap_node(p) == i) 2291 p->avail_lists[i].prio = 1; 2292 else 2293 p->avail_lists[i].prio = -p->prio; 2294 } 2295 } 2296 p->swap_map = swap_map; 2297 p->cluster_info = cluster_info; 2298 } 2299 2300 static void _enable_swap_info(struct swap_info_struct *p) 2301 { 2302 p->flags |= SWP_WRITEOK; 2303 atomic_long_add(p->pages, &nr_swap_pages); 2304 total_swap_pages += p->pages; 2305 2306 assert_spin_locked(&swap_lock); 2307 /* 2308 * both lists are plists, and thus priority ordered. 2309 * swap_active_head needs to be priority ordered for swapoff(), 2310 * which on removal of any swap_info_struct with an auto-assigned 2311 * (i.e. negative) priority increments the auto-assigned priority 2312 * of any lower-priority swap_info_structs. 2313 * swap_avail_head needs to be priority ordered for get_swap_page(), 2314 * which allocates swap pages from the highest available priority 2315 * swap_info_struct. 2316 */ 2317 plist_add(&p->list, &swap_active_head); 2318 add_to_avail_list(p); 2319 } 2320 2321 static void enable_swap_info(struct swap_info_struct *p, int prio, 2322 unsigned char *swap_map, 2323 struct swap_cluster_info *cluster_info, 2324 unsigned long *frontswap_map) 2325 { 2326 if (IS_ENABLED(CONFIG_FRONTSWAP)) 2327 frontswap_init(p->type, frontswap_map); 2328 spin_lock(&swap_lock); 2329 spin_lock(&p->lock); 2330 setup_swap_info(p, prio, swap_map, cluster_info); 2331 spin_unlock(&p->lock); 2332 spin_unlock(&swap_lock); 2333 /* 2334 * Finished initializing swap device, now it's safe to reference it. 2335 */ 2336 percpu_ref_resurrect(&p->users); 2337 spin_lock(&swap_lock); 2338 spin_lock(&p->lock); 2339 _enable_swap_info(p); 2340 spin_unlock(&p->lock); 2341 spin_unlock(&swap_lock); 2342 } 2343 2344 static void reinsert_swap_info(struct swap_info_struct *p) 2345 { 2346 spin_lock(&swap_lock); 2347 spin_lock(&p->lock); 2348 setup_swap_info(p, p->prio, p->swap_map, p->cluster_info); 2349 _enable_swap_info(p); 2350 spin_unlock(&p->lock); 2351 spin_unlock(&swap_lock); 2352 } 2353 2354 bool has_usable_swap(void) 2355 { 2356 bool ret = true; 2357 2358 spin_lock(&swap_lock); 2359 if (plist_head_empty(&swap_active_head)) 2360 ret = false; 2361 spin_unlock(&swap_lock); 2362 return ret; 2363 } 2364 2365 SYSCALL_DEFINE1(swapoff, const char __user *, specialfile) 2366 { 2367 struct swap_info_struct *p = NULL; 2368 unsigned char *swap_map; 2369 struct swap_cluster_info *cluster_info; 2370 unsigned long *frontswap_map; 2371 struct file *swap_file, *victim; 2372 struct address_space *mapping; 2373 struct inode *inode; 2374 struct filename *pathname; 2375 int err, found = 0; 2376 unsigned int old_block_size; 2377 2378 if (!capable(CAP_SYS_ADMIN)) 2379 return -EPERM; 2380 2381 BUG_ON(!current->mm); 2382 2383 pathname = getname(specialfile); 2384 if (IS_ERR(pathname)) 2385 return PTR_ERR(pathname); 2386 2387 victim = file_open_name(pathname, O_RDWR|O_LARGEFILE, 0); 2388 err = PTR_ERR(victim); 2389 if (IS_ERR(victim)) 2390 goto out; 2391 2392 mapping = victim->f_mapping; 2393 spin_lock(&swap_lock); 2394 plist_for_each_entry(p, &swap_active_head, list) { 2395 if (p->flags & SWP_WRITEOK) { 2396 if (p->swap_file->f_mapping == mapping) { 2397 found = 1; 2398 break; 2399 } 2400 } 2401 } 2402 if (!found) { 2403 err = -EINVAL; 2404 spin_unlock(&swap_lock); 2405 goto out_dput; 2406 } 2407 if (!security_vm_enough_memory_mm(current->mm, p->pages)) 2408 vm_unacct_memory(p->pages); 2409 else { 2410 err = -ENOMEM; 2411 spin_unlock(&swap_lock); 2412 goto out_dput; 2413 } 2414 del_from_avail_list(p); 2415 spin_lock(&p->lock); 2416 if (p->prio < 0) { 2417 struct swap_info_struct *si = p; 2418 int nid; 2419 2420 plist_for_each_entry_continue(si, &swap_active_head, list) { 2421 si->prio++; 2422 si->list.prio--; 2423 for_each_node(nid) { 2424 if (si->avail_lists[nid].prio != 1) 2425 si->avail_lists[nid].prio--; 2426 } 2427 } 2428 least_priority++; 2429 } 2430 plist_del(&p->list, &swap_active_head); 2431 atomic_long_sub(p->pages, &nr_swap_pages); 2432 total_swap_pages -= p->pages; 2433 p->flags &= ~SWP_WRITEOK; 2434 spin_unlock(&p->lock); 2435 spin_unlock(&swap_lock); 2436 2437 disable_swap_slots_cache_lock(); 2438 2439 set_current_oom_origin(); 2440 err = try_to_unuse(p->type); 2441 clear_current_oom_origin(); 2442 2443 if (err) { 2444 /* re-insert swap space back into swap_list */ 2445 reinsert_swap_info(p); 2446 reenable_swap_slots_cache_unlock(); 2447 goto out_dput; 2448 } 2449 2450 reenable_swap_slots_cache_unlock(); 2451 2452 /* 2453 * Wait for swap operations protected by get/put_swap_device() 2454 * to complete. 2455 * 2456 * We need synchronize_rcu() here to protect the accessing to 2457 * the swap cache data structure. 2458 */ 2459 percpu_ref_kill(&p->users); 2460 synchronize_rcu(); 2461 wait_for_completion(&p->comp); 2462 2463 flush_work(&p->discard_work); 2464 2465 destroy_swap_extents(p); 2466 if (p->flags & SWP_CONTINUED) 2467 free_swap_count_continuations(p); 2468 2469 if (!p->bdev || !blk_queue_nonrot(bdev_get_queue(p->bdev))) 2470 atomic_dec(&nr_rotate_swap); 2471 2472 mutex_lock(&swapon_mutex); 2473 spin_lock(&swap_lock); 2474 spin_lock(&p->lock); 2475 drain_mmlist(); 2476 2477 /* wait for anyone still in scan_swap_map_slots */ 2478 p->highest_bit = 0; /* cuts scans short */ 2479 while (p->flags >= SWP_SCANNING) { 2480 spin_unlock(&p->lock); 2481 spin_unlock(&swap_lock); 2482 schedule_timeout_uninterruptible(1); 2483 spin_lock(&swap_lock); 2484 spin_lock(&p->lock); 2485 } 2486 2487 swap_file = p->swap_file; 2488 old_block_size = p->old_block_size; 2489 p->swap_file = NULL; 2490 p->max = 0; 2491 swap_map = p->swap_map; 2492 p->swap_map = NULL; 2493 cluster_info = p->cluster_info; 2494 p->cluster_info = NULL; 2495 frontswap_map = frontswap_map_get(p); 2496 spin_unlock(&p->lock); 2497 spin_unlock(&swap_lock); 2498 arch_swap_invalidate_area(p->type); 2499 frontswap_invalidate_area(p->type); 2500 frontswap_map_set(p, NULL); 2501 mutex_unlock(&swapon_mutex); 2502 free_percpu(p->percpu_cluster); 2503 p->percpu_cluster = NULL; 2504 free_percpu(p->cluster_next_cpu); 2505 p->cluster_next_cpu = NULL; 2506 vfree(swap_map); 2507 kvfree(cluster_info); 2508 kvfree(frontswap_map); 2509 /* Destroy swap account information */ 2510 swap_cgroup_swapoff(p->type); 2511 exit_swap_address_space(p->type); 2512 2513 inode = mapping->host; 2514 if (S_ISBLK(inode->i_mode)) { 2515 struct block_device *bdev = I_BDEV(inode); 2516 2517 set_blocksize(bdev, old_block_size); 2518 blkdev_put(bdev, FMODE_READ | FMODE_WRITE | FMODE_EXCL); 2519 } 2520 2521 inode_lock(inode); 2522 inode->i_flags &= ~S_SWAPFILE; 2523 inode_unlock(inode); 2524 filp_close(swap_file, NULL); 2525 2526 /* 2527 * Clear the SWP_USED flag after all resources are freed so that swapon 2528 * can reuse this swap_info in alloc_swap_info() safely. It is ok to 2529 * not hold p->lock after we cleared its SWP_WRITEOK. 2530 */ 2531 spin_lock(&swap_lock); 2532 p->flags = 0; 2533 spin_unlock(&swap_lock); 2534 2535 err = 0; 2536 atomic_inc(&proc_poll_event); 2537 wake_up_interruptible(&proc_poll_wait); 2538 2539 out_dput: 2540 filp_close(victim, NULL); 2541 out: 2542 putname(pathname); 2543 return err; 2544 } 2545 2546 #ifdef CONFIG_PROC_FS 2547 static __poll_t swaps_poll(struct file *file, poll_table *wait) 2548 { 2549 struct seq_file *seq = file->private_data; 2550 2551 poll_wait(file, &proc_poll_wait, wait); 2552 2553 if (seq->poll_event != atomic_read(&proc_poll_event)) { 2554 seq->poll_event = atomic_read(&proc_poll_event); 2555 return EPOLLIN | EPOLLRDNORM | EPOLLERR | EPOLLPRI; 2556 } 2557 2558 return EPOLLIN | EPOLLRDNORM; 2559 } 2560 2561 /* iterator */ 2562 static void *swap_start(struct seq_file *swap, loff_t *pos) 2563 { 2564 struct swap_info_struct *si; 2565 int type; 2566 loff_t l = *pos; 2567 2568 mutex_lock(&swapon_mutex); 2569 2570 if (!l) 2571 return SEQ_START_TOKEN; 2572 2573 for (type = 0; (si = swap_type_to_swap_info(type)); type++) { 2574 if (!(si->flags & SWP_USED) || !si->swap_map) 2575 continue; 2576 if (!--l) 2577 return si; 2578 } 2579 2580 return NULL; 2581 } 2582 2583 static void *swap_next(struct seq_file *swap, void *v, loff_t *pos) 2584 { 2585 struct swap_info_struct *si = v; 2586 int type; 2587 2588 if (v == SEQ_START_TOKEN) 2589 type = 0; 2590 else 2591 type = si->type + 1; 2592 2593 ++(*pos); 2594 for (; (si = swap_type_to_swap_info(type)); type++) { 2595 if (!(si->flags & SWP_USED) || !si->swap_map) 2596 continue; 2597 return si; 2598 } 2599 2600 return NULL; 2601 } 2602 2603 static void swap_stop(struct seq_file *swap, void *v) 2604 { 2605 mutex_unlock(&swapon_mutex); 2606 } 2607 2608 static int swap_show(struct seq_file *swap, void *v) 2609 { 2610 struct swap_info_struct *si = v; 2611 struct file *file; 2612 int len; 2613 unsigned long bytes, inuse; 2614 2615 if (si == SEQ_START_TOKEN) { 2616 seq_puts(swap, "Filename\t\t\t\tType\t\tSize\t\tUsed\t\tPriority\n"); 2617 return 0; 2618 } 2619 2620 bytes = si->pages << (PAGE_SHIFT - 10); 2621 inuse = si->inuse_pages << (PAGE_SHIFT - 10); 2622 2623 file = si->swap_file; 2624 len = seq_file_path(swap, file, " \t\n\\"); 2625 seq_printf(swap, "%*s%s\t%lu\t%s%lu\t%s%d\n", 2626 len < 40 ? 40 - len : 1, " ", 2627 S_ISBLK(file_inode(file)->i_mode) ? 2628 "partition" : "file\t", 2629 bytes, bytes < 10000000 ? "\t" : "", 2630 inuse, inuse < 10000000 ? "\t" : "", 2631 si->prio); 2632 return 0; 2633 } 2634 2635 static const struct seq_operations swaps_op = { 2636 .start = swap_start, 2637 .next = swap_next, 2638 .stop = swap_stop, 2639 .show = swap_show 2640 }; 2641 2642 static int swaps_open(struct inode *inode, struct file *file) 2643 { 2644 struct seq_file *seq; 2645 int ret; 2646 2647 ret = seq_open(file, &swaps_op); 2648 if (ret) 2649 return ret; 2650 2651 seq = file->private_data; 2652 seq->poll_event = atomic_read(&proc_poll_event); 2653 return 0; 2654 } 2655 2656 static const struct proc_ops swaps_proc_ops = { 2657 .proc_flags = PROC_ENTRY_PERMANENT, 2658 .proc_open = swaps_open, 2659 .proc_read = seq_read, 2660 .proc_lseek = seq_lseek, 2661 .proc_release = seq_release, 2662 .proc_poll = swaps_poll, 2663 }; 2664 2665 static int __init procswaps_init(void) 2666 { 2667 proc_create("swaps", 0, NULL, &swaps_proc_ops); 2668 return 0; 2669 } 2670 __initcall(procswaps_init); 2671 #endif /* CONFIG_PROC_FS */ 2672 2673 #ifdef MAX_SWAPFILES_CHECK 2674 static int __init max_swapfiles_check(void) 2675 { 2676 MAX_SWAPFILES_CHECK(); 2677 return 0; 2678 } 2679 late_initcall(max_swapfiles_check); 2680 #endif 2681 2682 static struct swap_info_struct *alloc_swap_info(void) 2683 { 2684 struct swap_info_struct *p; 2685 struct swap_info_struct *defer = NULL; 2686 unsigned int type; 2687 int i; 2688 2689 p = kvzalloc(struct_size(p, avail_lists, nr_node_ids), GFP_KERNEL); 2690 if (!p) 2691 return ERR_PTR(-ENOMEM); 2692 2693 if (percpu_ref_init(&p->users, swap_users_ref_free, 2694 PERCPU_REF_INIT_DEAD, GFP_KERNEL)) { 2695 kvfree(p); 2696 return ERR_PTR(-ENOMEM); 2697 } 2698 2699 spin_lock(&swap_lock); 2700 for (type = 0; type < nr_swapfiles; type++) { 2701 if (!(swap_info[type]->flags & SWP_USED)) 2702 break; 2703 } 2704 if (type >= MAX_SWAPFILES) { 2705 spin_unlock(&swap_lock); 2706 percpu_ref_exit(&p->users); 2707 kvfree(p); 2708 return ERR_PTR(-EPERM); 2709 } 2710 if (type >= nr_swapfiles) { 2711 p->type = type; 2712 /* 2713 * Publish the swap_info_struct after initializing it. 2714 * Note that kvzalloc() above zeroes all its fields. 2715 */ 2716 smp_store_release(&swap_info[type], p); /* rcu_assign_pointer() */ 2717 nr_swapfiles++; 2718 } else { 2719 defer = p; 2720 p = swap_info[type]; 2721 /* 2722 * Do not memset this entry: a racing procfs swap_next() 2723 * would be relying on p->type to remain valid. 2724 */ 2725 } 2726 p->swap_extent_root = RB_ROOT; 2727 plist_node_init(&p->list, 0); 2728 for_each_node(i) 2729 plist_node_init(&p->avail_lists[i], 0); 2730 p->flags = SWP_USED; 2731 spin_unlock(&swap_lock); 2732 if (defer) { 2733 percpu_ref_exit(&defer->users); 2734 kvfree(defer); 2735 } 2736 spin_lock_init(&p->lock); 2737 spin_lock_init(&p->cont_lock); 2738 init_completion(&p->comp); 2739 2740 return p; 2741 } 2742 2743 static int claim_swapfile(struct swap_info_struct *p, struct inode *inode) 2744 { 2745 int error; 2746 2747 if (S_ISBLK(inode->i_mode)) { 2748 p->bdev = blkdev_get_by_dev(inode->i_rdev, 2749 FMODE_READ | FMODE_WRITE | FMODE_EXCL, p); 2750 if (IS_ERR(p->bdev)) { 2751 error = PTR_ERR(p->bdev); 2752 p->bdev = NULL; 2753 return error; 2754 } 2755 p->old_block_size = block_size(p->bdev); 2756 error = set_blocksize(p->bdev, PAGE_SIZE); 2757 if (error < 0) 2758 return error; 2759 /* 2760 * Zoned block devices contain zones that have a sequential 2761 * write only restriction. Hence zoned block devices are not 2762 * suitable for swapping. Disallow them here. 2763 */ 2764 if (blk_queue_is_zoned(p->bdev->bd_disk->queue)) 2765 return -EINVAL; 2766 p->flags |= SWP_BLKDEV; 2767 } else if (S_ISREG(inode->i_mode)) { 2768 p->bdev = inode->i_sb->s_bdev; 2769 } 2770 2771 return 0; 2772 } 2773 2774 2775 /* 2776 * Find out how many pages are allowed for a single swap device. There 2777 * are two limiting factors: 2778 * 1) the number of bits for the swap offset in the swp_entry_t type, and 2779 * 2) the number of bits in the swap pte, as defined by the different 2780 * architectures. 2781 * 2782 * In order to find the largest possible bit mask, a swap entry with 2783 * swap type 0 and swap offset ~0UL is created, encoded to a swap pte, 2784 * decoded to a swp_entry_t again, and finally the swap offset is 2785 * extracted. 2786 * 2787 * This will mask all the bits from the initial ~0UL mask that can't 2788 * be encoded in either the swp_entry_t or the architecture definition 2789 * of a swap pte. 2790 */ 2791 unsigned long generic_max_swapfile_size(void) 2792 { 2793 return swp_offset(pte_to_swp_entry( 2794 swp_entry_to_pte(swp_entry(0, ~0UL)))) + 1; 2795 } 2796 2797 /* Can be overridden by an architecture for additional checks. */ 2798 __weak unsigned long max_swapfile_size(void) 2799 { 2800 return generic_max_swapfile_size(); 2801 } 2802 2803 static unsigned long read_swap_header(struct swap_info_struct *p, 2804 union swap_header *swap_header, 2805 struct inode *inode) 2806 { 2807 int i; 2808 unsigned long maxpages; 2809 unsigned long swapfilepages; 2810 unsigned long last_page; 2811 2812 if (memcmp("SWAPSPACE2", swap_header->magic.magic, 10)) { 2813 pr_err("Unable to find swap-space signature\n"); 2814 return 0; 2815 } 2816 2817 /* swap partition endianness hack... */ 2818 if (swab32(swap_header->info.version) == 1) { 2819 swab32s(&swap_header->info.version); 2820 swab32s(&swap_header->info.last_page); 2821 swab32s(&swap_header->info.nr_badpages); 2822 if (swap_header->info.nr_badpages > MAX_SWAP_BADPAGES) 2823 return 0; 2824 for (i = 0; i < swap_header->info.nr_badpages; i++) 2825 swab32s(&swap_header->info.badpages[i]); 2826 } 2827 /* Check the swap header's sub-version */ 2828 if (swap_header->info.version != 1) { 2829 pr_warn("Unable to handle swap header version %d\n", 2830 swap_header->info.version); 2831 return 0; 2832 } 2833 2834 p->lowest_bit = 1; 2835 p->cluster_next = 1; 2836 p->cluster_nr = 0; 2837 2838 maxpages = max_swapfile_size(); 2839 last_page = swap_header->info.last_page; 2840 if (!last_page) { 2841 pr_warn("Empty swap-file\n"); 2842 return 0; 2843 } 2844 if (last_page > maxpages) { 2845 pr_warn("Truncating oversized swap area, only using %luk out of %luk\n", 2846 maxpages << (PAGE_SHIFT - 10), 2847 last_page << (PAGE_SHIFT - 10)); 2848 } 2849 if (maxpages > last_page) { 2850 maxpages = last_page + 1; 2851 /* p->max is an unsigned int: don't overflow it */ 2852 if ((unsigned int)maxpages == 0) 2853 maxpages = UINT_MAX; 2854 } 2855 p->highest_bit = maxpages - 1; 2856 2857 if (!maxpages) 2858 return 0; 2859 swapfilepages = i_size_read(inode) >> PAGE_SHIFT; 2860 if (swapfilepages && maxpages > swapfilepages) { 2861 pr_warn("Swap area shorter than signature indicates\n"); 2862 return 0; 2863 } 2864 if (swap_header->info.nr_badpages && S_ISREG(inode->i_mode)) 2865 return 0; 2866 if (swap_header->info.nr_badpages > MAX_SWAP_BADPAGES) 2867 return 0; 2868 2869 return maxpages; 2870 } 2871 2872 #define SWAP_CLUSTER_INFO_COLS \ 2873 DIV_ROUND_UP(L1_CACHE_BYTES, sizeof(struct swap_cluster_info)) 2874 #define SWAP_CLUSTER_SPACE_COLS \ 2875 DIV_ROUND_UP(SWAP_ADDRESS_SPACE_PAGES, SWAPFILE_CLUSTER) 2876 #define SWAP_CLUSTER_COLS \ 2877 max_t(unsigned int, SWAP_CLUSTER_INFO_COLS, SWAP_CLUSTER_SPACE_COLS) 2878 2879 static int setup_swap_map_and_extents(struct swap_info_struct *p, 2880 union swap_header *swap_header, 2881 unsigned char *swap_map, 2882 struct swap_cluster_info *cluster_info, 2883 unsigned long maxpages, 2884 sector_t *span) 2885 { 2886 unsigned int j, k; 2887 unsigned int nr_good_pages; 2888 int nr_extents; 2889 unsigned long nr_clusters = DIV_ROUND_UP(maxpages, SWAPFILE_CLUSTER); 2890 unsigned long col = p->cluster_next / SWAPFILE_CLUSTER % SWAP_CLUSTER_COLS; 2891 unsigned long i, idx; 2892 2893 nr_good_pages = maxpages - 1; /* omit header page */ 2894 2895 cluster_list_init(&p->free_clusters); 2896 cluster_list_init(&p->discard_clusters); 2897 2898 for (i = 0; i < swap_header->info.nr_badpages; i++) { 2899 unsigned int page_nr = swap_header->info.badpages[i]; 2900 if (page_nr == 0 || page_nr > swap_header->info.last_page) 2901 return -EINVAL; 2902 if (page_nr < maxpages) { 2903 swap_map[page_nr] = SWAP_MAP_BAD; 2904 nr_good_pages--; 2905 /* 2906 * Haven't marked the cluster free yet, no list 2907 * operation involved 2908 */ 2909 inc_cluster_info_page(p, cluster_info, page_nr); 2910 } 2911 } 2912 2913 /* Haven't marked the cluster free yet, no list operation involved */ 2914 for (i = maxpages; i < round_up(maxpages, SWAPFILE_CLUSTER); i++) 2915 inc_cluster_info_page(p, cluster_info, i); 2916 2917 if (nr_good_pages) { 2918 swap_map[0] = SWAP_MAP_BAD; 2919 /* 2920 * Not mark the cluster free yet, no list 2921 * operation involved 2922 */ 2923 inc_cluster_info_page(p, cluster_info, 0); 2924 p->max = maxpages; 2925 p->pages = nr_good_pages; 2926 nr_extents = setup_swap_extents(p, span); 2927 if (nr_extents < 0) 2928 return nr_extents; 2929 nr_good_pages = p->pages; 2930 } 2931 if (!nr_good_pages) { 2932 pr_warn("Empty swap-file\n"); 2933 return -EINVAL; 2934 } 2935 2936 if (!cluster_info) 2937 return nr_extents; 2938 2939 2940 /* 2941 * Reduce false cache line sharing between cluster_info and 2942 * sharing same address space. 2943 */ 2944 for (k = 0; k < SWAP_CLUSTER_COLS; k++) { 2945 j = (k + col) % SWAP_CLUSTER_COLS; 2946 for (i = 0; i < DIV_ROUND_UP(nr_clusters, SWAP_CLUSTER_COLS); i++) { 2947 idx = i * SWAP_CLUSTER_COLS + j; 2948 if (idx >= nr_clusters) 2949 continue; 2950 if (cluster_count(&cluster_info[idx])) 2951 continue; 2952 cluster_set_flag(&cluster_info[idx], CLUSTER_FLAG_FREE); 2953 cluster_list_add_tail(&p->free_clusters, cluster_info, 2954 idx); 2955 } 2956 } 2957 return nr_extents; 2958 } 2959 2960 /* 2961 * Helper to sys_swapon determining if a given swap 2962 * backing device queue supports DISCARD operations. 2963 */ 2964 static bool swap_discardable(struct swap_info_struct *si) 2965 { 2966 struct request_queue *q = bdev_get_queue(si->bdev); 2967 2968 if (!blk_queue_discard(q)) 2969 return false; 2970 2971 return true; 2972 } 2973 2974 SYSCALL_DEFINE2(swapon, const char __user *, specialfile, int, swap_flags) 2975 { 2976 struct swap_info_struct *p; 2977 struct filename *name; 2978 struct file *swap_file = NULL; 2979 struct address_space *mapping; 2980 struct dentry *dentry; 2981 int prio; 2982 int error; 2983 union swap_header *swap_header; 2984 int nr_extents; 2985 sector_t span; 2986 unsigned long maxpages; 2987 unsigned char *swap_map = NULL; 2988 struct swap_cluster_info *cluster_info = NULL; 2989 unsigned long *frontswap_map = NULL; 2990 struct page *page = NULL; 2991 struct inode *inode = NULL; 2992 bool inced_nr_rotate_swap = false; 2993 2994 if (swap_flags & ~SWAP_FLAGS_VALID) 2995 return -EINVAL; 2996 2997 if (!capable(CAP_SYS_ADMIN)) 2998 return -EPERM; 2999 3000 if (!swap_avail_heads) 3001 return -ENOMEM; 3002 3003 p = alloc_swap_info(); 3004 if (IS_ERR(p)) 3005 return PTR_ERR(p); 3006 3007 INIT_WORK(&p->discard_work, swap_discard_work); 3008 3009 name = getname(specialfile); 3010 if (IS_ERR(name)) { 3011 error = PTR_ERR(name); 3012 name = NULL; 3013 goto bad_swap; 3014 } 3015 swap_file = file_open_name(name, O_RDWR|O_LARGEFILE, 0); 3016 if (IS_ERR(swap_file)) { 3017 error = PTR_ERR(swap_file); 3018 swap_file = NULL; 3019 goto bad_swap; 3020 } 3021 3022 p->swap_file = swap_file; 3023 mapping = swap_file->f_mapping; 3024 dentry = swap_file->f_path.dentry; 3025 inode = mapping->host; 3026 3027 error = claim_swapfile(p, inode); 3028 if (unlikely(error)) 3029 goto bad_swap; 3030 3031 inode_lock(inode); 3032 if (d_unlinked(dentry) || cant_mount(dentry)) { 3033 error = -ENOENT; 3034 goto bad_swap_unlock_inode; 3035 } 3036 if (IS_SWAPFILE(inode)) { 3037 error = -EBUSY; 3038 goto bad_swap_unlock_inode; 3039 } 3040 3041 /* 3042 * Read the swap header. 3043 */ 3044 if (!mapping->a_ops->readpage) { 3045 error = -EINVAL; 3046 goto bad_swap_unlock_inode; 3047 } 3048 page = read_mapping_page(mapping, 0, swap_file); 3049 if (IS_ERR(page)) { 3050 error = PTR_ERR(page); 3051 goto bad_swap_unlock_inode; 3052 } 3053 swap_header = kmap(page); 3054 3055 maxpages = read_swap_header(p, swap_header, inode); 3056 if (unlikely(!maxpages)) { 3057 error = -EINVAL; 3058 goto bad_swap_unlock_inode; 3059 } 3060 3061 /* OK, set up the swap map and apply the bad block list */ 3062 swap_map = vzalloc(maxpages); 3063 if (!swap_map) { 3064 error = -ENOMEM; 3065 goto bad_swap_unlock_inode; 3066 } 3067 3068 if (p->bdev && blk_queue_stable_writes(p->bdev->bd_disk->queue)) 3069 p->flags |= SWP_STABLE_WRITES; 3070 3071 if (p->bdev && p->bdev->bd_disk->fops->rw_page) 3072 p->flags |= SWP_SYNCHRONOUS_IO; 3073 3074 if (p->bdev && blk_queue_nonrot(bdev_get_queue(p->bdev))) { 3075 int cpu; 3076 unsigned long ci, nr_cluster; 3077 3078 p->flags |= SWP_SOLIDSTATE; 3079 p->cluster_next_cpu = alloc_percpu(unsigned int); 3080 if (!p->cluster_next_cpu) { 3081 error = -ENOMEM; 3082 goto bad_swap_unlock_inode; 3083 } 3084 /* 3085 * select a random position to start with to help wear leveling 3086 * SSD 3087 */ 3088 for_each_possible_cpu(cpu) { 3089 per_cpu(*p->cluster_next_cpu, cpu) = 3090 1 + prandom_u32_max(p->highest_bit); 3091 } 3092 nr_cluster = DIV_ROUND_UP(maxpages, SWAPFILE_CLUSTER); 3093 3094 cluster_info = kvcalloc(nr_cluster, sizeof(*cluster_info), 3095 GFP_KERNEL); 3096 if (!cluster_info) { 3097 error = -ENOMEM; 3098 goto bad_swap_unlock_inode; 3099 } 3100 3101 for (ci = 0; ci < nr_cluster; ci++) 3102 spin_lock_init(&((cluster_info + ci)->lock)); 3103 3104 p->percpu_cluster = alloc_percpu(struct percpu_cluster); 3105 if (!p->percpu_cluster) { 3106 error = -ENOMEM; 3107 goto bad_swap_unlock_inode; 3108 } 3109 for_each_possible_cpu(cpu) { 3110 struct percpu_cluster *cluster; 3111 cluster = per_cpu_ptr(p->percpu_cluster, cpu); 3112 cluster_set_null(&cluster->index); 3113 } 3114 } else { 3115 atomic_inc(&nr_rotate_swap); 3116 inced_nr_rotate_swap = true; 3117 } 3118 3119 error = swap_cgroup_swapon(p->type, maxpages); 3120 if (error) 3121 goto bad_swap_unlock_inode; 3122 3123 nr_extents = setup_swap_map_and_extents(p, swap_header, swap_map, 3124 cluster_info, maxpages, &span); 3125 if (unlikely(nr_extents < 0)) { 3126 error = nr_extents; 3127 goto bad_swap_unlock_inode; 3128 } 3129 /* frontswap enabled? set up bit-per-page map for frontswap */ 3130 if (IS_ENABLED(CONFIG_FRONTSWAP)) 3131 frontswap_map = kvcalloc(BITS_TO_LONGS(maxpages), 3132 sizeof(long), 3133 GFP_KERNEL); 3134 3135 if (p->bdev && (swap_flags & SWAP_FLAG_DISCARD) && swap_discardable(p)) { 3136 /* 3137 * When discard is enabled for swap with no particular 3138 * policy flagged, we set all swap discard flags here in 3139 * order to sustain backward compatibility with older 3140 * swapon(8) releases. 3141 */ 3142 p->flags |= (SWP_DISCARDABLE | SWP_AREA_DISCARD | 3143 SWP_PAGE_DISCARD); 3144 3145 /* 3146 * By flagging sys_swapon, a sysadmin can tell us to 3147 * either do single-time area discards only, or to just 3148 * perform discards for released swap page-clusters. 3149 * Now it's time to adjust the p->flags accordingly. 3150 */ 3151 if (swap_flags & SWAP_FLAG_DISCARD_ONCE) 3152 p->flags &= ~SWP_PAGE_DISCARD; 3153 else if (swap_flags & SWAP_FLAG_DISCARD_PAGES) 3154 p->flags &= ~SWP_AREA_DISCARD; 3155 3156 /* issue a swapon-time discard if it's still required */ 3157 if (p->flags & SWP_AREA_DISCARD) { 3158 int err = discard_swap(p); 3159 if (unlikely(err)) 3160 pr_err("swapon: discard_swap(%p): %d\n", 3161 p, err); 3162 } 3163 } 3164 3165 error = init_swap_address_space(p->type, maxpages); 3166 if (error) 3167 goto bad_swap_unlock_inode; 3168 3169 /* 3170 * Flush any pending IO and dirty mappings before we start using this 3171 * swap device. 3172 */ 3173 inode->i_flags |= S_SWAPFILE; 3174 error = inode_drain_writes(inode); 3175 if (error) { 3176 inode->i_flags &= ~S_SWAPFILE; 3177 goto free_swap_address_space; 3178 } 3179 3180 mutex_lock(&swapon_mutex); 3181 prio = -1; 3182 if (swap_flags & SWAP_FLAG_PREFER) 3183 prio = 3184 (swap_flags & SWAP_FLAG_PRIO_MASK) >> SWAP_FLAG_PRIO_SHIFT; 3185 enable_swap_info(p, prio, swap_map, cluster_info, frontswap_map); 3186 3187 pr_info("Adding %uk swap on %s. Priority:%d extents:%d across:%lluk %s%s%s%s%s\n", 3188 p->pages<<(PAGE_SHIFT-10), name->name, p->prio, 3189 nr_extents, (unsigned long long)span<<(PAGE_SHIFT-10), 3190 (p->flags & SWP_SOLIDSTATE) ? "SS" : "", 3191 (p->flags & SWP_DISCARDABLE) ? "D" : "", 3192 (p->flags & SWP_AREA_DISCARD) ? "s" : "", 3193 (p->flags & SWP_PAGE_DISCARD) ? "c" : "", 3194 (frontswap_map) ? "FS" : ""); 3195 3196 mutex_unlock(&swapon_mutex); 3197 atomic_inc(&proc_poll_event); 3198 wake_up_interruptible(&proc_poll_wait); 3199 3200 error = 0; 3201 goto out; 3202 free_swap_address_space: 3203 exit_swap_address_space(p->type); 3204 bad_swap_unlock_inode: 3205 inode_unlock(inode); 3206 bad_swap: 3207 free_percpu(p->percpu_cluster); 3208 p->percpu_cluster = NULL; 3209 free_percpu(p->cluster_next_cpu); 3210 p->cluster_next_cpu = NULL; 3211 if (inode && S_ISBLK(inode->i_mode) && p->bdev) { 3212 set_blocksize(p->bdev, p->old_block_size); 3213 blkdev_put(p->bdev, FMODE_READ | FMODE_WRITE | FMODE_EXCL); 3214 } 3215 inode = NULL; 3216 destroy_swap_extents(p); 3217 swap_cgroup_swapoff(p->type); 3218 spin_lock(&swap_lock); 3219 p->swap_file = NULL; 3220 p->flags = 0; 3221 spin_unlock(&swap_lock); 3222 vfree(swap_map); 3223 kvfree(cluster_info); 3224 kvfree(frontswap_map); 3225 if (inced_nr_rotate_swap) 3226 atomic_dec(&nr_rotate_swap); 3227 if (swap_file) 3228 filp_close(swap_file, NULL); 3229 out: 3230 if (page && !IS_ERR(page)) { 3231 kunmap(page); 3232 put_page(page); 3233 } 3234 if (name) 3235 putname(name); 3236 if (inode) 3237 inode_unlock(inode); 3238 if (!error) 3239 enable_swap_slots_cache(); 3240 return error; 3241 } 3242 3243 void si_swapinfo(struct sysinfo *val) 3244 { 3245 unsigned int type; 3246 unsigned long nr_to_be_unused = 0; 3247 3248 spin_lock(&swap_lock); 3249 for (type = 0; type < nr_swapfiles; type++) { 3250 struct swap_info_struct *si = swap_info[type]; 3251 3252 if ((si->flags & SWP_USED) && !(si->flags & SWP_WRITEOK)) 3253 nr_to_be_unused += si->inuse_pages; 3254 } 3255 val->freeswap = atomic_long_read(&nr_swap_pages) + nr_to_be_unused; 3256 val->totalswap = total_swap_pages + nr_to_be_unused; 3257 spin_unlock(&swap_lock); 3258 } 3259 3260 /* 3261 * Verify that a swap entry is valid and increment its swap map count. 3262 * 3263 * Returns error code in following case. 3264 * - success -> 0 3265 * - swp_entry is invalid -> EINVAL 3266 * - swp_entry is migration entry -> EINVAL 3267 * - swap-cache reference is requested but there is already one. -> EEXIST 3268 * - swap-cache reference is requested but the entry is not used. -> ENOENT 3269 * - swap-mapped reference requested but needs continued swap count. -> ENOMEM 3270 */ 3271 static int __swap_duplicate(swp_entry_t entry, unsigned char usage) 3272 { 3273 struct swap_info_struct *p; 3274 struct swap_cluster_info *ci; 3275 unsigned long offset; 3276 unsigned char count; 3277 unsigned char has_cache; 3278 int err; 3279 3280 p = get_swap_device(entry); 3281 if (!p) 3282 return -EINVAL; 3283 3284 offset = swp_offset(entry); 3285 ci = lock_cluster_or_swap_info(p, offset); 3286 3287 count = p->swap_map[offset]; 3288 3289 /* 3290 * swapin_readahead() doesn't check if a swap entry is valid, so the 3291 * swap entry could be SWAP_MAP_BAD. Check here with lock held. 3292 */ 3293 if (unlikely(swap_count(count) == SWAP_MAP_BAD)) { 3294 err = -ENOENT; 3295 goto unlock_out; 3296 } 3297 3298 has_cache = count & SWAP_HAS_CACHE; 3299 count &= ~SWAP_HAS_CACHE; 3300 err = 0; 3301 3302 if (usage == SWAP_HAS_CACHE) { 3303 3304 /* set SWAP_HAS_CACHE if there is no cache and entry is used */ 3305 if (!has_cache && count) 3306 has_cache = SWAP_HAS_CACHE; 3307 else if (has_cache) /* someone else added cache */ 3308 err = -EEXIST; 3309 else /* no users remaining */ 3310 err = -ENOENT; 3311 3312 } else if (count || has_cache) { 3313 3314 if ((count & ~COUNT_CONTINUED) < SWAP_MAP_MAX) 3315 count += usage; 3316 else if ((count & ~COUNT_CONTINUED) > SWAP_MAP_MAX) 3317 err = -EINVAL; 3318 else if (swap_count_continued(p, offset, count)) 3319 count = COUNT_CONTINUED; 3320 else 3321 err = -ENOMEM; 3322 } else 3323 err = -ENOENT; /* unused swap entry */ 3324 3325 WRITE_ONCE(p->swap_map[offset], count | has_cache); 3326 3327 unlock_out: 3328 unlock_cluster_or_swap_info(p, ci); 3329 if (p) 3330 put_swap_device(p); 3331 return err; 3332 } 3333 3334 /* 3335 * Help swapoff by noting that swap entry belongs to shmem/tmpfs 3336 * (in which case its reference count is never incremented). 3337 */ 3338 void swap_shmem_alloc(swp_entry_t entry) 3339 { 3340 __swap_duplicate(entry, SWAP_MAP_SHMEM); 3341 } 3342 3343 /* 3344 * Increase reference count of swap entry by 1. 3345 * Returns 0 for success, or -ENOMEM if a swap_count_continuation is required 3346 * but could not be atomically allocated. Returns 0, just as if it succeeded, 3347 * if __swap_duplicate() fails for another reason (-EINVAL or -ENOENT), which 3348 * might occur if a page table entry has got corrupted. 3349 */ 3350 int swap_duplicate(swp_entry_t entry) 3351 { 3352 int err = 0; 3353 3354 while (!err && __swap_duplicate(entry, 1) == -ENOMEM) 3355 err = add_swap_count_continuation(entry, GFP_ATOMIC); 3356 return err; 3357 } 3358 3359 /* 3360 * @entry: swap entry for which we allocate swap cache. 3361 * 3362 * Called when allocating swap cache for existing swap entry, 3363 * This can return error codes. Returns 0 at success. 3364 * -EEXIST means there is a swap cache. 3365 * Note: return code is different from swap_duplicate(). 3366 */ 3367 int swapcache_prepare(swp_entry_t entry) 3368 { 3369 return __swap_duplicate(entry, SWAP_HAS_CACHE); 3370 } 3371 3372 struct swap_info_struct *swp_swap_info(swp_entry_t entry) 3373 { 3374 return swap_type_to_swap_info(swp_type(entry)); 3375 } 3376 3377 struct swap_info_struct *page_swap_info(struct page *page) 3378 { 3379 swp_entry_t entry = { .val = page_private(page) }; 3380 return swp_swap_info(entry); 3381 } 3382 3383 /* 3384 * out-of-line methods to avoid include hell. 3385 */ 3386 struct address_space *swapcache_mapping(struct folio *folio) 3387 { 3388 return page_swap_info(&folio->page)->swap_file->f_mapping; 3389 } 3390 EXPORT_SYMBOL_GPL(swapcache_mapping); 3391 3392 pgoff_t __page_file_index(struct page *page) 3393 { 3394 swp_entry_t swap = { .val = page_private(page) }; 3395 return swp_offset(swap); 3396 } 3397 EXPORT_SYMBOL_GPL(__page_file_index); 3398 3399 /* 3400 * add_swap_count_continuation - called when a swap count is duplicated 3401 * beyond SWAP_MAP_MAX, it allocates a new page and links that to the entry's 3402 * page of the original vmalloc'ed swap_map, to hold the continuation count 3403 * (for that entry and for its neighbouring PAGE_SIZE swap entries). Called 3404 * again when count is duplicated beyond SWAP_MAP_MAX * SWAP_CONT_MAX, etc. 3405 * 3406 * These continuation pages are seldom referenced: the common paths all work 3407 * on the original swap_map, only referring to a continuation page when the 3408 * low "digit" of a count is incremented or decremented through SWAP_MAP_MAX. 3409 * 3410 * add_swap_count_continuation(, GFP_ATOMIC) can be called while holding 3411 * page table locks; if it fails, add_swap_count_continuation(, GFP_KERNEL) 3412 * can be called after dropping locks. 3413 */ 3414 int add_swap_count_continuation(swp_entry_t entry, gfp_t gfp_mask) 3415 { 3416 struct swap_info_struct *si; 3417 struct swap_cluster_info *ci; 3418 struct page *head; 3419 struct page *page; 3420 struct page *list_page; 3421 pgoff_t offset; 3422 unsigned char count; 3423 int ret = 0; 3424 3425 /* 3426 * When debugging, it's easier to use __GFP_ZERO here; but it's better 3427 * for latency not to zero a page while GFP_ATOMIC and holding locks. 3428 */ 3429 page = alloc_page(gfp_mask | __GFP_HIGHMEM); 3430 3431 si = get_swap_device(entry); 3432 if (!si) { 3433 /* 3434 * An acceptable race has occurred since the failing 3435 * __swap_duplicate(): the swap device may be swapoff 3436 */ 3437 goto outer; 3438 } 3439 spin_lock(&si->lock); 3440 3441 offset = swp_offset(entry); 3442 3443 ci = lock_cluster(si, offset); 3444 3445 count = swap_count(si->swap_map[offset]); 3446 3447 if ((count & ~COUNT_CONTINUED) != SWAP_MAP_MAX) { 3448 /* 3449 * The higher the swap count, the more likely it is that tasks 3450 * will race to add swap count continuation: we need to avoid 3451 * over-provisioning. 3452 */ 3453 goto out; 3454 } 3455 3456 if (!page) { 3457 ret = -ENOMEM; 3458 goto out; 3459 } 3460 3461 /* 3462 * We are fortunate that although vmalloc_to_page uses pte_offset_map, 3463 * no architecture is using highmem pages for kernel page tables: so it 3464 * will not corrupt the GFP_ATOMIC caller's atomic page table kmaps. 3465 */ 3466 head = vmalloc_to_page(si->swap_map + offset); 3467 offset &= ~PAGE_MASK; 3468 3469 spin_lock(&si->cont_lock); 3470 /* 3471 * Page allocation does not initialize the page's lru field, 3472 * but it does always reset its private field. 3473 */ 3474 if (!page_private(head)) { 3475 BUG_ON(count & COUNT_CONTINUED); 3476 INIT_LIST_HEAD(&head->lru); 3477 set_page_private(head, SWP_CONTINUED); 3478 si->flags |= SWP_CONTINUED; 3479 } 3480 3481 list_for_each_entry(list_page, &head->lru, lru) { 3482 unsigned char *map; 3483 3484 /* 3485 * If the previous map said no continuation, but we've found 3486 * a continuation page, free our allocation and use this one. 3487 */ 3488 if (!(count & COUNT_CONTINUED)) 3489 goto out_unlock_cont; 3490 3491 map = kmap_atomic(list_page) + offset; 3492 count = *map; 3493 kunmap_atomic(map); 3494 3495 /* 3496 * If this continuation count now has some space in it, 3497 * free our allocation and use this one. 3498 */ 3499 if ((count & ~COUNT_CONTINUED) != SWAP_CONT_MAX) 3500 goto out_unlock_cont; 3501 } 3502 3503 list_add_tail(&page->lru, &head->lru); 3504 page = NULL; /* now it's attached, don't free it */ 3505 out_unlock_cont: 3506 spin_unlock(&si->cont_lock); 3507 out: 3508 unlock_cluster(ci); 3509 spin_unlock(&si->lock); 3510 put_swap_device(si); 3511 outer: 3512 if (page) 3513 __free_page(page); 3514 return ret; 3515 } 3516 3517 /* 3518 * swap_count_continued - when the original swap_map count is incremented 3519 * from SWAP_MAP_MAX, check if there is already a continuation page to carry 3520 * into, carry if so, or else fail until a new continuation page is allocated; 3521 * when the original swap_map count is decremented from 0 with continuation, 3522 * borrow from the continuation and report whether it still holds more. 3523 * Called while __swap_duplicate() or swap_entry_free() holds swap or cluster 3524 * lock. 3525 */ 3526 static bool swap_count_continued(struct swap_info_struct *si, 3527 pgoff_t offset, unsigned char count) 3528 { 3529 struct page *head; 3530 struct page *page; 3531 unsigned char *map; 3532 bool ret; 3533 3534 head = vmalloc_to_page(si->swap_map + offset); 3535 if (page_private(head) != SWP_CONTINUED) { 3536 BUG_ON(count & COUNT_CONTINUED); 3537 return false; /* need to add count continuation */ 3538 } 3539 3540 spin_lock(&si->cont_lock); 3541 offset &= ~PAGE_MASK; 3542 page = list_next_entry(head, lru); 3543 map = kmap_atomic(page) + offset; 3544 3545 if (count == SWAP_MAP_MAX) /* initial increment from swap_map */ 3546 goto init_map; /* jump over SWAP_CONT_MAX checks */ 3547 3548 if (count == (SWAP_MAP_MAX | COUNT_CONTINUED)) { /* incrementing */ 3549 /* 3550 * Think of how you add 1 to 999 3551 */ 3552 while (*map == (SWAP_CONT_MAX | COUNT_CONTINUED)) { 3553 kunmap_atomic(map); 3554 page = list_next_entry(page, lru); 3555 BUG_ON(page == head); 3556 map = kmap_atomic(page) + offset; 3557 } 3558 if (*map == SWAP_CONT_MAX) { 3559 kunmap_atomic(map); 3560 page = list_next_entry(page, lru); 3561 if (page == head) { 3562 ret = false; /* add count continuation */ 3563 goto out; 3564 } 3565 map = kmap_atomic(page) + offset; 3566 init_map: *map = 0; /* we didn't zero the page */ 3567 } 3568 *map += 1; 3569 kunmap_atomic(map); 3570 while ((page = list_prev_entry(page, lru)) != head) { 3571 map = kmap_atomic(page) + offset; 3572 *map = COUNT_CONTINUED; 3573 kunmap_atomic(map); 3574 } 3575 ret = true; /* incremented */ 3576 3577 } else { /* decrementing */ 3578 /* 3579 * Think of how you subtract 1 from 1000 3580 */ 3581 BUG_ON(count != COUNT_CONTINUED); 3582 while (*map == COUNT_CONTINUED) { 3583 kunmap_atomic(map); 3584 page = list_next_entry(page, lru); 3585 BUG_ON(page == head); 3586 map = kmap_atomic(page) + offset; 3587 } 3588 BUG_ON(*map == 0); 3589 *map -= 1; 3590 if (*map == 0) 3591 count = 0; 3592 kunmap_atomic(map); 3593 while ((page = list_prev_entry(page, lru)) != head) { 3594 map = kmap_atomic(page) + offset; 3595 *map = SWAP_CONT_MAX | count; 3596 count = COUNT_CONTINUED; 3597 kunmap_atomic(map); 3598 } 3599 ret = count == COUNT_CONTINUED; 3600 } 3601 out: 3602 spin_unlock(&si->cont_lock); 3603 return ret; 3604 } 3605 3606 /* 3607 * free_swap_count_continuations - swapoff free all the continuation pages 3608 * appended to the swap_map, after swap_map is quiesced, before vfree'ing it. 3609 */ 3610 static void free_swap_count_continuations(struct swap_info_struct *si) 3611 { 3612 pgoff_t offset; 3613 3614 for (offset = 0; offset < si->max; offset += PAGE_SIZE) { 3615 struct page *head; 3616 head = vmalloc_to_page(si->swap_map + offset); 3617 if (page_private(head)) { 3618 struct page *page, *next; 3619 3620 list_for_each_entry_safe(page, next, &head->lru, lru) { 3621 list_del(&page->lru); 3622 __free_page(page); 3623 } 3624 } 3625 } 3626 } 3627 3628 #if defined(CONFIG_MEMCG) && defined(CONFIG_BLK_CGROUP) 3629 void __cgroup_throttle_swaprate(struct page *page, gfp_t gfp_mask) 3630 { 3631 struct swap_info_struct *si, *next; 3632 int nid = page_to_nid(page); 3633 3634 if (!(gfp_mask & __GFP_IO)) 3635 return; 3636 3637 if (!blk_cgroup_congested()) 3638 return; 3639 3640 /* 3641 * We've already scheduled a throttle, avoid taking the global swap 3642 * lock. 3643 */ 3644 if (current->throttle_queue) 3645 return; 3646 3647 spin_lock(&swap_avail_lock); 3648 plist_for_each_entry_safe(si, next, &swap_avail_heads[nid], 3649 avail_lists[nid]) { 3650 if (si->bdev) { 3651 blkcg_schedule_throttle(bdev_get_queue(si->bdev), true); 3652 break; 3653 } 3654 } 3655 spin_unlock(&swap_avail_lock); 3656 } 3657 #endif 3658 3659 static int __init swapfile_init(void) 3660 { 3661 int nid; 3662 3663 swap_avail_heads = kmalloc_array(nr_node_ids, sizeof(struct plist_head), 3664 GFP_KERNEL); 3665 if (!swap_avail_heads) { 3666 pr_emerg("Not enough memory for swap heads, swap is disabled\n"); 3667 return -ENOMEM; 3668 } 3669 3670 for_each_node(nid) 3671 plist_head_init(&swap_avail_heads[nid]); 3672 3673 return 0; 3674 } 3675 subsys_initcall(swapfile_init); 3676